
The Computability of Relaxed Data Structures:
Queues and Stacks as Examples

Nir Shavit1 and Gadi Taubenfeld2

1 MIT and Tel-Aviv University
2 The Interdisciplinary Center, P.O.Box 167, Herzliya 46150, Israel

shanir@csail.mit.edu, tgadi@idc.ac.il

Abstract. Most concurrent data structures being designed today are versions of
known sequential data structures. However, in various cases it makes sense to re-
lax the semantics of traditional concurrent data structures in order to get simpler
and possibly more efficient and scalable implementations. For example, when
solving the classical producer-consumer problem by implementing a concurrent
queue, it might be enough to allow the dequeue operation (by a consumer) to re-
turn and remove one of the two oldest values in the queue, and not necessarily the
oldest one. We define infinitely many possible relaxations of several traditional
data structures: queues, stacks and multisets, and examine their relative compu-
tational power.

Keywords: Relaxed data structure, consensus number, synchronization, wait-
freedom, queue, stack, multiset.

1 Introduction

1.1 Motivation

Early in our computer science education, we learn how to implement sequential data
structures. In the context of sequential data structures, implementing a queue in which
it is fine for a dequeue operation to return one of the two oldest items in the queue,
instead of always returning the oldest item, does not help in making the problem of
efficiently implementing a queue easier to solve. Maybe for that reason, we sometimes
tend to overlook the fact that in the context of concurrent programming, such relaxations
might help a lot.

Assume that you need to solve the classical producer-consumer synchronization
problem by implementing a concurrent queue. In some cases, it might be fine to allow
the consumer to return and remove one of the two oldest items in the queue, and not
necessarily the oldest one as is usually required. More generally, in some cases it makes
senses to relax the semantics of traditional concurrent data structures in order to get
more efficient and scalable concurrent implementations.

There is a trade-off between synchronization and the ability of an implementation
to scale performance with the number of processors. Amdahl’s law, implies that even a
small fraction of inherently sequential code limits scaling. Using semantically weaker
data structures may help in reducing the synchronization requirements and hence im-
proves scalability for many-core systems. As a result, there is a recent trend towards

implementing semantically weaker data structures for achieving better performance and
scalability [18].

Important research has already been done on implementing semantically weaker
data structure (see for example, [2, 3, 15, 18, 19]).While these implementations address
complexity issues, less research has been done on the computability of relaxed data
structures. In this paper we investigate the computability of (wait-free) relaxed data
structures, by considering infinitely many possible relaxations of several traditional data
structures: queues, stacks and multisets (i.e., bags), and examine their relative compu-
tational power. Our results demonstrate, for example, that for a concurrent queue small
changes in its semantics dramatically effects its computational power, and that similar
results do not apply for a concurrent stack.

1.2 Data structures with relaxed specifications

We will assume that processes can try to access a shared object at the same time, how-
ever, although operations of concurrent processes may overlap, each operation should
appear to take effect instantaneously. In particular, operations that do not overlap should
take effect in their “real-time” order. This type of correctness requirement for shared
objects is called linearizability [13].

A concurrent queue is a linearizable data structure that supports enqueue, dequeue
and peek operations, by several processes, with the usual queue semantics.3 Below we
generalize this traditional notion of a concurrent queue.

A concurrent queue w.r.t. the numbers a, b and c, denoted queue[a, b, c], is a lin-
earizable data structure that supports the enq.a(v), deq.b() and peek.c() operations,
by several processes, with the following semantics: The enq.a(v) operation inserts the
value v at one of the a positions at the end of the queue;4 the deq.b() operation returns
and removes one of the values at the b positions at the front of the queue; the peek.c()
operation returns one of the values at the c positions at the front of the queue without re-
moving it. If the queue is empty the deq.b() and the peek.c() operations return a special
symbol. We emphasize that the queue queue[a, b, c], is implemented w.r.t. some fixed
numbers a, b and c; these number are defined a priori and are not parameters that are
passed at run time.

When defining the queue queue[a, b, c], the numbers a, b and c can take the values
of any positive integer, and the two special values 0 and ∗. When a, b or c equals 0,
it means that the corresponding operation is not supported; when it equals ∗, it means
that the corresponding operation can insert, remove or return (depending on the type of
operation) a value at an arbitrary position (i.e., a position chosen by an adversary).

Thus, queue[1, 1, 1] is the traditional FIFO queue (which is sometimes called aug-
mented queue), where the values are dequeued in the order in which they were en-

3 The enqueue operation inserts a value to the queue and the dequeue operation returns and
removes the oldest value in the queue. That is, the values are dequeued in the order in which
they were enqueued. The peek operation reads the oldest value in the queue without removing
it. If the queue is empty the dequeue and the peek operations return a special symbol.

4 A position of an item in a queue or in a stack is simply the number of items which precede it
plus one.

queued, and where the peek operation reads the oldest value in the queue without remov-
ing it; queue[1, 1, 0] is a queue which supports the standard enqueue and dequeue op-
erations but does not support a peek operation; queue[1, 1, ∗] is a queue where the peek
operation returns an arbitrary value that is currently in the queue; finally queue[∗, ∗, 0]
is exactly a linearizable multiset object that supports insert and remove operations, by
several processes, with the usual multiset semantics.

Relaxed versions of other traditional data structures are defined similarly. A relaxed
concurrent stack, denoted stack[a, b, c], is a linearizable data structure that supports
the push.a(v), pop.b() and top.c() operations, by several processes, which the obvious
semantics. The object stack[∗, ∗, 0] is equivalent to the object queue[∗, ∗, 0] and cor-
responds to a multiset object. The object stack[1, 0, 1] is exactly an atomic read/write
register, where the push and top operations correspond to the write and read opera-
tions, respectively. For k ≥ 1, the object stack[1, 0, k] is exactly a k-atomic register as
defined in [21].

1.3 Consensus numbers

The (binary) consensus problem is to design an algorithm in which all non-faulty pro-
cesses reach a common decision based on their initial opinions. The problem is defined
as follows: There are n processes p1, p2, . . . , pn. Each process pi has an input value
xi ∈ {0, 1}. The requirements of the consensus problem are that there exists a deci-
sion value v such that: (1) each non-faulty process eventually decides on v, and (2)
v ∈ {x1, x2, . . . , xn}. In particular, if all input values are the same, then that value
must be the decision value.

The notion of a consensus number is central to our investigation and is formally
defined below. A wait-free implementation of an object guarantees that any process
can complete any operation in a finite number of steps, regardless of the speed of the
other processes. A register is an object that supports read and write operations. With an
atomic register, it is assumed that operations on the register (i.e, on the same memory
location) occur in some definite order. That is, reading or writing an atomic register is
an indivisible action.

The consensus number of an object of type o, denoted CN(o), is the largest n for
which it is possible to solve consensus for n processes in a wait-free manner using any
number of objects of type o and any number of atomic registers. If no largest n exists,
the consensus number of o is infinite (denoted ∞). Classifying objects by their con-
sensus numbers is a powerful technique for understanding the relative computational
power of shared objects.

The consensus hierarchy is an infinite hierarchy of objects such that the objects at
level i of the hierarchy are exactly those objects with consensus number i. It is known
that, in the consensus hierarchy, for any positive i, in a system with i processes: (1) no
object at level less than i together with atomic registers can implement any object at
level i; and (2) each object at level i together with atomic registers can implement any
object at level i or at a lower level [10].

1.4 Contributions

New definitions. The definitions of concurrent queues and stacks with relaxed specifi-
cations together with the following technical results provide a deeper understanding of
the computability issues which are involved in the development of relaxed data struc-
tures.

Relaxing the enqueue operation. First we show that, while CN(queue[1, 1, 1]) = ∞,
the consensus number drops to two when the enqueue operation is allowed to insert an
item at any position at random, regardless whether the peek and dequeue operations are
relaxed or not. That is,

CN(queue[∗, 1, 1]) = 2. (R1)

It follows from R1 and the known result that CN(queue[∗, ∗, 0]) = 2 (i.e., that the
consensus number of a multiset object is 2), that: for every b ∈ Z+ ∪ {∗}, c ∈ Z+ ∪
{0, ∗} : CN(queue[∗, b, c]) = 2. (Z+ is the set of all positive integers.) Next, we show
that the consensus number of all the queues in which the peek operation is not relaxed
(i.e., peek always returns the element at the front of the queue) is infinity, even when
the enqueue operation is allowed to insert an item at any one of the last k positions for
any fixed k. That is,

For every a ∈ Z+ : CN(queue[a, 0, 1]) = ∞ (R2)

In contrast with R2, the consensus numbers of all possible relaxations of a concurrent
stack are at most 2. In particular, CN(stack[1, 1, 1]) = 2 and CN(stack[1, 0, 1]) = 1
[7, 10, 16] (as already mentioned, the object stack[1, 0, 1] is exactly an atomic read/write
register).

Relaxing the peek operation. Next, we show that the consensus number of all the
queues in which the peek operation is relaxed (i.e., peek is not required to always return
the oldest value in the queue), is exactly two, regardless of how far the enqueue and
dequeue operations are relaxed, as long as these operations are supported. That is,

CN(queue[1, 1, 2]) = 2. (R3)

It follows from R3 and the known result that the consensus number of a multiset object
is 2 [14], that: for every a ∈ Z+ ∪{∗}, b ∈ Z+ ∪{∗}, c ̸= 1 : CN(queue[a, b, c]) = 2.

Not supporting the dequeue operation. The situation changes dramatically when de-
queue is not supported. The consensus number of all the queues where the dequeue
operation is not supported and the peek operation is slightly relaxed, is just 1. That is,

CN(queue[1, 0, 2]) = 1. (R4)

Thus, while CN(queue[1, 0, 1]) = ∞ and CN(queue[1, 1, 2]) = 2, by removing the
dequeue operation from the object queue[1, 1, 2], we get an object with consensus num-
ber one. It follows from R4 that: for every a ∈ Z+ ∪ {0, ∗} : CN(queue[a, 0, 2]) = 1.

Atomic registers vs. relaxed queues. It is known that CN(atomic register) = 1 [16].
It is easy to see that a queue[∗, 0, 2] has a trivial wait-free implementation from a single
atomic register. While, for every a ∈ Z+, atomic registers and queue[a, 0, 2] both have
consensus number 1, we observe that,

A queue[a, 0, c] has no wait-free implementation from atomic registers,
for every two positive integers a and c. (R5)

The above results hold for both an initialized queue and an uninitialized queue. These
two cases differ, for example, when the enqueue operation is not supported. For an
initialized queue, CN(queue[0, 1, 0]) = 2 [10], while for an uninitialized queue, it is
obvious that CN(queue[0, 1, 1]) = 1.

1.5 Related work

The design of concurrent data structures has been extensively studied [9, 20]. However,
there are limitations in achieving high scalability in their design [4, 6]. Two progress
conditions that have been proposed for data structures which avoid locking are wait-
freedom [10] (defined earlier), and obstruction-freedom [11]. Obstruction-freedom, guar-
antees that an active process will be able to complete its pending operations in a finite
number of its own steps, if all the other processes “hold still” long enough.

It is shown in [4] that the worst-case operation time complexity of obstruction-free
implementations is high, even in the absence of step contention. In [6], an Ω(n) lower
bound is proven on the time to perform a single instance of an operation in any imple-
mentation of a large class of data structures shared by n processes, such as counters,
stacks, and queues. It is suggested in [6] that “it might be beneficial to replace lineariz-
able implementations of strongly ordered data structures, such as stacks and queues,
with more relaxed data structures, such as pools and bags”.

In [18], it is pointed out that concurrent data structures will have to go through a
substantial “relaxation process” in order to support scalability: “The data structures of
our childhood – stacks, queues, and heaps – will soon disappear, replaced by looser
unordered concurrent constructs based on distribution and randomization”. A few ex-
amples are given in [18] showing how relaxing a stack’s LIFO ordering guarantees can
result in higher performance and greater scalability.

Another approach to weaken the requirement of traditional data structures is not
to change at all the definition of the data structures, but rather to relax the traditional
correctness requirements. A tutorial which describes many issues related to memory
consistency models can be found in [1]. In the context of relaxing the consistency con-
dition linearizability [13], two relaxations of a queue were presented in [3]. In [15], a
k-FIFO queue was implemented, which may dequeue elements out of FIFO order up to
a constant k ≥ 0. There are various implementations of relaxed data structures where
insertion-order is of no importance, such as pools and bags, see for example [2, 19]. In
[8], a systematic and formal framework is presented for obtaining new data structures
by quantitatively relaxing existing ones.

The impossibility result that there is no consensus algorithm that can tolerate even
a single crash failure was first proved for the asynchronous message-passing model in

[7], and later has been extended for the shared memory model with atomic registers
in [16]. The impossibility result that, for 1 ≤ k ≤ n − 1 there is no k-resilient k-
set-consensus algorithm for n processes using atomic registers, is from [5, 12, 17] (set-
consensus is defined in section 6). It is shown in [10] that traditional data types, such
as sets which support insert and remove operations, queues which support enqueue and
dequeue operations (i.e., queue[1, 1, 0]), stacks which supports push and pop operations
(i.e., stack[1, 1, 0]), all have consensus number exactly two. In the proofs of [10], it is
assumed that the data structures are initialized. The same results also hold for the case of
uninitialized data structures [14, 20]. It is trivial to show that CN(queue[1, 1, 1]) = ∞.

For k ≥ 1, the object stack[1, 0, k] is exactly a k-atomic register [21]. In [21], it is
shown that, for every k ≥ 1, an atomic register can be implemented from k-safe bits.
This result implies that, for every k ≥ 1, a stack[1, 0, 1] object can be implemented
from stack[1, 0, k] objects.

2 Preliminaries

2.1 Model of computation

Our model of computation consists of an asynchronous collection of n ≥ 2 processes
that communicate via shared objects. We use P to denote the set of all processes. An
event corresponds to an atomic step performed by a process. For example, the events
which correspond to accessing registers are classified into two types: read events which
may not change the state of the register, and write events which update the state of a
register but do not return a value. We use the notation ep to denote an instance of an
arbitrary event at a process p.

A run is a pair (f, R) where f is a function that assigns initial states (values) to the
objects and R is a finite or infinite sequence of events. An implementation of an object
from a set of other objects, consists of a non-empty set C of runs, a set P of processes,
and a set of shared objects O. For any event ep at a process p in any run in C, the object
accessed in ep must be in O. Let x = (f, R) and x′ = (f ′, R′) be runs. Run x′ is a
prefix of x (and x is an extension of x′), denoted x′ ≤ x, if R′ is a prefix of R and
f = f ′. When x′ ≤ x, (x− x′) denotes the suffix of R obtained by removing R′ from
R. Let R;T be the sequence obtained by concatenating the finite sequence R and the
sequence T . Then x;T is an abbreviation for (f, R;T).

Process p is enabled at the end of run x if there exists an event ep such that x; ep is a
run. For simplicity, whenever we say that p is enabled at x we mean that p is enabled at
the end of x. Also, we write xp to denote either x; ep when p is enabled in x, or x when
p is not enabled in x. Register r is a local register of p if only p can access r. For any
sequence R, let Rp be the subsequence of R containing all events in R which involve
p. Runs (f, R) and (f ′, R′) are indistinguishable for p, denoted by (f, R)[p](f ′, R′),
iff Rp = R′

p and f(r) = f ′(r) for every local register r of p.
The runs of an asynchronous implementation of an object must satisfy several prop-

erties. For example, if a write event which involves p is enabled at run x, then the same
event is enabled at any finite run that is indistinguishable to p from x. In the following
proofs, we will implicitly make use of few such straightforward properties.

2.2 Three simple observations

The following lemmas are easy consequences of the above properties and definitions.

Lemma 1. Let w, x and y be runs of an algorithm and p be a process such that (1) w ≤
x and w[p]y, and (2) the states of all the objects (local and shared) that p can access
are the same in w and y, and (x− w) contains only events of p. Then, z = y; (x− w)
is a run of the algorithm and x[p]z.

Proof. By induction on the length of (x− w). ⊓⊔
Next, we state two simple lemmas regarding relaxed queues. The first states that in
any component, going from a ∈ Z+ to a + 1 or to ∗ does not increase the power of
the object since it just gives the adversary more choices of what to return. The second
lemma states that going from a ∈ Z+ ∪ {0, ∗} to 0 in any component does not increase
the power of the object, since it just eliminates a possible operation.

Lemma 2. For every a1, b1, c1, a2, b2, c2 in Z+ ∪ {0, ∗},
if ((a2 = ∗ ∧ a1 ̸= 0) ∨ 0 < a1 ≤ a2 ∨ a2 = 0) ∧ ((b2 = ∗ ∧ b1 ̸= 0) ∨ 0 < b1 ≤
b2 ∨ b2 = 0) ∧ ((c2 = ∗ ∧ c1 ̸= 0) ∨ 0 < c1 ≤ c2 ∨ c2 = 0)
then CN(queue[a1, b1, c1]) ≥ CN(queue[a2, b2, c2]).

Proof. The proof of the lemma follows immediately from the definitions. ⊓⊔

Lemma 3. For every a, b, c in Z+ ∪ {0, ∗},

1. CN(queue[0, b, c]) ≤ CN(queue[a, b, c]), and
2. CN(queue[a, 0, c]) ≤ CN(queue[a, b, c]), and
3. CN(queue[a, b, 0]) ≤ CN(queue[a, b, c]).

Proof. The proof of the lemma follows immediately from the definitions. ⊓⊔

2.3 Known results

Lemma 4. (a) CN(queue[∗, ∗, 0]) = 2, (b) CN(queue[1, 1, 0]) = 2, and
(c) CN(stack[1, 1, 1]) = 2.

The proofs that CN(queue[∗, ∗, 0]) = 2, CN(queue[1, 1, 0]) = 2, and CN(stack[1, 1, 0]) =
2 (with and without initialization) are from [10, 14]. The wait-free consensus algorithm
which uses a single queue and registers from [14], is also correct when the queue is
replaced with a stack or with a multiset. Proving that CN(stack[1, 1, 1]) = 2, can be
establish by modifying the existing proof from [10], that CN(queue[1, 1, 0]) = 2.5

5 To our surprise, we could not find any publication in which it is claimed that
CN(stack[1, 1, 1]) = 2. Nevertheless, we consider it as a known result.

3 Basic properties of wait-free consensus algorithms

The first four lemmas below are known and have appeared (using different notations)
or follow from known impossibility proofs for wait-free consensus. The definitions be-
low refer to runs of a given consensus algorithm. A (finite) run x is v-valent if in all
extensions of x where a decision is made, the decision value is v (v ∈ {0, 1}). A run
is univalent if it is either 0-valent or 1-valent, otherwise it is bivalent. We say that two
univalent runs are compatible if they have the same valency, that is, either both runs are
0-valent or both are 1-valent. A run is critical if: (1) it is bivalent, and (2) any extension
of the run is univalent. A run (f, R) is an empty run if the length of R is 0 (that is, no
process has taken a step yet). Recall that n ≥ 2.

Lemma 5. In every wait-free consensus algorithm, if two univalent runs are indistin-
guishable for some process p, and the states of all the objects that p can access are the
same at these runs, then these (univalent) runs must be compatible.

Proof. Let w and y be univalent runs, such that w[p]y and the states of all the objects
(local and shared) that p can access are the same at w and y. By the wait-free property,
w has an extension x such x − w contains only events of process p, and p has decided
in x. Let w be v-valent, for v ∈ {0, 1}. Then p decide v in x. (The event in which p
decides on v, may be implemented by p writing v into a special single-writer output
register.) By Lemma 1, z = y; (x − w) is a run of the algorithm such that z[p]x. Since
p decides on v (i.e., p writes v to its output register) in z, z is v-valent. Hence, since
y ≤ z, y must also be v-valent. ⊓⊔

Lemma 6. Every wait-free consensus algorithm has a bivalent empty run.

Proof. We show that a bivalent empty run must exist. Assume to the contrary that every
empty run is univalent. The empty run with all 0 inputs must be 0-valent, and similarly
the empty run with all 1 inputs must be 1-valent. Thus, by Lemma 5, all the empty runs
with all but one 0 inputs are 0-valent, and similarly all the empty runs with all but one
1 inputs are 1-valent. By repeatedly applying this argument i times we get that, all the
empty runs with all but i 0 inputs are 0-valent, and similarly all the empty runs with all
but i 1 inputs are 1-valent. Thus, when i is half the number of processes, we get that
there are two empty runs x0 and x1 that differ only at the value of a single input, for
process p, such that x0 is 0-valent and x1 is 1-valent. However, this contradicts Lemma
5. Hence, an empty bivalent run exists. ⊓⊔

Lemma 7. Every wait-free consensus algorithm has a critical run.

Proof. Let Cons be an arbitrary wait-free consensus algorithm. By Lemma 6, Cons
has an empty bivalent run x0. We begin with x0 and pursue the following round-robin
bivalence-preserving scheduling discipline (Recall that P denotes a set of processes, x
and y denote runs and yp is an extension of the run y by one event of process p):

1 x := x0; P := ∅; i := 0 /* initialization */
2 repeat
3 if x has a bivalent extension ypi /* which involves pi */

4 then x := ypi /* bivalent extension of x */
5 else P := P ∪ {pi} /* no such bivalent extension */
6 i := i+ 1(mod n) /* round-robin */
7 until |P | = n.

If the above procedure does not terminate, then there is an infinite run with only bivalent
finite prefixes. However, the existence of such a run contradicts the definition of a wait-
free consensus algorithm. Hence, the procedure will terminate with some critical run
x. ⊓⊔

Lemma 8. Let x be a critical run of a wait-free consensus algorithm and let p and q
be two different processes such that the runs xp and xq are not compatible. Then, in
their next events from x, p and q are accessing the same object, and this object is not a
register.

Proof. We consider the following three possible cases, and show that each one of them
leads to a contradiction. We will assume that in the last event in xp process p is accessing
some object, say o, and in the last event in xq process q is accessing some object, say o′.

Case 1. o ̸= o′. Since the next events from x of p and q are independent, xpq[p]xqp,
and the values of all objects are the same in both xpq and xqp. Hence, by Lemma 5,
xpq and xqp are compatible; since xpq is an extension of xp and xqp is an extension of
xq, it must be that xp and xq are also compatible. A contradiction.

Case 2. o = o′ is a register and in xp the last event is a write event by p to o. Since p
writes to o in its next operation from x, the value of o must be the same in xp and xqp.
(Here we use the fact that the write by p overwrites the possible changes of o made by
q.) Hence, xp[p]xqp and the values of all the objects, which are not local to q, are the
same in xp and xqp. By Lemma 5, xp and xqp are compatible. Since xqp is an exten-
sion of xq, it must be that xp and xq are also compatible. A contradiction.

Case 3. o = o′ is a register and in xp the last event is a read event by p. Thus, xpq[q]xq,
and the values of all the objects, which are not local to p, are the same in both xpq and
xq. Hence by Lemma 5, xpq and xq are compatible. Since xpq is an extension of xp, it
must be that xp and xq are also compatible. A contradiction.

Thus, it must be the case that o = o′ and o is not a register. ⊓⊔

Lemma 9. Let x be a critical run of a wait-free consensus algorithm, and assume that
the next event of p from x is a relaxed peek event which may return one of the two oldest
items in a queue. Let xp1 (resp. xp2) denotes an extension of x by a peek event by p
that has returned the oldest (resp. second oldest) item in a queue. Then, xp1 and xp2

are compatible.

Proof. Let p and q be two different processes. Because the value the peek operation by
p returns (i.e., the first or second) does not affect the state of the queue object visible to
q, it follows that xp1[q]xp2 and and the states of all the objects that q can access are the
same at these runs. Thus, by Lemma 5, xp1 and xp2 are compatible. ⊓⊔

4 Relaxing the enqueue operation

It is obvious that CN(queue[1, 0, 1]) = ∞. Each process inserts its input value into
the queue using an enqueue operation, and then uses a peek operation to find out what
is the value at the front of the queue and decides on it. Also, it is obvious that, for an
uninitialized queue, CN(queue[0, 1, 1]) = 1.6 That is, a relaxed uninitialized queue
where the enqueue operation is not supported is useless. Assume a queue object where
only the enqueue operation may be relaxed. We show that only when the enqueue op-
eration can insert a value at an arbitrary position, the consensus number drops to two;
otherwise, in all other possible relaxations in which the enqueue operation is supported,
the consensus number is not effected (i.e., it is ∞).

Theorem 1. CN(queue[∗, 1, 1]) = 2.

Proof. It follows immediately from Lemma 2, Lemma 3, and Lemma 4(a) that
CN(queue[∗, 1, 1]) ≥ 2. We prove that CN(queue[∗, 1, 1]) ≤ 2. A possible correct
behavior of a queue[∗, 1, 1] object, is that every enqueue operation always inserts a
data item at the head of the queue. In such a case, the queue[∗, 1, 1] object, behaves like
a stack[1, 1, 1] object. This implies that CN(queue[∗, 1, 1]) ≤ CN(stack[1, 1, 1]).
Thus, by Lemma 4(c), CN(queue[∗, 1, 1]) ≤ 2. ⊓⊔

Corollary 1. For every b ∈ Z+ ∪ {∗}, c ∈ Z+ ∪ {0, ∗} : CN(queue[∗, b, c]) = 2.

Proof. The corollary follows from Lemma 2, Lemma 3, Lemma 4(a) and Theorem 1.
⊓⊔

Next we show that when the enqueue operation is relaxed but can not insert a value at
an arbitrary position, the consensus number is infinity.

Theorem 2. For every a ∈ Z+ : CN(queue[a, 0, 1]) = ∞.

Proof. For any given number a ∈ Z+, we present a simple consensus algorithm for any
number of processes using a singe queue[a, 0, 1] object. Each process first enqueues its
input value a + 1 times. Then, the process uses a peek operation to find out the value
of the first item in the queue, and decides on that value. Clearly, once some process
finishes to enqueue its input value a + 1 times, the value of the item at the head of the
queue never changes. The result follows. ⊓⊔

Corollary 2. For every a ∈ Z+, b ∈ Z+ ∪ {0, ∗} : CN(queue[a, b, 1]) = ∞.

Proof. The corollary follows immediately from Lemma 2, Lemma 3 and Theorem 2.
⊓⊔

6 This is false, if the queue initially contains one element. In such a case, two processes can solve
consensus, by deciding on the input of the process that successfully dequeues the element.

5 Relaxing the peek operation

Assume a queue object where only the peek operation may be relaxed. We show that
in all possible relaxations of the peek operation the consensus number drops (from
infinity) to two.

Theorem 3. CN(queue[1, 1, 2]) = 2.

Proof. It follows from Lemma 3 and Lemma 4(b) that CN(queue[1, 1, 2]) ≥ 2. Below
we prove that CN(queue[1, 1, 2]) ≤ 2. By contradiction, assume that we have a wait-
free consensus algorithm for three processes p, q and g using only queue[1, 1, 2] objects
and registers. By Lemma 7, the algorithm has a critical run x. By definition of a critical
run, for two of the processes, say p and q, a run resulting by an extension of x by a
single event of p and a run resulting by an extension of x by a single event of q are not
compatible. Thus, by Lemma 8, in their next events from x, p and q are accessing the
same object, which must be a queue[1, 1, 2] object. By Lemma 9, if the next event of p
(resp. q) from x is a relaxed peek event which may return one of the two oldest items in
a queue, xp1 and xp2 (resp. xq1 and xq2) are compatible. Below, when the next event
of p from x is a peek event, xp refers to xp1 and xp2.

Without loss of generality, we can assume the xp is 0-valent and xq is 1-valent.
Since xp is 0-valent also xpq is 0-valent. Since xq is 1-valent also xqp is 1-valent. Thus,
xpq and xqp are not compatible. Next, we consider all the possible cases, regarding the
next two events of p and q from x and show that each one of these cases leads to a
contradiction.

Case 1. Both events are peek events. Because a peek operation does not have any
effect on the state of a queue[1, 1, 2] object, it follows that xpq[g]xqp and the states of
all the objects that g can access are the same at these runs. Thus, by Lemma 5, xpq and
xqp must be compatible, a contradiction. Notice that we do not really care what value
a peek operation returns (i.e., the oldest or second oldest), since this will not affect the
state of the object visible to g.

Case 2. Exactly one of the two events is a peek event. Because the peek operation
does not have any effect on the state of a queue[1, 1, 2] object and the other operation
has the same effect in both xpq and xqp, it follows that xpq[g]xqp and the states of all
the objects that g can access are the same at these runs. Thus, by Lemma 5, xpq and
xqp must be compatible, a contradiction. Notice that again we do not really care what
value the peek operation returns.

Case 3. Both events are dequeue events. In the last two events in xpq and xqp the
same two items were removed from the queue, thus, xpq[g]xqp and the states of all the
objects that g can access are the same at these runs. Thus, by Lemma 5, xpq and xqp
must be compatible, a contradiction.

Case 4. One event is a enqueue and the other is a dequeue. Assume w.l.o.g. that the
enqueue event is by p and the dequeue event is be q. If the queue is nonempty, the two
events commute since each operates on a different end of the queue. Thus, xpq and xqp
are indistinguishable for all the processes and the states of all the objects is the same
in xpq and xqp, and thus by Lemma 5 the contradiction is immediate. If the queue is
empty, xp[g]xqp and and the states of all the objects that g can access are the same at
these runs. Thus, by Lemma 5, xp and xqp must be compatible, a contradiction.

Case 5. Both events are enqueue events. Assume that p enqueues the value vp and
q enqueues the value vq . Consider the runs xpq and xqp. The valency of each one of
these two runs is determined by the process that has taken the first step from x. If p
or q runs uninterrupted starting from either xpq or xqp, the only way for each one of
them to observe the queue’s state is via a dequeue or a peek operation. However, since
the peek operation can return one of the first two items at the head of the queue, a peek
can not be used to determine which process enqueue operation was first. That is, once
the values vp and vq are at the head of queue, a peek operation by p can always return
vp, and a peek operation by q can always return vq . Thus, the only way for a process
to determine which process went first is via dequeue operations. Next we consider the
following two extensions of xpq and xqp.

– Let y be an extension of xpq that results from the following execution: Starting from
x let p enqueue vp and then let q enqueue vq . Run p uninterrupted until it dequeues
vp (as explained above this is the only way for p to observe which process went
first). Then, run q uninterrupted until it dequeues vq .

– Let y′ be an extension of xqp that results from the following execution: Starting
from x let q enqueue vq and then let p enqueue vp. Run p uninterrupted until it
dequeues vq Then, run q uninterrupted until it dequeues vp.

Since y is and extension of xpq, y is 0-valent, and since y′ is and extension of xqp, y′ is
1-valent. Clearly, y[g]y′ and the states of all the objects that g can access are the same
at these runs. Thus, by Lemma 5, y and y′ must be compatible, a contradiction. ⊓⊔

Corollary 3. For every a ∈ Z+∪{∗}, b ∈ Z+∪{∗}, c ̸= 1 : CN(queue[a, b, c]) = 2.

Proof. The corollary follows from Lemma 2 and Lemma 4(a) and Theorem 3. ⊓⊔

6 Not supporting the dequeue operation

The consensus number of all the queues where the dequeue operation is not supported
and the peek operation is relaxed, is just 1. Put another way, while CN(queue[1, 0, 1]) =
∞ and CN(queue[1, 1, 2]) = 2, by removing the dequeue operation from the object
queue[1, 1, 2], we get an object with consensus number one. That is,

Theorem 4. CN(queue[1, 0, 2]) = 1.

Proof. By contradiction, assume that we have a wait-free consensus algorithm for two
processes p and q using only queue[1, 0, 2] objects and registers. By Lemma 7, the
algorithm has a critical run x. By definition of a critical run, a run resulting by an
extension of x by a single event of p and a run resulting by an extension of x by a single
event of q are not compatible. By Lemma 8, in their next events from x, p and q are
accessing the same object, which must be a queue[1, 0, 2] object. By Lemma 9, if the
next event of p (resp. q) from x is a relaxed peek event which may return one of the two
oldest items in a queue, xp1 and xp2 (resp. xq1 and xq2) are compatible. Below, when
the next event of p from x is a peek event, xp refers to xp1 and xp2.

Without loss of generality, we assume the xp is 0-valent and xq is 1-valent. Since
xp is 0-valent also xpq is 0-valent. Since xq is 1-valent also xqp is 1-valent. Thus, xpq

and xqp are not compatible. Next, we consider all the possible cases, regarding the next
events of p and q from x and show that each one of these cases leads to a contradiction.

Case 1. Both events are peek events. Because a peek operation does not have any
effect on the states of the queue[1, 1, 2] object, it follows that xp1[p]xqp1 and the states
of all the objects that p can access are the same at these runs. Thus, by Lemma 5, xp1

and xqp1 must be compatible, a contradiction. We do not really care what value a peek
operation by q returns since this will not affect the state of the object visible to p.7

Case 2. Exactly one of the two events is a peek event. Assume w.l.o.g. that the peek
event is by process q. Because the peek operation does not have any effect on the states
of the queue[1, 0, 2] object and the operation by p has the same effect in both xp and
xqp, it follows that xp[p]xqp and the states of all the objects that p can access are the
same at these runs. Thus, by Lemma 5, xp and xqp must be compatible, a contradiction.
Notice that again we do not really care what value the peek operation returns.

Case 3. Both events are enqueue events. Assume that p enqueues the value vp and
q enqueues the value vq . Consider the 0-valent run xpq and the 1-valent run xqp. The
valency of each one of these two runs is determined by the process that has taken the
first step from x. If p or q runs uninterrupted starting from either xpq or xqp, the only
way for each one of them to observe the queue’s state is via a peek operation. Since the
peek operation can return one of the first two items at the head of the queue, a peek can
not be used to determine which process enqueue operation was first.

More precisely:

1. If the queue is not empty at x then after the two enqueue events by p and q, the
adversary can force every peek event to always return the item at the head of the
queue, and thus it is not possible for p or q to decide which process enqueue event
was first.

2. If the queue is empty at x then after the two enqueue events by p and q, the values
vp and vq are at the head of queue (in some order). Now the adversary can force
every peek operation by p to always return vp, and every peek operation by q can
always return vq . Thus, again, it is not possible to decide which process enqueue
event was first.

Thus, it can not be that both events are enqueue events, a contradiction. ⊓⊔

Corollary 4. For every a ∈ Z+ ∪ {0, ∗}, c ≥ 2 : CN(queue[a, 0, c]) = 1.

Proof. The corollary follows from Lemma 2, Lemma 3 and Theorem 4. ⊓⊔

7 Atomic registers vs. relaxed queues

It is known that CN(atomic register) = 1 [16]. It is easy to see that a queue[∗, 0, 2]
has a trivial wait-free implementation from a single atomic register, which raises the
question whether also queue[1, 0, 2] has a wait-free implementation from atomic regis-
ters. The answer to this question is negative. We prove the following general result:

7 Notice that we reach a contradiction, by assuming that p’s peek operation returns the first
element in both passes. Since this implies that it cannot be the case that both events by p and q
are peek events, there is no need to consider the sub-case where p’s peek operation returns the
first element in one path and the second element is the other path.

Theorem 5. A queue[a, 0, c] has no wait-free implementation from atomic registers,
for every two integers a ≥ 1 and c ≥ 1.

Proof. The (n, k)-set consensus problem is to find a solution for n processes, where
each process starts with an input value from some domain, and must choose some par-
ticipating process’ input as its output. All n processes together may choose no more
than k distinct output values. An (n, k)-set consensus object (or algorithm) is an object
which solves the (n, k)-set consensus problem. One of the most celebrated impossibil-
ity results in distributed computing is that, for any 1 ≤ k < n, a wait-free (n, k)-set
consensus object can not be implemented using any number of wait-free (n, k + 1)-set
consensus objects and atomic registers [5, 12, 17].

We observe that, for any 1 ≤ k < n, a wait-free (n, k)-set consensus object has
a simple wait-free implementation using a single (initially empty) queue[a, 0, c] object
where a and c are positive integers and k = a+c−1, as follows. Each process pi inserts
its input value vi into the queue using an enq.a(vi) operation, and then uses a peek.c()
operation to find a value in one of the c positions at the front of the queue, and decides
on it. During the execution any one of the a+ c− 1 values that are inserted first into the
queue can occupy (at some point in time) one of the c positions at the front of the queue.
Any value that is inserted later will never occupy one of the c positions at the front of
the queue. Thus, processes together will never choose more than k = a+ c− 1 distinct
output values. Since, for every two positive integers a and c, it is possible to solve in a
wait-free manner the (a + c, a + c − 1)-set consensus problem using a queue[a, 0, c]
object, but it is not possible to solve it in a wait-free manner using atomic registers, the
result follows. ⊓⊔

8 Discussion

Synchronization inherently limits parallelism. As a result, there is a recent trend towards
implementing semantically weaker data structures which reduce the need for synchro-
nization and thus achieve better performance and scalability. We have considered in-
finitely many possible relaxations of queues and stacks, and examined their relative
computational power by determining their consensus numbers.

Our results demonstrate, somewhat surprisingly, that each one of the infinitely many
relaxed objects considered has one of the following three consensus numbers: 1, 2 or
∞. Another conclusion is that a queue is more sensitive than a stack to changes in its
semantics. It would be interesting to extend our results to other data structures.

It would be interesting to find out the internal structure among relaxed objects in
the same level of the consensus hierarchy. In particular, for i ∈ Z+, is it possible to
implement a queue[1, 1, i+1] object using queue[1, 1, i+2] objects and registers? Is it
possible to implement a queue[1, 1, 2] object using queue[1, 1, 0] objects and registers?

Acknowledgements: Support is gratefully acknowledged from the National Science
Foundation under grants CCF-1217921, CCF-1301926, and IIS-1447786, and the De-
partment of Energy under grant ER26116/DE-SC0008923.

References

1. S. V. Adve and K. Gharachorloo. Shared memory consistency models: A tutorial. IEEE
Computer, 29(12):66–76, 1996.

2. Y. Afek, G. Korland, M. Natanzon, and N. Shavit. Scalable producer-consumer pools based
on elimination-diffraction trees. In Proc. of the 16th International Euro-Par Conference on
Parallel Processing: Part II, Euro-Par’10, pages 151–162, 2010.

3. Y. Afek, G. Korland, and E. Yanovsky. Quasi-linearizability: Relaxed consistency for im-
proved concurrency. In Proc. of the 14th International Conference on Principles of Dis-
tributed Systems, OPODIS’10, pages 395–410, 2010.

4. H. Attiya, R. Guerraoui, D. Hendler, and P. Kuznetsov. The complexity of obstruction-free
implementations. J. ACM, 56(4):1–33, July 2009.

5. E. Borowsky and E. Gafni. Generalizecl FLP impossibility result for t-resilient asynchronous
computations. In Proc. 25th ACM Symp. on Theory of Computing, pages 91–100, 1993.

6. F. Ellen, D. Hendler, and N. Shavit. On the inherent sequentiality of concurrent objects.
SIAM Journal on Computing, 41(3):519–536, 2012.

7. M.J. Fischer, N.A. Lynch, and M.S. Paterson. Impossibility of distributed consensus with
one faulty process. Journal of the ACM, 32(2):374–382, 1985.

8. T. Henzinger, C. Kirsch, H. Payer, A. Sezgin, and A. Sokolova. Quantitative relaxation of
concurrent data structures. SIGPLAN Not., 48(1):317–328, January 2013.

9. M. Herlihy and N. Shavit. The Art of Multiprocessor Programming. Morgan Kaufmann
Publishers, 2008. 508 pages.

10. M. P. Herlihy. Wait-free synchronization. ACM Trans. on Programming Languages and
Systems, 13(1):124–149, January 1991.

11. M. P. Herlihy, V. Luchangco, and M. Moir. Obstruction-free synchronization: Double-ended
queues as an example. In Proc. of the 23rd International Conference on Distributed Com-
puting Systems, page 522, 2003.

12. M. P. Herlihy and N. Shavit. The topological structure of asynchronous computability. Jour-
nal of the ACM, 46(6):858–923, July 1999.

13. M. P. Herlihy and J. M. Wing. Linearizability: a correctness condition for concurrent objects.
TOPLAS, 12(3):463–492, 1990.

14. P. Jayanti and S. Toueg. Some results on the impossibility, universality, and decidability of
consensus. In Proc. of the 6th Int. Workshop on Distributed Algorithms: LNCS 674, pages
69–84, 1992.

15. C. Kirsch, H. Payer, H. Röck, and A. Sokolova. Performance, scalability, and semantics of
concurrent fifo queues. In Proc. of the 12th International Conference on Algorithms and
Architectures for Parallel Processing - Volume Part I, 2012. LNCS 7439, 273–287.

16. M.C. Loui and H. Abu-Amara. Memory requirements for agreement among unreliable asyn-
chronous processes. Advances in Computing Research, 4:163–183, 1987.

17. M. Saks and F. Zaharoglou. Wait-free k-set agreement is impossible: The topology of public
knowledge. SIAM Journal on Computing, 29, 2000.

18. N. Shavit. Data structures in the multicore age. Communications of the ACM, 54(3):76–84,
March 2011.

19. H. Sundell, A. Gidenstam, M. Papatriantafilou, and P. Tsigas. A lock-free algorithm for
concurrent bags. In Proc. of the Twenty-third Annual ACM Symposium on Parallelism in
Algorithms and Architectures, SPAA ’11, pages 335–344, 2011.

20. G. Taubenfeld. Synchronization Algorithms and Concurrent Programming. Pearson /
Prentice-Hall, 2006. ISBN 0-131-97259-6, 423 pages.

21. G. Taubenfeld. Weak read/write registers. In 14th inter. conf. on distributed computing and
networking (ICDCN 2013), January 2013. LNCS 7730 Springer Verlag 2013, 423–427.

