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Abstract In this paper we introduce a versatile and robust
method for analyzing the feature space associated with a
given mesh surface. The method is based on the mean-shift
operator which was shown to be successful in image and
video processing. Its strength lays in the fact that it works
in a single joint space of geometry and attributes called the
feature-space. The mean-shift procedure works as a gradient
ascend finding maxima of an estimated probability density
function in feature-space. Our method for using the mean-
shift technique on surfaces solves several difficulties. First,
meshes as opposed to images do not present a regular and
uniform sampling of domain. Second, on surfaces meshes
the shifting procedure must be constrained to stay on the
surface and preserve geodesic distances. We define a spe-
cial local geodesic parameterizations scheme, and use it to
generalize the mean-shift procedure to unstructured surface
meshes. Our method can support piecewise linear attribute
definitions as well as piecewise constant attributes.

Keywords mean-shift, meshes, segmentation, feature
extraction

1 Introduction

Data partitioning and feature identification have become a
fundamental part of many applications in graphics and visu-
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Fig. 1 An overview of the geodesic mean-shift procedure on surface
meshes. The local geodesic neighborhood around each vertex is flat-
tened. The area is shown from blue (center) to red (periphery) on the
mesh, and after parametrization. Using the parameterized mesh ver-
tices, the attributes are mapped to color channels and the mesh is ras-
terized to create the feature-space neighborhood. In this example we
mapped the XYZ of the normals as a 3D feature vector to RGB. The
new mean is computed by excluding values outside the given window
range in both spatial and attribute sub-spaces. The window is shifted to
the new mean and the process continues until convergence (from top
to bottom in this figure).

alization. In this paper we introduce a versatile and robust
method that allows filtering attributes, extracting features
and partitioning a given surface. The method is based on the
analysis of afeature-spaceusing themean-shiftprocedure.
The feature-space is defined as a high dimensional space as-
sociated with the surface geometry and its attributes. The
coordinates of a point in this space include a combination of
thespatialcoordinates and a set of associatedattributesthat
are considered in the analysis. The mean-shift is defined as
a gradient ascend search for maxima of a density function
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over the feature-space. It operates by iteratively shifting a
fixed size window to the average of the data points within
it, until convergence. The end result of the procedure is a
mapping from each point in feature-space tomodeswhich
are, loosely speaking, the most likely values in their neigh-
borhood. This mapping can then be utilized for clustering,
filtering or feature identification.

The strength of the mean-shift approach lies in the fact
that it simultaneously considers the combined feature space
composed of both geometry and attributes together. Unlike
many clustering techniques, it does not require an initial
guess for the location or the number of the modes or clus-
ters. Instead, the modes are determined by the mean-shift
procedure itself. The mean-shift has been shown to be suc-
cessful in image and video processing [5,7,40], and for un-
structured volumetric meshes using a continuous piecewise
constant feature-space [32].

In this paper we define a novel scheme of the mean-
shift procedure for surface meshes, which we termGeodesic
Mean-Shift. We use the most pervasive representation in graph-
ics which is a triangular mesh, and apply the mean-shift op-
erator to the mesh vertices rather than to the mesh faces.
Several difficulties arise when moving to this new geometric
domain. First, meshes as opposed to images do not present a
regular and uniform sampling of the domain. Second, on sur-
face meshes simple averaging of 3D coordinates may cause
the result to be outside the mesh. This means that the shift-
ing procedure must be constrained to the mesh domain, and
the averaging must use correct distance calculations between
points, that is,geodesicdistances instead of Euclidean. The
third difficulty is a result of applying the mean-shift to ver-
tices rather than faces of the mesh. This imposes a piecewise
linear feature space rather than piecewise constant as in pix-
els or volumetric elements in previous works.

The fundamental operation in the mean-shift procedure
is the computation of the weighted mean of the points in a
specific neighborhood around a center point. When we move
to meshes and use continuous feature-space instead of a dis-
crete one, discrete averaging based on counting samples in
the neighborhood cannot be used anymore. Remembering
that the discrete averaging originated from a Parzen window
estimation method for the density function [27], we replace
the averaging with a continuous estimation based on integra-
tion. Hence, in our continuous space we consider the whole
volume inside the Parzen window instead of only counting
discrete samples. When the function is piecewise constant,
the averaging uses the area (or volume) as a weighting fac-
tor for each constant value. When the function is piecewise
linear, we sample the whole window area (or volume) uni-
formly by employing rasterization with linear blending.

To constrain the movement of the mean-shift on a sur-
face mesh, we use a new type of local parametrization. Un-
like common parametrization techniques [13], which goal is
to cover large areas with global constraints, ourGeodesic
parametrizationis local and emphasizes the center point. Its
goal is to create a flattened neighborhood around each of
the mesh vertices which preserves the geodesic distances

to the center vertex as much as possible, and distorts the
area around the vertex as little as possible. These parametric
maps are then used in the mean calculation. The distances
from the window center point on the 2D map are used as
an approximation to the geodesic distances on the 3D sur-
face. To achieve a fast approximation of the piecewise lin-
ear attribute neighborhood, the map is rasterized to create a
sampling around the vertex (see Figure 1).

Our primary contributions are as follows:

– We generalize the mean-shift procedure to be applica-
ble to a mesh-surface embedded in 3D, extending its ap-
plicability from regular image-space to unstructured and
irregular meshes.

– We introduce a moving geodesic parametrization, en-
abling the mean-shift to be performed as if the surface
was locally flat.

– We extend the mean-shift procedure to work on a con-
tinuous feature-space which is piecewise linear and not
only piecewise constant using area sampling.

2 Previous Work

Clustering primitive elements into large regions of similar
attributes has been used for surface analysis. In particular
segmentation, partitioning and feature extraction are used
as a first stage in applications such as parametrization, sim-
plification, compression, matching, morphing and more [18,
37,25,26,28,20,30,3,31,23]. Often clustering is performed
in a greedy manner by assigning a triangle to the closest
seed [20], by adding triangles incrementally to regions [26,
19,38], or by merging whole regions at a time [15,8,10].
Mean-shift provides a more robust approach to the analysis
of meshes since it takes a global view based on the search
for most likely values in various regions of the mesh in the
joint geometric and attribute space.

Partitioning, clustering and segmentation for the analysis
of data appear in many fields such as image processing, vi-
sion, data-mining and machine-learning [1]. Clustering ap-
proaches are classified to ‘parametric’ and ‘non-parametric’
[29]. In the parametric approach, the number of clusters (i.e.,
the parameter) is either known or preset in advance, and all
elements (or points) are assigned to one of them. Exam-
ples of such methods are the K-means procedure (see for
example [17]) and the Gaussian mixture model [42]. Non-
parametric approaches do not rely or preset the number of
clusters, hence no parameter is needed. The number of clus-
ters can change as the algorithm progresses, becoming one
of the results of the algorithm along with the partitioning
itself. Examples of algorithms which use this approach are
K-nearest neighbors, bilateral filtering [39] and the mean-
shift [5,16]. The main difference between the two is that
mean-shift employs a moving window while in bilateral fil-
tering the window is fixed. Furtheremore, mean-shift does
not rely on outside stopping criteria, but rather converges to
the local density maxima.
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(a) (b) (c)

Fig. 2 Attributes on meshes can be predefined and given such as tem-
perature on a tetrahedral mesh (a), or extracted such as mean curvature
(b) or centricity (c) on a surface mesh. Centricity is calculated as aver-
age geodesic distance from each vertex to all other vertices.

Parametrization is an active field of research in Graphics.
In several important papers Floater presented barycentric co-
ordinates as a way to allow vertices in triangulations to be
expressed as convex combinations of their neighbors [11].
This was later enhanced by the the use of mean value coor-
dinates in [12]. Such constraints can be solved as a sparse
linear system of equations. In [24], Levy and Mallet pre-
sented a method to solve the same convex combination prob-
lem as a minimization problem. Several papers such as Shef-
fer and Sturler [36], and Zigelman et al. [43], concentrate on
parametrization with free boundaries. Other works have fo-
cused on processing the mesh to make it suitable for param-
eterizations and improve the parametrization results, for ex-
ample, by introducing seams. Mesh parts are created which
are to be homeomorphic to a disc and the parametrization
distortion is reduced [34] and [9]. For a thorough review of
the field the reader is referred to a recent survey by Floater
and Hormann [13].

Mean-shift has already been used for clustering [2], for
segmentation of images [5], video [7,40] and 3D volumetric
meshes [32], for motion tracking [6,4] and recognition [41].
It is a powerful tool when used on images, video and vol-
umes and this work extends its applicability to boundary
meshes which are so often used in visualization and graph-
ics.

3 Feature Space

The mean-shift operates in a combined feature space that
consist of a combination of the domain geometric dimen-
sionsx1,x2, . . . ,xd and of various attributes (e.g. functions)
defined over the domainf1, f2, . . . , fm. The functions can be
scalar or vector functions, they can be predefined such as
temperature, density, pressure, and wind-direction, or they
can be extracted from the mesh such as gradient, curvature,
normals, or centricity (see Figures 2). The choice of using
a specific function depends on the application in mind. Any
point P in the high dimensional feature-space is defined by
combining the geometric coordinatesp = (x1,x2, . . . ,xd) of
the point on the mesh domain and the values of the functions
defined atp: P = (x1,x2, . . . ,xd, f1(p), f2(p), . . . , fm(p))

Working in this high dimensional space consisting of a
mix of coordinates - geometric and functional, is not intu-
itive. The nature, range and scale of the various functional
and geometric subspaces can vary considerably, and must be
normalized before combining them to feature space. Choos-
ing correct normalization constants is a challenging issue
beyond our scope, and often it is task dependent. Never-
theless, the main objective of mean-shift is to find structure
in this high dimensional space by searching for dense re-
gions. In practice we normalized the values in each function
subspace using its standard deviation. The distance measure
DΦ(P,Q) between two pointsP andQ in the high dimen-
sional feature-spaceΦ is either Euclidean or defined as the
sum of Euclidean distances in each subspaces (geometric
and attribute).

The functional attributes can be defined either on mesh
vertices or on the mesh faces (triangles). When attributes are
defined per triangle creating a piecewise constant function
over the domain, the result is a piecewise constant feature-
space. When attributes are assigned to the vertices and inter-
polated inside each triangle, the result is a piecewise linear
function over the mesh domain, and similar blending is used
in feature-space. The choice of blending also depends on the
type of filtering selected. When filtering faces we define a
representative point for each face at the center of the face
and map it to a feature-space point. This imposes feature
boundaries which are defined by the edges of the mesh, and a
piecewise constant feature space. Filtering vertices imposes
the piecewise linear feature space and the feature boundaries
are likely to fall inside triangles.

4 mean-shift

The mean-shift procedure starts from some point in feature-
space and iteratively follows an estimation of the density
function gradient [14] until convergence. The feature-space
itself can be regarded as the empirical probability density
function. This means that dense regions in feature-space cor-
respond to local maxima in the probability density function
(see [5] for details and for convergence proof). Therefore,
the mean-shift procedure findsmodes(i.e. local maxima) in
feature-space by moving towards them incrementally. Ap-
plying this procedure to a set of given points will create clus-
ters around the modes.

A single step of the mean-shift procedure is performed
by defining a neighborhoodΩ around the current point in
feature-space. This neighborhood is used for the Parzen win-
dow density estimation [27]. The procedure calculates the
weighted mean of the points that fall inside this neighbor-
hood, and then moves to the mean by shifting the window
to be centered around it. Hence the basic step is composed
of calculating the mean of all points in the neighborhoodΩ

around a given point. More specifically, ifP is a feature-
space point, then the meanMh(P) of P is defined using a
radially symmetric kernelK with radiush in feature-space
with a monotonically decreasing profileg(x). For instance,
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Fig. 3 An overview of the steps of creating local geodesic parametrization. The colors represent the true geodesic distances from the center:
from blue (center) to red (periphery). For geodesic mean-shift, instead of adding filler triangles (last image) we pull the vertices back to the
convex hull.

we have used normal kernel defined by the common profile
g(x) = e−x2/2. Other kernels such as the uniform kernel can
be used as well.

For a piecewise constant approximation of feature space
we assume each constant regionSis represented by a feature
space pointPS. Themeanof a pointP using profileg(x) in a
neighborhoodΩ with radiush aroundP is defined as:

Mh(P) =
∑S⊂Ω PS·g

(∣∣∣∣∣∣DΦ (P,PS)
h

∣∣∣∣∣∣2
)
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(1)

For a piecewise linear approximation of feature space,
we assume we can sample the neighborhoodΩ uniformly
(see next section) and hence just use the weighted average
of all pointsQ aroundP:

Mh(P) =
∑Q∈Ω Q·g

(∣∣∣∣∣∣DΦ (P,Q)
h

∣∣∣∣∣∣2
)

∑Q∈Ω g
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h

∣∣∣∣∣∣2
) (2)

Nevertheless, there still remains the question of sam-
pling the neighborhoodΩ correctly on the mesh, and the
definition ofDΦ . Simply using 3D coordinates and Euclidean
distances of points on the surface may easily result in mean
points which are outside the surface. Furthermore, on sur-
face meshes we need to measure distances correctly on the
mesh, by defining the geodesic geometry sub-space inside
feature space. Hence, we must constrain the shifting of a
point to its mean to remain on the mesh surface (e.g. its do-
main).

5 Geodesic parametrization

Surface parametrization is a mapping from a 2D domain
onto the surface. By definition a parametrization is only pos-
sible for an open surface homeomorphic to a disk. Other-
wise, the surface must first be cut along at least one edge
before it can be mapped onto a planar region. Moreover,

with the exception of developable surfaces, general open
manifolds cannot be parameterized without distortion. Many
parametrization methods assume that the cuts are given and
focus on the optimization of the parametrization to mini-
mize some geometric distortion metrics. However, introduc-
ing cuts (seams), possibly beyond those necessary to make
the surface a topological disk, can reduce this distortion fur-
ther [35].

For our geodesic mean-shift operator, the elementary op-
eration in equations 1 and 2 is the geodesic distance cal-
culation between points in the neighborhood and the center
point. Hence, local parametrization will serve only the cen-
tral vertex around which the parametrization is built, and the
distortion measure must be biased towards this point. Most
previous work concentrate on minimizing global distortion
of surface attributes such as angles, lengths, areas or even
geodesic distances [44].

We define for each vertex its own localgeodesic parametriza-
tion [33] to minimize the distortion of the geodesic distances
to all the points in its neighborhood. The parametrization
changes while moving from one point to another, creating
a moving local geodesic parametrization of the whole sur-
face. Figure 3 gives an overview of our method for a sin-
gle vertex. The first step in the algorithm is to define the
geodesic neighborhood of the vertex. This is done using a
front marching algorithm similar to the one used in [21].
Note that if the front meets itself, it merges to produce a
new unified front. This means that later there is a need to cut
seams in the geodesic neighborhood patch.

The output of this step is a collection of vertices and
edges which comprise a vertex’s local geodesic neighbor-
hood within a given radius. Even though the mesh is mani-
fold, the computed geodesic neighborhood will not, in gen-
eral, be homeomorphic to a disk. This is the case when the
neighborhood radius is large or the mesh is complex (e.g.
fingers of a hand). To create a patch which is homeomorphic
to a disk, we wish to ensure that it includes only one bound-
ary loop. This boundary loop will become the boundary of
the patch local geodesic map, and define the patch shape.

Based on [34] we connect the different boundary loops
and cut the patch to include only one boundary loop. We
place the vertices of the boundary loop in order on a 2D
circle, whose initial radius is the geodesic neighborhood ra-
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Fig. 4 Two examples of local geodesic parametrization for feature-
space neighborhood calculation. The local neighborhood (a-b) of ver-
tices on the mesh is flattened to createΓv (c), and the features are
mapped to the 2D domain (d). In this example, the normal XYZ values
are mapped to RGB.

dius. We move the vertices towards the center to their true
geodesic distance from the center. This forms a non-convex
shape, which is harder to parameterize. Furthermore, using
averaging calculation on non-convex shape may result in a
point outside the mesh. Hence, we calculate the convex hull
of the 2D shape and pull the vertices back out to lay on
the convex hull. Although this may introduce some distor-
tion of the geodesic distances it is usually very small: the
original shape is almost convex as the distance to all bound-
ary vertices of the geodesic neighborhood is almost simi-
lar. Lastly, mean-value coordinates are used to calculate the
parametrization inside the patch [12].

The end result of this process is a 2D patchΓv ⊂ R2 for
each vertexv, representing a parametrization of the geodesic
neighborhood ofv. The connectivity ofΓv is the same as that
of the geodesic neighborhood ofv on the mesh. Each vertex
and triangle inΓv has a mapping onto the mesh creating a
mapping from each pointp ∈ Γv onto the sub-mesh in the
geodesic neighborhood ofv. This enables a mapping of the
features from the mesh to the 2D domain (Figure 4). Due
to some distortions, we still store for each 2D triangle inΓv

the ratio between its area and the original 3D mesh triangle
area. This ratio is used as a correction factor in equations 1,
and in equation 2 the sample values during averaging are
multiplied by this ratio to better represent the weight of the
true geodesic neighborhood area.

Performing the geodesic parametrization process on all
vertices of a 2-manifold mesh, creates a collection of local
geodesic maps. Even when a selected number of vertices are
used, the amount of overlap in these maps can be quite large.
Hence, the memory footprint of naı̈ve storage is quite large.
There is a need to balance the computation speed with stor-
age size and memory efficiency. Our scheme is efficient in
terms of storage, but depends on longer computation to re-
construct each patch whenever it is needed. For each patch
we store only:

1. The indexes of the vertices in the original mesh which
appear in the patch.

2. The set of half edges which represent the seam tree in
the patch.

3. The distance and angle from the center vertex to all ver-
tices on the boundary of the patch, taken from the front
marching algorithm.

This storage method saves the space of both the connec-
tivity and the geometry information of the patch. During re-
construction we must create a mesh object for the patch, use
the connectivity information from the original mesh, cut the
patch along the seam tree, and then parameterize the actual
patch anew. This does not take more than a few seconds per
patch. Nevertheless, while performing mean-shift we use a
cache of fully reconstructed patches to amortized the recon-
struction costs.

6 Geodesic mean-shift

The principal behind the geodesic mean-shift algorithm is to
imagine the surface domain from the perspective of a point
laying on the surface. This means that:

1. Distances between points are measured on the surface as
geodesic distances, and,

2. Both the neighborhoods and the movements of the mean-
shift are constrained to the domain of the surface.

Both these are achieved using the local 2D geodesic pa-
rameterizationΓv around each vertexv (Section 5).Γv serves
as the geodesic neighborhood which contains the spatial fea-
ture space neighborhoodΩ aroundv for the mean calcula-
tion. The 2D distances of each pointp ∈ Γv to the center
pointv well approximate the corresponding 3D geodesic dis-
tances. Furthermore, each pointp∈ Γv can be mapped back
to the 3D surface using the local parametrization. In effect,
by calculating the mean-shift averaging onΓv, we constrain
the mean to remain on the surface.

The definition of the density function for images uses
the Parzen window estimation technique over the feature
space as an empirical discrete sampling space. Images can
be seen as a uniform sampling of this space. To get uniform
geodesic sampling on meshes one should maintain uniform
triangulation over all the mesh surface. This can sometimes
be achieved using various subdivision and re-meshing tech-
niques. Nevertheless, these techniques can be both difficult
and time-consuming, and they alter the mesh connectivity
structure which is undesirable when attributes are defined
on the mesh. Furthermore, even when the 3D mesh is trian-
gulated uniformly, there is no guarantee that after flattening
of the local neighborhoods the uniformity characteristic will
be preserved inΓv.

Instead, to gain uniform sampling of the local geodesic
neighborhoods of points on the mesh we utilize a sampling
technique taking advantage of the graphics hardware. Given
a point on the mesh, we use the parametrizationΓv around
the vertexv closest to the point. We then rasterize a clipped
area insideΓv mesh with the radius of the current Parzen
window geometric range. To get a sampling of the attribute
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Fig. 5 An example of the mean-shift process using 2D flattening and rasterization. From left to right, each image represents one step of the
mean-shift on the surface of the Dino-pet. In each step, the 2D flattened neighborhood around the current position on the mesh (red dot) is
rasterized using the feature as one of the color channels. The averaging filters out the attribute values which are out of the range of the point
(dark gray regions). Note in this example that the initial steps move more in the spatial sub-space, while the final steps move more in the attribute
sub-space (hence changing the filtered attribute areas).

Fig. 6 An example of a sequence until convergence of the mean-shift of one vertex on the frog head with normal feature attribute.

sub-spaces we assign each vertex in the 2D mesh its attribute
values in one of the three color channels. Three 8-bit chan-
nels can be used simultaneously in OpenGL and up to 16
floating point in some extensions such as CG. The rasteriza-
tion process creates a bitmap which is a uniform sampling of
a 2D window around the vertex. The color channel of each
pixel in this bitmap holds the interpolated values of the trian-
gle vertices. This way we create a piecewise linear mapping
of the feature space function around the feature-space point.
The image is then used for filtering out pixels which are out
of the attribute window range and for calculating the new
mean (Figure 5 and 6).

7 Examples

To validate the geodesic mean-shift procedure we start with
a simple example shown in Figure 7. We begin with a 2D
image created out of random sampling of 3 Gaussian distri-
butions. Each gaussian is given its own unique value. The
value for each point on the image is chosen as one of the
three possible values with probability proportional to the
three gaussian values at that point (with a bias towards the
larger value). Next, we create a mesh cylinder out of the
image and give the vertices the values of the original pix-
els. Using mean-shift on the 2D image creates three clusters
according to the three values, and maps points which are
outside the main region to the correct modes. We now em-
ploy our geodesic mean-shift procedure to the cylinder and
warp the results back to 2D for comparison. As can be seen
the same modes were found and the same features structures
preserved.

We have tested several surface meshes of various genus,
using several possible attributes (Some examples are shown
in Figure 8 to 11). The meshes in the examples have up to
20,000 vertices. Local parametrization and flattening created

Fig. 7 Validating the Geodesic mean-shift. A Gaussian mixture of
three Gaussians (a) is used to sample a random 2D image with three
characteristic values (b). The image is then used to create a similar 3D
mesh on a cylinder (c). The results of original 2D mean-shift proce-
dure is shown in the middle, and the results of geodesic mean-shift on
the cylinder (mapped back to 2D) at the bottom. Each green line indi-
cates the mapping of a point to its mode. As can be seen the results are
almost indistinguishable.



Mesh Analysis using Geodesic Mean-Shift 7

Fig. 8 Mean-shift on a Torus with Gaussian curvature as a one dimensional feature. The first image is the mesh and the second is a color mapping
of the Gaussian curvature. In the third image, the lines link each vertex to its mode vertex after mean-shift. The fourth image shows the filtered
mesh where the value of each vertex is replaced by the value of its mode.

Fig. 9 Left: mean-shift on a bird mesh with centricity field as a one dimensional feature. This feature is gradual over the mesh (top), hence the
modes of the vertices are very local (bottom). Right: the dino-pet mesh with a scalar field value defined as2

π
arctanκ1+κ2

κ1−κ2
, Whereκ1 andκ2 are

the principle curvatures andκ1 ≥ κ2 (see [22]). This type of field enhances the distinction between concave and convex parts of the mesh. The
left image (before mean-shift) is more noisy than the right (after mean-shift).

Fig. 10 Mean-shift on a Maoi stone statue with normals XYZ as three dimensional feature. Note the difference in the distribution of normals in
the second and last figure. The mean-shift clusters areas of similar normals and enhances the feature lines between them.

Fig. 11 Mean-shift on a horse mesh with normals: the normals directions become more apparent and uniform and the feature lines are enhanced.
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a local 2D map for each vertex in a pre-processing stage tak-
ing up to 20 minutes per mesh, using a 2GHZ Pentium-4
machine. For the mean-shift itself we used a kernel radius
of around 10% of the bounding box diagonal for each mesh,
and 10% of the feature range. The average convergence rate
was similar to all previous reports of the mean-shift proce-
dure, and around 7 iterations per vertex. The whole process
took between 10 to 60 minutes per mesh in the examples
shown.

The choice of feature for mesh analysis depends on the
application in mind. We have tested both scalar and vector
features and any combination of the features can also be eas-
ily applied using our method. One dimensional scalar fea-
tures defined on the mesh include curvature (Figure 8), cen-
tricity, which is the average of the geodesic distance from a
vertex to all other vertices (Figure 9, left), and a value dis-
ntinguishing concavity and convexity (Figure 9, right). The
normal direction (Figures 6, 10, and 11) is a three dimen-
sional (vector) feature value. For scalar fields we use a hue
color mapping of the scalar values on the mesh, while for the
normals we used a mapping from XYZ to RGB. The map-
ping of each vertex to its mode is sometimes shown with
lines.

These results show that the geodesic mean-shift algo-
rithm on boundary meshes works in a similar manner as
mean-shift on rectangle images or on volumes. The proce-
dure converges in a similar convergence rate, while still con-
strained to remain on the mesh surface. Points are mapped
from areas of high feature-gradient energy to areas of low
feature-gradient energy. The local modes of the joint den-
sity function estimate are found on the mesh surface, and the
modes are characteristic of the joint geometric and attribute
feature-space.

8 Conclusion and Future Work

This paper defines a generalization of the mean-shift proce-
dure to surface meshes. This generalization is achieved us-
ing moving geodesic parametrization and flattening and the
definition of continuous linear feature space. The procedure
can be used to cluster vertices or faces on boundary meshes
and can be utilized for feature extraction or segmentation.

As seen in the given examples, different results can be
attained using different features over the mesh. This is some-
times referred to as the feature-selection problem. Often the
choice of features is application dependent and it still re-
mains one of the most challenging issues in any analysis,
clustering or segmentation algorithm.

In the future, we plan to leverage geodesic mean-shift to
achieve more accurate results for segmentation. For instance
by combining a clustering algorithm on the filtering results
of the geodesic mean-shift. We are also working on improv-
ing the efficiency of the process to work on larger and more
complex meshes by employing multi-resolution and hierar-
chical techniques.
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