Automatic Editing of Footage from Multiple Social Cameras

by Ido Arev Hyun-Soo Park Yaser Sheikh Jessica Hodgins Ariel Shamir

Project Page

Abstract

We present an approach that takes multiple videos captured by social cameras - cameras that are carried or worn by members of the group involved in an activity - and produces a coherent ``cut'' video of the activity. Footage from social cameras contains an intimate, personalized view that reflects the part of an event that was of importance to the camera operator. We leverage the insight that social cameras share the focus of attention of the people carrying (or wearing) them. We use this insight to determine where the important "content" in a scene is taking place, and use it in conjunction with cinematographic rules to select which cameras to cut to and to determine the timing of those cuts. A trellis graph formulation is used to optimize an objective function that maximizes coverage of the important content in the scene, while respecting cinematographic rules such as the 180-degree rule and avoiding jump cuts. We demonstrate cuts of the videos in various styles and lengths for a number of scenarios, including sports games, street performance, family activities, and social get-togethers. We evaluate our results through an in-depth analysis of the cuts in the resulting videos and through comparison with videos produced by a professional editor and existing commercial solutions.