
Digital Object Identifier (DOI) 10.1007/s00446-002-0075-3
Distrib. Comput. (2003) 16: 37–48

c© Springer-Verlag 2003

Objects shared by Byzantine processes�

Dahlia Malkhi1, Michael Merritt2, Michael K. Reiter3, Gadi Taubenfeld4

1 School of Computer Science and Engineering, The Hebrew University of Jerusalem, Israel (e-mail: dalia@cs.huji.ac.il)
2 AT&T Labs, 180 Park Ave., Florham Park, NJ 07932-0971, USA (e-mail: mischu@research.att.com)
3 Department of Electrical and Computer Engineering and Department of Computer Science, Carnegie Mellon University, Pittsburgh,

PA 15213, USA (e-mail: reiter@cmu.edu)
4 The Open University and the Interdisciplinary Center, Israel (e-mail: gadi@cs.openu.ac.il)

Received: December 2000 / Accepted: July 2002

Abstract. Work to date on algorithms for message-passing
systems has explored a wide variety of types of faults, but
corresponding work on shared memory systems has usually
assumed that only crash faults are possible. In this work, we
explore situations in which processes accessing shared objects
can fail arbitrarily (Byzantine faults).

Keywords: Byzantine faults, shared memory, emulation,
consensus.

1 Introduction

1.1 Motivation

It is commonly believed that message-passing systems are
more difficult to program than systems that enable pro-
cesses to communicate via shared memory. Many experi-
mental and commercial processors provide direct support for
shared memory abstractions, and increasing attention is be-
ing paid to implementing shared memory systems either in
hardware or in software [Bel92,CG89,LH89,TKB92]. More-
over, several middleware systems have been built to im-
plement shared memory abstractions in a message-passing
environment. Of primary interest here are those that em-
ploy replication to provide fault-tolerant shared memory ab-
stractions, particularly those designed to mask the arbitrary
(Byzantine) failure of processes implementing these abstrac-
tions (e.g., see [PG89,SE+92,Rei96,KMM98,CL99,MR00]).
These middleware systems generally guarantee that shared
objects themselves do not “fail”, and hence, that their in-
tegrity, safety properties, and access interfaces and restric-
tions, are preserved. Nevertheless, since legitimate clients ac-
cessing these objects might fail arbitrarily, they could corrupt
the states of these objects in any way allowed by the object
interfaces.

� A preliminary version of the results presented in this paper ap-
peared in Proceedings of the 14th International Symposium on Dis-
tributed Computing, Toledo, Spain, October 2000.

The question we address in this paper is: What power do
shared memory objects have in such environments, in achiev-
ing coordination among distributed processes that access these
objects? This question is daunting, as Byzantine faulty pro-
cesses can configure objects in any way allowed by the ob-
ject interfaces. Thus, seemingly even very strong shared ob-
jects such as consensus objects (which are universal for crash
failures) might not be very useful in such a Byzantine en-
vironment, as faulty processes erroneously set their decision
values. Surprisingly, although work to date on algorithms for
message-passing systems has explored a wide variety of types
of faults, corresponding work on shared memory systems has
usually assumed that only crash faults are possible. Our work
is the first study of the power of objects shared by Byzantine
processes.

1.2 Summary of results

We generalize the asynchronous crash-fault model of shared
memory to accommodate Byzantine faults. We show how a
variety of techniques can be used to cooperate reliably in the
presence of Byzantine faults, including adding redundancy,
access control lists that constrain faulty processes from ac-
cessing specific objects, and utilizing persistent objects (such
as sticky bits [Plo89]) which cannot be overwritten. (We call
objects that are not persistent, such as read/write registers,
ephemeral.) We define a notion of shared object that is ap-
propriate for this fault model, in which waiting between con-
current operations is permitted. We explore the power of some
specific shared objects in this model, proving both universality
and impossibility results, and finally identify some non-trivial
problems that can be solved in the presence of Byzantine faults
even when using only ephemeral objects.

The notions of consensus objects and sticky bits (a persis-
tent, readable consensus object) in the Byzantine model, are
formally defined in Section 2. Our results are:

Universality result: Our main result shows that sticky bits can
be used to construct any other object (i.e., they are universal),
assuming that the number of (Byzantine) faults, t, is bounded
by (t + 1)(2t + 1) ≤ n, where n is the total number of pro-
cesses.

38 D. Malkhi et al.

To prove this result, a universal construction is presented
that works as follows: First, sticky bits are used to construct
a strong consensus object, i.e., a consensus object whose de-
cision is a value proposed by some correct process. Equipped
with strong consensus objects, we proceed to emulate any
shared memory object. Our emulation borrows closely from
Herlihy’s universal construction for crash faults [Her91], but
differs in significant ways to cope with Byzantine failures.

Bounds on faults: We observe that strong consensus objects,
used to prove the universality result, cannot be constructed
when the possible number of faults is t ≥ n/3. In Theorem 3.1,
we observe that there exists a simple bounded-space universal
object (the sticky bit), assuming n ≥ (t+1)(2t+1), and a triv-
ial unbounded-space universal object assuming any number of
faults. We prove that when a majority of the processes may be
faulty, even weak consensus (i.e., a consensus object whose
decision is a value proposed by some correct or faulty process)
cannot be solved using many familiar ephemeral objects.

Constructions using ephemeral objects: While the universal-
ity result uses sticky bits, the impossibility result shows that
consensus cannot be implemented using specific ephemeral
objects. This raises the question of what can be done with
such ephemeral objects. We show how various objects, such
as k-set consensus and k-pairwise consensus, can be imple-
mented in a Byzantine environment using only atomic reg-
isters. Then we show that familiar objects such as test&set,
swap, compare&swap, and read-modify-write, can be used to
implement election objects for any number of processes and
under any number of Byzantine faults. (Election cannot be
implemented using only atomic registers [MW87,TM96].)

We note that our work deals formally with the question of
possibility/impossibility of implementing objects from others;
investigating efficient implementation of such object types in
practice is beyond the scope of this paper.

1.3 Related work

The power of various shared objects has been studied exten-
sively in shared memory environments where processes may
fail benignly, and where every operation is wait-free. (An op-
eration is wait-free if it is guaranteed to return within a fi-
nite number of steps.) Objects that can be used (together with
atomic registers) to build wait-free implementations of any
other object are called universal objects. Previous work on
shared objects provided methods (called universal construc-
tions) to transform sequential specifications of arbitrary shared
objects into wait-free concurrent implementations that use
universal objects [Her91,Plo89,JT92]. In particular, Plotkin
showed that sticky bits are universal [Plo89], and indepen-
dently, Herlihy proved that consensus objects are univer-
sal [Her91]. Herlihy also classified shared objects by their con-
sensus number: that is, the maximum number of processes that
can reach consensus using multiple instances of the object and
read/write registers [Her91]. Attie investigates the power of
shared objects accessed by Byzantine processes for achieving
wait-free Byzantine agreement. He proves that strong agree-
ment is impossible to achieve using resettable objects, i.e.,
objects that can be reset back to their initial setting, and con-
structs weak agreement using sticky bits [Att00].

Assume that at some point in a computation a shared regis-
ter is set to some unexpected value. There are two complemen-
tary ways to explain how this may happen. One is to assume
that the register’s value was set by a Byzantine process (as
may happen in the model of this paper). The other way is to
assume that the processes are correct, but that the register it-
self is faulty. The subject of memory faults (as opposed to pro-
cess faults) has been investigated in several papers [AGMT95,
JCT98]. These papers assume any number of process crash
failures, but bound the number of faulty objects, whereas we
bound the number of (Byzantine) faulty processes, but each
might sabotage all the objects to which it has access.

As described in the introduction, our focus on a shared
memory Byzantine environment is driven by previous work
on message-passing systems that emulate shared memory ab-
stractions tolerant of Byzantine failures (e.g., [PG89,SE+92,
Rei96,KMM98,CL99,MR00]). Though these systems guar-
antee the correctness of the emulated shared objects them-
selves, the question is what power do these objects provide
to the correct processes that use them, in the face of corrupt
processes accessing them.

2 Model and definitions

Our model of computation consists of an asynchronous col-
lection of n processes, denoted p1, . . . , pn, that communicate
via shared objects. In any run any process may be either cor-
rect or faulty. Correct processes are constrained to obey their
specifications, while faulty processes can deviate arbitrarily
from their specifications (Byzantine failures) limited only by
the assumptions stated below. We denote by t the maximum
number of faulty processes.

2.1 Shared objects with access control lists

Each shared object presents a set of operations. For example,
x.op denotes operation op on object x. For each such opera-
tion on x, there is an associated access control list (ACL) that
names the processes allowed to invoke that operation. Each
operation execution begins with an invocation by a process in
the operation’s ACL, and remains pending until a response is
received by the invoking process. The ACLs for two different
operations on the same object can differ, as can the ACLs for
the same operation on two different objects. The ACLs for an
object do not change. For any operation x.op, we say that x is
k-op if the ACL for x.op lists k processes. We assume that a
process not on the ACL for x.op cannot invoke x.op, regard-
less of whether the process is correct or Byzantine (faulty).
That is, a (correct or faulty) process cannot access an object
in any way except via the operations for which it appears on
the associated ACLs.

We note that the systems that motivated our study typically
employ replicated servers to fault-tolerantly emulate shared
memory abstractions. Therefore, ACLs can be implemented,
e.g., by storing a copy of the ACL with each replica-server and
filtering out disallowed operations before applying them to the
replica. In this way, only operations allowed by the ACLs will
be applied at correct replicas.

Objects shared by Byzantine processes 39

2.2 Fault tolerance and termination conditions

In wait-free fault models, no bound is assumed on the num-
ber of potentially faulty processes. (Hence, no process may
wait upon an action by another.) Any operation by a process
p on a shared object must terminate, regardless of the concur-
rent actions of other processes. This model supports a natu-
ral and powerful notion of abstraction, which allows complex
implementations to be viewed as atomic [HW90]. We extend
this model in two ways: first, we make the more pessimistic
assumption that process faults are Byzantine. To overcome
Byzantine failures, it is necessary to use redundancy to over-
come failures of peers. Second, we make the more optimistic
assumption that the number of faults is bounded by t, where t
is less than the total number of processes, n. With the number
of failures bounded away from n, it becomes possible for pro-
cesses to coordinate with each other, meaning that processes
may need to wait for each other within individual operation
implementations.

An example that may provide some intuition is a sticky bit
object emulated by an ensemble of data servers, such that the
value written to it must reflect a value written by some correct
process.A distributed emulation may implement this object by
having servers set the object’s value only when t+1 different
processes write to it the same value. Of course, this object will
be useful only when any value written to the object is indeed
written by at least t + 1 processes, and so an application must
guarantee that t + 1 correct processes write identical values.
Below, we will see examples of such constructions.

Such an implementation is not wait-free, and raises the
question of appropriate termination conditions for object in-
vocations in a Byzantine environment. To address such con-
cerns, we introduce two object properties, t-threshold and t-
resilience. The first captures termination conditions appropri-
ate for an object on which each client should invoke a single
operation, and which functions correctly once enough correct
processes access it. The second is appropriate when processes
perform multiple operations on an object, each of which may
require support from a collection of correct processes.

t-threshold: For any operation x.op, we say that x.op is t-
threshold if x.op, when executed by a correct process, even-
tually completes in any run ρ in which at least n − t correct
processes invoke x.op.

t-resilience: For any operation x.op, we say that x.op is t-
resilient if x.op, when executed by a correct process, eventu-
ally completes in any run ρ in which each of at least n − t
correct processes infinitely often has a pending invocation of
x.op.

An object is t-threshold (t-resilient) if all the operations it
supports are t-threshold (t-resilient). Notice that t-threshold
implies t-resilience, but not vice versa.

In these definitions, it may seem odd that termination is
guaranteed only when correct processes access the object us-
ing the same operation. On the surface, it seems more natural
to require termination in runs where at least n− t correct pro-
cesses access the object via any operation. Our definitions are
actually more general, since one could encode different op-
erations to be invocations of a single operation with different
operands.

The emphasis in this paper is on issues of computability
and universality, so the specific objects studied, such as con-
sensus, registers, or test&set, are abstractions with little imme-
diate practical interest. From a practical perspective, more in-
teresting fault-tolerant objects would include shared databases
(and e-commerce applications they support). A t-threshold
database guarantees termination of updates once enough other
updates are invoked, and a t-resilient database guarantees ter-
mination of updates if enough sustained update activity takes
place.

2.3 Object definitions

Below we specify some of the objects used in this paper.

Atomic registers: An atomic register x is an object with two
operations: x.read and x.write(v) where v �= ⊥. An x.read
that occurs before the first x.write() returns ⊥. An x.read
that occurs after an x.write() returns the value written in the
last preceding x.write() operation. Throughout this paper we
employ wait-free atomic registers, i.e., x.read or x.write()
operations by correct processes eventually return (regardless
of the behavior of other processes).

Sticky bits: A sticky bit x is an object with two operations:
x.read and x.write(v) where v ∈ {0, 1}.An x.read that occurs
before the first x.write() returns ⊥. An x.read that occurs after
an x.write() returns the value written in the first x.write()
operation. We will be concerned with wait-free sticky bits.

Weak consensus objects: A weak (binary) consensus object
x is an object with one operation: x.propose(v), where v ∈
{0, 1}, satisfying: (1) In any run, the x.propose() operation
returns the same value, called the consensus value, to every
correct process that invokes it. (2) In any finite run in which all
participating processes are correct (no Byzantine faults), if the
consensus value is v, then some process invoked x.propose(v).

Strong consensus objects: A strong (binary) consensus ob-
ject x strengthens the second condition above to read: (2) If
the consensus value is v, then some correct process invoked
x.propose(v).

Observe that one sticky bit does not trivially implement a
strong consensus object, where each process first writes this
bit and then reads it and decides on the value returned. The first
process to write the bit might be a faulty one, violating the re-
quirement that the consensus value must be proposed by some
correct process. (In Lemmas 3.1 and 3.2 we describe more
complex implementations of strong consensus from sticky
bits.) Indeed, strong consensus objects do not have sequen-
tial runs: the additional condition, using redundancy to mask
failures, requires at least t+1 processes to invoke x.propose()
before any correct process returns from this operation. (In ad-
dition, Theorem 3.2 in Section 3.4 shows that t-resilient strong
consensus objects are ill-defined when t ≥ n/3.)

Throughout the paper, unless otherwise stated, by a con-
sensus object we mean a strong consensus object.Also, atomic
registers and sticky bits are always assumed to be wait-free.

40 D. Malkhi et al.

3 Implementing any shared object

This section contains the main result of this paper, the con-
struction of any t-resilient object from wait-free sticky bits.
That is, we show that sticky bits are universal when the num-
ber of faults is small enough.

3.1 Specifying fault-tolerant objects

We assume any fault-tolerant object, o, is specified by two
relations:

apply ⊂ INV OKE × STATE × STATE,

and reply ⊂ INV OKE × STATE × RESPONSE,

where INVOKE is the object’s domain of invocations, STATE
is its domain of states (with a designated set of start states),
and RESPONSE is its domain of responses. Moreover, we
assume INVOKE is the union of disjoint sets of invocations,
INVOKEp, for each process p, and similarly that RESPONSE
is the union of disjoint sets of responses, RESPONSEp, for
each process p. The apply relation denotes a nondeterminis-
tic state change based on the specific pending invocation and
the current state (invocations do not block: we require a target
state for every invocation and current state), and the reply rela-
tion nondeterministically determines the calculated response,
based on the pending invocation and the updated state.1 It is
necessary to define two relations because in fault-tolerant ob-
jects (such as strong consensus), the response may depend on
later invocations. The apply relation allows the state to be up-
dated once the invocation occurs, without yet determining the
response. The reply relation may only allow a response to be
determined when other pending invocations update the state.

The apply and response relations specify the runs of ob-
ject o as follows. Consider a (finite or infinite) sequence ρ of
invocations and responses. The sequence ρ is well-formed if
for each process p, the subsequence of ρ consisting of invo-
cations and responses of p, ρp, begins with an invocation, and
alternates between invocations and responses (either forever,
or ending in either an invocation or response).

Runs of the object o are (finite or infinite) well-formed
sequences of invocations and responses ρ of o that can be
annotated with the elements of apply and reply in the nat-
ural way: First, for each process p, somewhere between ev-
ery consecutive pair of invocations and responses by p in ρ,
invokep and responsep, insert an element (invokep, s1, s2)
of apply followed (not necessarily immediately) by an el-
ement (invokep, s3, replyp) of reply. If ρp ends in an in-
vocation invokep, optionally insert an element of apply,
(invokep, s1, s2) sometime after invokep. The sequence
of elements of apply and reply must satisfy the natural
state machine semantics: the state s1 of the first element
(invokep, s1, s2) of apply must be a start state, for every

1 This formulation generalizes Herlihy’s specification of wait-free
objects by a single relation apply ⊂ INV OKE × STATE ×
STATE × RESPONSE, restricted (by the wait-free condition)
to have at least one target state and response defined for any pair
INV OKE × STATE [Her91]. This formulation is insufficient to
define fault-tolerant objects such as strong consensus.

two consecutive elements of apply, (invokep, s1, s2) and
(invoke′

p, s
′
1, s

′
2), s2 must equal s′

1, and for every element
of reply, (invokep, s, replyp), the last preceding element of
apply must have the form (invoke′

p′ , s′, s).
Intuitively, the object o begins in any of its start states,

(hence processes cannot choose which start state), and pend-
ing invocations by process p enable the later occurrence of an
apply event, which updates the state. When enabled, a reply
event does not update the object state, but enables the later re-
sponse. One can easily derive the t-resilience and t-threshold
conditions as requirements on the apply and response rela-
tions, as exemplified for a particular object below.

For example, a t-threshold strong consensus object can
be specified as follows: STATE is the set containing all pairs
(X, Y) ∈ P × P where P = {S ⊆ {p1, . . . , pn} : |S| ≤
t + 1}. The pair (∅, ∅) is the single start state. For v ∈ {0, 1}
and for all X, Y ∈ P , the apply relation is the smallest relation
satisfying:

|X| ≤ t ∧ |Y | ≤ t ⇒ (propose(0)p, (X, Y), (X ∪ {p}, Y))

∈ apply

|X| ≤ t ∧ |Y | ≤ t ⇒ (propose(1)p, (X, Y), (X, Y ∪ {p}))

∈ apply

|X| > t ∨ |Y | > t ⇒ (propose(v)p, (X, Y), (X, Y))

∈ apply

and the reply relation is the smallest relation satisfying:

|X| > t ⇒ (propose(v)p, (X, Y), return(0)) ∈ reply

|Y | > t ⇒ (propose(v)p, (X, Y), return(1)) ∈ reply.

Hence, each invocation of a propose(0) operation (respec-
tively, propose(1) operation) enables apply to record the in-
voking process as having proposed 0 (respectively, 1). Con-
current invocations introduce race conditions (as to which ap-
plication of apply occurs first.) Once t + 1 processes propose
the same value, the state is committed to that binary value,
and the responses of pending invocations are enabled. (Note
that 2t + 1 invocations may be required before t + 1 have
the same value, and so this object is neither t-threshold nor
t-resilient unless n − t > 2t, or n > 3t. We show below, in
Theorem 3.2, that this restriction is implied by the definition
of strong consensus.)

3.2 The universal construction

For the purposes of the universal construction below, we re-
solve any nondeterminism, and assume that there is a sin-
gle start state, that the apply relation is a function from
INV OKE × STATE to STATE, and that the reply re-
lation is a partial function from INV OKE × STATE to
RESPONSE. Given these restrictions, we may assume,
without loss of generality, that the object’s domain of states
is the set of strings of invocations, and that the function from
INV OKE×STATE to STATE, simply appends the pend-
ing invocation to the current state.

Theorem 3.1 Any t-resilient object can be implemented us-
ing:

Objects shared by Byzantine processes 41

1. (t + 1)-write(), n-read sticky bits and 1-write(), n-read
sticky bits, provided that n ≥ (t + 1)(2t + 1); or

2. (2t + 1)-write(), (2t + 1)-read sticky bits and 1-write(),
n-read sticky bits, provided that n ≥ (2t + 1)2.

Figure 2 describes a universal implementation. In the lemmas,
we provide two constructions of (strong) binary consensus
objects using sticky bits. The two constructions differ in the
access restrictions imposed on the sticky bits.

Lemma 3.1 If n ≥ (t + 1)(2t + 1), then an n-propose() t-
threshold consensus object can be implemented using (t+1)-
write(), n-read sticky bits.

Proof. Letobe the consensus object that is being implemented.
Figure 1 depicts a construction of consensus as follows: Par-
tition the n processes p1, . . . , pn, into blocks B1, . . . , B2t+1,
each of size at least t + 1, and let x1, . . . , x2t+1 be sticky bits
with the property that theACL for xi.write() is Bi (or a (t+1)-
subset thereof) and the ACL for xi.read is {p1, . . . , pn}. For
a correct process p ∈ Bi to emulate o.propose(v), it exe-
cutes xi.write(v) (or does nothing if p is not in the ACL for
xi) and, once that completes, repeatedly executes xj .read for
all 1 ≤ j ≤ 2t + 1 until none return ⊥. Process p chooses
the return value from o.propose(v) to be the value that is re-
turned from the read operations on a majority of the xj’s.
All correct processes obtain the same return value from their
o.propose() emulations because the xi’s are sticky. If no cor-
rect process emulates o.propose(v), then v will not be returned
from the reads on a majority of the xj’s and thus will not be
the consensus value. Because each correct process reads xj ,
1 ≤ j ≤ 2t+1, until none return ⊥, termination is guaranteed
provided that each sticky bit is set. Since each xj has t+1 pro-
cesses writing to it, it follows that o.propose() is guaranteed
to return when at least n − t perform propose() operations.

Lemma 3.2 If n ≥ (2t+1)2, then an n-propose() t-threshold
consensus object can be implemented using (2t + 1)-write(),
(2t + 1)-read sticky bits and 1-write(), n-read sticky bits.

Proof. The construction here is similar in nature to the previ-
ous lemma (see also Fig. 1 for intuition). Let o be the consensus
object that is being implemented. Let r1, . . . , rn be 1-write(),
n-read sticky bits such that theACL for ri.write() is {pi}. Par-
tition the n processes p1, . . . , pn into blocks B1, . . . , B2t+1,
each of size at least 2t + 1, and let x1, . . . , x2t+1 be sticky
bits such that for each i, 1 ≤ i ≤ 2t + 1, the ACL’s for each
xi.write() and xi.read is some (2t + 1)-sized subset of Bi.
For a correct process pj ∈ Bi to emulate o.propose(v), if it
is in the ACL for xi it executes xi.write(v) and then executes
rj .write(xi.read). Regardless of whether pj is in the ACL for
xi, process pj then repeatedly reads the (single-writer) bits
of all processes until for each Bk, it observes the same value
Vk in the bits of t + 1 processes in Bk; note that Vk must
be the value returned by xk.read (to a process allowed to ex-
ecute xk.read). The value that occurs as t + 1 such Vk’s is
selected as the return value from o.propose(v). Because xi is
sticky and Bi contains at most t faulty processes, Vi is unique;
thus, all correct processes obtain the same return value from
their o.propose() emulations. If no correct process emulates
o.propose(v), then v cannot occur in t + 1 distinct Vj’s.

3.3 Proof of Theorem 3.1

For simplicity, we initially describe a universal construction
of objects for which the domain of invocations is finite. Sub-
sequently, we explain how to modify the construction to im-
plement objects with (countably) infinite invocation domains.

The construction conceptually mimics Herlihy’s construc-
tion showing that consensus is universal for wait-free objects
in the fail-stop model [Her91]. Due to the possibility of arbi-
trarily faulty processes in our system model, however, the con-
struction below differs in significant ways. First, we replace
the objects in the original construction with objects (sticky
bits and strong consensus) that cannot be corrupted by Byzan-
tine processes. This ensures that each operation by Byzantine
processes either has no impact, or appears as (the same) valid
operation to the correct processes. The new construction also
labors to ensure that operations by correct processes eventually
complete – the “helping” mechanism in the original construc-
tion is inadequate. The new helping mechanism requires the
cooperation of n − t processes for each successful operation,
and so is t-resilient rather than wait-free. Finally, we gener-
alize the object specification to allow the implementation of
objects that are not themselves wait-free.

There are two principal shared data structures:

1. For each process pi there is an unbounded array,
Announce[i][1...], each element of which is a “cell”, where
a cell is an array of
log(|INV OKE|)� sticky bits. The
Announce[i][j] cell describes the j-th invocation (operation
name and arguments) by pi on o. Accordingly, the ACL for the
write() operation of each sticky bit in each cell of Announce[i]
names pi: all processes may read all Announce[][] cells.

2. The object itself is represented as an unbounded ar-
ray Sequence[1...] of process-id’s, where each Sequence[k]
is a
log(n)� string of t-threshold, strong binary consen-
sus objects, accessible by all processes. We refer to the
value represented by the string of bits in Sequence[k] sim-
ply as Sequence[k]. Intuitively, if Sequence[k] = i and
Sequence[1], . . . ,Sequence[k − 1] contains the value i in ex-
actly j−1 positions, then the k-th invocation on o is described
by Announce[i][j]. In this case, we say that Announce[i][j] has
been threaded.

The universal construction of object o is described in Fig. 2
as the code process pi executes to implement an operation
o.op. In outline, the emulation works as follows: process
pi first announces its next invocation, and then threads un-
threaded, announced invocations onto the end of Sequence. It
continues until it sees that its own operation has been threaded,
and that enough additional invocations (if any) have been
threaded, that it can compute a response and return. To as-
sure that each announced invocation is eventually threaded,
the correct processes first try to thread any announced, un-
threaded cell of process p�+1 into entry Sequence[k], where
� = k (mod n). (Once process p�+1 announces an operation,
at most n other operations can be threaded before p�+1’s.)

In more detail, process pi keeps track of the first in-
dex of Announce[i] that is vacant in a variable denoted
MyNextAnnounce, and first (line 1) writes the invocation, bit
by bit, into Announce[i][MyNextAnnounce], and (line 2) in-
crements MyNextAnnounce. To keep track of which cells it

42 D. Malkhi et al.

Fig. 1. A construction of consensus using 2t + 1 sticky bits

has seen threaded (including its own), pi keeps n counters in an
array NextAnnounce[1..n], where each NextAnnounce[j] is
one plus the number of times i has read cells of j in Sequence,
and hence the index of Announce[j] where i looks to find the
next operation announced by j. Hence, having incremented
MyNextAnnounce, NextAnnounce[i] = MyNextAnnounce−
1 until the current operation of pi has been threaded.

This inequality is thus one disjunct (line 3) in the loop
(lines 4-10) in whichpi threads cells. Oncepi’s cell is threaded,
(and NextAnnounce[i] = MyNextAnnounce, see the first in-
variant in Lemma 3.3), the next conjunct (again line 3) keeps
pi helping to thread cells until it sees that enough progress
has been made that a response to its own threaded operation
can be computed. (At which time it exits the loop and re-
turns the associated value (line 15).) Notice that in some cases,
this may require any finite number of additional operations to
be threaded after invoke, but by the t-resilient properties of
the abstract object being implemented, as long as o.op opera-
tions of correct processes are eventually threaded, eventually
invoke can return. For example, if invoke is an invocation
of propose() for a strong consensus object, then it can return
once at least t + 1 propose() invocations with identical val-
ues occur. Process pi keeps an index NextSeq which points to
the next entry in Sequence[1...] whose element it has not yet
accessed.

Figure 3 portrays the shared data structures and some struc-
tures local to process pi at a point when process p1 has threaded
two operations (and is beginning to write the invocation of a
third), process pn has threaded one operation, and a fourth
operation is in process of being threaded. (This might be the
operation process p2 has begun.)

To thread cells, process pi proposes (line 9) the binary en-
coding of a process id, �+1, bit by bit, to Sequence[NextSeq].
In choosing p�+1, process pi first checks (first disjunct, line 7)
that Announce[� + 1][NextAnnounce[� + 1]] contains a valid
encoding of an operation invocation. (In particular, none of the
sticky bits are still set to ⊥.) As discussed above, pi gives pref-
erence (line 4) to a different process for each cell in Sequence.
(All active, correct processes will eventually agree to give pref-

erence to any pending invocation, assuring it will eventually
be threaded.)

Starting (line 5) with the emptystring, pi accumulates
(line 9) the bit-by-bit encoding of the id being recorded in
Sequence[NextSeq] into a local variable, NameSuffix. If a bit
being proposed by pi is not the result returned (second dis-
junct, line 7), then pi searches (line 8) for another process to
help, whose id matches the bits accumulated in NameSuffix.
(The properties of strong consensus assure that such a process
exists, as summarized in the second invariant below:)

Lemma 3.3 Let α be a run of the universal construction in
Fig. 2. For all i, 1 ≤ i ≤ n, the following are invariant
properties (of the shared variables and those local to process
pi) in α:

1. NextAnnounce[i] ∈
{MyNextAnnounce −1, MyNextAnnounce},

2. NameSuffix is the suffix of the binary encoding of some
j, 1 ≤ j ≤ n, such that Announce[j][NextAnnounce[j]] is
valid.

Proof. The invariants follow directly from the code in Fig. 2
as follows:

1. Initially, this holds because both MyNextAnnounce
and NextAnnounce[i] are set to 1. During an invocation of
o.op at pi, first MyNextAnnounce is incremeted by 1 (line 2),
so the invariant still holds. Then in the ‘while’ loop, for
any NameSuffix the value in NextAnnounce[NameSuffix]
may increment (in line 12) on condition that
Announce[NameSuffix][NextAnnounce[NameSuffix]] is
defined. For NameSuffix = i, this can occur when
NextAnnounce[i] = MyNextAnnounce − 1, i.e., only
once. After it is incremented, the condition cannot hold again
until the next invocation of o.op.

2. NameSuffix is determined bit-by-bit by the NextSeq’th
entry in the Sequence array. The latter is set using strong
consensus bits that are each proposed by some correct pro-
cess. Since each correct process stipulates that the suffix

Objects shared by Byzantine processes 43

type: ID: array of �log(n)� strong consensus objects
CELL: array of �log(|INV OKE|)� sticky bits

global variables:
Announce[1..n][1...], array of CELL: for all j, 1 ≤ j ≤ n, and k, elements of Announce[j][k] are writable by pi

Sequence[1...], infinite array of IDs: each accessible by all processes
variables local to process pi:

MyNextAnnounce, index of next vacant cell in Announce[i], initially 1
NextAnnounce[1..n], for each 1 ≤ j ≤ n, index in Announce[j][] of next operation of pj to be read by pi, initially 1
CurrentState ∈ STATE, pi’s view of the state of o, initially the initial state of o
NextSeq, next position to be threaded in Sequence[] as seen by pi, initially 1
NameSuffix, �log(n)�+ 1 bit string

o.op:
(1) write, bit by bit, the invocation invoke into Announce[i][MyNextAnnounce]
(2) MyNextAnnounce++
(3) while ((NextAnnounce[i] < MyNextAnnounce) or // Apply operations until invoke is applied and pi can return,

((NextAnnounce[i] ≥ MyNextAnnounce) // each while loop iteration applies exactly one operation.
and (reply(invoke, CurrentState) is not defined))) do

(4) �← NextSeq (mod n) // Select preferred process to help.
(5) NameSuffix← emptystring
(6) for k = 0 to �log(n)� do // Loop applies the operation one bit per iteration.
(7) while ((Announce[� + 1][NextAnnounce[� + 1]] is invalid) // Search for a valid process index to propose.

or (NameSuffix is not a suffix of the bit encoding of � + 1)) do
(8) �← � + 1 (mod n) od
(9) prepend(NameSuffix, Sequence[NextSeq][k].propose((� + 1)&(2k))) // Propose the k’th bit ((� + 1)&(2k)) of � + 1.
(10) od // A new cell has been threaded by NameSuffix in Sequence[NextSeq].
(11) CurrentState← apply(Announce[NameSuffix][NextAnnounce[NameSuffix]], CurrentState)
(12) NextAnnounce[NameSuffix] + +
(13) NextSeq++
(14) od
(15) return(reply(invoke, CurrentState))

Fig. 2. Universal implementation of o.op at pi

set in Sequence[NextSeq] indeed belongs to a process j
whose corresponding Announce entry is valid, and since
NextAnnounce[j] is determined by the preceding number of
Sequence entries containing j’th name, the invariant follows.

Once process pi accumulates all the bits of the threaded cell
into NameSuffix (the termination condition (line 6) of the for
loop (lines 7-10)), it can update (line 11) its view of the object’s
state with this invocation, and increment its records of (line 12)
process NameSuffix’s successfully threaded cells and (line 13)
the next unread cell inSequence. Having successfully threaded
a cell, pi returns to the top of the while loop (line 3).

The result is that each process’ k-th iteration through the
loop of lines 3-14 corresponds to the threading of a unique
k-th operation on the object being emulated, as stated in the
following lemma:

Lemma 3.4 Let α be a run of the universal construction in
Fig. 2. For any i, j, 1 ≤ i, j ≤ n, if processes pi and pj both
execute the while loop (lines 3-14) at least m ≥ 0 times in α
(counting over successive executions of o.op), then the local
variables NextAnnounce[1..n], CurrentState, NextSeq, and
NameSuffix local to process pi upon pi’s m’th execution of
line 14 have the same values as the values of the correspond-
ing local variables of process pj upon pj’s m’th execution of
line 14.

This lemma, which implies the sequencing and correct se-
mantics of each operation, follows easily from the sequential

ordering of invocations in Sequence and the application of the
apply and reply functions. The proper termination of all cor-
rect operations follow as argued above from the t-threshold
property of the embedded consensus objects, the preference
mechanism, and from the t-resilience properties of the speci-
fication for object o.

The construction and this argument address objects with
finite domains of invocation. We next briefly outline the mod-
ifications necessary to accommodate objects with (countably)
infinite domains of invocation. The quandary here is that the
representations of invocations using sticky bits are unbounded.
Suppose we naively change the type CELL to (unbounded)
sequence of sticky bits.

When process pi attempts to read (line 7) an invocation
in Announce[� + 1][NextAnnounce[� + 1]], a faulty process
might cause pi to read forever, by itself writing forever, in such
a way that each finite prefix is a valid but incomplete encoding
of an invocation. (For any encoding, such a sequence exists
by König’s lemma.) This problem can be avoided by loop-
ing over all i, 1 ≤ i ≤ n, reading successive bits from each
Announce[� + 1][NextAnnounce[i]] entry, starting as before
with the next bit of NextAnnounce[� + 1], until one of the
accumulated strings validly encodes an invocation. Details of
the bookkeeping required, and the argument that correct invo-
cations are eventually threaded, are left to the reader. (Though
note that the number of invocations that may be threaded be-
fore a correct process’s announcement is now dependent on
the relative lengths of different encodings.)

44 D. Malkhi et al.

Fig. 3. Partial state of a run of the universal implementation. (See text.)

3.4 Resilience and impossibility

The proof of Theorem 3.1 presents a universal construction of
t-resilient objects, where (t + 1)(2t + 1) ≤ n. Naturally, one
would like to know whether there are more fault-tolerant uni-
versal constructions, indeed whether wait-free universal con-
structions exist (in which t = n). Focusing on improving the
bound (t + 1)(2t + 1) ≤ n in Theorem 3.1, that is, finding a
universal construction or impossibility proofs for larger values
of t, we note that the construction in Fig. 2 builds modularly on
t-threshold strong consensus. The (t+1)(2t+1) ≤ n bound of
Theorem 3.1 follows from the constructions of strong consen-
sus from sticky bits, in Lemmata 3.1 and 3.2. Constructions of
strong consensus from sticky bits for larger values of t would
imply a more resilient universality result. The theorem below
demonstrates that such a search is bounded by t < n/3 even
for t-resilience (and hence, a fortiori for t-threshold).

Theorem 3.2 For t ≥ n/3, there are no t-threshold (or t-
resilient) n-propose() (strong) consensus objects.

Proof. Let t ≥ n/3 and assume to the contrary that there exists
a t-threshold n-propose() (strong) consensus object. Let P0
and P1 be two sets of processes such that for each Pi (where
i ∈ {0, 1}) the size of Pi is
n/3� and all processes in Pi

propose the value i (i.e., have input i). Run these two groups
as if all the 2
n/3� processes are correct until they all return a
consensus value. (They must all do so, since n − t processes
have invoked propose().) Without loss of generality, let this

value be 0. Next, let all the remaining processes propose 1 and
run until all return 0. We can now assume that all the processes
in P0 are faulty and reach a contradiction.

The extension to the t-resilient case is straightforward.

We point out that this result does not imply that univer-
sal constructions are impossible for this (or higher) failure
thresholds. In fact, it is easy to define objects that are uni-
versal for any number of faults. An example is the wait-free
append-queue object, which supports two operations. The first
appends a value onto the queue, and the second reads the en-
tire contents of the queue. By directly appending invocations
onto the queue, the entire history of the object can be read.

4 Ephemeral objects

Sticky bits are examples of very simple persistent objects.
Theorem 3.1 demonstrates that the combination of access con-
trol and persistence is extremely powerful, supporting the t-
resilient implementation of any object. In this section, we ex-
plore the power of ephemeral objects. We prove an impossi-
bility result for a class of erasable objects, and give several
fault-tolerant constructions.

Erasable objects: An erasable object is an object in which
(1) each pair of operations op0 and op1, when invoked
by different processes commute, i.e., apply(op0.op1, s) =
apply(op1.op0, s), for every state s, or (2) for every pair of
states s0 and s1, there exist invocation sequences invoke0
and invoke1 allowed by any two processes such that

Objects shared by Byzantine processes 45

apply(invoke0, s0) = apply(invoke1, s1). Such familiar ob-
jects as registers, test&set, swap, read-modify-write, but also
seemingly stronger objects such as compare-and-swap, are
erasable. (This definition generalizes the notion of interfering
commutative/overwriting operations [Her91].)

Theorem 4.1 For any t > n/2, there is no implementation of
a t-resilient n-propose() weak consensus object using any set
of erasable objects.

Proof. Assume to the contrary that such an implementation,
called A, is possible. We divide the n processes into three
disjoint groups: P0 and P1 each of size at least �(n−1)/2�, and
a singleton which includes process p. Consider the following
finite runs of algorithm A:

1. ρ0 is a run in which only processes in P0 participate with
input 0 and halt once they have decided. They must all decide
on 0. Let O0 be the (finite) set of objects that were accessed in
this run, let s0

i be the state of object oi ∈ O0 at the end of this
run, and let ρ0|oi be the sequence of operations on oi invoked
in ρ0.

2. ρ1 is a run in which only processes in P1 participate with
input 1 and halt once they have decided. They must all decide
on 1. Let O1 be the (finite) set of objects that were accessed in
this run, let s1

i be the state of object oi ∈ O1 at the end of this
run, and let ρ1|oi be the sequence of operations on oi invoked
in ρ1.

3. ρ′
0 is a run in which processes from P0 are correct and start

with input 0, and processes from P1 are faulty. It is constructed
as follows. First the processes from P0 run exactly as in ρ0
until they all decide on 0. Then, the processes from P1 set all
the shared objects in (O1 −O0) to the states that these objects
have at (the end of) ρ1, and set the states of the objects in
(O1 ∩ O0) to hide the order of previous accesses.

That is, for objects in (O1 − O0) and for objects in
(O1 ∩ O0) in which all operations ρ0|oi and ρ1|oi commute,
P1 runs ρ1|oi, the same operations as in ρ1. For each re-
maining object oi, there exist invocation sequences invoke0
and invoke1, by processes in P0 and P1, respectively, such
that apply(invoke1, s

0
i) = apply(invoke0, s

1
i). (This follows

from part (2) of the definition of erasable object.) The invo-
cation sequence invoke1 is applied to oi by the appropriate
process in P1.

4. ρ′
1 is a run in which processes from P1 are correct and start

with input 1, and processes from P0 are faulty. It is constructed
symmetrically to ρ′

0: First the process from P1 run exactly as
in ρ1 until they all decide on 1. Then, as above, the processes
from P0 set all the shared objects in (O0 − O1) to the states
that these objects have at (the end of) ρ0.

That is, for objects in (O0 − O1) and for objects in (O1 ∩
O0) in which all operations ρ0|oi and ρ1|oi commute, P0 runs
ρ0|oi, the same operations as in ρ0. For each remaining object
oi, P0 invokes the operation sequence invoke0 defined above.

By construction, every object is in the same state after ρ′
0

and ρ′
1. But if we activate process p alone at the end of ρ′

0, it
cannot yet decide, because it would decide the same value if we
activate process p alone at the end of ρ′

1. So p must wait for help
from the correct processes (which the t-resilience condition
allows it to do) to disambiguate these identical states.

Having allowed p to take some (ineffectual) steps, we can
repeat the construction again, scheduling P0 and P1 to take
additional steps in each run, but bringing the two runs again to
identical states. By repeating this indefinitely, we create two
infinite runs, in each of which the correct processes, includ-
ing p, take an infinite number of steps, but in which p never
decides, a contradiction.

4.1 Atomic registers

While the universality result involves sticky bits, the impossi-
bility result shows that even weak consensus cannot be imple-
mented using common ephemeral objects when a majority of
the processes are faulty. This raises the question of what can
be done with ephemeral objects. Next we provide some exam-
ples of implementations using (ephemeral) atomic registers.
The first such object is t-resilient k-set consensus.

The definition of k-set consensus is due to Chaud-
huri [Cha93]:
k-set consensus objects: A k-set consensus object x is an ob-
ject with one operation: x.propose(v) where v is some number.
The x.propose() operation returns a value such that (1) each
value returned is proposed by some process, and (2) the set of
values returned is of size at most k.

We adapt the definition to the t-resilient, Byzantine case
by assigning to each faulty process a value which it can be
presumed to have proposed. That is, an implementation of
propose() is correct, if for every t-resilient execution, the
faulty processes can be assigned (possibly distinct) values so
that conditions (1) and (2) above hold on outputs of correct
processes. (Other adaptations of the k-set consensus problem
definition to a Byzantine setting were explored in [dPMR01].)

Theorem 4.2 For any t < n/3, if t < k then there is an
implementation of a t-resilient n-propose() k-set consensus
object using atomic registers.

Proof. Each process pi, 1 ≤ i ≤ t + 1, announces its input
value by writing it into a 1-writer register announce[i], whose
value is initially ⊥. All processes pk, 1 ≤ i ≤ n, repeatedly
read the announce[1..t + 1] registers, and echo the first non-
⊥ value seen in each announce[j] entry by copying it into
a 1-writer register echo[k, j]. Interleaved with this activity,
process pk also reads all the echo[1..n, 1..t+1] registers, and
returns the value it first finds echoed n − t times in some
column echo[1..n, �]. In subsequent operations, it returns the
same value, but first examines the announce[1..t + 1] array,
and as above copies into echo[k, j] any entry announce[j]
that was ⊥ last time pk read it.

The t-resilience property and the ACL for the announce
array assures that at least one entry, say announce[i], will
be written exactly once, and will eventually be echoed in at
least n − t echo[k, i] entries. This guarantees that every oper-
ation by a correct process will eventually terminate. Since for
each process pj , 1 ≤ j ≤ t + 1, no correct process pk ever
writes to echo[k, j] more than once, and by the assumption
that t < n/3, no column of echo can have two values for
which n − t values are ever read. Hence, the operations by
correct processes return one of at most t + 1 different values.

46 D. Malkhi et al.

The implementation above of k-set-consensus constructs
a t-resilient object. The next result shows that registers can be
used to implement the stronger t-threshold condition, though
for a different object.

k-pairwise set-consensus objects: A k-pairwise set-
consensus object x is an object with one operation:
x.propose(v) where v is some number. The x.propose()
operation returns a set of at most k values such that:
(1) in any finite run in which all participating processes are
correct (no Byzantine faults), each value in the set returned
by a process is proposed by some process, and
(2) the intersection of any two sets returned by correct
processes is non-empty.

Theorem 4.3 For any t < n/3, there is an implementation
of a t-threshold n-propose (2t + 1)-pairwise set-consensus
object using atomic registers.

Proof. The implementation uses 1-write() registers which are
initially ⊥. Each process writes its proposed value to its 1-
write() register, and repeatedly reads the 3t + 1 registers of
processes p1 through p3t+1. It returns the set of the first 2t +
1 values (of distinct registers) that are not ⊥. Termination
follows from the fact that at least 2t + 1 process of the first
3t + 1 are correct. Since each two processes read at least one
value written by the same correct process, the intersection of
any two sets is not empty.

4.2 Fault-tolerant constructions
using objects other than registers

Even in the presence of only one crash failure, it is not possi-
ble to implement election objects [MW87,TM96] or consen-
sus objects [LA87,FLP85] using only atomic registers. Next
we show that many other familiar objects, such as 2-process
weak consensus, test&set, swap, compare&swap, and read-
modify-write, can be used to implement election objects for
any number of processes and under any number of Byzantine
faults.

In order to define election objects, we first introduce the
notion of a clean run. A finite run r is clean if (1) at least one
process has participated in r (i.e., r is not the null run), (2)
all the the processes that participate in r are correct, and (3)
all the processes that participated in r have terminated (and
hence, there are no pending operations in r).

Election objects:An election object x is an object with one
operation: x.elect. The x.elect operation returns a value, either
0 or 1, such that for any (finite) run r: (1) At most one correct
process returns 1 in r, and (2) if r is clean, then exactly one
of the participating processes returns 1 (that process is called
the leader).

Notice that it is not required for all the processes to “know”
the identity of the leader. The following observation – which
intuitively claims that a process that invokes elect strictly af-
ter another set of correct processes has terminated, can never
be elected – follows immediately from the definition of an
election object.

Observation 4.1 Let r be a clean run of an election protocol,
and let p be a correct process that has not participated in r.
Then, in any extension of r process p never returns 1.

Next, we prove the following result.

Theorem 4.4 There is an implementation of
(1) n-threshold n-elect election from 2-threshold, two-process
versions of weak consensus, test&set, swap, compare&swap,
or read-modify-write, and
(2) 2-threshold 2-propose() weak consensus from
2-threshold 2-elect election.

Proof.

1. We prove only the implementation from 2-propose() weak
consensus objects–the other constructions are essentially the
same. We implement n-elect election as follows: With every
two processes pi and pj , i < j, we associate a 2-propose weak
consensus object, cons[i, j], accessed only by pi and pj . We
say that pi and pj contend with each other by performing
propose(0) or propose(1), respectively, on cons[i, j]. If the
consensus value returned by any operation on cons[i, j] is 0,
we say that pi won cons[i, j], otherwise pj won and pi lost
cons[i, j].

To implement the n-elect operation, process pi contends
with each other process, from smallest index to biggest, until
it first loses, at which point it returns 0. If it wins against all
other processes then it returns 1.

2. The implementation of 2-threshold 2-propose() weak con-
sensus for two processes p0 and p1 uses three 2-elect election
objects, V al[0..1] and Leader. Both processes run elect on
Leader, and return their input value if they are elected. They
use the V al[0..1] objects to signal their input values to the
other process in the case they are elected in Leader. That is, if
the input of pi is 0, it first runs elect on V al[i] before accessing
Leader. If the input of pi is 1, pi never accesses V al[i]. If pi

is not elected in Leader, it returns the value returned by elect
on V al[1 − i]. The code for process pi, i ∈ {0, 1}, is below.
(Assuming the elect invocation returns 1 to the leader, 0 to the
loser.)

type: Leader, V al[0], V al[1]: 2-elect election objects
propose(input)
(1) if input = 0 then V al[i].elect fi
(2) if (Leader.elect) then return(input)
(3) else return(V al[1 − i].elect) fi

To prove that the implementation satisfies the requirements of
weak consensus, let us assume that process pi is elected in
Leader. The requirement that the consensus value is the input
of one of the processes is trivially satisfied since pi returns its
own input value. Next, we need to show that p1−i will also
return pi’s input value. To see this we consider two cases: (1)
The input value of pi is 1. In this case pi never accesses V al[i],
and hence, by Observation 4.1, the operation V al[i].elect by
p1−i must return 1 and both processes will return 1. (2) The
input value of pi is 0. In this case pi will accesses V al[i] strictly
before p1−i will access V al[i] (and pi will get elected), and
hence, by Observation 4.1, the operation V al[i].elect by p1−i

must return 0 and both processes will return 0.

5 Discussion

This paper is an initial exploration of fault-tolerant shared
memory algorithms in the presence of Byzantine processes.

Objects shared by Byzantine processes 47

Since shared objects are vulnerable to misuse by faulty pro-
cesses, known constructions for more benign failure environ-
ments generally will not tolerate Byzantine failures. Hence,
much of the work that has been done in the crash-model for
shared memory must be revisited. We briefly review the con-
tributions of this paper and suggest directions for further work.

Since processes can overwrite gibberish, classical objects
such as read/write or read-modify-write registers that are
writable by all processes are useless in a Byzantine environ-
ment. We show how constructions can use access control lists,
persistent objects, bounds on the numbers of faulty processes,
and redundancy to overcome this drawback.

Termination conditions. To exploit redundancy, some form
of waiting between processes is necessary. Hence, we explore
weaker conditions than wait-free termination (in which an op-
eration is required to terminate despite any number of crash
failures by other processes). We define the abstractions of t-
resilience and t-threshold, as natural termination conditions
in Byzantine environments.

The first of these termination conditions, t-resilience, is
appropriate for constructions in which each process requires
the active participation of other processes in order to complete
its operation – hence, it assures termination only when other
(correct) processes continue to access the implemented ob-
ject with the same operation. This requirement to access the
implemented object infinitely often is a strong obligation to
place on correct processes. In particular, it is a barrier to com-
posing fault-tolerant constructions; either in utilizing multiple
objects within the same algorithm (different correct processes
must not wait for help in different objects), or in abstracting
a complex implementation to use as a primitive object at an-
other layer of abstraction (termination of operations on the
abstracted object depends on repeated invocations of compo-
nents of the implementation). But note that the universal con-
struction of Theorem 3.1 provides one way to robustly com-
bine multiple t-resilient objects within a single algorithm, by
considering them as a single object with parameterized invo-
cations and responses. (Thus, a collection of shared registers
can be thought of as a single shared memory object.)

The t-threshold property is a stronger condition, requir-
ing each operation by a correct process to terminate once at
least n− t correct processes have invoked that operation. This
condition makes the most sense for “one-shot” objects, such
as consensus or election. As illustrated in the proof of Theo-
rem 3.1, this stronger condition is helpful in abstracting com-
ponents in complex constructions.

Fault-tolerant termination conditions other than t-
resilience and t-threshold are possible. For instance, one could
require a t-resilient construction to terminate in failure-free
runs: that is, in t-resilient implementations of one-shot ob-
jects, processes might signal the satisfactory termination of
their initial operation (by setting a bit, for example). Once a
process executing additional operations to “help” the others
sees that all the bits are set, it can stop accessing the object,
knowing all initial operations have terminated. (This assumes
that the implementations of later operations are wait-free.)

Specific question about resilience and composition. The main
positive result in this paper shows that there is a t-resilient uni-

versal construction out of wait-free sticky bits, in a Byzantine
shared memory environment, when the number of failures t
is limited. This leaves open the specific questions of whether
it is possible to weaken the wait-freedom assumption (assum-
ing sticky bits which are t-threshold or t-resilient) and/or to
implement a t-threshold object (instead of a t-resilient one).

Specific open questions. We have also presented several im-
possibility and positive results for implementing fault-tolerant
objects. There are further natural questions concerning the
power of objects in this environment, such as: Is the resilience
bound in our universality construction tight for sticky bits?
What is the resilience bound for universality using other types
of objects? What type of objects can be implemented by oth-
ers? The few observations regarding these questions in Sec-
tions 3.4 and 4 only begin to explore these questions.

References

[Att00] P.C. Attie Wait-free Byzantine Agreement. Technical
Report NU-CCS-00-02, College of Computer Science,
Northeastern University, May 2000

[AGMT95] Y. Afek, D. Greenberg, M. Merritt, G. Taubenfeld.
Computing with faulty shared memory. Journal of the
ACM 42(6): 1231–1274, 1995

[Bel92] G. Bell. Ultracomputers: A teraflop before its time.
Communications of the ACM 35(8): 27–47, 1992

[CL99] M. Castro, B. Liskov. Practical Byzantine fault toler-
ance. In Proceedings of the 3rd Symposium on Oper-
ating Systems Design and Implementation – OSDI’99,
February, 1999, New Orleans, LA

[Cha93] S. Chaudhuri. More choices allow more faults: set con-
sensus problems in totally asynchronous systems. In-
formation and Computation 105(1): 132–158, 1993

[CG89] N. Carriero, D. Gelernter. Linda in context. Communi-
cations of the ACM 32(4): 444–458, 1989

[dPMR01] R. de Prisco, D. Malkhi, M. Reiter. On k-set Consen-
sus Problems in Asynchronous Systems. IEEE Transac-
tions on Parallel and Distributed Systems 12(1), Jan-
uary 2001

[FLP85] M. Fischer, N. Lynch, M. Paterson. Impossibility of
distributed consensus with one faulty process. Journal
of the ACM 32: 374–382, 1985

[Her91] M. Herlihy. Wait-free synchronization. ACM Transac-
tions on Programming Languages and Systems 11(1):
124–149, 1991

[JCT98] P. Jayanti, T. Chandra, S. Toueg. Fault-tolerant wait-
free shared objects. Journal of the ACM 45(3): 451–
500, 1998

[JT92] P. Jayanti, S. Toueg. Some results on the impossibility,
universality, and decidability of consensus. Proc. of the
6th Int. Workshop on Distributed Algorithms: LNCS,
647, pp. 69–84. Berlin Heidelberg New York: Springer
1992

[HW90] M. P. Herlihy, J. M. Wing. Linearizability: A correct-
ness condition for concurrent objects. ACM Transac-
tions on Programming Languages and Systems 12(3):
463–492, 1990

[KMM98] K. P. Kihlstrom, L. E. Moser, P. M. Melliar-Smith. The
SecureRing protocols for securing group communica-
tion. In Proceedings of the 31st IEEE Hawaii Int. Conf.
on System Sciences, pp. 317–326, 1998

48 D. Malkhi et al.

[LA87] M. C. Loui, H. H. Abu-Amara. Memory requirements
for agreement among unreliable asynchronous pro-
cesses. Advances in Computing Research, JAI Press
4: 163–183, 1987

[LH89] K. Li, P. Hudak. Memory coherence in shared virtual
memory systems. ACM Trans. on Programming Lan-
guages and Systems 7(4): 321–359, 1989

[MR00] D. Malkhi, M. K. Reiter. An architecture for survivable
coordination in large distributed systems. IEEE Trans-
actions on Knowledge and Data Engineering 12(2):
187–202, 2000

[MW87] S. Moran, Y. Wolfsthal. An extended impossibility re-
sult for asynchronous complete networks. Info. Pro-
cessing Letters 26: 141–151, 1987

[PG89] F. M. Pittelli, H. Garcia-Molina. Reliable scheduling in
a TMR database system. ACM Transactions on Com-
puter Systems 7(1): 25–60, 1989

[Plo89] S. A. Plotkin. Sticky bits and universality of consensus.
In Proc. 8th ACM Symp. on Principles of Distributed
Computing, pp. 159–175, 1989

[Rei96] M. K. Reiter. Distributing trust with the Rampart
toolkit. Communications of the ACM 39(4): 71–74,
1996

[SE+92] S. K. Shrivastava, P. D. Ezhilchelvan, N. A. Speirs,
S. Tao, A. Tully. Principal features of the VOLTAN
family of reliable node architectures for distributed sys-
tems. IEEE Trans. on Computers 41(5): 542–549, 1992

[TKB92] A. S. Tannenbaum, M. F. Kaashoek, H. E. Balvrije. Par-
allel programming using shared objects. IEEE Com-
puter, pp. 10–19, 1992

[TM96] G. Taubenfeld, S. Moran. Possibility and impossibility
results in a shared memory environment. Acta Infor-
matica 33(1): 1–20, 1996

Dahlia Malkhi received her Ph.D. and M.Sc. degrees in computer
science and a B.Sc. degree in mathematics and computer science
in 1994, 1988, 1985, respectively, from the Hebrew University of
Jerusalem, Israel. She was a member of the Secure Systems Re-
search Department at AT&T Labs–Research in Florham Park, New
Jersey from 1995 to 1999. She is currently a faculty member of the
School of Computer Science and Engineering at the Hebrew Uni-
versity of Jerusalem, Jerusalem, Israel, where she heads the Secure
Systems Research Laboratory. Her research interests include all areas
of distributed systems and security.

Michael Merritt is head of the Network Optimization and Analy-
sis Research Department of AT&T Labs–Research in Florham Park,
New Jersey. He received the B.Sc. degree in philosophy and com-
puter science from Yale University in 1979, and the M.Sc. and Ph.D.
degrees in computer science from the Georgia Institute of Technol-
ogy in 1980 and 1983, respectively. He joined AT&T Bell Labs in
1983 and became a founding member of AT&T Labs–Research in
1996. His research interests include distributed computing, security,
and network management.

Michael K. Reiter is a Professor of Electrical and Computer En-
gineering and Computer Science at Carnegie Mellon University in
Pittsburgh, Pennsylvania, USA. He received the B.Sc. degree in math-
ematical sciences from the University of North Carolina in 1989, and
the M.Sc. and Ph.D. degrees in computer science from Cornell Uni-
versity in 1991 and 1993, respectively. He joined AT&T Bell Labs in
1993 and became a founding member ofAT&T Labs–Research when
NCR and Lucent Technologies (including Bell Labs) were split away
from AT&T in 1996. He returned to Bell Labs in 1998 as Director of
Secure Systems Research, and then joined Carnegie Mellon Univer-
sity in 2001. His research interests include all areas of computer and
communications security and distributed computing.

Gadi Taubenfeld received the B.A., M.Sc. and Ph.D. degrees in
computer science from the Technion (Israel Institute of Technology),
in 1982, 1984 and 1988, respectively. From 1988 to 1990 he was a
research scientist at Yale University. From 1991 to 1995 he was a
member of technical staff at AT&T Bell Laboratories. Since 1995
he has been with Israel Open University. He is currently (2002) on
sabbatical at the Interdisciplinary Center, Israel. His primary research
interests are in concurrent and distributed computing.

