Public Data Structures: Counters as a Special Case

Hagit Brit† Shlomo Moran‡† Gadi Taubenfeld§

June 4, 2001

Abstract

A public data structure is required to work correctly in a concurrent environment where many processes may try to access it, possibly at the same time. In implementing such a structure nothing can be assumed in advance about the number or the identities of the processes that might access it.

While most of the known concurrent data structures are not public, there are few which are public. Interestingly, these public data structures all deal with various variants of counters, which are data structures that support two operations: increment and read.

In this paper we define the notion of a public data structure, and investigate several types of public counters. Then we give an optimal construction of public counters which satisfies a weak correctness condition, and show that there is no public counter which satisfies a stronger condition. It is hoped that this work will provide insights into the design of other, more complicated, public data structures.

† Computer Science Department, Technion, Haifa 32000, Israel.
‡ This research was supported in part by the fund for promotion of the research in the Technion.
§ The Open Univ., 16 Klausner st., P.O.B. 39328, Tel-Aviv 61392, Israel. Part of the work was done while the author was working for AT&T Bell Laboratories.
1 Introduction

Public data structures

The subject of concurrent data structures has been the focus of several recent works, which are motivated by the development of new parallel computers. A traditional implementation of a (sequential) data structure consists of the code for all the operations the data structure supports, which behaves correctly when all the operations are executed one after the other in a sequential fashion. An implementation of a concurrent data structure gives a code which must behave correctly even when executed by many processes concurrently.

Implementing a concurrent data structure is much trickier than a sequential one. It is usually required to be wait-free, that is, it should guarantee that any operation by a process will always be completed in a finite number of steps regardless of the behavior of other processes (such as abnormal termination). In implementing concurrent structures, one usually assumes that the total number of processes in the system, as well as the identities of these processes, are known. However, this assumption is not always valid: for instance, in common server-clients applications, the identities of the clients, and in some cases also their number, are not known a priori. Hence we define the notion of a public data structure. A public data structure is a concurrent data structure that is required to work correctly for any finite number of concurrent processes – nothing is assumed in advance about the number or the identities of the processes that might access it. Among the data structures studied in the literature, counting networks and concurrent counters [AHS91, MTY92] appear to satisfy the requirements of public data structures.

One way to implement a concurrent data structure, which is used in many practical applications, is first to implement it under the assumption that only one process may access it, and then to enforce sequentiality in accessing it using a mutual exclusion algorithm. That is, in order to access the structure, a process participates in a mutual exclusion algorithm that protects the structure, and accesses the structure only in its critical section. However, mutual exclusion algorithms are not wait-free, and a failure of a process in its critical section blocks any further access to the structure by other processes. Moreover, such a solution is not time-efficient since it does not allow concurrent access to the structure.

In this paper we focus on the construction of a simple public data structure: a public counter. A counter is a data structure that supports two operations: increment by 1, and read. While the meaning of these operations is obvious in a sequential context, it needs to be further clarified in a concurrent context. Previous works on concurrent counters considered two natural types of increment operations: a weak increment, which increments the counter but does not return a value, and a strong increment, which also returns the current value of the counter. Similarly, two types of read operations were studies: a weak read, which returns the correct value of the counter only if no increment operation is concurrent with it, and a strong read, which returns a meaningful value of the counter even when it is concurrent with increment or read operations.

Our main goal is to investigate the possibility of constructing public counters which count modulo some large number, from counters which count modulo smaller numbers. In particular, we show that this possibility depends on the correctness requirements from the constructed counters.
The computational model

Our model of computation consists of a collection of fully asynchronous identical deterministic processes that communicate via atomic concurrent objects. We model atomic concurrent objects by Mealy machines [HU79], where the input alphabet is the set of operations applicable to the object, and the output alphabet is the set of output values returned by the object. The objects are atomic in the sense that in every execution all the accesses to a given object are totally ordered in time. This assumption can be replaced by the more involved assumption that the objects are linearizable, in the sense of [HW90], without affecting our results. The atomic objects used in this paper will always be atomic counters (modeled by Mealy machines in a natural way), which support strong increment and strong read operations.

Depending on the context, we will either assume that the atomic counters are initially set to some default initial value (Section 2), or that initially the value of each atomic counter is arbitrary (Section 3).

Access to the atomic counters are via increment and read operations. We point out that, for example, read-modify-write registers of b values, where in a single indivisible step, it is possible to read the value in the register and then write a new value that can depend on the value just read, are stronger than counters which counts modulo b which support only the two simpler operations: increment and read.

A counter which counts modulo m, in short a counter (modulo m), is a data structure which enables two basic operations: increment by 1 modulo m, and read. Each of these operations can be either weak or strong, in the sense defined in the introduction. We will distinguish between the term increment step and the term increment operation. An increment operation is the operation of incrementing the counter by one, and is performed on a counter which is possibly implemented using smaller atomic counters. An increment step is incrementing one of the atomic counters by one (i.e., an indivisible step in which a process increments the value of the atomic counter by one and get back its value). A similar distinction is made between read step and read operation. Thus, in order to complete one increment operation it is necessary to take one or more increment or read steps. A process that started executing an increment or read operation but has not completed it yet is involved in this operation. A process which is not involved in any operation is idle. A run of a public counter is a sequence of increment and read steps, performed by one or more identical processes. For runs x, y, $x \leq y$ means that x is a prefix of y. A complete run is a run in which all processes are idle. We consider three types of counters:

- A static counter: supports weak increment and weak read. An increment operation increments the value of the counter by 1 (and is not required to return a value). A read operation returns the correct value when it is not concurrent with any increment operation. In the case that a read operation overlaps an increment operation, it may return an arbitrary value. By “correct value”, we mean the number of increment operations completed plus the initial value of the counter.

- A dynamic counter: supports weak increment and strong read. An increment operation increments the value of the counter by 1. A read operation returns the correct value even if the read is concurrent with other increments or reads. To define this formally, we use the notion of cyclic interval $[a, b] \pmod{m}$, defined for integers a, b
where $a \leq b$. This interval is the set \{ $a \pmod{m}, a+1 \pmod{m}, \ldots, b \pmod{m}$\}. (In particular, if $b-a \geq m-1$ then $[a,b] \pmod{m} = \{0,1,\ldots,m-1\}$.) A value is correct for a run x of a dynamic counter (modulo m) if it is in the cyclic interval $[\text{end}(x) + c, \text{begin}(x) + c] \pmod{m}$ where $\text{begin}(x)$ is the number of processes that started an increment operation in x, $\text{end}(x)$ is the number of processes that completed their increment operation in x, and c is the value of the counter at the beginning of x.

- A linearizable counter: supports strong increment and strong read; and in every run the executions of the increment and read operations are linearizable. That is, it behaves as if each of these operations is atomic ([HW90]).

We are interested in wait-free implementations of counters as defined earlier. Sometime, in order to make the results more general, we will relax the wait-freedom assumption and only require that an implementation be non-blocking. While in a wait-free implementation an operation initiated by a correct process must terminate regardless of the speed of other processes, in a non-blocking implementation, whenever a correct process is trying to increment the counter, the counter is guaranteed to be eventually incremented, possibly by another process. Throughout the paper, unless we say otherwise, the word “counter” stands for “wait-free counter”.

Summary of results

We ask the following question: let B be a set of integers, and suppose that for each $b \in B$ there is an unlimited supply of atomic counters (modulo b). For what values m, can we use these counters to construct public counters (modulo m)? The answer to this question, of course, would depend on the type of the counters assumed (i.e., whether the operations are strong or weak).

We prove two results. The first fully characterizes the static counters which can be implemented from a set of given atomic counters. The second result shows that it is impossible to construct large dynamic counters from smaller atomic counters, when the initial values of the smaller atomic counters are not known in advance.

More formally, let B be a set of integers. A counter over B is a counter which is constructed from a bounded number of atomic counters where each such atomic counter counts modulo some number b in B. (For each such b there may be many atomic counters (modulo b).) Our two results are:

1. It is possible to implement a static counter (modulo m) over B if and only if each prime number which divides m also divides some $b \in B$.

2. It is possible to implement a dynamic counter (modulo m) over B, assuming the counters are not initialized, only if $m \leq b$ for some $b \in B$.

The correctness of the second result depends on the assumption that the dynamic counter is required to work regardless of the initial values of the atomic counters it is constructed from. In the case where the initial values are known, it is possible to implement a dynamic counter (modulo 2^n) using atomic counters (modulo 2) [BIS95].
Related work

The area of concurrent and distributed data structure is relatively new, but already drawn the attention of many researchers. While the term concurrent data structure, refers to a data structure that is stored in shared memory, the term distributed data structure refers to a collection of local data structures stored at different processors in a message passing system. We will not try to review all the relevant work here, but rather give just few pointers to the literature.

Few works have introduced general methods for transforming a given sequential implementation (one that works for just one process) into a wait-free concurrent one [Her91b, Plo89]. These results are mainly of theoretical interest since the constructions involved are too inefficient to be practical. Other transformations are introduced in [Her90] for a large class of structures using the compare-and-swap synchronization primitive; in [Her91a] using the load link and store conditional primitives; and in [AT93] using timing assumptions.

More efficient constructions for specific data structures have been proposed. Many constructions of concurrent B-trees, have been implemented mainly for use in databases, see for example [BS77, LY81, Sag85]. AVL trees, 2-3 trees, and a distributed extendible hash file have been implemented in [Ell80a, Ell80b, Ell85]. A distributed dictionary structure is studied in [Pel90]. A wait-free implementation of a queue where one enqueuing operation can be executed concurrently with one dequeuing operation is given in [Lam83]. An implementation of a queue that allows an arbitrary number of concurrent queuing and dequeuing operations is given in [HW87], the implementation is deadlock-free but allows starvation of individual processes. A wait-free implementation of union-find structures is described in [AW91]. These data structures are not public data structures, as they all assume a fixed and known set of processes which may access the data structures.

The problem of implementing a counter in a concurrent environment has been the subject of intensive investigation recently. Aspnes, Herlihy and Shavit [AHS91] have implemented counters that support strong increment and weak read operations, which count modulo some given power of two, from basic elements called 2-balancers, which are essentially atomic counters (modulo 2). They named the implementations they have found counting networks. Counting networks achieve a high level of throughput by decomposing interactions among processes into pieces that can be performed in parallel, effectively reducing memory contention. Counting networks have been further investigated in [AA92, AHS91, HBS92, HSW91, KP92].

One result about counting networks that is more relevant to our work is proved in [AA92]. It is shown that a counting network with fan-out m (i.e., that counts modulo m) can be constructed from balancers of fan-out b_1, \ldots, b_k, only if for each prime factor p of m, p divides b_i, for some $1 \leq i \leq k$. Since a balancer of fan-out b is, in fact, a b-valued atomic counter, this condition immediately follows from our first (general) result stated earlier. Moreover, we show that this condition is in fact also sufficient for the construction of static counters from atomic ones. Independently of the work reported in this paper, several results about balancing and counting networks have been recently proven in [BM94b], including a proof that the necessary condition from [AA92], mention above, is also sufficient for the construction of counting networks.

Independently of the work on counting networks, counters that support weak increment and weak read (static counters) and counters which support weak increment and strong read
(dynamic counters) were introduced and studied in [MTY92, MT93]. The results in these two papers concern the constructions of counters from read-modify-write bits. Notice that this model is different from our model which assumes objects which are atomic counters of arbitrary size.

One simple result from [MTY92] that we generalize in this paper is a space optimal static counter which can count modulo a given power of two. The main result in [MT93] is that in a model which supports only read-modify-write of single bits, a static counter (modulo \(m \)) exists only if \(m = 2^k \), where \(k \) is bounded from above by the number of bits a process may change during a single increment operations. This result has the flavor of our first impossibility result, but it does not imply neither implied by it.

Finally, the relation between wait-free and bounded wait-free public data structures are studied in [BM94].

2 Static Counters

In this section we fully characterize the kind of static counters that can be constructed from smaller atomic counters. We assume that each counter has a single pre-defined initial value, though our results hold also when the initial contents of the counter is arbitrary.

Theorem 2.1 There exists a static counter (modulo \(m \)) over \(B \) if and only if every prime number which divides \(m \) also divides some integer in \(B \).

The only if part of Theorem 2.1 was proved in [AA92] for counting networks, which as mentioned before, are special case of static counters. Recently, independent of our work, it was proved in [BM94b], that the if part of Theorem 2.1 holds for counting networks. We start by proving the only if part of the theorem, and then give a constructive proof for the if part.

2.1 Preliminaries

We start with two lemmas that are used later. The first is an elementary fact in number theory, while the second relates the wait freedom and bounded wait freedom properties.

For a set of integers \(B \), let \(\text{lcm}(B) \) be the least common multiple of all the integers in \(B \).

Lemma 2.1 Any prime that divides \(\text{lcm}(B) \), divides some integer in \(B \).

Proof: The proposition follows from the Unique Representation Theorem which says that: Any integer \(\alpha \) can be written in exactly one way as a product of the form \(\alpha = p_1^{e_1}p_2^{e_2} \cdots p_r^{e_r} \) where \(p_1 < p_2 < \cdots < p_r \) are primes, and \(e_1, e_2, \cdots, e_r \) are positive integers (see e.g. [MB79]). Thus, the least common multiple of the set \(\{ b_1, \cdots, b_t \} \) where each \(b_i \) is uniquely represented by \(b_i = \prod p^{e_i} \), is represented by \(\prod p^{e_p} \) where \(e_p = \max_{1 \leq i \leq t} \{ e_i \} \). The result follows.

Let \(L(Pr) \) be the supremum on the number of increment steps a process may need to take during an increment or a read operation, in the counter \(Pr \). The wait freedom property guarantees that in every execution, every operation is terminated within a finite number of steps. However, there are examples of wait free data structures in which this number may
be arbitrarily large, and hence, a priori, $L(Pr)$ may be infinite. However, the main result in [BM94] implies the following:

Lemma 2.2 [BM94] Let Pr be a wait-free static counter. Then $L(Pr)$ is finite.

2.2 Necessary Condition

We now prove several lemmas, the last of which proves the “only if” part of Theorem 2.1. The notation $(z-x)$ is used for the suffix of the run z obtained by removing x from z. We start with a technical lemma, which is also used later in the proof of Lemma 3.4.

Lemma 2.3 Let Pr be a static counter over B, and let x be a run of Pr in which a set H of $lcm(B)^{L(Pr)}$ processes are in the same state. Then, there is an extension z of x in which only processes from H are active, such that the value of the counter is the same in x and z, and each process in H has completed one increment or read operation in $(z-x)$ and is idle in z.

Proof: Assume without loss of generality that the processes in H are all involved in an increment operation. Let $L = L(Pr)$. The run z is constructed through a sequence of runs $x \leq y_0 \leq y_1 \cdots \leq y_L = z$. The construction is carried by induction, in rounds. In each round $1 \leq i \leq L$ we extend y_{i-1} constructed in the previous round to a run y_i, such that in y_i each process from H has taken at least i atomic increment steps or it has completed its increment operation. Since, by definition, at most L atomic increment steps are taken during a single increment operation, at y_L all the processes in H had completed one increment operation and are idle. By Lemma 2.2, L is finite and hence the number of rounds is going to be finite.

In the following we say that a process is r-loaded in a finite run x if its first next step in any extension of x is incrementing r; it is loaded if it is r-loaded for some atomic counter r.

The construction is such that, at the end of y_i the processes in H are partitioned to ℓ_i groups, denoted $H_1^i, \cdots, H_{\ell_i}^i$, where all the processes in H_j^i are in the same state (have the same history), and they are all either r-loaded on the same register r, or in the idle state. Also, it will always be the case that $lcm(B)^{L-i}$ divides $|H_j^i|$ for $1 \leq j \leq \ell_i$, and that the contents of the counter is the same in x and y_i.

Round 0: Run y_0 is constructed as an extension of the run x. Let $H_0^0 = H$. The run y_0 is constructed by activating each process in H_0^0 in turn, until it either becomes r-loaded for some r or completes its increment operation. The wait-freedom (or even the weaker non-blocking) property guarantees that one of the two must happen. It is clear that, since no change has been made, the value of the counter is the same in x and y_0; $lcm(B)^L$ divides $|H_0^0|$, and that all the processes in $H_0^0 = H$ are in the same state, which means that they are all either idle or r-loaded for some r.

Round $i+1$: Assuming we have constructed run y_i as required. We next show how to construct the run y_{i+1}. In the construction we partition each of the groups H_j^i, $1 \leq j \leq \ell_i$, to one or more groups which form the $(i+1)$-th partition. We start by explaining how this is done for H_1^i.

If all the processes in H_1^i have completed their increment operation then $H_1^i = H_1^{i+1}$ is a group in the $(i+1)$-th partition. Otherwise, we know that all the processes in H_1^i are
r-loaded for some r. Let r be an atomic counter (modulo b). We split the set H_1^i to b sets, $H_1^{i+1}, \ldots, H_b^{i+1}$, such that $|H_j^{i+1}| = |H_1^i|/b$, for all $1 \leq j \leq b$. Then we activate the processes in $H_1^{i+1}, \ldots, H_b^{i+1}$ alternately as follows: first we let a process in H_1^{i+1} takes the atomic increment step which changes r, and then we let it continue until it completes its increment operation or becomes loaded for some other atomic counter. Then, we let a process in H_2^{i+1} do the same, and so on and so forth, until all the processes in H_1^i are activated.

When this procedure is completed, all the processes in H_j^{i+1} for each $1 \leq j \leq b$, are in the same state, which means that they are either idle or loaded. Since b divides $\text{lcm}(B)$ and $\text{lcm}(B)^{\ell-1}$ divides $|H_1^i|$, it follows that $\text{lcm}(B)^{\ell-1}$ divides $|H_j^{i+1}|$. Finally, r is incremented $0 \pmod{b}$ times and hence r has its original value (i.e., its value in x).

We repeat the procedure above sequentially with H_2^i, H_3^i and so on. After repeating this procedure ℓ_i times we get run y_{i+1}. The number of groups resulted from the construction of y_{i+1} is ℓ_{i+1}. And the value of the counter in y_i is the same in y_{i-1} (and thus also as in x).

Round L: After performing round L we get run $y_L = z$. Since each process in the set H has taken L increment steps in y_L or completed its increment operation, we have that all the processes in H have completed their increment operation in y_L and are idle, and the value of the counter is the same in x and z.

Lemma 2.4 Let Pr be a static counter (modulo m) over B. Then, m divides $\text{lcm}(B)^{L(Pr)}$.

Proof: By applying Lemma 2.3 with x as the empty run and z as a run in which each process in H performs one increment operation, it follows that: there is a complete run z such that the value of the counter in z is the initial value, and exactly $\text{lcm}(B)^{L(Pr)}$ increment operations have been completed in z. By the definition of static counter, we must have that the value of the counter in z is equal to the initial value of the counter plus $\text{lcm}(B)^{L(Pr)}$ modulo m. On the other hand as explained the value of the counter in z is the same as the initial value. This two conditions can be satisfied only if m divides $\text{lcm}(B)^{L(Pr)}$.

Lemma 2.5 Let Pr be a static counter (modulo m) over B. Then, each prime factor of m divides some integer in B.

Proof: By Lemma 2.4, m divides $\text{lcm}(B)^{L(Pr)}$, and hence any prime factor of m also divides $\text{lcm}(B)$. Thus, by Lemma 2.1, each prime factor of m divides some integer in B.

The only place where we must use the wait-freedom property is in the proof of Lemma 2.2. If instead of using Lemma 2.2 we assume that $L(Pr)$ is finite, then the proof of Lemma 2.5 (i.e., the only if part) holds also for non-blocking static counters without requiring the counters to be wait-free. (Notice that finiteness of $L(Pr)$ does not imply that Pr is wait-free, since Pr may perform an infinite number of read operations in a run.)

2.3 The Mixed Radix Counter

Next we give a simple constructive proof of the if part of Theorem 2.1. That is, we prove the following Lemma:
Lemma 2.6 If every prime number which divides m also divides some integer in B, then there exists a static counter (modulo m) over B.

To prove the lemma we design a static counter called the mixed radix counter. This counter is an extension of the Positional Counter presented in [MTY92].

Let us write m’s prime factorization as $m = \prod_{i=0}^{k-1} p_i$, where for all i, p_i is prime (the p_i’s are not necessarily distinct). The lemma assumes that for all $0 \leq i \leq k - 1$, p_i divides some number in B. Let r_i be an atomic counter which counts modulo some number in B which is divisible by p_i. In Figure 1 the code for a counter (modulo m), using the atomic counters r_0, \ldots, r_{k-1}, is given.

An increment operation by a process is performed by the following straightforward (sequential) algorithm: scan the registers from right to left (starting with r_0); when scanning register r_i, do the following: (1) increment r_i, and (2) if before the increment the value of r_i modulo p_i was $p_i - 1$ and $i < k - 1$, then repeat this operation on register r_{i+1}, else terminate the increment operation.

The read operation is performed by simply reading the content of the registers, and returning the value of the counter which is associated with the content of the k atomic counters r_{k-1}, \ldots, r_0. This value is defined by the mixed radix systems (see [Knu69]) as,

$$\sum_{i=0}^{k-1} (r_i \mod p_i) \times \prod_{j=0}^{i-1} p_j.$$

Figure 1: The mixed radix counter
2.4 Correctness Proof

We denote by $initial(x)$ the values of the atomic counters at the beginning of the run x, and by $final(x)$ the values of the atomic counters at the end of x. Recall that $begin(x)$ is the number of processes that started an increment operation in x. A run is a serial run if in any prefix of it, at most one process is involved in an increment operation. Two complete runs x and y are similar if $initial(x) = initial(y)$ and $begin(x) = begin(y)$. Two complete similar runs x and y are equivalent if they also satisfy $final(x) = final(y)$.

First we show that any two similar complete runs of the counter are equivalent. For this we show that the number of times an atomic counter is incremented during a run depends only on the initial values of the atomic counters and the number of increment operations performed. Then, we observe that the counter is correct when we consider only serial runs. Since any complete run is also equivalent to some complete serial run, the counter is correct for all complete runs.

Lemma 2.7 Let x be a complete run of Pr, let v_i be the initial value of atomic counter r_i ($1 \leq i \leq k$), and let $C(r_i, x)$ be the number of times r_i was incremented in x. Then $C(r_0, x) = begin(x)$ and for $i > 0$, $C(r_i, x) = \left\lfloor \frac{C(r_{i-1}, x) + (v_{i-1} \mod p_{i-1})}{p_{i-1}} \right\rfloor$.

Proof: The proof is by induction on r_i. By observing the increment procedure it is immediate that each execution of increment operation changes r_0 exactly once. Thus r_0 is incremented $begin(x)$ times.

Suppose the lemma holds for atomic counter r_{i-1}, we show that is also holds for atomic counter r_i. The number of times that the value of r_{i-1} is changed from $p_{i-1} - 1 \mod p_i$ to $0 \mod p_i$ is $\left\lfloor \frac{C(r_{i-1}, x) + (v_{i-1} \mod p_{i-1})}{p_{i-1}} \right\rfloor$. Every complete execution of an increment operation that changes the value of r_{i-1} from $p_{i-1} - 1 \mod p_i$ to $0 \mod p_i$ changes also r_i, and every other execution that change the value of r_{i-1} from j to $j+1, (j \neq p_{i-1} - 1 \mod p_i)$ halts. Hence the number of times r_i was changed is $\left\lfloor \frac{C(r_{i-1}, x) + (v_{i-1} \mod p_{i-1})}{p_{i-1}} \right\rfloor$.

Lemma 2.8 Let x be a complete run of the counter Pr. Then the value of the counter at x equals to the initial value of the counter plus the number of processes that have started an increment operation in x, modulo m.

Proof: It follow immediately from the properties of the increment procedure for addition that the lemma holds for any complete serial. It is shown in Lemma 2.7 that the number of times an atomic counter is changed during any complete run depend only on the initial values of the atomic counters and on the number of increment operations performed. This implies that any two similar complete runs of the counter Pr are equivalent. Since any complete run is similar to some complete serial run, it follows that any run is also equivalent to some complete serial run. Thus, since the lemma holds for all complete serial runs, it holds for all complete runs.

3 Dynamic Counters

In this section we investigate properties of dynamic counters, assuming that the memory is bounded and that the initial contents of the counter is arbitrary. Our conjecture is that
except for trivial cases, it is impossible to construct such counters:

Conjecture 1 There is a dynamic counter (modulo m) over B if and only if m divides b for some $b \in B$.

Notice that the *if* part of Conjecture 1 is trivial. We prove the following result, which is slightly weaker than the *only if* part of the conjecture.

Theorem 3.1 There is a dynamic counter (modulo m) over B only if $m \leq b$ for some $b \in B$.

We notice that Theorems 3.1 and 2.1 imply Conjecture 1 for the case where all the elements of B are powers of the same prime.

Theorem 3.1 does not hold when the dynamic counter is not required to be public. That is, if there is a known bound on the number of process that may access it (even if their identities are not known in advance). In such a case, one can construct a dynamic counter which uses only binary atomic counters, and counts modulo 2^k for arbitrary large k [MTY92]. Also, the theorem does not hold in the case where only one initial value is assumed, as it is possible to implement a dynamic counter (modulo 2^k) using binary atomic counters which are initialized to zero [BIS95].

To prove Theorem 3.1, we assume that there exists a dynamic counter (modulo m) over B, for some $m > \max(B)$. Then, we derive a contradiction by showing that for any integer k, if there is such a counter which uses k atomic counters, then there must be such a counter that uses $k - 1$ atomic counters.

3.1 Preliminaries

We assume in this section that the read operation of a dynamic counter is performed by an atomic snapshot operation, which reads the values of all the atomic counters in one indivisible step (in [Bri94] it is shown that a read operation can always be implemented by performing only read steps, hence this assumption makes our impossibility result stronger). Hence, the read operation defines a function val which associates with each contents of the counter a value in $\{0, \cdots, m - 1\}$.

Thus, a dynamic counter (modulo m) over B is given by a triple $Pr = (\text{increment}, val, V_{init})$ where increment is a procedure for incrementing the counter, val is a function that associates an integer value in the range $\{0, \cdots, m - 1\}$ to any possible contents of the counter, and V_{init} is the set of initial vectors of Pr.

A process performs the increment operation on the counter by executing an increment procedure. (Many increments can take place concurrently.) We assume that all the processes are identical. The correctness requirements for a dynamic counter has been defined in the Introduction.

Recall that we denote by the vector $\text{initial}(x)$ the values of the atomic counters at the beginning of the run x, and by $\text{final}(x)$ the values of the atomic counters at the end of x. A run x is legal if $\text{initial}(x) \in V_{init}$. A vector \bar{v} is reachable from vector \bar{u} (w.r.t. the given counter Pr) if there is a run x of Pr with $\text{initial}(x) = \bar{u}$ and $\text{final}(x) = \bar{v}$. Our assumption that the initial contents of the counter is arbitrary means that every vector which is reachable
from an initial vector is also an initial vector. More formally, let \(V_{reach} = \{ \vec{u} \mid \text{there is a vector } \vec{v} \in V_{init} \text{ such that } \vec{u} \text{ is reachable from } \vec{v} \} \). Then we assume that \(V_{init} = V_{reach} \).

3.2 Two Graphs Associated with Counters

Let \(Pr = (\text{increment}, \text{val}, V_{init}) \) be a dynamic counter (modulo \(m \)) over \(B \) which uses atomic counters \(r_1, \ldots, r_k \), where \(r_i \) counts modulo \(b_i \) (\(b_i \in B \)). In our discussions we associate with \(Pr \) two directed graphs.

The first graph is the run graph of \(Pr \) which is defined as \(G_r = (V_{init}, E_r) \), where \(E_r = \{ (\vec{u}, \vec{v}) : \vec{v} \text{ is reachable from } \vec{u} \} \).

Clearly, \(G_r \) is transitively closed (i.e., for each \(\vec{u} \), \(\vec{v} \), there is an edge from \(\vec{u} \) to \(\vec{v} \) iff there is a directed path from \(\vec{u} \) to \(\vec{v} \)). A strongly connected component \(C \) of a directed graph \(G \) is maximal if there is no edge from a vertex in \(C \) to a vertex not in \(C \). A vertex in \(G \) is maximal if it belongs to a maximal strongly connected component. Note that, since \(V_{init} = V_{reach} \) is finite, \(G_r \) must contain a maximal strongly connected component. The following lemma gives a useful property of maximal strongly connected components of \(G_r \). Recall that a process is \(r \)-loaded in a finite run \(x \) if its first next step in any extension of \(x \) is incrementing \(r \); it is loaded if it is \(r \)-loaded for some atomic counter \(r \).

Lemma 3.1 Let \(C \) be a maximal strongly connected component of \(G_r \). Then \(C = C_1 \times \cdots \times C_k \), where for all \(1 \leq i \leq k \), \(C_i \) is either a singleton or \(C_i = \{0, \ldots, b_i - 1\} \).

Proof: First we prove that for each \(i \), if the value of \(r_i \) is not fixed in \(C \), then for each vector \(\vec{v} \in C \) there is a run which starts in \(\vec{v} \) and in which some process is \(r_i \)-loaded. Let such an \(i \) and \(\vec{v} = (v_1, \ldots, v_k) \) be given. By the assumption, there is a vector \(\vec{u} = (u_1, \ldots, u_k) \in C \) such that \(v_i \neq u_i \). Since \(C \) is strongly connected, there is a run \(x \) with initial(\(x \)) = \(\vec{u} \) and final(\(x \)) = \(\vec{v} \). Since the value of \(r_i \) is changed in \(x \), \(x \) must have a prefix in which some process is \(r_i \)-loaded, as claimed.

The run \(x_\vec{v} \) above can be extended to a run \(z = z_\vec{v} \) with initial(\(z \)) = \(\vec{v} \) with the following property: for each \(i \) such that the value of \(r_i \) is not fixed in \(C \), there are \(b_i \) processes which are \(r_i \)-loaded in \(z \). Thus, at the end of the run \(z \), if the value of \(r_i \) is not fixed in \(C \), we can change it to any value in \(Z_{b_i} \) (\(Z_{b_i} = \{0, \ldots, b_i - 1\} \)), by activating some of the \(r_i \)-loaded processes in \(z \). The lemma follows.

The second graph associated with \(Pr \) is the operation tree of \(Pr \), denoted as \(T_{op} = (V_{op}, E_{op}) \), which is a (possibly infinite) tree defined as follows: \(V_{op} \) is the set of all states (local histories) of the increment procedure, and \(E_{op} \) is the set of all state transitions of this procedure. More specifically, \(T_{op} \) is defined inductively as follows: the root of \(T_{op} \) is the initial state of the increment procedure. For every state \(s \) in \(T_{op} \), if \(s \) is an halting state then \(s \) is a leaf in \(T_{op} \). Otherwise, let \(r \) be the next atomic counter accessed by the procedure increment in state \(s \), and assume that \(r \) is a counter (modulo \(b \)). Then \(s \) has \(b \) children, one for each possible value of \(r \).

Given a maximal strongly connected component \(C \) of \(G_r \), we now construct a tree \(T_{op}(C) \), the operation tree of \(Pr \) induced by \(C \), as follows: Start with \(T_{op} \); the operation tree of \(Pr \), scan all its non-leaf vertices in a BFS order, starting from the root, and for each such vertex \(s \) do the following: Let \(r_i \) be the atomic counter accessed by a process in state
s. If $C_i = Z_{b_i}$ then do nothing; otherwise, by Lemma 3.1 $C_i = \{v_i\}$ for some $v_i \in Z_{b_i}$. For each $v \in Z_{b_i} \setminus \{v_i\}$, delete from $T_{op}(C)$ the vertex corresponding to v and all its descendants (i.e., the only remaining child of s in $T_{op}(C)$ is the one corresponding to the move in which the value returned by the operation on r_i is v_i). $T_{op}(C)$ is the tree defined by the limit of this (possibly infinite) procedure.

Observe that every directed path which starts from the root in $T_{op}(C)$ defines a sequence of state transitions of a process executing op. The next lemma shows that for each such path there is a run in which some process actually performs this sequence of transitions.

Lemma 3.2 Let C be a maximal strongly connected component of G_r. Then for every path π of $T_{op}(C)$, starting from the root, there is a run $x = x(\pi)$, in which some process executes the sequence of state transitions defined by π.

Proof: Let π be given. The run x is defined as the limit of a sequence of runs (x_0, x_1, \cdots) where the runs x_i are defined inductively as follows: x_0 is the empty run where process p is in state s_0. At (the end of) run x_i, $i \geq 0$, process p is in state s_i, and there is an edge (s_i, s_{i+1}) corresponding to the next step of p. Assume that in this step p accesses the atomic counter r and the value of r is $\ell \in Z_b$. There is a vector $\vec{v} \in C$ such that the value of r in \vec{v} is ℓ. x_{i+1} is defined as $x_{i+1} = x_i \cdot y_i \cdot z_i$, where y_i is a run satisfying $\text{initial}(y_i) = \text{final}(x_i)$ and $\text{final}(y_i) = \vec{v}$ (y exists since $\vec{v} \in C$ and C is strongly connected), and z_i consists of the single step by p in which it moves from s_i to s_{i+1}. \qed

In [BM94] it is shown that the conclusion of Lemma 3.2 holds also without the assumption that C is a maximal strongly connected component. Lemma 3.2 above implies the following:

Corollary 3.1 For every maximal strongly connected component C of G, the induced operation tree $T = T_{op}(C)$ is of bounded height (and hence in every run x of Pr where $\text{initial}(x) \in C$, every increment operation is completed within at most L atomic steps, for some constant L).

Proof: Otherwise, for each i there is a path in T whose length is i. Since the out degree of every vertex in T is finite, by König’s Infinity Lemma [Kön36] this tree contains an infinite path π, and by Lemma 3.2 there is a run in which some process actually executes the state transitions defined by π, and thus never completes executing its increment operation - contradicting the wait-freedom assumption. \qed

For each maximal strongly connected component C, $T_{op}(C)$ defines a procedure, consisting of part of the states and transition rules of the increment procedure, in a natural way. This procedure is denoted the increment procedure induced by C.

Lemma 3.3 Let Pr be a dynamic counter (modulo m) over B, which uses a minimum number of atomic counters. Then, the run graph of Pr is strongly connected.

Proof: Recall that we assume that every vector which is reachable from an initial vector is also a possible initial vector. Let G_r be the run graph of $Pr = (\text{increment}, \text{val}, V_{init})$, and assume to the contrary that G_r is not strongly connected. Let C be some maximal strongly
component of \(G_r \). Define a counter \(Pr' = (\text{increment}', val, V_{\text{init}}') \) where \(\text{increment}' \) is the increment procedure induced by \(C \), and \(V_{\text{init}}' = V_{\text{init}} \cap C \) (notice that \(V_{\text{init}}' \) is nonempty).

From the observation that the set of legal runs of \(Pr' \) is equal to the set of legal runs of \(Pr \) which start from a vector in \(V_{\text{init}}' \), it follows that \(Pr' \) is also a dynamic counter (modulo \(m \)) over \(B \). Since the number of vectors in \(C \) is strictly smaller than \(|V_{\text{init}}| \), Lemma 3.1 implies that \(C = C_1 \times \cdots \times C_k \), where for some \(i \), \(C_i \) is a singleton. Hence, the dynamic counter \(Pr' \) can be implemented by a protocol that never uses \(r_i \), and hence by fewer atomic counters than \(Pr \), a contradiction. \(\square \)

Let \(C \) be a maximal strongly connected component of \(G_r \) such that \(V_{\text{init}}' = C \cap V_{\text{init}} \neq \emptyset \). For later use, we call the counter \(Pr' = (\text{increment}', val, V_{\text{init}}') \) defined in the proof of Lemma 3.3, the \textit{restriction of \(Pr \) induced by \(C \)}. Notice that every legal run of \(Pr' \) is also a legal run of \(Pr \).

From now on we assume that \(Pr = (\text{increment}, val, V_{\text{init}}) \) is a dynamic counter (modulo \(m \)) which uses a minimum number of atomic counters. We assume that \(Pr \) uses the \(k \) atomic counters, \(r_1, \cdots, r_k \), where \(r_i \) is an atomic counter (modulo \(b_i \)). By Lemma 3.3, we may assume that \(G_r \), the run graph of \(Pr \), is strongly connected, and in particular that every vector in \(V_{\text{init}} = V_{\text{reach}} \) is maximal in \(G_r \).

3.3 Extremal Vectors

Next, we define a subgraph of \(G_r \), called the \textit{complete run graph} of \(Pr \), denoted by \(G_{cr} \), which has the same vertex set as \(G_r \) but a smaller edge set: \(G_{cr} = (V_{\text{init}}, E_{cr}) \), where \(E_{cr} = \{ (\vec{u}, \vec{v}) : \vec{v} \text{ is reachable from } \vec{u} \text{ by a complete run (of } Pr) \} \).

Definition: A vector \(\vec{v} \) is \textit{extremal} w.r.t. counter \(Pr \) if it is maximal in both \(G_r \) and \(G_{cr} \).

We next show that every vector in \(G_r \) extremal.

Lemma 3.4 Every vector \(\vec{v} \in G_r \) (and hence in \(G_{cr} \)) is an extremal.

Proof: By Lemma 3.3, the run graph \(G_r \) of \(Pr \) is strongly connected, and hence every vector \(\vec{v} \) is maximal in \(G_r \). We have to show that every such vector \(\vec{v} \) is also a maximal vector in \(G_{cr} \). For this, it is sufficient to show that for every vector \(\vec{u} \), if there is a complete run from \(\vec{v} \) to \(\vec{u} \) then there is also a complete run from \(\vec{u} \) to \(\vec{v} \). Let such a vector \(\vec{u} \) be given. Since \(G_r \) is strongly connected, there is a run \(x_1 \) from \(\vec{u} \) to \(\vec{v} \). If \(x_1 \) is a complete run then we are done, so assume that \(x_1 \) is not complete. We prove the lemma by constructing a complete run from \(\vec{u} \) to \(\vec{v} \).

Let \(Q = \{ q_1, q_2, \cdots, q_{|Q|} \} \) be the set of processes which are not idle at (the end of) the run \(x_1 \). Let \(L \) be a bound on the number of atomic increment operations that are needed to complete an \textit{increment} operation (\(L \) is finite by Lemma 3.2). Finally, let \(n \) be the least common multiple of \(\{ b_1, \cdots, b_k \} \).

We now construct a complete run, \(y \), such that \(\text{initial}(y) = \vec{u} \) and \(\text{final}(y) = \vec{v} \). The run \(y \) is a concatenation \(y = y_0 \cdot y_1 \cdots y_{|Q|} \), where \(y_0 \) is a (possibly incomplete) run from \(\vec{u} \) to \(\vec{v} \), while for \(1 \leq i \leq |Q| \), \(y_i \) is a partial run satisfying \(\text{initial}(y_i) = \text{final}(y_{i-1}) = \vec{v} \). This implies that \(\text{initial}(y) = \vec{u} \) and \(\text{final}(y) = \vec{v} \). We will also show that \(y \) is complete, which implies the lemma. Next we show how to construct each of the partial runs \(y_i, 0 \leq i \leq |Q| \).
We first explain how \(y_0 \) is constructed. By assumption, there is a complete run, \(x_2 \), from \(\vec{v} \) to \(\vec{u} \). The run \(y_0 \) starts with a run identical to \(x_1 \), followed by \(n^L - 1 \) runs, each of which is identical to the run \(x_2 \cdot x_1 \) (i.e., \(x_2 \) followed by \(x_1 \)), such that the sets of processes activated in different occurrences of \(x_1 \) and \(x_2 \) are distinct. That is, \(y_0 = x_1 \cdot (x_2 \cdot x_1)^{n^L - 1} \).

From the construction, it is clear that \(\text{initial}(y_0) = \vec{u} \) and \(\text{final}(y_0) = \vec{u} \). Also, the set of processes which are not idle in \(y_0 \) can be divided to \(|Q| \) subsets \(F_1, \ldots, F_{|Q|} \), such that \(F_i \) contains \(n^L \) processes, and the state of each process in \(F_i \) is identical to the state of \(q_i \) at the end of \(x_1 \).

For \(1 \leq i \leq |Q| \), the (partial) run \(y_i \) is constructed by activating only processes from \(F_i \) such that: (1) at (the end of) \(y_i \) all the processes in \(F_i \) are idle, and \(\text{initial}(y_i) = \text{final}(y_i) = \vec{v} \). The fact that we can construct \(y_i \) as above follows from Lemma 2.3, which is applied with \(F_i = H, x = y_0 \cdot y_{i-1} \) and \(z = y_0 \cdot y_{i-1} \cdot y_i \).

All this implies that \(y \) is a complete run and \(\text{final}(y) = \vec{v} \), as needed.

We point out that Lemma 3.4 does not imply that \(G_{cr} \) is strongly connected. It only implies that every maximal component of it is strongly connected.

3.4 Terminal Incrementors and Critical Atomic Counters

We now introduce the new notion of a process which is \textit{terminal incrementor} in a run. Recall that a process is \(r \)-loaded in a run \(x \) if its next step is an atomic increment on the atomic counter \(r \).

Definition: A process \(p \) is \(r \)-terminal incrementor in a run \(x \) if it is \(r \)-loaded in \(x \), and the next step of \(p \) is its last step during the current \textit{increment} operation, regardless of the value of \(r \) while this step is taken. Process \(p \) is a \textit{terminal incrementor} if it is an \(r \)-terminal incrementor for some \(r \).

Our proof is based on constructions of runs in which processes are forced to become terminal incrementors. For this, we describe terminal incrementors by considering \(T_{op} \), the operation tree of the \textit{increment} procedure, defined in Subsection 3.2.

By Corollary 3.1, the operation tree \(T_{op} \) is finite. Hence it includes an internal vertex all whose children are leaves (e.g., an internal vertex of maximum possible depth). Call such a vertex \textit{terminal vertex}, and the corresponding state \textit{terminal state}. Whenever a process executing the \textit{increment} operation is in a terminal state, it is going to complete its \textit{increment} operation in its next atomic step, regardless of the value of the atomic counter it accesses in this step. Hence, we may assume that the next atomic step of a process in terminal state is an atomic increment step, as otherwise we may modify the counter by omitting this step, without affecting the \textit{increment} procedure. Therefore, we may assume that a process in a terminal state is a terminal incrementor. For reasons which will become obvious soon, we call a atomic counter accessed in a terminal state a \textit{critical} atomic counter.

Lemma 3.5 Let \(r \) be a critical atomic counter which counts modulo \(b \). Then for each vector \(\vec{v} \) and for each integer \(\ell \geq 0 \), there is a run \(z_\ell \) with \(\text{initial}(z_\ell) = \vec{v} \), satisfying:

1. \(\ell \) processes are \(r \)-terminal incrementors in \(z_\ell \), and all other processes are idle in \(z_\ell \).
2. If \(\ell = 0 \) (mod \(b \)), then \(\text{final}(z_\ell) = \vec{v} \).

14
Proof: The proof is by induction on ℓ. The run z_0 is the empty run starting and ending at \vec{v}. Assume that the lemma holds for $\ell \geq 0$, and let $Q_\ell = \{ q_1, \ldots, q_\ell \}$ be the ℓ processes which are r-terminal incrementors in z_ℓ. The run $z_{\ell+1}$ is an extension of z_ℓ, constructed as follows.

First assume that $\ell \neq 0 \pmod{b}$. Let $q_{\ell+1}$ be some process which is idle in z_ℓ. By Lemma 3.2 there is an extension y_ℓ of z_ℓ by processes which are idle in z_ℓ, such that $q_{\ell+1}$ is an r-terminal incrementor in y_ℓ. Observe that since no process from Q_ℓ is activated in $y_\ell - z_\ell$, all the processes in Q_ℓ are also r-terminal incrementors in y_ℓ. Thus $Q_{\ell+1} = Q_\ell \cup \{ q_{\ell+1} \}$ satisfies the Lemma at y_ℓ. The run $z_{\ell+1}$ is obtained by letting all the non-idle processes in y_ℓ which are not in $Q_{\ell+1}$ complete their increment operations.

Now assume that $\ell = 0 \pmod{b}$. We modify the run z_ℓ above to a run z'_ℓ which satisfies also requirement 2.

If we let all the ℓ terminal incrementers in z_ℓ complete their increment operations, we get a complete run y with $final(y) = final(z_\ell)$. This implies that there is a complete run from \vec{v} to $final(z_\ell)$. By Lemma 3.4, \vec{v} is extremal, and hence there is also a complete run y' with $initial(y') = final(z_\ell)$ and $final(y') = \vec{v}$. The modified run z'_ℓ which satisfies both 1 and 2, is defined by $z'_\ell = z_\ell \cdot y'$.

3.5 Independence of val on Values of Critical Atomic Counters

In this section we show that if \vec{u} and \vec{v} are two vectors that differ only by the value of a single critical atomic counter then $val(\vec{u}) = val(\vec{v})$. Later on we show that this fact implies that critical atomic counters are redundant, in some precise sense, and use this to prove Theorem 3.1. Let \vec{u} be a vector which represents the values of all the atomic counters used in a counter Pr at some point in time. We use the notation $\vec{u}(r)$ to denote the value of the atomic register r in \vec{u}. Recall that the dynamic correctness requires that for every run x with $initial(x) = \vec{v}$ and $final(x) = \vec{u}$, it holds that $val(\vec{u}) \in [end(x) + val(\vec{v}), begin(x) + val(\vec{v})] \pmod{m}$, where $begin(x)$ and $end(x)$ denote the number of processes which started [completed resp.] an increment operation in x.

Definition: Let r be a critical atomic counter (modulo b), and let \vec{u} and \vec{v} be two vectors in the run graph of P_r. Vector \vec{u} is the (r,i)-companion of \vec{v} if,

1. For every atomic counter $r' \neq r$, $\vec{u}(r') = \vec{v}(r')$ and
2. $\vec{u}(r) - \vec{v}(r) = i \pmod{b}$.

Vector \vec{u} is an r-companion of vector \vec{v} if it is the (r,i)-companion of \vec{v} for some i.

Notice that for a critical atomic counter r which counts modulo b, every vector is an (r,b)-companion of itself, and if \vec{u} is the (r,i)-companion of \vec{v} then \vec{v} is the $(r,b-i)$-companion of \vec{u}.

Lemma 3.6 Let r be an critical atomic counter. If \vec{v}_1 is the $(r,1)$-companion of \vec{v}_0, then $val(\vec{v}_1) = val(\vec{v}_0) \in [0,1] \pmod{m}$.

Proof: For simplicity, assume that $val(\vec{v}_1) = 1$. Thus, we have to show that $val(\vec{v}_0) \in \{0,1\}$. By Lemma 3.4 the vector \vec{v}_1 is an extremal vector. Since r is critical, by Lemma 3.5 there
is a run z_b from \bar{v}_1 to itself, at the end of which all the processes are idle, except for b processes which are r-terminal incrementors. If we let $b - 1$ of these terminal incrementors perform an atomic increment operation on r and complete their increment operation, we get a run y with $\text{initial}(y) = \bar{v}_1$ and $\text{final}(y) = \bar{v}_0$. In y all the processes are idle except for one r-terminal incrementor, and if we let this terminal incrementor complete its increment operation, it will increment the value of r from 0 to 1 and become idle. Thus, the resulted run, y', is a complete run satisfying $\text{initial}(y') = \text{final}(y') = \bar{v}_1$, hence $\text{begin}(y') = \text{end}(y') = 0 \pmod{m}$, meaning that $\text{begin}(y) = 0 \pmod{m}$ and $\text{end}(y) = -1 \pmod{m}$.

By the correctness requirement for dynamic counters, we get that for run y,

$$\text{val}(\bar{v}_0) \in [\text{val}(\bar{v}_1) + \text{end}(y), \text{val}(\bar{v}_1) + \text{begin}(y)] \pmod{m} = [0, 1],$$

which completes the proof. \qed

Corollary 3.2 Let r be a critical atomic counter (modulo b), and let $1 \leq i \leq b$. If \bar{v}_i is the (r, i)-companion of \bar{v}_0 then,

- $\text{val}(\bar{v}_i) - \text{val}(\bar{v}_0) \in [0, i] \pmod{m}$, and
- if $\text{val}(\bar{v}_i) - \text{val}(\bar{v}_0) = 0 \pmod{m}$, then $\text{val}(\bar{v}_j) = \text{val}(\bar{v}_0) \pmod{m}$, $0 \leq j \leq i$.

Proof: Let $h_j = \text{val}(\bar{v}_j) \pmod{m}$, and let $\delta_j = h_{j+1} - h_j \pmod{m}$. Let further $\Delta_i = \sum_{j=0}^{i-1} \delta_j$. Then $\text{val}(\bar{v}_i) = \text{val}(\bar{v}_0) + \Delta_i \pmod{m}$. By Lemma 3.6, $\delta_j \in \{0, 1\}$, and hence $0 \leq \Delta_i \leq i$, which, since $i < m$, implies the first part of the corollary.

The second part follows from the fact that $0 \leq \Delta_i \leq i \leq b < m$, hence if $\Delta_i = 0 \pmod{m}$ then $\Delta_i = 0$, and hence $\delta_j = 0$ for $0 \leq j \leq i - 1$. \qed

Lemma 3.7 Let r be a critical atomic counter. Then for every vector \bar{u} and for every vector \bar{v} which is an r-companion of \bar{u}, $\text{val}(\bar{u}) = \text{val}(\bar{v})$.

Proof: Let r be a critical atomic counter (modulo b). Let $\bar{u} = \bar{u}_0$ be given, and for $1 \leq i \leq b - 1$, let \bar{u}_i be the (r, i)-companion of \bar{u}_0. We have to show that for each such i, $\text{val}(\bar{u}_i) = \text{val}(\bar{u}_0)$. By Corollary 3.2 with $i = b$, we have that for some integer Δ_b, $0 \leq \Delta_b \leq b \pmod{m}$,

$$\text{val}(\bar{u}_b) - \text{val}(\bar{u}_0) = \Delta_b \pmod{m}, \quad (1)$$

Since $\bar{u}_b = \bar{u}_0$, we also have that

$$\text{val}(\bar{u}_b) - \text{val}(\bar{u}_0) = 0 \pmod{m}. \quad (2)$$

Since $0 \leq \Delta_b \leq b < m$, equalities 1 and 2 imply that $\Delta_b = 0$. The lemma follows by Corollary 3.2. \qed

3.6 Reducing the Number of Atomic Counters

We complete our impossibility proof by the following argument: Let k be the minimum possible number of atomic counters needed to implement a dynamic counter (modulo m) over B, and let Pr be such a counter which uses k atomic counters. Then there exists a
dynamic counter (modulo m) over B, which uses only k − 1 atomic counters - a contradiction to the minimality of Pr.

Let r1, · · · , rk be the atomic counters used by Pr. As already explained in the beginning of Subsection 3.4, since the operation tree is finite, at least one of the atomic counters is critical. So, w.o.l.g. assume that r1 is a critical atomic counter. We derive a contradiction by constructing a dynamic counter (modulo m), called Pr′, which uses only atomic counters r2, · · · , rk. For a k-vector ⃗v = (v1, · · · , vk), trunc(⃗v) denotes the k−1-vector ⃗v' = (v2, · · · , vk).

We now define the counter Pr′ = (increment', val', Vinit):

- increment' is identical to increment, with the following modification: Any atomic increment step taken by increment on r1 is replaced in increment' by a virtual atomic increment step, which assumes that the value of r1 is 0 (and changes it to 1); similarly, each read step of increment' assumes that the value of r1 is 0. Whenever such a virtual step is taken by increment', the state of the process is changed as it would have been changed in executing the original increment procedure, but no actual atomic increment or read step is taken.

- For every k − 1-vector (v2, · · · , vk),
 \[val'(v2, · · · , vk) = val(0, v2, · · · , vk) \quad [= val(i, v2, · · · , vk), 0 \leq i < b]. \]

- \[V_{init}' = \{\text{trunc}(\bar{v})|\bar{v} \in V_{init}\} \]. That is, Vinit' consists of vectors in Vinit without their first entry. (Note that Vinit = Zb1 × · · · × Zbk, hence Vinit' = Zb2 × · · · × Zbk.)

The next lemma show that critical atomic counters can be ignored by dynamic counters. In this lemma we use the notation \textit{domain}(x) to denote the set of values which are correct for run x, that is:

\[\text{domain}(x) = [\text{end}(x) + \text{val}(\text{initial}(x)), \text{begin}(x) + \text{val}(\text{initial}(x))] \pmod{m}. \]

Lemma 3.8 Let \(\bar{v} = (0, v_2, \ldots, v_k) \), and let \(\bar{v}' = \text{trunc}(\bar{v}) \). Let \(x' \) be a run of Pr′ with \(\text{initial}(x') = \bar{v}' \) and \(\text{final}(x') = \bar{u}' \) for some \(\bar{u}' \). Then there is a run \(x \) of Pr satisfying: (i) \(\text{initial}(x) = \bar{v} \), (ii) \(\text{final}(x) = \bar{u} \), where \(\text{trunc}(\bar{u}) = \bar{u}' \), and (iii) \textit{domain}(x) = \textit{domain}(x').

Proof: Let \(x' \) be a run from \(\bar{v}' \) to \(\bar{u}' \). We show how to construct the corresponding run \(x \). Suppose that in \(x' \) there are \(t \) virtual atomic increment operations that (virtually) change the value of \(r_1 \) from 0 to 1. Let \(\ell = (b - 1)[t/b] \). The run \(x = x_1 \cdot x_2 \) is defined as follows:

1. Start with a run \(x_1 \) which is identical to the run \(z_{b\ell} \) defined in Lemma 3.5. In particular, \(\text{initial}(x_1) = \text{final}(x_1) = \bar{v} \), and in \(x_1 \) all the processes are idle except \(b\ell \) \(r_1 \)-terminal incrementors.

2. Now extend the run \(x_1 \) by \(x_2 \), which is identical to \(x' \), with the following exception: Whenever in \(x' \) a process \(p \) executes a virtual atomic increment step on \(r_1 \), \(x_2 \) is modified as follows: first, \(p \) actually performs this atomic increment step. Then, \(b - 1 \) of the suspended \(r_1 \)-terminal-incrementors are activated and complete their \textit{increment} operation. As a result, the value of \(r_1 \) is reset to 0 in \(x_2 \).

3. If at the end of this simulation there are still suspended terminal incrementors, let them complete their \textit{increment} operation.

17
We prove that x satisfies (i)-(iii) above. (i) holds trivially. To prove (iii), consider the run x_1. In this run $b\ell$ processes are r_1 terminal incrementors, and all other processes are idle. If we let these $b\ell$ terminal incrementors complete their increment operation, we get a complete run y, where initial(y) = final(y) = \vec{v} and hence end(y) = begin(y) = 0 (mod m). Since begin(y) = begin(x_1) we conclude that begin(x_1) = Km for some integer K. Since begin(x) = begin(x_1) + begin(x_2) and begin(x_2) = begin(x'), we conclude that begin(x) = begin(x') + Km. Also, in x all the processes that started an increment operation during x_1 completed this operation. Hence we have by a similar argument that end(x) = end(x') + Km. Thus, domain(x) = domain(x'). This proves (iii).

Finally, by the construction of x_2 and the fact that the r_1 terminal incrementors changed only the value of r_1, we have that final(x') = trunc(final(x)). This proves (ii).

Lemma 3.9 If Pr is a dynamic counter (modulo m), then also Pr' is a dynamic counter (modulo m).

Proof: We assume the contrary, and derive a contradiction. Assume that Pr' is not a dynamic counter (modulo m). This means that there is a legal run x' of Pr', such that initial(x') = \vec{v}', final(x') = \vec{u}', and val(\vec{u}') \notin domain(x').

Consider the run x constructed for x' as in Lemma 3.8. Then, by lemma 3.8, domain(x) = domain(x'), and by Lemma 3.7 and the definition of val', val(\vec{u}) = val(\vec{u}'). Therefore if val(\vec{u}') \notin domain(x') then val(\vec{u}) \notin domain(x), which contradicts the assumption that Pr is a dynamic counter (modulo m).

Proof of Theorem 3.1: Assume that there exists a dynamic counter (modulo m), for $m > b$. Then, there exists such a counter, Pr, which use a minimal possible number of shared atomic counters, say k. By Lemma 3.9 there is another dynamic counter (modulo m), which uses only $k - 1$ atomic counters, a contradiction.

4 Discussion

Experience is showing that message-passing systems are more difficult to program than shared memory systems: “Parallel computers come with or without shared memory. One is hard to build, the other hard to program” [TKB92]. Shared memory is widely considered a useful programming abstraction for concurrent systems. Many experimental and commercial processors provide direct support for this abstraction, and increasing attention is being paid to implementing shared memory systems either in hardware or in software [Bel92, CG89, LH89, TKB92]. Gordon Bell predicts that: “Multicomputers from the score of companies combining computers will evolve to multiprocessors just to reduce overhead in simulating a single-memory address space, memory access, and supporting efficient multiprogramming” [Bel92].

As concurrent (shared memory) systems become popular, the task of implementing efficient public data structures for such systems is becoming important. As traditional data structures play an important role in the design of sequential algorithm, it is reasonable to expect that, the design of public data structures will be an important aspect in programming
shared memory machines. We have investigated a deceptively simple public data structure: a counter which supports only two operations, increment by 1 and read. We have asked the following question: given small counters of type X, can we construct a big counter of type Y? We have looked only at the cases where X is of type atomic counter (or linearizable counter) and Y is either of type static counter or of type dynamic counter.

Many questions about public counters still remain open. First, what kind of dynamic counters can we construct from atomic counters when the atomic counters are initialized? A more general question is to consider other substitutions for X and Y in the question above, such as counters that support a wider variety of operations. For example, extending the counter definition to allow a decrement operation, which decreases the value of the counter by one, or a reset operation which set the counter to some default value.

A counter is a simple data structure whose implementation raises non-trivial problems. We believe that investigating such simple structures first, would be helpful in the development of more complicated public data structures.

References

