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Abstract

A new notion of anonymity was recently introduced at PODC 2017, namely, anonymity on the

names of the registers that define the shared memory. As an example, a shared register named A by

a process p and a shared register named B by another process q may correspond to the very same

shared register X , while the same name C may correspond to different shared registers for p and q.

Considering an asynchronous n-process anonymous shared memory system, this paper is con-

cerned with the de-anonymization of the memory, i.e., at the end of the execution of a de-anonymization

algorithm, the processes must agree on the same name for each shared register, and different shared

registers must have different names.

To this end, the paper first addresses leader election in an anonymous memory system. Let n
be the number of processes and m the size of the anonymous memory (total number of anonymous

registers). It is first shown that there is no election algorithm when the number of anonymous

registers is a multiple of n. Then, assuming m = α n+β, where α is a positive integer, three election

algorithms are presented, which consider the cases β = 1, β = n− 1, and β ∈M(n), where the set

M(n) characterizes the values for which mutual exclusion can be solved despite memory anonymity.

Once election is solved, a general (and simple) de-anonymization algorithm is presented, which

takes as a subroutine any memory anonymous leader election algorithm. Hence, any instance of

this algorithm works for the values of m required by the selected underlying election algorithm. As

the underlying election algorithms, the de-anonymization algorithm is symmetric in the sense that

process identities can only be compared for equality.

Keywords: Anonymous read/write registers; Leader election; Memory de-anonymization; Sym-

metry breaking; Synchronization barrier.
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1 Anonymous Memory, Model, and Aim of the Article

1.1 Anonymous Memory

While the notion of process anonymity has been studied for a long time from an algorithmic and com-

putability point of view, both in message-passing systems (e.g., [1, 5, 29]) and shared memory systems

(e.g., [3, 6, 13]), the notion of memory anonymity has been introduced only very recently [27]. (The

interested reader will find in [22] an introductory survey on process and memory anonymity.)

Let us consider a shared memory SM made up of m atomic read/write registers [15]. Such a memory

can be seen as an array with m entries, namely SM [1..m]. In a non-anonymous memory system, for each

index x, the name SM [x] denotes the same register whatever the process that invokes the address SM [x].
As stated in [27], in the classical system model, there is an a priori agreement on the names of the shared

registers. This a priori agreement facilitates the implementation of the coordination and synchronization

rules the processes have to follow (liveness) to progress without violating the consistency properties

associated with the application they solve (safety) [21, 26].

This agreement on the register names no longer exists in a memory-anonymous system. In such a

system, while each process knows n (the total number of processes) and m (the size of the memory),

the very same identifier SM [x] invoked by a process pi and invoked by a different process pj does not

necessarily refer to the same atomic read/write register. More precisely, an anonymous memory system

is such that:

• prior to the execution, an adversary defined, for each process pi, a permutation fi() over the set

{1, 2, · · · ,m} such that, when pi uses the address SM [x], it actually accesses SM [fi(x)],

• no process knows the permutations, and

• all the registers are initialized to the same default value.

Table 1 presents a simple example of a memory made up of three anonymous registers.

As they can have different names for different processes, read/write anonymous registers are nec-

essarily multi-writer/multi-reader registers. The “same initialization” item prevents memory anonymity

from being broken with an appropriate register initialization, which could allow different registers to be

distinguished, rendering the memory no longer fully anonymous.

identifiers for an identifiers identifiers

external observer for process p for process q

SM [1] SM [2] SM [3]

SM [2] SM [3] SM [1]

SM [3] SM [1] SM [2]

permutation 2, 3, 1 3, 1, 2

Table 1: Example of an anonymous memory made up of three registers SM [1, 2, 3]

The work described in [27] presents algorithms and impossibility results for mutual exclusion1,

consensus, election and renaming, in an asynchronous read/write anonymous memory system2. Among

these results, one states a condition on the size m of the anonymous memory which is necessary for any

symmetric deadlock-free mutual exclusion algorithm, where symmetric means that process identities can

1This is the oldest synchronization problem [7]. It consists in ensuring that at most one process at a time can enter some

predefined code, called critical section. Deadlock-freedom is a progress condition stating that if one or more processes want

to enter the critical section, at least one process will succeed.
2The consensus and renaming algorithms presented in [27] satisfy the obstruction-freedom progress condition, namely, if a

process executes alone during a long enough period, it eventually decides.
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only be compared for equality (hence, there is no order notion on process identities). More precisely,

given an n-process system where n ≥ 2, a necessary condition for deadlock-free mutual exclusion

algorithm states that the size m must belong to the set M(n) = { m such that ∀ ℓ : 1 < ℓ ≤ n:

gcd(ℓ,m) = 1} \ {1}. Recently, an anonymous memory deadlock-free mutual exclusion algorithm

has been presented in [2] which works for any m ∈ M(n), thereby showing that this condition is also

sufficient for symmetric deadlock-free mutual exclusion in asynchronous read/write anonymous memory

systems.

1.2 Computing Model

Processes. The system is composed of a finite set of n ≥ 2 asynchronous processes denoted p1,

.., pn. The subscript i in pi is only a notation convenience, which is not known by the processes.

Asynchronous means that each process proceeds at its own speed, which can vary with time and always

remains unknown to the other processes. Initially, each process pi only knows its identity idi, the

numbers n and m. No two processes have the same identity. It is assumed that (1) the participation of

all the processes is required, and that (2) processes do not fail.

Anonymous shared memory. The shared memory is made up of m atomic unbounded anonymous

read/write registers denoted SM [1...m]. As a system composed of a single atomic register is not anony-

mous, it is assumed that m > 1. Hence, all registers are anonymous. As already indicated, when

a process pi invokes the address SM [x], it actually accesses SM [fi(x)], where fi() is a permutation

statically defined once and for all by an external adversary.

To stress the fact that the anonymous register SM [x] is not necessarily the same register when used

by different processes, we use the notation SM i[x] when pi invokes SM [x].

Symmetry constraint on the algorithms. A symmetric algorithm is an “algorithm in which the pro-

cesses are executing exactly the same code and the only way for distinguishing processes is by compar-

ing their identifiers” [27]. Identifiers can be written, read, and compared, but there is no way of looking

inside an identifier. Thus, as an example, it is not possible to know whether an identifier is odd or even.

Furthermore, the only comparison that can be applied to identifiers is equality. There is no order struc-

turing the identifier name space. (Other notions of symmetry are described in [10, 14]). Let us notice

that as all the processes have the same code and all the registers are initialized to the same value, process

identities become a key element when one has to design an algorithm in such a constrained context. The

reader may notice that this “symmetry” property on process identifiers is the “last step” before process

anonymity.

1.3 Problems Addressed in this Article

Leader election. In this problem, the input of each process pi is its identity idi. Its output will be

deposited in a write-once local variable leaderi. The aim is to design an algorithm that provides the

local variable leaderi of each process pi with the same process identity. The only process such that

leaderi = idi is the elected process.

Anonymous memory de-anonymization. In this problem, as before, the input of each process pi is

its identity idi. The aim is for each process pi to compute an addressing function mapi(), which is a

permutation over the set of the memory indexes {1, · · · ,m}, such that the two following properties are

satisfied.

• Safety. Let y ∈ {1, · · · ,m}. For any pair of processes pi and pj , and any index y ∈ {1, ...,m},
SM i[mapi(y)] and SM j [mapj(y)] denote the same shared register.
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• Liveness. Eventually any process pi (i) has computed its mapping function mapi(), and (ii) knows

that each process has computed its mapping function.

Synchronization barrier. The algorithms presented in this article use the notion of a synchronization

barrier. As defined in [26], a synchronization barrier is a coordination mechanism that forces the pro-

cesses that participate in a concurrent program to wait until each of them has reached a certain point

in its code. The collection of these coordination points is called the barrier. When a process attains

its local barrier point, it has to wait until some predicate (involving shared registers) is satisfied. The

fact this predicate becomes satisfied depends on one or more processes (possibly all of them) that have

previously assigned appropriate values to shared registers involved in the predicate.

1.4 Motivation and content

Motivation. This work has two primary motivations. The first is related to the basics of computing,

namely, computability and complexity lower/upper bounds. Increasing our knowledge of what can

(or cannot) be done in the context of anonymous memories, and providing necessary and sufficient

conditions, helps us determine the weakest system assumptions under which fundamental problems,

such as leader election can be solved. More generally, the anonymous shared memory model enables to

better understand the intrinsic limits for coordinating the actions of asynchronous processes.

The second one is application-oriented. It appears that the concept of an anonymous memory allows

epigenetic cell modification to be modeled from a computing point of view [19]. Hence, anonymous

shared memories could be useful in biologically inspired distributed systems [16, 17]. If this is the

case, mastering de-anonymization and leader election in such an adversarial context could reveal to be

important from an application point of view.

Content. This article first presents (Section 2) an impossibility result on the values of m for electing a

leader or de-anonymizing an anonymous memory. More precisely, if m is a multiple of n, an anonymous

memory is not strong enough (from a computability point of view) to break the symmetry constraint on

process identifiers.

The article then presents three symmetric anonymous memory election algorithms. Let m = α n+β
(size of the anonymous memory) where α is a positive integer. The three election algorithms differ in

the value of β, which constitutes a seed used to break symmetry (defined by the memory anonymity and

the symmetric constraint on process identities). They address the following cases.

• β = 1 (Section 3). The size of the anonymous memory is then m = α n+ 1.

• β = n− 1 (Section 4). The size of the anonymous memory is then m = α n+ (n− 1).

• β ∈M(n) (Section 5) where M(n) = {m such that ∀ ℓ : 1 < ℓ ≤ n: gcd(ℓ,m) = 1} \ {1}. As

already indicated, M(n) is the exact set of values for which deadlock-free mutual exclusion can

be solved [2, 27].

Finally, the article presents a general and simple de-anonymization algorithm which uses as sub-

routine any anonymous memory leader election algorithm (Section 6). This algorithm adds no specific

constraint on the value of m. Hence, it works for all the values of m for which the underlying election

algorithm it uses is working. Last, Section 8 concludes the article.

We observe that our result for the case where β ∈ M(n) is reminiscent of an interesting results

regarding self-stabilizing systems. A self-stabilizing system has the property that it eventually reaches

a legitimate configuration when started in any arbitrary configuration. Dijkstra originally introduced

the self-stabilization token management problem and gave several solutions for a ring of processes [8].

He also observed that a distinguished process is essential if the number of processes in the ring is

composite [9]. Later, Burns and Pachl showed that there is a self-stabilizing system with no distinguished
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process which solves the problem if the size of the ring is prime [4]. The token management problem

is essentially equivalent to a variant of a leader election problem where in a legal configuration exactly

one process has a special leader flag, and this process remains a leader in any subsequent configuration.

2 An Impossibility Result

Before presenting several algorithms for solving leader election and de-anonymization under various

conditions on the number of registers, we present the following impossibility result.3

Theorem 1 There is neither an election algorithm nor a de-anonymizing algorithm, for n processes

using m anonymous registers, where m = α n and α is a positive integer.

Proof First, we observe that once de-anonymizing is solved using m = α n registers, it is straightfor-

ward to solve election using m = α n registers. First, run the de-anonymizing algorithm to get m = α n
non-anonymous registers. Then, using these registers, simply run the symmetric mutual exclusion algo-

rithm from [25] which uses exactly n registers, and let the first process to enter its critical section be the

leader. Thus, to prove the theorem, we only need to prove that it is impossible to solve election using

m = α n registers.

Assume to the contrary, that there is a symmetric election algorithm for n processes using m = α n
registers where α is a positive integer. Let us arrange the m registers on a ring with m nodes where each

register is placed on a different node. We show that the adversary can assign a permutation fi to each

node pi in such a way that election is not possible.

To each one of the n processes pi, 1 ≤ i ≤ n, let us assign an initial register (namely, the first

register that the process accesses) such that, for every two processes pi and its ring successor pi+1 (pn+1

is p1), the distance between their initial registers is exactly α when walking on the ring in a clockwise

(increasing modulo) direction. Here we use the assumption that m = α n.

The lack of global names allows us to assign to each process an initial register and an ordering which

determines how the process scans the registers. An execution in which the n processes are running in

lock steps, is an execution where we let each process take one step (in the order p1, ..., pn)4, and then

let each process take another step, and so on. For process pi and integer k, let order(pi, k) denote the

kth new register that pi accesses during an execution where the n processes are running in lock steps,

and assume that we arrange that order(pi, k) is the register whose distance from pi’s initial register is

exactly (k − 1), when walking on the ring in a clockwise direction.

We notice that order(pi, 1) is pi’s initial register, order(pi, 2) is the next new register that pi ac-

cesses and so on. That is, pi does not access order(pi, k + 1) before accessing order(pi, k) at least

once, but for every j ≤ k, pi may access order(pi, j) several times before accessing order(pi, k + 1)
for the first time.5

With this arrangement of registers, we run the n processes in lock steps. We have that, for any

step k and any process pi, SM [order(pi, k)] = SM [order(p1, k)]. Indeed, since only comparisons for

equality are allowed, and all registers are initialized to the same value –which (to preserve anonymity)

is not a process identity– processes that take the same number of steps will be in the same state, and thus

it is not possible to break symmetry. It follows that either all the processes will be elected, or no process

will be elected. A contradiction. ✷Theorem 1

3Early impossibility results on leader election in networks of anonymous processes can be found in [1].
4A step is the execution of an atomic statement by a process [15].
5Once a process accesses a register for the first time, say register SM [x], the adversary may map x to any (physical) register

that it hasn’t accessed yet. However, when it accesses SM [x] again, it must access the same register it has accessed before

when referring to x.
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3 Anonymous Memory Leader Election When m = α n+ 1

This section presents and proves correct a leader election algorithm when the size of the anonymous

memory is m = α n + 1, for any positive integer α. A process pi invokes election(idi). It is assumed

that all the processes invoke election(). Such an invocation returns the identity of the elected process.

3.1 Algorithm

Underlying principle. The idea the algorithm relies on is pretty simple. It is the following. First, each

process “acquires” α registers (to this end it deposits its identity and an associated tag in these registers).

Hence there is a time after which α n anonymous registers have been acquired by the n processes. After

this occurred, the processes use the single remaining anonymous register (m−α n = 1) to compete and

elect one of them, which will tag appropriately this register, so that the other processes will learn which

process was elected.

Wildcard. The values written in an anonymous register are structured as records composed of several

fields. In the algorithms, the symbol “-” appearing in the field of a register is a wildcard meaning that

the actual value of this field is irrelevant (it can be any value).

Tags. The first field of a record written in an anonymous register is a tag. The possible tags are denoted

start (initial tag of all registers), leader (that allows a process to announce it is leader), done (used

by a process to announce it is not a leader), and desa (used to announce the de-anonymization started).

Local variables. In addition to leaderi, each process pi manages the following local variables: towritei,

overwritteni, writteni, which contain sets of memory indexes, last i which is a memory index, and nbi
which is a non-negative integer. The meaning of these variables will appear clearly in the text of Algo-

rithm 1 (6.

First part of the algorithm: tagging α n registers (lines 1-13). Each anonymous register SM [x] is

initialized to 〈start,⊥〉, where ⊥ is the default value, which can be compared (with equality) with any

process identity.

When it invokes election(idi), a process pi first writes the pair 〈start, idi〉 in the first (from its point

of view) α registers, namely, SM i[1], ...,SM i[α] (line 3). Then, it waits until all the registers (except

one) are tagged start, or a register in which it wrote 〈start, idi〉 has been overwritten. There are

consequently two cases.

• If registers in which pi wrote 〈start, idi〉 have been overwritten (the first part of the predicate of

line 5 is then satisfied), pi updates its local variables overwritteni, nbi, towritei and last i, and

re-enters the repeat loop, the goal being to have α registers containing 〈start, idi〉.

• If all the registers except one (i.e., exactly m − 1 = α n registers) are tagged start, pi exits the

loop.

As we will see in the proof, it follows from this collective behavior of the processes that there is a time

at which exactly one register still contains its initial value 〈start,⊥〉, while for each j ∈ {1, · · · , n},
exactly α registers contain 〈start, idj〉 (this property is named P1’ in the algorithm).

6All the algorithms are described in pseudocode in which semicolumns are used as a sequentiality operator separating

statements.)
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init: each SM [x] is initialized to 〈start,⊥〉; m = α n+ 1.

operation election(idi) is % code for process pi, i ∈ {1, · · · , n}
(01) towritei ← {1, ..., α}; overwritteni ← ∅; writteni ← ∅; last i ← α;

(02) repeat

(03) for each x ∈ towritei do SM i[x]← 〈start, idi〉 end do;

(04) writteni ← (writteni \ overwritteni) ∪ towritei;

% the next line realizes an asynchronous read of the registers SM i[1], ...,SM i[n]
% this line constitutes a predicate controlling a synchronization barrier

(05) wait until
(

(∃ x ∈ writteni : SM i[x] 6= 〈start, idi〉)
∨ (|{ℓ such that SM i[ℓ] 6= 〈start,⊥〉}| = α n)

)

;

(06) if
(

|{ℓ such that SM i[ℓ] 6= 〈start,⊥〉}| = α n
)

(07) then exit repeat loop

(08) else overwritteni ← { x ∈ writteni such that SM i[x] 6= 〈start, idi〉};
(09) nbi ← |overwritteni|;
(10) towritei ← {last i + 1, ..., last i + nbi};
(11) last i ← last i + nbi
(12) end if

(13) end repeat;

% Property P1’: There is a time at which exactly one register contains 〈start,⊥〉
% and, for each j ∈ {1, · · · , n}, α registers contain 〈start, idj〉

(14) let ℓi be such that SM i[ℓi] = 〈start,⊥〉 or SM i[ℓi] = 〈leader,−〉;
(15) SM i[ℓi]← 〈leader, idi〉;

% the last writer in SM i[ℓi] = 〈start,⊥〉 becomes the leader

(16) wait until
(

(SM i[ℓi] 6= 〈leader, idi〉)
∨ (SM i[1..m] has exactly α+ 1 entries not tagged done)

)

;

(17) for each x such that SM i[x] = 〈start, idi〉 do SM i[x]← 〈done, idi〉 end for;

% Property P2’: There is a time at which:

% an index ℓ ∈ {1, · · · , n} is such that a register contains 〈leader, idℓ〉, and

% for each j ∈ {1, · · · , n}, there are α registers containing 〈done, idj〉
(18) if (SM i[ℓi] 6= 〈leader, idi〉) then

wait until
(

(SM i[1..m] has only one entry not tagged done)
∨ (∃ x : SM i[x] = 〈desa,−,−〉)

)

% The predicate ∃ x : SM i[x] = 〈desa,−,−〉) can be suppressed if we want only

% to elect a leader, it implements a synchronization barrier related to de-anonymization

(19) end if;

(20) 〈−, id〉 ← SM i[ℓi]; leaderi ← id;

(21) return(leaderi).

Algorithm 1: n-process election with m = α n+ 1 anonymous read/write registers

Second part of the algorithm: electing the leader (lines 14-21). As just seen, the previous part of the

algorithm has identified a single register of the anonymous memory, namely the only one still containing

〈start,⊥〉. This register is known by all the processes, more precisely, it is known as SM i[ℓi] by pi,
SM j [ℓj ] by pj , etc.

So, to become the leader, each process pi writes the pair 〈leader, idi〉 in this register (line 15). It

follows that the last process that will write this register will be the leader. There are then two cases.

• If pi discovers it has not been elected (we have then SM i[ℓi] 6= 〈leader, idi〉, first predicate

of line 16), it resets all the registers containing its tagged identity (〈start, idi〉) to the value

〈done, idi〉 (line 17). Then, pi waits (line 18) until all registers except one are tagged 〈done,−〉 or

a register is tagged desa. While pi is in the wait statement of line 18, due to process asynchrony

it is possible that the leader is engaged in the de-anonymization algorithm, in which case it is

writing triplets 〈desa,−,−〉 in each register (see Section 6). If the aim is only to elect a leader,
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the second predicate of line 18 can be suppressed.

• If pi is the last process to write in the register locally known as SM i[ℓi], it waits until all the

other processes have written 〈done,−〉 in the registers containing their identity (second part of

the predicate of line 15). When this is done, the elected process pi writes 〈done, idi〉 in all the

registers containing its identity (line 16), which allows each other process not to remain blocked

at line 18.

Finally, pi being the elected process or not, it writes the identity of the leader in its local variable leaderi
(line 20) and returns it (line 21).

As before, we will see in the proof, that there is a time from which there is exactly one index

ℓ ∈ {1, · · · , n} such that a register contains 〈leader, idℓ〉, and, for each j ∈ {1, · · · , n}, there are α
registers containing 〈done, idj〉 (This property is named P2 in the algorithm).

3.2 Proof of Algorithm 1

Lemma 1 (Property P1’) Before a process executes line 14, there is a finite time at which one register

contains 〈start,⊥〉, and, for each j ∈ {1, · · · , n}, α registers contain 〈start, idj〉.

Proof Considering time instants before a process executes line 15, we have the following.

• Let us first observe that the order on the entries of SM [1..m] in which pi writes them has been stat-

ically predefined by the adversary (namely, according to the –unknown– permutation fi(): SM i[x]
is actually SM [fi(x)]). The important point is that a process pi never backtracks, nor loops on the

registers, while scanning SM [1..m], and its successive accesses are SM [fi(1)], SM [fi(2)], etc.

• The first write of a process pi involve the registers SM i[1] until SM i[α] (lines 1 and 3). Then, as

indicated above, its next writes in SM follows a statically predefined order. The process pi issues

a write of 〈start, idi〉 in a register it has not yet written, for each of its previous writes that have

been overwritten by another process (line 4). These writes by pi concern entries of SM i[1..n] in

which it has not yet written (management of the local variables towritei, overwritteni, writteni,

and last i, at lines 1, 4, and 8-11). As pi writes only in new registers, it follows that, for any pi we

have |{x such that SM [x] = 〈start, idi〉}| ≤ α, and from a global point of view we have
n
∑

i=1

(

|{x such that SM [x] = 〈start, idi〉}|
)

≤ n α.

• It follows from m = α n + 1 and the previous inequality, that there is enough room in the

array SM [1..m] for each process pi to write n times the pair 〈start, idi〉. Consequently, there

is time after which the first predicate of line 5 is false for each process pi, and as m = nα + 1,

the remaining entry of SM [1..m] has still its initial value, namely 〈start,⊥〉, from which we

conclude that a process neither remains forever blocked at line 4, nor forever executes the “repeat”

loop (lines 2- 13).

It follows from the previous observations that before a process executes line 15, there is a time at which,

for each identity idi, the pair 〈start, idi〉 is present in α entries of SM [1..m], and an entry of SM [1..m]
has still its initial value, which concludes the proof of the lemma. ✷Lemma 1

The number of write accesses between line 3 and line 13. When considering the proof of Lemma 1,

it is easy to count the number of writes in the anonymous memory. In the best case, the (unknown)

permutations assigned by the adversary to the processes are such that no process overwrites the pairs

written by the other processes. In this case, line 2 generates α n writes into the shared memory.
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In the worst case, the permutations assigned by the adversary, and the asynchrony among the pro-

cesses are such that the first α writes of a process are overwritten (n − 1) times, the first α writes of

another process are overwritten (n− 2) times, etc., until the last process whose none of its first α writes

are overwritten. In this case, line 2 generates αn(n+1)
2 writes into the anonymous shared memory.

Lemma 2 (Property P2’) There is a finite time at which there is ℓ ∈ {1, · · · , n} such that exactly

one register contains 〈leader, idℓ〉, and, for each j ∈ {1, · · · , n}, there are α registers containing

〈done, idj〉.

Proof It follows from Lemma 1 that no process blocks or loops forever in the “repeat” loop (lines 2-13).

Hence, each process eventually executes lines 14-15. Let pℓ the last process that executes line 15. This

means that after it executed this line, we have SM i[ℓi] = 〈leader, idℓ〉 for any process pi (namely, pℓ
is the process that has been elected). There are two cases.

• A process pi that is not the leader, is such that SM i[ℓi] 6= 〈leader, idi〉. Consequently, it can-

not be blocked at line 16. So, such a process pi eventually writes 〈done, idi〉 in the α registers

containing 〈start, idi〉 (line 17). Let us recall that, due to Property P1′, these α registers do

exist. When the (n − 1) processes that are not leader have executed line 17, there are α(n − 1)
registers containing 〈done,−〉, α registers containing 〈start, idℓ〉, and one register containing

〈leader, idℓ〉.

• As far as the leader process pℓ is concerned, we have the following. Due to the previous item,

the second predicate of line 16 is eventually satisfied. When this occurs, pℓ writes 〈done, idℓ〉 in

the α registers containing 〈start, idℓ〉 (line 17) and, from then on, a single register is not tagged

〈done,−〉, namely the one containing 〈leader, idℓ〉.

The lemma follows directly from the two previous items. ✷Lemma 2

Theorem 2 Algorithm 1 solves the election problem in an anonymous memory system made up of m =
α n+ 1 registers.

Proof Once Property P2’ is satisfied, no non-leader process is blocked at line 18, and each process

eventually executes line 20-21. When this occurs, they all agree on the very same leader, namely the

only process pℓ whose identity is tagged leader. ✷Theorem 2

4 Anonymous Memory Leader Election When m = α n+ (n− 1)

Principle of the algorithm. Algorithm 1, which solves the election problem for a system of m =
α n+1 anonymous registers, was based on the fact that each process can write its identity in α registers

that –after some finite time– will not be overwritten, and when this occurred, the single not yet written

anonymous register is used to elect the leader.

The principle that underlies the election when there are m = α n+ (n− 1) anonymous registers is

dual in the following sense. We have now m = α n+ (n− 1) = (α+ 1)(n− 1) + α. So, now each of

(n− 1) processes write its identity in α+1 anonymous registers, while the remaining process can write

it in α registers only. When this occurs, the corresponding process becomes elected.

Algorithm. The operational capture of this idea constitutes Algorithm 2, which is obtained from a

simple adaptation of Algorithm 1 to the fact that the leader is selected from a memory occupation

criterion (instead of competition on a single read/write register, allowing the last writer to be the winner).
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init: each SM [x] is initialized to 〈start,⊥〉; m = (α n+ (n− 1)).

operation election(idi) is % code for process pi, i ∈ {1, · · · , n}
(01) towritei ← {1, ..., α+ 1}; overwritteni ← ∅; writteni ← ∅; last i ← α+ 1;

(02) repeat

(03) for each x ∈ towritei do SM i[x]← 〈start, idi〉 end do;

(04) writteni ← (writteni \ overwritteni) ∪ towritei;

% the next line realizes an asynchronous read of SM i[1..m]
(05) wait until

(

(∃ x ∈ writteni : SM i[x] 6= 〈start, idi〉)
∨ (|{ℓ such that SM i[ℓ] 6= 〈start,⊥〉}| = m)

)

;

(06) if
(

|{ℓ such that SM i[ℓ] 6= 〈start,⊥〉}| = m
)

(07) then exit repeat loop

(08) else overwritteni ← { x ∈ writteni such that SM i[x] 6= 〈start, idi〉};
(09) nbi ← |overwritteni|;
(10) towritei ← {last i + 1, ...,min(last i + nbi,m)};
(11) last i ← min(last i + nbi,m)
(12) end if

(13) end repeat;

% Property P1”: There is a time at which there is a process pℓ such that α registers contain the

% pair 〈start, idℓ〉, and for each j ∈ {1, · · · , n} \ {ℓ}, α+ 1 registers contain 〈start, idj〉
(14) wait until

(

there is a process pℓ such that

exactly α registers each containing 〈start, idℓ〉) or 〈leader, idℓ〉
)

;

(15) leaderi ← idℓ such that there are exactly α registers each containing 〈start, idℓ〉) or 〈leader, idℓ〉
)

;

(16) if (leaderi = idi)
(17) then for each x ∈ {1, ...,m} do

if (SM i[x] = 〈start, idℓ〉) then SM i[x]← 〈leader, idℓ〉) end if end for;

(18) wait until (the registers not tagged leader are tagged done)

(19) else for each x ∈ {1, ...,m} do

if (SM i[x] = 〈start, idi〉) then SM i[x]← 〈done, idi〉) end if end for;

(20) wait until
(

each register contains 〈leader, idℓ〉 or 〈done,−〉 or 〈desa,−,−〉
)

% 〈leader, idℓ〉 is defined at line 14

(21) end if;

% Property P2”: There is a time at which:

% an index ℓ ∈ {1, · · · , n} is such that α registers contains 〈leader, idℓ〉, and

% for each j ∈ {1, · · · , n} \ {ℓ}, α+ 1 registers containing 〈done, idj〉
(22) return(leaderi).

Algorithm 2: n-process election for m = α n+ (n− 1) anonymous registers

The main difference lies in the management of the local variables towritei, overwritteni, writteni,

last i, and nbi.
The statements P1” and P2” capture the main properties of the algorithm. P1” states there is a time at

which α registers contain the same pair 〈start, idℓ〉, and for each j ∈ {1, · · · , n} \ {ℓ}, α+1 registers

contain 〈start, idj〉. Hence P1” allows each process to know which is the leader. P2” states there is

a time at which α registers contain the same pair 〈leader, idℓ〉, and the other registers contain the pair

〈done,−〉. Hence, P2” states that, at the end of the algorithm, each process knows that the leader is

known by every process.

As in Algorithm 1, the tag desa is required to cope with asynchrony. If the leader starts de-

anonymization while the processes have not yet invoked it, the leader may modify the content of the

anonymous memory by writing 〈desa,−,−〉 in registers (see Section 6). Hence, from the election al-

gorithm, the tag desa has to be seen as a synonym of leader or done. The proof of Algorithm 2 is a

simple adaptation of the proof of Algorithm 1, and we have the following theorem.
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init: each SM [x] is initialized to 〈start,⊥〉; m = α n+ β, β ∈M(n).

operation election(idi) is % code for process pi, i ∈ {1, · · · , n}
(01) towritei ← {1, ..., α}; overwritteni ← ∅; writteni ← ∅; last i ← α;

(02) repeat

(03) for each x ∈ towritei do SM i[x]← 〈start, idi〉 end do;

(04) writteni ← (writteni \ overwritteni) ∪ towritei;

(05) wait until
(

(∃ x ∈ writteni : SM i[x] 6= 〈start, idi〉)
∨ (|{ℓ such that SM i[ℓ] = 〈start,⊥〉}| = β)

)

;

(06) if
(

|{ℓ such that SM i[ℓ] = 〈start,⊥〉}| = β
)

(07) then exit repeat loop

(08) else overwritteni ← { x ∈ writteni such that SM i[x] 6= 〈start, idi〉};
(09) nbi ← |overwritteni|;
(10) towritei ← {last i + 1, ..., last i + nbi};
(11) last i ← last i + nbi
(12) end if

(13) end repeat;

% Property P1”’: There is a time at which β registers contain the pair 〈start,⊥〉,
% and for each j ∈ {1, · · · , n}, α registers contain 〈start, idj〉

(14) let betareg i be the set of β indexes {d1i , d
2

i , ..., d
β
i } such that for each d ∈ betareg i

SM i[c] = 〈start, idi〉 when pi exited the repeat loop at lines 6-7;

(15) Using the same shared sub-array of (not necessarily contiguous) registers SM i[betareg i]
the processes execute a symmetric deadlock-free mutex algorithm at the end of which

the last process to enter the critical section is elected. While it is in the critical section,

the elected process pℓ write 〈leader, idℓ〉 in the β registers of SM i[betareg ]
which will allow the other processes to know it is the leader

(16) if (pi is elected) then leaderi ← idi
(17) else wait until(β registers are tagged leader);

(18) let idℓ be the id in a register tagged leader); leaderi ← idℓ
(19) end if;

(20) let minei be the set of α indexes {c1i , c
2

i , ..., c
α
i } such that for each c ∈ minei

SM i[c] = 〈start, idi〉 when pi exited the repeat loop at lines 6-7;

(21) for each x ∈ minei do SM i[x]← 〈done, idi〉 end for;

% Property P2”’: There is a time at which:

% ∃ ℓ ∈ {1, · · · , n} is such that β registers contains 〈leader, idℓ〉, and

% for each j ∈ {1, · · · , n}, α registers contain 〈done, idj〉
(22) wait until( there are α n registers such that each of them is tagged done or desa);
(23) return(leaderi).

Algorithm 3: Mutex-based election in a system of m = α n+ β, β ∈M(n) anonymous registers

Theorem 3 Algorithm 2 solves the election problem in an anonymous memory system made up of m =
α n+ (n− 1) registers.

5 Anonymous Memory Leader Election When m = α n+ β, β ∈M(n)

This section considers the case where an underlying symmetric mutex algorithm, suited to an anonymous

memory, is used to elect a leader.

Mutual exclusion in an anonymous memory system. As said in Section 1, mutual exclusion in

memory anonymous systems was introduced in [27], which presents a symmetric deadlock-free mutex

algorithm for two processes only, and a theorem stating that there is no symmetric deadlock-free mutual
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exclusion algorithm if the size m does not belong to the set M(n) = { m such that ∀ ℓ : 1 < ℓ ≤ n:

gcd(ℓ,m) = 1} \ {1}. Recently, a symmetric deadlock-free mutual exclusion algorithm has been

proposed, which works any number n of processes and for any value m ∈ M(n) [2], from which

follows that m ∈M(n) is a necessary and sufficient condition for anonymous mutual exclusion.

Leader election in a system of m = α n+β anonymous registers, where β ∈M(n). The idea is to

rely on the underlying mutex algorithm to elect a leader. To this end, the processes have first to isolate a

set of β anonymous registers in order to be able to execute a symmetric deadlock-free mutex algorithm

accessing this subset of registers whose size belongs to M(n).
Algorithm 3 realizes this at lines 1-13, which are a simple adaptation of the same line numbers as in

Algorithm 1 and Algorithm 2. When the processes exit the repeat loop (line 13), we have property P1”’,

namely, there is a time at which β registers contain the pair 〈start,⊥〉 and, for each j ∈ {1, · · · , n}
(the set of corresponding indexes is called betareg i at line 14), and α registers contain 〈start, idj〉 (the

set of corresponding indexes is called minei at line 20). Hence, the set of β registers define a common

anonymous memory, well identified by the n processes, on top of which they can execute a symmetric

deadlock-free mutex algorithm (as β ∈ M(n), such mutex algorithms do exist (e.g., [2]). Moreover, as

the mutex algorithm is deadlock-free and each process invokes it once, each process eventually enters

the critical section. It is shown in [11] how a symmetric deadlock-free mutual exclusion algorithm can

be used to allow a process to know it is the last that entered the critical section. The last process to enter

is the elected process (lines 15-16).

Finally, when a process pi is elected, lines 16-21 establish a synchronization barrier such that when

a process returns from its invocation of election(), it knows that all processes know the identity of the

leader. The proof of Algorithm 3 (left to the reader), is similar to the proof of Algorithm 1 and we have

the following theorem.

Theorem 4 Algorithm 3 solves the election problem in an anonymous memory system made up of m =
α n+ β registers where β ∈M(n) = {m such that ∀ ℓ : 1 < ℓ ≤ n: gcd(ℓ,m) = 1} \ {1}.

Remark. If α > 1 and n + β ∈ M(n), instead of requiring the processes to compete for being the

leader with a shared memory composed of β anonymous registers, we could have them to compete

on a shared memory composed of (n + β) anonymous registers, namely the ones that do not contain

〈start,⊥〉. As we have then m = α n + β = (α − 1)n + (n + β), each process pi first writes

〈start, idi〉 in (α− 1) anonymous registers and invokes the mutex algorithm which uses the remaining

n+ β anonymous registers.

6 From Leader Election to De-anonymization

As defined in section 1.3, de-anonymization consists in providing each process with a mapping function

map() such that, given any register index x ∈ {1, ...,m} and any two processes pi and pj , SM i[mapi(x)]
used by pi and SM j [mapj(x)] used by pj are the same register.

The de-anonymization algorithm is built on top of any election algorithm, so it inherits its constraint

on the system parameter pair (n,m). The principle on which it relies it very simple; it consists in

directing the elected process pℓ to impose its (unknown) permutation fℓ() to all the processes.

6.1 Leader-based De-anonymization Algorithm: Version 1

The de-anonymization Algorithm 4 is made up of two sequential phases, each terminating with a syn-

chronization barrier.
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• Phase 1 (lines 1-7). When pi invokes de-anonymize(idi), it first invokes the underlying election

algorithm, which returns it the identity of the leader (line 1). There are then two cases according

to the fact pi is the leader or not.

– If pi is the leader, for each index ∈ 1, ...,m it writes 〈desa, x, ∅〉 in SM i[x] (line 3). The

aim is to impose its local addressing to all the processes. The last field of the triplet is a set

initialized to ∅, that will be used – under the name KNOWBY – at lines 8-10). Hence, the

function mapi() for the leader is ∀ y ∈ {1, · · · ,m}: mapi(y) = y (line 4).

– If pi is not the leader, it waits until the leader has terminated its writes of 〈desa,−, ∅〉 in all

registers (line 5). When this is done, pi defines its mapping function as ∀ y ∈ {1, · · · ,m}:
mapi(y) = x, where SMi[x] = 〈desa, y,−〉 (line 6).

The previous statements realize a synchronization barrier at the end of which each process pi
knows its mapping function.

• Phase 2 (lines 8-11). The previous synchronization barrier does not allow a process to know that

each process knows its mapping function. This is the role of the second phase, which uses the last

field of the triplets 〈desa, y,−〉.

When SM i[x] contains such a triplet, let us call KNOWBY i[x] its last field. So, when pi reads

KNOWBY i[x], it reads SM i[x] and considers only it last field, and when it writes a set seti in

KNOWBY i[x], it actually writes 〈desa,mapi[x], seti〉. Let us notice that this does not erase the

values of the first two fields of SM i[x].

Let us also notice that, due to the mapping function computed by the first phase, the register

SM i[mapi(1)] is the same for all the processes. This register is now used as a pivot that allows

each process to inform the others it knows its mapping function.

This is done as follows. Each process pi repeatedly reads KNOWBY i[mapi(1)] and adds its

identity idi to KNOWBY i[mapi(1)] if and only if idi is not present in this (initially empty) set

(lines 10). Finally, when KNOWBY i[mapi(1)] includes the identity of all the processes (line 11),

pi knows that all the processes have computed their mapping function.

Let us observe that, due to process asynchrony, it is possible that, while a process pi is looping in

the repeat loop (lines 9-11), another process pj returns from its invocation of de-anonymize(idi), starts

executing its upper layer application code on the de-anonymized memory, and writes an application

value in SM i[mapi(1)]. If this occurs, pi will never terminate, as from its point of view, the value in

SM i[mapi(1)] is a fake value. This issue is solved by restricting to SM i[mapi(2)..mapi(m)] the part of

the de-anonymized shared memory used at the application level. Another way to solve the problem is

presented in Section 6.3.

6.2 Proof of the De-anonymization Algorithm Memory

Theorem 5 If all the processes invoke Algorithm 4, they all terminate. Moreover, when the processes

have terminated, the following properties are satisfied:

(i) ∀ i, j ∈ {1, ...n}, ∀ y ∈ {1, ...,m}: SM i[mapi(y)] and SM j [mapj(y)] denote the same register, (iii)

∀ y1, y2 ∈ {1, ...,m}: (y1 6= y2) ⇒ (SM i[mapi(y1)] 6= SM i[mapi(y2)]), and (iii) ∀ i ∈ {1, ...n},
when pi terminates each process has computed its mapping function.

Proof On the safety side. The property (i) follows from the fact that, for any pair of processes pi and

pj , SM i[mapi(y)] and SM j [mapj(y)] are the same register, namely SM ℓ[mapℓ(y)]. The property (ii)
follows from the fact that (by assumption) the m entries of SM ℓ[1..m] denote different registers. The

property (iii) follows from the fact that when |KNOWBY i[mapi(1)]| = n is satisfied, all the processes
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operation de-anonymize(idi) is

(01) leaderi ← election(idi);
% According to the underlying election algorithm, the property P2, or P2” or P2”’ is satisfied

(02) if (leaderi = idi)
(03) then for each x ∈ {1, · · · ,m} do SM i[x]← 〈desa, x, ∅〉 end for

(04) let the function mapi() for pi (leader) be ∀ y ∈ {1, · · · ,m}: mapi(y) = y
(05) else wait until (∀ x ∈ {1, ...,m} : SM i[x] is tagged desa;

(06) let the function mapi() for pi (non-leader)

be ∀ y ∈ {1, · · · ,m}: mapi(y) = x, where SMi[x] = 〈desa, y,−〉
(07) end if;

% Property D1: here process pi has computed its mapping function mapi()

% which is such that for any y ∈ {1, ...,m}: SM i[mapi(y)] and SM ℓ[mapℓ(y)]
% are the same register, pℓ being the elected process

(08) let KNOWBY i[mapi(1)] denote the third field of SM i[mapi(1)] (which is a set);

(09) repeat seti ← KNOWBY i[mapi(1)];
(10) if (idi /∈ seti) then KNOWBY i[mapi(1)]← seti ∪ {idi} end if

(11) until |KNOWBY i[mapi(1)]| = n end repeat;

% Property D2: when a process passes this synchronization barrier

% all the processes have computed their mapping function

% the de-anonymized memory used at upper application layer is SM i[mapi(2)..mapi(m)]
(12) return().

Algorithm 4: Version 1 of the election-based de-anonymization algorithm (code for process pi)

have deposited their identities in KNOWBY i[mapi(1)], which means they all have previously com-

puted their mapping function.

On the liveness side. As the election algorithm terminates (line 1), the leader executes line 3, from

which we conclude that all the processes eventually enter the repeat loop. Hence, the proof of the liveness

property amounts to show that, eventually each process sees the predicate |KNOWBY i[mapi(1)]| = n
satisfied. Let us observe that, as it is not provided to the upper layer application, the register SM i[mapi(1)]
can be modified only at line 9.

Due to line 3 executed by the elected process, KNOWBY i[mapi(1)] is initially empty. Then, due

to the predicate of line 9, there is a finite time after which any process pi has written at line 9 a set

including its identity idi in KNOWBY i[mapi(1)] (due to the asynchrony, the set it wrote can possibly

be overwritten by another process). It follows that there is a finite time τ1 from which we forever have

|KNOWBY i[mapi(1)]| ≥ 1.

Let us consider a process pi that, after τ1, reads KNOWBY i[mapi(1)] and obtains the set seti such

that idi /∈ seti. It follows from the writing predicate, that pi writes seti ∪ {idi}. As |seti| ≥ 1, we have

|seti∪{idi}| ≥ 2, and consequently, we have then |KNOWBY i[mapi(1)]| ≥ 2 after the write of pi. As

the processes repeatedly execute the repeat loop, it follows that there is a time τ2 from which we always

have |KNOWBY i[mapi(1)]| ≥ 2.

Using the same reasoning, there is a time τ3 from which the predicate |KNOWBY i[mapi(1)]| ≥ 3
is always satisfied, etc., until we have |KNOWBY i[mapi(1)]| = n. (7) ✷Theorem 5

7Let us notice that the reasoning is based only on the fact that the size of KNOWBY i[mapi(1)] increases. It is possible

that the set including at least x processes read by a process pi and the set including at least x processes read by a process pj
are not the same. The important point is that eventually the size of the set KNOWBY i[mapi(1)] increases to a value greater

than x.
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6.3 Leader-based De-anonymization Algorithm: Version 2

This section shows that it is possible to offer the full de-anonymized memory SM i[mapi(1)]..mapi(m)]
to the upper layer application, at the price of a control bit permanently contained by each register. This

is realized by Algorithm 5 (which extends Algorithm 4) with an additional synchronization barrier.

Each register SM i[x] is now composed of two fields, one denoted SM i[x].BIT containing a bit

(initialized to 0), and a second field containing the same values as before. The notation used to read/write

access SM i[x].BIT is the same as the one used for KNOWBY in Algorithm 4. The invocation of

de-anonymize(idi) does not modify these bits, which are set to the value 1 by the leader only (let us

recall that leaderi is local variable in which pi saved the identity of the leader).

operation de-anonymize2(idi) is

de-anonymize(idi);
(13) if (leaderi = idi)
(14) then for each x ∈ {1, · · · ,m} do BIT i[x]← 1 end for

(15) else wait until (∀ x ∈ {1, ...m : BIT i[x] = 1)
(16) end if;

% after this third synchronization barrier, the permanent

% control information is reduced to a single bit

(17) return().

Algorithm 5: Version 2 of the election-based de-anonymization algorithm (code for process pi)

As the leader only can modify the additional bits, it follows that, whatever the process asynchrony

pattern, the setting of the bits to the value 1 moves the global information “|KNOWBY i[mapi(1)]| = n”

(namely, de-anonymization is over and known by each process)8 in the bit of each register. Hence, after

a process exits line 15, it knows it.

7 Related work

The work on anonymous objects was inspired by Michael O. Rabin’s paper on solving the Choice Co-

ordination Problem with k alternatives (k-CCP) [20]. In the k-CCP, n processes must choose between

k alternatives. The agreement on a single choice is complicated by the fact that there is no a priori

agreement on names for the alternatives. That is, each process has its own naming convention for the

alternatives. Rabin has assumed that processes communicate by applying RMW operations to exactly k
registers which do not have global names. The k different registers represent the k possible alternatives.

In [27], the notion of anonymous objects was defined, and several results were presented for a

model where communication is only via anonymous (read/write) registers. The problems addressed

were symmetric deadlock-free and obstruction-free mutual exclusion, consensus, election and renaming,

for which algorithms and impossibility results were presented. Among the results presented in [27],

one states a condition on the size m of the anonymous memory which is necessary for any symmetric

deadlock-free mutual exclusion algorithm.

In [2], tight space bounds for solving the symmetric deadlock-free mutual exclusion problem using

anonymous read/write registers and anonymous RMW registers, are presented. In particular, anony-

mous memory deadlock-free mutual exclusion algorithm has been presented in [2] which works for

any m ∈ M(n), thereby showing that the necessary condition from [27], is also sufficient for sym-

metric deadlock-free mutual exclusion in read/write anonymous memory systems. The open problem

from [27], regarding the existence of an anonymous memory two-process starvation-free mutual exclu-

sion algorithm is still open.

8This is the information saved in SM i[mapi(1)], which can be possibly destroyed as explained at the end of Section 6.1.
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It was also shown in [27] that for a model where the number of processes is not a priori known (or is

unbounded) anonymous registers are strictly weaker than non-anonymous registers. However, when the

number of processes is not a priori known, it seems that anonymous registers are trivial objects – they

cannot be used to solve any problem that requires communication. The question of whether anonymous

registers are weaker than non-anonymous registers when the number of processes (participating and

non-participating) is known is open.

Results regarding the computational power of anonymous and non-anonymous objects can be found

in [28]. In particular, it is proved in [28] that anonymous bits are non-trivial objects which are strictly

weaker than anonymous (and hence also non-anonymous) multi-valued registers.

Leader election in read/write anonymous memory systems has been recently addressed in [11, 12].

The present article actually merges and extends these two papers.

Anonymous shared memory systems appear to be useful in modeling biologically inspired dis-

tributed computing methods, especially those that are based on ideas from molecular biology [16, 17,

19]. It is shown in [19] how the process of genome wide epigenetic modifications, which allows cells

to utilize the DNA, can be modeled as an anonymous shared memory system where, in addition to the

shared memory, also the processes (that is, proteins modifiers) are anonymous. Epigenetic refers in

part to post-translational modifications of the histone proteins on which the DNA is wrapped. Such

modifications play an important role in the regulation of gene expression.

Finally, fully anonymous shared memory systems, where both processes and memory are anony-

mous, were recently investigated in [23, 24].

8 Conclusion

This article is on synchronization problems in an n-process system in which the communication is

through m anonymous read/write registers only. In such a system there is no a priori agreement on the

names of the registers: the same register name A used by several processes can head them to different

registers. In such a context, the article addressed the following problems: leader election and memory

de-anonymization. It was first shown that these problems are impossible to solve if m = α n, where α
is a positive integer. Then, considering m = α n + β, it has presented election algorithms for β = 1,

β = n− 1, and β ∈M(n) where M(n) is the set of the anonymous memory sizes for which symmetric

deadlock-free mutual exclusion can be solved in n-process systems. This is summarized in Table 2,

which may help users to favor a leader election algorithm according to the values of m (size of the

anonymous memory) and n (number of processes) of the underlying anonymous memory system.

Relation on the pair 〈n,m〉 Result Where

m = α n Impossible Section 2, Theorem 1

m = α n+ 1 Algorithm 1 Section 3, Theorem 2

m = α n+ (n− 1) Algorithm 2 Section 4, Theorem 3

m 6= 1 such that ∀ ℓ : 1 < ℓ ≤ n: gcd(ℓ,m) = 1 Algorithm 3 Section 5, Theorem 4

Table 2: Impossibility/possibility for leader election

Two leader election-based de-anonymization algorithms have also been presented. They differ in

the size of the de-anonymized memory they provide the application layer. The first provides a de-

anonymized memory in which each register must forever contain a bit indicating it has de-anonymized.

The second algorithm provides a de-anonymized memory in which all the bits of the de-anonymized

registers can be be used by the application. To this end this algorithm relies on a register which cannot

be used by the upper layer application. To summarize the first algorithm provides the n processes with
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m de-anonymized registers in each of which a bit cannot be used by the upper layer application, while

the second provides the n processes with (m − 1) de-anonymized registers in which all the bits can be

used.

We point out that once de-anonymization is obtained, it becomes possible to use, for example, a

symmetric starvation-free mutex algorithm that uses non-anonymous registers, thereby obtaining a sym-

metric starvation-free mutex algorithm working on top of an anonymous memory9. We emphasize that

running a starvation-free mutex algorithm on top of a de-anonymization layer does not solve the original

open problem from [27], regarding the existence of a anonymous memory two-process starvation-free

mutex algorithm. In the definition of the mutex problem participation is not required (a process may

never leave its remainder region), while our implementation of the de-anonymization layer, assumes

that participation is required.

As stated in [27], the anonymous memory communication model “enables us to better understand

the intrinsic limits for coordinating the actions of asynchronous processes”. It consequently enriches

our knowledge of what can be (or cannot be) done when an adversary replaced a common addressing

function, by individual and independent addressing functions, one per process.

Acknowledgments

The authors want to thank the referees for their precise and constructive comments, which helped im-

prove the presentation. This work was partially supported by the French ANR project DESCARTES

(16-CE40-0023-03) devoted to layered and modular structures in distributed computing.

References

[1] Angluin D., Local and global properties in networks of processes. Proc. 12th Symposium on Theory

of Computing (STOC’80), ACM Press, pp. 82-93, (1980)

[2] Aghazadeh Z., Imbs D., Raynal M., Taubenfeld G., and Woelfel Ph., Optimal memory-anonymous

symmetric deadlock-free mutual exclusion. Proc. 38th ACM Symposium on Principles of Dis-

tributed Computing (PODC’19), ACM press, pp. 157-166 (2019)

[3] Attiya H., Gorbach A., and Moran S., Computing in totally anonymous asynchronous shared-

memory systems. Information and Computation, 173(2):162-183 (2002)

[4] Burns J. E. and Pachl J. K., Uniform self-stabilizing rings. ACM Transactions on Programming

Languages and Systems, 11(2):330-344 (1989)

[5] Bonnet F. and Raynal M., Anonymous asynchronous systems: the case of failure detectors. Dis-

tributed Computing, 26(3):141-158 (2013)

[6] Bouzid Z., Raynal M., and Sutra P., Anonymous obstruction-free (n, k)-set agreement with (n −
k + 1) atomic read/write registers. Distributed Computing, 31(2):99-117 (2018)

[7] Dijkstra E.W., Solution of a problem in concurrent programming control. Communications of the

ACM, 8(9):569 (1965)

[8] Dijkstra E.W., Self-stabilizing systems in spite of distributed control. Communications of the ACM,

17(11):643-644 (1974)

9Peterson’s mutual exclusion algorithm is such a symmetric algorithm [18].

17



[9] E.W. Dijkstra. Self-stabilization in spite of distributed control (DEW391). Reprinted in Selected

Writing on Computing: A Personal Perspective, Springer, pp. 41-46 (1982)

[10] Garg V. K. and Ghosh J., Symmetry in spite of hierarchy. Proc. 10th Int’l Conference on Distributed

Computing Systems (ICDCS’90), IEEE Computer Press, pp. 4-11 (1990)

[11] Godard E., Imbs D., Raynal M., Taubenfeld G., Mutex-based de-anonymization of an anony-

mous read/write memory. Proc. 7th Int’l Conference on Networked Systems (NETYS’19), Springer

LNCS, 15 pages (2019)

[12] Godard E., Imbs D., Raynal M., Taubenfeld G., Anonymous read/write memory: leader election

and de-anonymization. Proc. 26th Int’l Colloquium on Structural Information and Communication

Complexity (SIROCCO’19), Springer LNCS 11639, pp. 246-261 (2019)

[13] Guerraoui R. and Ruppert E., Anonymous and fault-tolerant shared-memory computations. Dis-

tributed Computing, 20:165-177 (2007)

[14] Johnson R. E., and Schneider F. B., Symmetry and similarity in distributed systems. Proc.4th ACM

Symposium on Principles of Distributed Computing (PODC’85), pp. 13-22, ACM Press (1985)

[15] Lamport L., On interprocess communication, Part I: basic formalism. Distributed Computing,

1(2):77-85 (1986)

[16] Navlakha S. and Bar-Joseph Z., Algorithms in nature: the convergence of systems biology and

computational thinking. Molecular systems biology, 7(546):1-11 (2011)

[17] Navlakha S. and Bar-Joseph Z., Distributed information processing in biological and computational

systems. Communications of the ACM, 58(1):94-102 (2015)

[18] Peterson G.L., Myths about the mutual exclusion problem, Information Processing Letters,

12(3):115-116 (1981)

[19] Rashid S., Taubenfeld G., and Bar-Joseph Z., Genome wide epigenetic modifications as a shared

memory consensus problem. arXiv:2005.06502 (May 2020). Also, in the 6th Workshop on Biolog-

ical Distributed Algorithms (BDA’18), London (2018)

[20] M. O. Rabin. The choice coordination problem. Acta Informatica, 17:121–134, 1982.

[21] Raynal M., Concurrent programming: algorithms, principles and foundations. Springer, 515

pages, ISBN 978-3-642-32026-2 (2013)

[22] Raynal M. and Cao J., Anonymity in distributed read/write systems: an introductory survey. Proc.

6th Int’l Conference on Networked Systems (NETYS’18), Springer LNCS 11028, pp. 122-140

(2018)

[23] Raynal M. and Taubenfeld G., Mutual exclusion in fully anonymous shared memory systems.

Information Processing Letters, Volume 158 (June 2020)

[24] Raynal M. and Taubenfeld G., Fully Anonymous Consensus and Set Agreement Algorithms. Pro-

ceedings of the 8th international conference on networked systems (NETYS 2020), Morocco, June

2020.

[25] Styer E., and Peterson G. L. Tight bounds for shared memory symmetric mutual exclusion prob-

lems. Proc. 8th ACM Symposium on Principles of Distributed Computing, ACM Press, pp. 177-191

(1989)

18



[26] Taubenfeld G., Synchronization algorithms and concurrent programming. Pearson Educa-

tion/Prentice Hall, 423 pages, ISBN 0-131-97259-6 (2006)

[27] Taubenfeld G., Coordination without prior agreement. Proc. 36th ACM Symposium on Principles

of Distributed Computing (PODC’17), ACM Press, pp. 325-334 (2017)

[28] Taubenfeld G. Set agreement power is not a precise characterization for oblivious deterministic

anonymous objects Proc. 26th International Colloquium on Structural Information and Communi-

cation Complexity (SIROCCO’19), Springer LNCS, pp. 293-308 (2019)

[29] Yamashita M. and Kameda T., Computing on anonymous networks: Part I -characterizing the

solvable cases. IEEE Transactions on Parallel Distributed Systems, 7(1):69-89 (1996)

19


