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Abstract 
 
The forward premium anomaly, i.e., the empirical evidence that exchange rate changes are 
negatively related to interest rate differentials, is one of the most robust puzzles in financial 
economics. We add to this literature by recasting the underlying parity relation in terms of cross-
country differences between forward interest rates rather than spot interest rates. The differences 
using spot and maturity-matched forward rates are dramatic. As the maturity of the forward 
interest rate differential increases, the anomalous sign on the coefficient in the traditional 
specification is reversed, and the explanatory power increases. We present a simple model of 
interest rates, inflation, and exchange rates that explains this novel empirical evidence. The 
model is based on interest rate distortions due to Taylor rules and exchange rate determination 
involving not just purchasing power parity, but also effects due to real rate differentials and 
subsequent reversion of the exchange rate to fundamentals. We investigate the main implication 
of this model, namely that exchange rate changes are a function of two key state variables - the 
interest rate differential and the magnitude of the deviation of the current exchange rate from that 
implied by purchasing power parity. We document a large increase in the explanatory power of 
regression models for exchange rates.   
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I. Introduction 

Well over one hundred papers document, in some form or another, the forward premium anomaly—

namely, that future exchange rate changes do not move one-for-one with interest rate differentials across 

countries. In fact, they tend to move in the opposite direction (e.g., see Hodrick (1987) and Engel (1996) 

for survey evidence). This anomaly has led to a plethora of papers over the last two decades that develop 

possible explanations with only limited success. It is reasonable to conclude that the forward premium 

anomaly is one of the more robust puzzles in financial economics. Parallel to work on the forward 

premium puzzle, another literature has developed, starting with Meese and Rogoff (1983), documenting 

an equally startling puzzle—exchange rates do not seem to be related to fundamentals.1 The random walk 

model has proven almost unbeatable, even against models with a variety of finance and macro variables.  

This paper looks at the forward premium anomaly, and the fundamental determinants of exchange 

rates, in a novel way by recasting the uncovered interest rate parity (UIP) relation in terms of future 

exchange rate movements against forward interest rate differentials across countries. We study a subset of 

the G10 currencies over the time period from 1980-2010. In stark contrast to current research on 

uncovered interest rate parity, past forward interest rate differentials have strong forecasting power for 

exchange rates. R2s at some horizons exceed 10% for annual exchange rate changes relative to about 2% 

for the traditional specification. Moreover, the direction of these forecasts coincides with the theoretical 

implications of UIP. 

We present a simple, reduced-form model of interest rates, inflation, and exchange rates that fits 

the contrasting empirical evidence on UIP when using forward, rather than spot, interest rate differentials. 

Though the model is reduced-form in nature, it is developed to capture existing stylized facts. Exchange 

rates are determined by three components: (i) purchasing power parity (PPP), (ii) real rate differentials 

arising from interest rate distortions due to the application of Taylor rules, and (iii) a positive probability 

that the currency will revert to PPP. The model can jointly explain why uncovered interest rate parity 

fails, why it appears to work better using lagged forward interest rate differentials, and why the 

explanatory power for exchange rates increases with the horizon, i.e., more lagged and stale information. 

The key insight is that, while real interest rate differentials lead to PPP violations and the rejection of UIP, 

the build-up of these violations generally gets reversed, which we model as reversion back to PPP. 

An important implication of the model is that the change in exchange rates is a function of two 

key state variables—the interest rate differential and the magnitude of the deviation of the current 

exchange rate from that implied by PPP. These two variables separate the relevant explanatory 
                                                 
1 Meese and Rogoff (1983) find that the literature’s typical structural models of exchange rates cannot outperform a 
naïve random walk model, even when one uses ex-post values of the variables of interest such as money supply, real 
income, inflation and interest rates. These findings are revisited and confirmed by Cheung, Chinn, and Garcia 
Pascual (2003) using updated data. For a theoretical analysis of this issue, see Engel and West (2005). 
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information into two offsetting components, which, if used separately, significantly increase the 

explanatory power for exchange rates. The interest rate differential captures violations of UIP associated 

with real rate distortions, and the deviation from PPP captures the reversal of this effect in the longer term 

as exchange rates revert to fundamentals. The deviation of the exchange rate from PPP is not directly 

observable, but we can calculate the real exchange rate, which, up to a constant, captures the same 

information in the context of our model. Thus, we regress annual exchange rate changes of the G10 

currencies on the interest rate differential and the real exchange rate. The results are striking and 

consistent with the theory. Controlling for the real exchange rate, the coefficient on the interest rate 

differential becomes more negative and is identified more precisely. Moreover, together the variables 

generate R2s that range up to 37% across the 9 exchange rates. These results are reconciled with the 

aforementioned UIP regressions that use forward interest rate differentials. 

This paper is organized as follows. Section II introduces the data and presents new empirical 

evidence on the exchange rate parity relation in terms of forward interest rate differentials.  In Section III, 

we present our reduced form model of exchange rates, which can explain this new evidence. Of particular 

importance, we derive a new testable implication of the model: a decomposition that uses interest rate 

differentials and deviations of exchange rates from PPP. In Section IV, we provide additional empirical 

evidence in support of the model in the context of these new results. Section V concludes. 

 

II. Uncovered Interest Rate Parity: Evidence 
A. Data 

We use monthly data from Datastream on exchange rates, price levels, and interest rates for the countries 

corresponding to the G10 currencies. The choice of sample period for each country is based on the 

availability of interest rate data. A subset of four countries (the United States, the United Kingdom, 

Switzerland, and Germany) is used extensively due to the availability of term structure data at annual 

maturities out to five years going back to 1976. In particular, data for the term structure of zero-coupon 

interest rates are derived from LIBOR data (with maturities of six and twelve months) and swap rates 

(two-, three-, four-, and five-year semi-annual swap rates).2 Since swap data only become available in the 

late 1980s, we augment our zero curve data with data from Philippe Jorion. Jorion and Mishkin (1991) 

collect and derive data for zero coupon bonds from one month to five years for this subset of countries.3 

                                                 
2 Cubic spline functions are fitted each month for each country to create a zero curve for maturities of 6, 12, 18, …, 
60 months. Our spline function fits the available data exactly, namely LIBOR rates for the 6-month and 12-month 
maturities, and semi-annual swap rates for maturities of 24 months, 36 months, 48 months, and 60 months. 
Therefore, the only maturities we need to spline are 18 months, 30 months, 42 months, and 54 months. We 
maximize the smoothness of the spline function over these unknowns by minimizing the sum of squared deviations.     
3 We thank Philippe Jorion for graciously providing us with the data. 
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Swap and LIBOR data is preferred to typical government bond data because the quotes are more liquid 

and less prone to missing data, supply and demand effects, and tax-related biases. To the extent that there 

is a swap spread (i.e., the difference between the swap and government bond rates) embedded in the data, 

its effect is diminished in our analysis by our use of interest rate differentials across countries. Using the 

zero curve data, we compute continuously compounded, one-year spot interest rates and one-year forward 

interest rates from years 1 to 2, 2 to 3, 3 to 4, and 4 to 5. For the remainder of the countries we compute 

one-year, continuously compounded, spot interest rates starting in January 1980, or later as dictated by 

data availability. 

Using the exchange rate data, we compute annual changes in log exchange rates with the U.S. 

dollar as the base currency, starting in January 1980 (or later as dictated by the availability of interest rate 

data) and ending in December 2010, i.e., we examine changes in the USD/FX rates for the G10 countries. 

Given the monthly frequency of the underlying data, adjacent annual changes have an 11-month overlap. 

The choice of the start date reflects the fact that our analysis of the subset of 4 countries with extensive 

term structure data matches the j to j+1 year forward interest rate at time t-j with the subsequent exchange 

rate change from time t to time t+1.4 Thus, the 4 to 5 year forward interest rate in January 1976, the first 

observation, is matched with the annual exchange rate change from January through December 1980.  

To ensure that we use exactly the same exchange rate series for all regressions for these countries, we use 

calendar year 1980 as the first observation throughout, truncating the interest rate series accordingly. We 

use the same sample period for the exchange rates of the other countries if there is sufficient interest rate 

data. 

Finally, we also combine this exchange rate data with CPI data to construct real exchange rates 

for all country pairs. Further discussion of these series is postponed until Section IV.A. 

The final dataset consists of annual exchange rate changes, with the first observation 

corresponding to calendar year 1980 and the last to calendar year 2010 (361 observations sampled 

monthly) for 5 of the 9 exchange rates, with start dates ranging from February 1986 to January 1993 for 

the other 4. For all countries we also have matched 1-year, spot interest rates covering a sample whose 

dates corresponds to the beginning of the period of each annual exchange rate change, e.g., from 1/1980-

1/2010 for the 5 countries with the full sample. For the 4 countries with term structure data, we also have 

forward interest rates over the periods 1/1979–1/2009, 1/1978–1/2008, 1/1977–1/2007, and 1/1976–

1/2006 for horizons j = 1,…,4, respectively (all with 361 observations). Table 1, Panels A and B contain 

descriptive statistics for these variables.  

                                                 
4 Throughout the paper we use annual exchange rate changes and annual interest rates and forward rates; thus, for 
ease of exposition, all periods are denoted in years. However, as noted above, these annual quantities are calculated 
on a monthly overlapping basis to maximize the information content of the empirical analysis. 
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B. Existing Evidence 

The expectations hypothesis for exchange rates (forward parity) is commonly written as 

,j
tjtt fsE =+       (1) 

where jts +  is the log of the spot price of foreign currency at time t+j, and j
tf  is the log of the j-year 

forward exchange rate at time t. Assuming no arbitrage and covered interest rate parity (i.e.,

)( *
,, jtjtt

j
t iijsf −=− , where it,,j is the domestic, j-year, continuously compounded (log), annualized 

interest rate at time t and the superscript * denotes the corresponding foreign interest rate), the expected 

change in the exchange rate equals the interest rate differential. Thus, one standard way of testing 

equation (1) for annual changes in exchange rates is to estimate the regression  

,)( 1,
*
1,1,1, ++ +−+=∆ tttttt iis εβα       (2) 

where tttt sss −≡∆ ++ 11, . Under uncovered interest rate parity (UIP), α and β should be 0 and 1, 

respectively. That is, high interest rate currencies should depreciate and low interest rate currencies 

should appreciate in proportion to the interest rate differential across the countries. Intuitively, expected 

(real) returns on bonds in the two countries should be equal. This hypothesis has been resoundingly 

rejected, and, most alarming, β tends to be negative, i.e., exchange rates move in the opposite direction to 

that implied by the theory. In the context of equation (1), the forward premium, j
tjt fs −+ , has a 

systematic bias and is predictable.5 

One possible explanation for these findings is the existence of a risk premium in exchange rates. 

However, in order for this omitted variable in the regression in equation (2) to cause the coefficient β to 

change signs, this risk premium must exhibit significant time-variation and be negatively correlated with 

the interest rate differential, as noted in Fama (1984). While such a risk premium could explain the results 

from a statistical perspective, from an economic standpoint the key challenge is to identify what risk this 

premium is providing compensation for. So far, attempts to match the implied risk premium to economic 

risks have proven unsuccessful.6 

As a first look at equation (2), Table 1, Panel C reports estimates from regressions of annual 

exchange rate changes of the G10 currencies on interest rate differentials on a monthly overlapping basis. 

The β coefficients are all negative for the USD/FX exchange rates, confirming the well-known negative 

                                                 
5 See, e.g., Engel (1996) and Lewis (1995) for surveys of this literature. Interestingly, some evidence suggests that 
the forward premium anomaly may be confined to developed economies and may be asymmetric or state dependent 
even in those economies (Bansal and Dahlquist (2000), Wu and Zhang (1996)). 
6 See, e.g., Bekaert and Hodrick (1993), Bekaert (1995, 1996), Bekaert, Hodrick and Marshall (1997), Mark and Wu 
(1998) and Graveline (2006). 
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relation between exchange rates and interest rate differentials. While the estimates are fairly noisy, tests 

of the null hypothesis that the coefficients equal 1 can be resoundingly rejected for seven of the nine US-

G10 currency pairs.  

The low R2s in most of the regressions are also notable, and this feature is both disappointing and 

puzzling. The key fundamentals underlying expected exchange rate movements are interest rate 

differentials between countries. These interest rate differentials, in theory, represent expected inflation 

rate differentials. Since inflation is fairly predictable (see, e.g., Fama and Gibbons (1984)), and inflation 

differentials are a fundamental driver of exchange rates via purchasing power parity, one would have 

expected the model to explain a much larger degree of the variation in these exchange rates. 

 

C. Information about Exchange Rate Changes in Long-Maturity Forward Rates  

Equation (1), UIP, is almost always cast in terms of interest rate differentials and then tested using 

equation (2).  In this subsection, we present a novel way to analyze UIP by recasting the parity relation in 

terms of future exchange rate movements against forward interest rate differentials across countries.  

Specifically, we can also use equation (1) to define expected changes in future exchange rates as 

the difference between two forward exchange rates. That is, 
j

t
k

tktjtt ffsE −=∆ ++ ][ , ,      (3) 

where k > j. Under the expectations hypothesis of exchange rates, the period t expected depreciation from 

t+j  to t+k  equals the difference in the corresponding forward exchange rates at time t. Under covered 

interest rate parity, we can replace the forward exchange rates in equation (3) with the interest rate 

differentials between the two countries, i.e., 

).()(][ *
,,

*
,,, jtjtktktktjtt iijiiksE −−−=∆ ++      (4) 

Rearranging the interest rate differential terms in equation (4), and using the definition of forward interest 

rates,7 we get 

))((

)()(][
*,,

*
,

*
,,,,

kj
t

kj
t

jtktjtktktjtt

ififjk

ijikijiksE

−−=

−−−=∆ ++
 ,    (5) 

where kj
tif , and 

*,kj
tif  are the continuously compounded, annualized, forward interest rates at time t from 

t+j to t+k for domestic and foreign currencies, respectively. Equation (5) is the basis for the empirical 

                                                 
7 The annualized forward interest rate is defined as 

jk
ijik

if jtktkj
t −

−
≡ ,,,  
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analysis to follow. It says that, under UIP, the expected depreciation in future exchange rates is equal 

what we call the forward interest rate differential. 

Equation (5) extends the classical approach to characterizing and testing the expectations 

hypothesis presented in equations (1) and (2). It implies a more general specification of the expectations 

hypothesis, 

.)( 1,
*1,1,

1, +−
+

−
+

−+ +−+=∆ tjt
jj

jt
jj

jtjjtt ififs εβα      (6) 

Under the expectations hypothesis of exchange rates, the annual exchange rate change from t to t+1 

should move one-for-one with the forward interest rate differential from j to j+1 that was set at time t–j. 

That is, αj and βj should equal 0 and 1 respectively. Equation (2) is a special case of equation (6) for j = 0. 

Using regression equation (6), Table 2, Panel A provides estimates over different horizons and 

across a subset of the G10 currencies for tests of the expectations hypothesis of exchange rates.8 This 

analysis requires a history of long-term forward interest rates, and, as described in Section II.A above, we 

have such data for the United States, the United Kingdom, Switzerland, and Germany.  In contrast to 

Table 1, Panel C and the conclusions in much of the literature, Table 2 shows that forward interest rate 

differentials can predict changes in future exchange rates. At least as important is that their predictive 

power has the right sign. The U.S./Germany forward interest rate differentials at horizons of one to four 

years yield coefficients of 0.68, 0.76, 2.02, and 3.17 for the USD/DEM exchange rate. The results for the 

USD/GBP and USD/CHF exhibit similar patterns, with coefficients of 0.92, 3.41, 1.94, and 2.54 and -

0.16, 0.42, 1.40, and 2.07 looking forward one to four years, respectively. These results are quite different 

from the significant negative coefficients that plague Table 1, Panel C (i.e., -0.84, -0.71 and -1.26 for 

USD/DEM, USD/GBP, and USD/CHF, respectively). 

The coefficient estimates exhibit two features in addition to the fact that they are positive. First, 

they tend to increase in the horizon. Second, for longer horizons they seem to exceed the theoretical value 

of 1. However, these coefficient estimates are noisy, especially at longer horizons, so more formal tests 

are warranted. Table 2, Panel B reports tests that the coefficients are equal and that the coefficients are 

equal to one, across horizons  j = 0, 1, 2, 3, and 4 and  j = 1, 2, 3, and 4 (but not j = 0). The Lagrange 

multiplier (LM) tests yield only two rejections at the 10% level, both for the hypothesis that the 

coefficients equal one at all horizons. In contrast, the Wald tests yield rejections in all but four cases.9  

                                                 
8 Using different specifications, Chinn and Meredith (2005) and Bekaert, Min and Ying (2007) also analyze 
implications for uncovered interest rate parity at short- and long-horizons. 
9 We employ both the Lagrange multiplier and Wald statistics for testing the joint hypotheses. As shown by Berndt 
and Savin (1977), there is a numerical ordering between these statistics, which may lead to different inferences 
being drawn. For an especially relevant discussion, see Bekaert and Hodrick (2001) in the context of testing the 
expectations hypothesis of the term structure. In their context, the Wald test over-rejects while the Lagrange 
multiplier test under-rejects, results that are consistent with our simulation evidence discussed later. 



7 
 

Thus, there is definitely evidence, though perhaps not overwhelming, of horizon-dependent coefficients 

and rejections of UIP. 

Note that equation (6) exploits the information in the entire forward curve. However, the error 

term is now a j-year ahead forecast, and is serially correlated up to (j+1)12-1 observations, for monthly 

overlapping data. Therefore, one of the difficulties in studying multi-step ahead forecast regressions like 

those specified in equation (6) is the availability of data. While sophisticated econometrics have 

somewhat alleviated the problem (Hansen and Hodrick (1980) and Hansen (1982)), the benefits are still 

constrained by the number of independent observations. There are two sources for the serial correlation of 

the error term. The first arises from sampling annual exchange rate changes on a monthly basis, leading to 

a moving average structure out to 11 months. Sampling at the monthly frequency improves the efficiency 

of the estimators, but only to a degree (Boudoukh and Richardson (1994) and Richardson and Smith 

(1992)). The second potential source arises directly from the j-year ahead forecast. For the regression in 

equation (6), however, the degree of serial correlation in the errors depends upon the relative variance of 

exchange rates versus interest rate differentials, and the correlation of unexpected shocks to these 

variables. There are strong reasons to suspect that these factors mitigate the serial correlation problem. 

Table 1, Panel A shows that exchange rates are much more variable than interest rate differentials, and 

they are also relatively unpredictable (see Table 2, Panel A). Therefore, because the forecast update 

component of the residual in equation (6) is likely to be small relative to the unpredictable component as 

we move forward in time, the induced serial correlation in the errors will be correspondingly small, and 

the overlap will not substantially reduce the effective number of independent observations. This intuition 

is confirmed through a Monte Carlo simulation described in Appendix A. 

In Table 2, Panel A we also report statistics from the simulation model of Appendix A. We report 

the cross-sectional standard deviation (across replications) of the relevant parameter estimate (in the 

column “SD”), and the two-sided simulated P-value for the test that β = 1 (in the column “P-value”), i.e., 

the percentage of the replications in which the absolute magnitude of deviation of the estimated 

coefficient from one equals or exceeds the deviation for the estimated coefficient from the actual data. For 

these calculations, we simulate under the null hypothesis of β = 1 and use the resampled exchange rate 

changes for the relevant exchange rate, but simulating under normality produces similar results. The 

cross-sectional standard deviations tend to exceed the reported standard errors, especially at longer 

horizons, suggesting that these standard errors may be somewhat understated. However, the inferences 

drawn from the P-values are consistent with those from standard hypothesis test of the individual 

coefficients. Specifically, the short-horizon (j = 0) coefficients are statistically significantly different from 

one, as is the coefficient for j = 2 for the USD/GBP. 
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As a final comment on the evidence, note that in Table 2 the regression R2s have a tendency to 

increase with the horizon. While the dependent variable, i.e., annual exchange rate changes, is the same, 

the forecasting variable differs. For all three exchange rates, the R2s are higher for the forward interest 

rate differential regressions (equation (6)) at horizon j = 4 than for the interest rate differential regression 

(equation (2)). What is remarkable about this result is that the information in the former regressions is (i) 

old relative to current interest rates, and (ii) more subject to measurement error due to the calculation of 

forward rates. We argue below that this finding is an important clue to understanding the fundamental 

relation between exchange rates, inflation, and interest rates, and, more importantly, the forward premium 

anomaly. 

 

III. A Simple Model of Exchange Rates and the Forward Premium Anomaly 
The results provided in Section II are important stylized facts that need to be explained in the context of 

recent attempts at solving the forward premium puzzle of exchange rates. First, there is the need to 

reconcile the forward premium anomaly (i.e., a negative β in equation (2)) with the forward interest rate 

differential results (i.e., positive βs in equation (6)). Second, the coefficients in the forward interest rate 

differential regressions appear to increase in maturity and exceed the theoretical value of 1 for longer 

horizons. Third, the explanatory power of the forward interest rate differential also increases in the 

horizon over which the regressions are estimated, i.e., with information about countries’ future interest 

rates that becomes increasingly stale. 

In this section, we present a simple, reduced-form model of exchange rates, interest rates, and 

inflation rates across countries. Though simple in structure, the model is built around assumptions 

consistent with the existing literature, and it can provide one potential explanation for the observed 

behavior of uncovered interest rate parity using spot and forward interest rate differentials. 

 

A. A Simple, Reduced-Form Model of Exchange Rates  

Our reduced-form model has four components, dealing with interest rates, inflation rates, forward interest 

rates, and exchange rates. For simplicity, we focus on fundamentals related only to inflation rates, 

assuming that real growth across countries is constant. Also, for ease of exposition and without loss of 

generality, all variables are mean-adjusted, that is, we suppress all constants in the equations. We also 

assume symmetry between countries and focus on just two horizons, which we denote periods 1 and 2. 

The first key feature of our model is how interest rates are formed in each country, and, in 

particular, the source of their “distortion” from fundamentals, in this case, from expectations about future 

inflation rates. While previous research has motivated such distortions in terms of risk or biased 
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expectations, we choose to model it in terms of a Taylor (1993) rule in which the monetary authority of 

each country sets the short-term interest rate to temper inflation: 

0][][ ,11,1,1, ≥=−= −++ γπγπ ttttttttt EirE ,    (7) 

where ][ 1, +ttt rE  is the expected 1-period real rate, 1,ti  is the 1-period nominal rate, and tt ,1−π  is the 

inflation rate (all in log form). In other words, when inflation is above its mean, the central bank increases 

interest rates, which leads, in expectation, to time-varying real rates that are proportional to the level of 

inflation. While based on a simple Taylor rule, this model is broadly consistent with recent more elaborate 

empirical specifications and tests of Taylor rules in the context of the exchange rate literature, including 

Engel and West (2006), Engel, Nelson, and West (2007), Clarida and Waldman (2007), and Mark (2009), 

among others. 

The second feature of our model is an autoregressive process for inflation in each country. We 

propose a simple AR(1) model though more elaborate specifications could be modeled. The idea is that 

the application of the Taylor rule, combined with the underlying fundamentals of the economy, leads to: 

1,,11, +−+ += tttttt επθπ  .      (8) 

The third feature of the model is the determination of long-term interest rates or, equivalently, 

forward rates. While there is empirical evidence of violations of the expectations hypothesis of interest 

rates (EHIR),10 for simplicity we impose the expectations hypothesis in the model.11 Specifically, we set 

the forward interest rate equal to the expectation of the future spot rate: 

][ 1,1
2,1

+= ttt iEif ,             (9) 

where 2,1
tif  is the forward interest rate between t+1 and t+2 set at time t. Thus, forward rates anticipate 

any future distortions in spot rates associated with the Taylor rule specified in equation (7).  

The final, and most important feature of the model describes the evolution of exchange rates. 

Motivated by the existing literature, exchange rate changes are broken down into three pieces as follows: 

                                                 
10 See, for example, Fama and Bliss (1987), recently updated by Fama (2006), for U.S. data and Jorion and Mishkin 
(1991) for international evidence. 
11It is straightforward to build in violations of the EHIR, such as ]2,1[)1(]1[2,1

++−++= tttEtitEtf παα , in which the 
parameter α controls the extent of these violations. If α = 1, the EHIR holds. If α = 0, forward rates reflect 
fundamentals only (i.e., expected inflation), and do not anticipate any distortions associated with the Taylor rule. 
The theoretical model’s ability to capture the empirical evidence carries through for α ≠ 1. In fact, imposing the 
expectations hypothesis reduces the degrees of freedom available in the model and thus potentially reduces its 
ability to match the empirical evidence. 
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The first piece is the starting point for all exchange rate determination models, namely purchasing 

power parity (PPP), and simply states that exchange rate changes should reflect inflation rate differentials 

between the two countries. That is, for an exchange rate expressed in dollars per unit of foreign currency, 

when U.S. inflation is high the exchange rate increases and the dollar depreciates. 

The second piece reflects that, with the Taylor rule distortion given in equation (7), expected real 

rates are no longer equal across countries. Countries with expected inflation that is high relative to their 

target inflation levels will have higher expected real rates. What do differences in expected real rates then 

imply about exchange rate determination?  

A popular description for exchange rate determination can be found in the literature on the “carry 

trade” in which investors borrow in low interest rate currencies and invest in high interest rate currencies. 

Specifically, a relatively high expected real rate in the U.S. causes capital inflows, dollar appreciation, 

and a fall in the exchange rate (e.g., Burnside, Eichenbaum, Kleschelski, and Rebelo (2006), Lustig and 

Verdelhan (2007), Clarida, Davis, and Pedersen (2009), Farhi, Fraiberger, Gabaix, Ranciere, and 

Verdelhan (2009), Jorda and Taylor (2009), Jurek (2009), Berge, Jorda and Taylor (2010), Menkhoff, 

Sarno, Schmeling, and Schrimpf (2012), among others).  One preferred explanation is that the carry trade 

and resulting appreciation of the currency is compensation for the possibility of a crash in the currency’s 

value – the so-called “up the stairs, down the elevator” description of high interest rate currencies (e.g., 

Brunnermeier, Nagel, and Pedersen (2009) and Plantin and Shin (2010)).  

This view of the carry trade and crash risk premia has a theoretical basis in Farhi and Gabaix 

(2008), but can be viewed more generally in the context of the larger literature that argues for expected 

currency appreciation due to the existence of a time-varying risk premium that is negatively correlated 

with interest rate differentials (see, e.g., Fama (1984), Bekaert (1996), Bekaert, Hodrick and Marshall 

(1997), Mark and Wu (1998), Backus, Foresi, and Telmer (2001), Graveline (2006), Lustig and 

Verdelhan (2007), Lustig, Roussanov and Verdelhan (2008), Verdelhan (2010), Backus, Gavazzoni, 

Telmer, and Zin (2010), and Christiansen, Ranaldo, and Soderlind (2011)). The literature is not 

completely sold on the risk premium argument. Alternative stories focus on justifications based on limited 

arbitrage or segmentation in the foreign exchange market (e.g., Froot and Thaler (1990), Froot and 

Ramadorai (2005), Stein (2009), and Jylha and Suominen (2010)).  

In the above formulation, δ is negative because a high expected real rate in the U.S. represents 

compensation for crash risk, or implies capital inflows and dollar appreciation within limits to arbitrage. 
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In particular, if δ = 0, purchasing power parity holds. If δ < 0, real rate differentials have a permanent 

effect on exchange rates, i.e., the deviation from PPP persists and accumulates each period.  

While we do not take a view on the precise description of the carry trade phenomena, our reduced 

form model does include a third component of exchange rate determination based on the crash intuition. 

There is a substantial body of evidence that PPP holds in the long run and is therefore an important 

building block for exchange rates (see, e.g., Abuaf and Jorion (1990), Kim (1990), Rogoff (1996), 

Lothian and Taylor (1996), Taylor (2001, 2002), and Imbs, Mumtaz, Ravn, and Rey (2005)). Specifically, 

while the carry trade component allows exchange rates to deviate from PPP due to differentials in real 

rates, we posit a positive probability that exchange rates will revert to PPP. For simplicity, and in order to 

facilitate the calculation of closed form solutions, we model this reversion as a crash back to PPP in a 

single period, but one could easily envision extending the model to richer patterns of reversion. Dt+1 is a 

dummy variable that takes on the value 1 when a crash occurs, 0 otherwise. When a crash occurs, all 

deviations from PPP since the last crash, which occurred W~  periods ago, are reversed. Initially, we model 

exchange rates reverting to PPP with a fixed probability p each period: 





=+ -p
p

Dt 1 prob.with 0
 prob.with 1

1      (11) 

so that pDE t =+ ][ 1  and 1)1(]~Pr[ −−== nppnW . Later on, in subsection C of this section, we 

generalize the probability of a correction to be state (i.e., PPP deviation) dependent. 

 

B. Implications for Uncovered Interest Rate Parity at Short and Long Horizons 

The model for interest rates, inflation rates, and exchange rates described by equations (7)–(11) has 

implications for the typical forward premium regression given in equation (2) and our novel forward 

interest rate differential regression in equation (6). 

Consider first the UIP regression, 1,
*
1,1,01, )( ++ +−=∆ tttttt iis εβ . Appendix B of the paper shows: 
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The UIP regression coefficient is the sum of three terms.  

The first term reflects the direct effect of inflation differentials on exchange rate changes via PPP. 

If interest rates fully reflect fundamentals and there are no Taylor rule distortions (γ = 0 in equation (7)), 

then β0 = 1 and UIP holds exactly. If there are no Taylor rule distortions, then expected real rate 

differentials are zero, and there are no deviations of exchange rates from PPP, i.e., the second and third 
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terms in equation (12) are zero. If there are Taylor rule distortions (γ > 0), but exchange rates still follow 

PPP (δ = 0), then 0 < β0 < 1. In this case, even though expected real rates are different across countries, 

this divergence has no effect on exchange rates because δ = 0, there are no PPP violations to reverse, and 

again the second and third terms in equation (12) are zero. For example, if inflation is persistent (e.g., θ = 

0.8 in equation (8)), and the typical Taylor rule adjusts interest rates by half the amount that inflation 

diverges from its target (i.e., γ = 0.5 in equation (7)), then the coefficient in the UIP regression is β0 = 

0.62. Even if PPP holds, UIP can be violated as the Taylor rule implies that interest rates respond more to 

inflation shocks than exchange rates. Of course, a similar result would hold if the response was behavioral 

in nature (e.g., overreaction along the lines of Burnside, Han, and Hirshleifer (2011)).  

The second term reflects the carry trade component of exchange rate changes due to expected real 

rate differentials. If there are Taylor rule distortions (γ > 0), and the real rate, carry trade component 

affects exchange rates (δ < 0) so that PPP does not hold, then the second term in equation (12) is negative. 

If there are no crashes, then the third term is zero, and the regression coefficient is strictly less than that 

when PPP does hold. In fact, β0 can now go negative, when δγ < -1, and the coefficient decreases as δ 

decreases. In other words, the carry trade effect works in achieving the correct coefficient provided in 

Table 1, Panel C. For example, under the parameters for inflation and the Taylor rule described above 

(i.e., θ = 0.8, γ = 0.5), for δ equal to -1, -5, and -10, β0 equals 0.31, -0.92, and -2.46, respectively. From an 

economic standpoint, a value of δ = -5 implies that the domestic currency will appreciate 5% over the 

following year if domestic real rates are expected to be 1% higher than those in the foreign country. 

The final term characterizes the reversion component. If there are Taylor rule distortions (γ > 0), a 

carry trade component (δ < 0), and a positive probability that exchange rates will revert back to PPP, then 

the effect of the crash component on the regression coefficient partially (or even fully) reverses the effect 

of the carry trade. In fact, if the probability of a crash back to PPP is one every period, then the carry trade 

effect disappears and γθ
θβ +=0 . The carry trade effect on exchange rates is reversed by an immediate 

reversion back to PPP, and there are no longer any PPP violations. The intuition behind the third term in 

equation (12) is that the current interest rate differential has information not only about future real rate 

differentials, which, due to the carry trade, lead to exchange rate movements, but also about past interest 

rate differentials. Depending on the probability of a crash, these past differentials tell us something about 

the future magnitude of the crash in the exchange rate. For example, under the parameters for inflation 

and the Taylor rule described above (i.e., θ = 0.8, γ = 0.5), and considering δ = -5 and -10, β0 increases 

from -0.92 to -0.33, and from -2.46 to -1.27, respectively as the probability of a crash (p) goes from 0% to 

7%. 

The forward premium regressions expressed in terms of longer maturity forward interest rate 

differentials in equation (6) produce very different results than the standard UIP regressions in equation 
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(2). Therefore, we next turn to the implications of our reduced form model given in equations (7)-(11) for 

the UIP regression with forward interest rate differentials, 1,1
*2,1

1
2,1
111, )( +−−−+ +−=∆ tttttt ififs εβ .  

Appendix B of the paper shows: 
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The first two terms are identical to those of 0β  in equation (12). Under the expectations hypothesis of 

interest rates, which we impose in our model, the forward interest rate differential is the expected future 

spot interest rate differential, and regressing exchange rate changes on these two quantities yields 

identical results in a world without reversion to PPP.  

The difference between the two coefficients is 
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If there is either a 0% or 100% probability of a crash, then the two UIP coefficients are the same. 

Interestingly, and consistent with the regression results in Table 2, for economically relevant parameter 

values 1β  is always greater than 0β  when the crash probability 0 < p < 1. For example, under the 

parameters for inflation and the Taylor rule described above (i.e., θ = 0.8, γ = 0.5), and a crash probability 

of p = 7%, and considering δ = -5 and -10, β0 = -0.33 versus β1 = -0.12, and β0 = -1.27 versus β1 = -0.86, 

respectively.  

The intuition is that the forward interest rate differential has more information about the 

magnitude of the existing deviation from PPP, and thus the impact of a currency crash, than does the 

current interest rate differential. The current interest rate differential contains information about prior 

inflation rate differentials, and thus the buildup of PPP violations, due to the persistence of inflation, but 

this information decays as one goes back in time. In contrast, the lagged forward interest rate differential 

captures the actual inflation differential last period. This same differential has information both about the 

current inflation differential and inflation differentials further back in time, again due to the persistence of 

inflation. This intuition also suggests that if inflation is persistent, so that Taylor rule deviations will 

persist, then long-horizon forward interest rate differentials (even if stale) will contain considerable 

information about the magnitude of future currency crashes. Thus, the difference in equation (14) may 

increase with horizon, a main finding from the regression results in Table 2. 

We could calculate the forward interest rate differential coefficients for longer horizons in closed 

form (similar to equation (13)), but the horizon dependence is most easily illustrated using numerical 
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results for reasonable parameter values. Therefore, we simulate the model given in equations (7)–(11), 

and report the regression results in Table 3. Table 3 provides results for the standard UIP regression with 

interest rate differentials and for the forward interest rate differential regressions in equation (6), for 

horizons of 1-4 years, for a variety of parameters: γ = 0.0, 0.3, 0.5, and 0.7; δ = 0, -5, -10, -15, and -20; θ 

= 0.8; and p = 7%. Shocks to inflation in the two countries, as given in equation (8), are assumed to be 

normally distributed, and the coefficient estimates are not affected by the choice of the variance of these 

innovations or their correlation across countries. 

The top panel illustrates the point made above that, when there are no Taylor rule distortions (γ = 

0), the coefficient equals 1 at all horizons. The small deviations from one in the second decimal place 

indicate the precision of the simulated coefficient estimates relative to their true values. The top line in 

each of the four panels illustrates the second point that, when there is no carry trade effect (δ = 0), the 

coefficient is independent of the horizon. However, this coefficient declines as the magnitude of the 

Taylor rule distortion increases because interest rates are a magnified function of inflation. 

Most important, for each non-zero value of γ (i.e., Taylor rule distortion) and δ (i.e., carry trade 

effect), the coefficient is increasing in the horizon. The UIP regression coefficient (β0) and the rate of 

increase depend jointly on the two parameters. Holding the magnitude of the Taylor rule distortion fixed, 

increasing the magnitude of the carry trade effect (moving down the lines within a panel), decreases the 

coefficients at the short horizon, as argued above, and for sufficiently large magnitudes the UIP 

regression coefficient is negative. The carry trade parameter is also the primary determinant of the range 

of the coefficients from short to long horizons, with this range increasing in the magnitude of δ. However, 

there is also clearly an interaction effect between the Taylor rule distortion and the carry trade effect. 

Reasonable parameterizations (e.g., γ = 0.5, δ = -5) can induce a switch in the sign of the 

coefficient as the horizon increases. For short horizons, the carry trade effect dominates and the 

coefficient is negative. For longer horizons, the role of the forward interest rate differential as a proxy for 

the magnitude of the PPP violation and hence the size of a crash, should it occur, becomes the more 

important factor, and the coefficient becomes positive. However, the magnitudes of the coefficients at 

longer horizons generated by the model in this scenario are smaller than those in the data. 

Finally, the last 5 columns of Table 3 present the R2s from the regressions. As expected, when 

there is no carry trade component, the R2s are high and decrease in the horizon of the regression. 

Exchange rate changes depend on realized inflation differentials, which are predicted well by spot interest 

rate differentials, but less so by lagged forward interest rate differentials. The R2s are much lower when 

there is a carry trade component and crashes back to PPP that reverse this component. The magnitudes of 

the R2s are of less interest because they depend critically on the fact that we assume reversion to PPP 

occurs in a single period, creating large exchange rate moves that dominate the variation in exchange rate 
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changes. More interesting are the patterns in these R2s. For large carry trade effects, the coefficient in the 

standard UIP regression is large in magnitude (e.g., -2.89 for γ  = 0.7, δ = -15 versus -0.32 for γ  = 0.5, δ = 

-5), and the relative R2 is also large (2.36% versus 0.41%). This explained variation declines in horizon as 

the coefficient begins to pick up the offsetting crash component. For example, for γ  = 0.7, δ = -15, the R2s 

are 2.36%, 0.83%, 0.17%, and 0.00% for horizons 0 to 3. However, as the crash component begins to 

dominate at even longer horizons, the R2 can increase, e.g., from 0.00% to 0.03% for the parameters 

above. 

 

C. Extending the Exchange Rate Model 

The reduced form model described in Section III.A above can potentially be extended in several ways to 

better fit existing stylized facts. One natural generalization is to relax the assumption in the exchange rate 

determination model described in equation (10) of a constant probability of a currency crash back to PPP. 

The purpose of this assumption is to allow for closed-form expressions for the coefficients in the 

exchange rate regressions in equations (2) and (6). However, both theories based on speculative dynamics 

(e.g., Plantin and Shin (2010)) and existing empirical work (e.g., Brunnermeier, Nagel, and Pedersen 

(2009) and Jorda and Taylor (2009)) imply that this probability should be increasing in the deviation from 

PPP. In other words, as the exchange rate moves further from its fundamental PPP relation, the tension to 

bring it back increases. 

We model the time-varying crash probability in a simple way: 

t

t
t PPPDw

PPPDw
p

+
=

1
,      (15) 

where |PPPDt| is the absolute deviation of the exchange rate from its value implied under PPP at time t, 

and w is a scalar chosen to match a specific unconditional crash probability, which we denote p . Thus, pt 

varies through time, increasing in the current deviation of the exchange rate from PPP.  

 Table 4, Panel A presents what is essentially a rough calibration of this extended model to the 

empirical results in Table 2, Panel A. We present both the slope coefficients for the forward premium 

regression for horizons up to 4 years and the associated R2s. In addition to varying the magnitude of the 

Taylor rule distortion (γ) and the carry trade effect (δ), we also vary the persistence of the inflation 

process (θ) and the unconditional crash probability ( p ), which amounts to varying the parameter w in 

equation (15). We consider variations in the parameters around a plausible benchmark of γ = 0.5, δ = -10, 

p  = 7%, and θ = 0.8. 

 The results for the benchmark parameterization are presented in the first row of the table, and it is 

clear why we have chosen these parameter values. The coefficient in the UIP regression is negative, it 
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switches signs for the regression with forward interest rate differentials at a horizon of 1 year, and it 

increases in horizon to a value substantially greater than one at longer horizons, all consistent with the 

empirical evidence presented in Table 2. In other words, our reduced form model of exchange rates is 

able to explain the striking results presented earlier. 

 The intuition for these results is the same as that discussed earlier for the simpler model with a 

constant crash probability. The interest rate differential picks up the carry trade effect, which reverses the 

sign of the coefficient relative to the standard UIP intuition. However, there is a second offsetting effect. 

Spot and forward interest rate differentials also proxy for the magnitude of the deviation of exchange rates 

from PPP. This deviation will be reversed at some point, and this reversal is, by definition, a movement of 

exchange rates in the direction opposite to the carry trade effect. At the short horizon, the former effect 

dominates. At a horizon of 1 year, the effects are almost offsetting, and the coefficient is close to zero. 

However, at long horizons the crash effect becomes more important. Because crashes are relatively rare, 

large deviations from PPP can build up, and the resulting exchange rate move will be large, thus the 

coefficient can exceed one at long horizons. 

 The patterns in the regression R2s are consistent with the empirical results of Table 2. At short 

horizons, explained variation is low because the independent variable is picking up both the carry trade 

effect and the offsetting reversion to PPP. However, at long horizons, the crash effect is dominant and the 

R2 is many times larger than at the shortest horizon, i.e., 0.21% at horizon 0 versus 1.41% at horizon 4. 

The subsequent pairs of parameterizations below the benchmark case in Table 4 illustrate the 

marginal effects associated with each parameter in the model. For each pair, we perturb a single 

parameter, highlighted in bold, above and below its level in the benchmark case. The marginal effects of 

the Taylor rule distortion (γ) and the carry trade (δ) are similar. In both cases, as these parameters increase 

in magnitude, the horizon effect increases, i.e., the short-horizon coefficient becomes more negative, and 

the long-horizon coefficient becomes more positive. This magnification of the horizon effect occurs 

because both the PPP violations, via the carry trade effect, and the size of the associated crashes back to 

PPP increase as the magnitudes of γ and δ increase. In the former case, for a given inflation differential, 

the magnitude of the interest rate differential and the corresponding expected real rate differential is 

larger, while in the latter case, a given expected real rate differential has a larger effect on exchange rates.  

Holding the other parameters constant, decreasing the persistence of inflation also causes a 

magnification of the horizon effect. This decrease reduces the relation between forward interest rates and 

spot interest rates, i.e., the expectation hypothesis of interest rates still holds, but the innovation in these 

expectations over time is relatively larger and inflation reverts more quickly to its mean. As a result, spot 

interest rate differentials continue to contain information about the carry trade effect but contain less 

information about lagged interest rate differentials and thus the magnitude of existing PPP violations. 
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Similarly, forward interest rate differentials contain information about the build-up of PPP violations in 

the corresponding period, but they contain less information about future spot interest rates and thus the 

future carry trade effect. This improved separation of the two effects increases the coefficient estimates. 

Finally, the unconditional crash probability shifts the coefficients at all horizons in the same 

direction. As the crash probability decreases, the coefficients decrease as well. As a crash becomes less 

likely in any given year, the carry trade effect, which generates a negative relation between interest rate 

differentials and exchange rates, becomes more important relative to the crash effect. 

Of course, while the model is relatively simple, the relations between the exchange rates and 

interest rate differentials are nonlinear, and the above analysis does not capture all the potentially complex 

interactions. Moreover, the marginal effect of a single parameter does depend on the values of the other 

parameters. 

 

D. Additional Implications of the Model 

Sections III.B and III.C above show that the forward premium regressions of equations (2) and (6) have 

considerable common information. In the closed-form solutions, two of the three terms in the regression 

coefficients are identical, and the third one has a similar structure. The fact that the β0 and β1 regression 

coefficients in equations (12) and (13) are similar should not be surprising. Under the expectations 

hypothesis of interest rates: 
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− ,1η is the forecast error associated with forward interest rate differentials with the property that 
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tttt ifif η . What is surprising is that these two closely related independent variables can 

generate such different regression coefficients, especially at longer horizons, both in the data and in our 

simple model. As argued above, the explanation is that both variables capture two offsetting effects. As 

the balance between these effects changes at different horizons, the sign of the coefficient also changes. 

 Given the apparent existence of two offsetting effects, a logical step would be to attempt to 

disentangle these effects in a bivariate regression. In the context of the model, any two variables, e.g., the 

spot and forward interest rate differentials, will do as long as they are not perfectly correlated. From an 

empirical perspective, we need to find variables that are less correlated in order to avoid multicollinearity 

problems in our relatively small sample. A natural approach is to separate the interest rate differential into 

two terms, its expected value based on the forward interest rate differential )( *2,1
1

2,1
1 −− − tt ifif , and the 
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unexpected shock to interest rates over this period, as measured by )()( *2,1
1

2,1
1

*
1,1, −− −−− tttt ififii .12 In 

particular, consider the following regression: 
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Under the EHIR, these variables are uncorrelated. Under UIP both coefficients will equal one. However, 

under the reduced form model of equations (7)–(11), with a constant crash probability, Appendix B shows 

that 
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The coefficient 1φ  equals 1β  from equation (13) because the independent variables are 

uncorrelated. 0φ  is a slightly simplified version of 0β , and, for 0 < p < 1, 1φ > 0φ . The difference 

between the coefficients is 
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Of particular interest, it is possible for 1φ  to be positive and 0φ to be negative. For example, under 

reasonable parameter values for inflation and the Taylor rule (θ = 0.8, γ = 0.3, δ = -5 and p = 7%), we get 

1φ  = 0.20 and 0φ  = -0.20. Because )( *
1,1, tt ii −  is broken into )( *2,1

1
2,1
1 −− − tt ifif  and 
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*
1,1, −− −−− tttt ififii , the opposite coefficients for 1φ  and 0φ  mean, in practice, that the standard 

UIP regression coefficient, 0β , will be close to zero and generate low R2s, the typical finding in this 

literature for exchange rate determination. For example, under the above parameter values, 0β  = 0.06. 

Table 4, Panel B provides simulation results for multiple horizons for the extended model with 

time-varying crash probabilities for the regression 
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The second subscript on the 0φ  coefficient indicates that the variable is the difference between the spot 

interest rate differential (at horizon 0) and the forward interest rate differential at horizon j. We report 

results for the same parameter values used in Table 4, Panel A. 

                                                 
12 This separation would strictly be true only under the EHIR. Footnote 10 discusses deviations from the EHIR. 
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 As expected, jφ , i.e., the coefficient on the forward interest rate differential, equals jβ , i.e., the 

coefficient on the forward interest rate differential in the univariate regression in Table 4, Panel A up to 

some small amount of simulation noise.  More interesting are the coefficients on the innovation term         

( j,0φ ). These coefficients are significantly more negative than the coefficient in the UIP regression ( 0β  

in Table 4, Panel A) because the second variable is now controlling for the crash effect that was 

attenuating the carry trade effect primarily picked up by the spot interest rate differential. In all cases, the 

magnitudes decrease slightly in horizon with changes in the balance between the offsetting effects 

captured by the two variables. 

 The R2s of the regressions are also interesting. They exceed those of the univariate forward 

premium regression by a significant amount at all horizons, e.g., from 1.23% to 2.50% versus 0.06% to 

1.41% at horizons 1 to 4 for the benchmark parameterization. Moreover, they are increasing in horizon 

because spot and forward interest rate differentials that are separated further in time provide more 

information about the offsetting carry trade and crash effects. 

 While the regression in equation (20) clearly provides a useful decomposition of the carry trade 

and crash effects, it is a somewhat indirect approach to this problem. In the model, there are two key state 

variables—the interest rate differential and the deviation of the current exchange rate from that implied by 

purchasing power parity. The former variable picks up the carry trade effect, while the latter measures the 

size and direction of the exchange rate move in the event of a reversion (crash) to fundamentals (PPP) and 

also the probability of such a reversion in the extended model with a time-varying crash probability. 

Consequently, a natural analysis is a regression of exchange rate changes on these two variables, i.e., 

1,
*
1,1,211, )( ++ +−++=∆ ttttttt iiPPPDs εψψα .     (21) 

Table 4, Panel C provides simulation results for this regression and special cases thereof.  

 For the benchmark parameter values, we report results for the standard UIP regression, which are 

also reported in the first line of Table 4, Panel A; for the regression with only the PPP deviation variable; 

and for the bivariate regression. When include alone, the PPP deviation has a negative coefficient, i.e., 

deviations will be reversed in the future, and the R2 is high relative to the regressions with interest rate 

differentials, i.e., 7.75% versus a maximum of 1.41% in Panel A and 2.50% in Panel B. The actual 

deviation from PPP is a better predictor than interest rate differentials that provide a noisy proxy for this 

deviation based on the inflation differential in a single period. When included together, the magnitudes of 

the coefficients on both variables increase dramatically from their counterparts in the univariate 

regressions—from -0.13 to -0.21 on the PPP deviation and from -0.41 to -2.67 on the interest rate 

differential. While the deviation from PPP measures the magnitude of a crash, should it occur, it is also 
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related to current inflation differentials and hence the carry trade component as well. Including a direct 

measure of this component thus increases the explanatory power of both variables.  

 
IV. Empirical Analysis of the Exchange Rate Model 
In this section, we provide an analysis of the empirical implications of the model presented in Section III. 

The analysis is divided into two parts. The first part examines the explanatory power of the model’s two 

key state variables—the interest rate differential and the deviation of the current exchange rate from that 

implied by purchasing power parity. Specifically, for the G10 countries, we run the bivariate version of 

the forward premium regression in equation (2) using the deviation of the exchange rate from PPP. The 

second part uses these empirical results and the theoretical analysis of Section III to reconcile the forward 

premium anomaly (regression equation (2)) with the forward interest rate differential results (regression 

equation (6)) across multiple horizons. 

 

A. Exchange Rate Model 

Note that the deviation of the exchange rate from PPP is unobservable, but we can construct a variable 

that captures the same information, up to a constant. Specifically, consider the log real exchange rate 

)( *
tttt zzsq −+= ,     (22) 

where q and s are the log real and nominal exchange rates, respectively, and z and z* denote the log price 

levels in the domestic and foreign country, respectively. Under PPP, the real exchange rate is constant; 

thus, the observed real exchange rate equals the deviation of the exchange rate from this PPP implied 

level, up to an unknown constant. In the context of a regression analysis, this unknown constant will 

appear in the intercept. 

 Table 5, Panel A presents summary statistics for the log real exchange rate series for the nine 

currency pairs of the G10 countries. The means are essentially meaningless in that they reflect the 

normalization of the price level series in the two countries. It is not surprising that the series are very 

persistent given the persistence of the exchange rate series, and the relatively strong positive correlation 

between the series is also expected. 

 We estimate regressions of annual exchange rate changes (overlapping monthly) on the log real 

exchange rate and the interest rate differential at the beginning of the year (and special cases thereof): 

1,2
*
1,1,11, )( ++ ++−+=∆ ttttttt qiis εψψα .     (23) 

The results are reported in Table 5, Panel B. For ease of comparison, the top line for each exchange rate 

reports the standard UIP regressions, which are also reported in Tables 1 and 2. The second line reports 
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the regression with the log real exchange rate, and the final line reports the results from the full 

specification.  

 The specification in equation (23) is essentially the same as that estimated in Jorda and Taylor 

(2009). They motivate the real exchange rate variable as the deviation from the fundamental equilibrium 

exchange rate, although they do not provide a motivating model since they are primarily interested in 

forecasting and the associated trading strategies. They estimate various models using monthly data across 

multiple exchange rates for the period 1986-2008 and report results consistent with ours. 

 The first notable result in Table 5, Panel B is that, both alone and in the full specification, the log 

real exchange rate appears with a negative and statistically significant coefficient for all nine currency 

pairs. This negative coefficient is consistent with the intuition from the model. When the real exchange 

rate is high, i.e., the dollar has appreciated less or depreciated more than would be suggested by the 

relative inflation rates in the two countries, then this effect is expected to reverse in the coming year. 

Moreover, this reversion to PPP, or expected currency “crash”, explains a significant fraction of the 

variation in exchange rate changes on its own, with R2s averaging 15.2% for the G10 currencies. 

 The second notable result is that including both the interest rate differential and the deviation 

from PPP variables substantially increases the explanatory power of the regression. For example, for the 

USD/DEM exchange rate, the R2 increases to 27.1% (from 1.8% in the UIP regression and 18.2% in the 

real exchange rate regression). This pattern is not unusual and holds for all the other currency pairs 

(except USD/NOK for which the increase is small). In fact, the R2 increases on average to 24.9% versus 

4.0% in the UIP and 15.2% in the real exchange rate regressions, respectively. Clearly, controlling for 

both the PPP reversion effect and the carry trade effect together enhances our ability to identify both 

effects and increases the explanatory power for exchange rates, consistent with our model. 

 Consistent with the theory in Section III, the results presented here help explain why interest rate 

differentials on their own do not explain exchange rate movements. Including the real exchange rate 

variable that measures the magnitude of the deviation from PPP helps better isolate the offsetting effects.  

When this variable is added to the standard UIP regression, the magnitude of the coefficient on interest 

rate differentials increases, i.e., the coefficient becomes more negative, for all nine of the exchange rates. 

Specifically, the average coefficient, ψ1, in equation (23) is -1.80 compared to an average for the 

analogous coefficient, β, in equation (2) of -0.88. In other words, partially fixing the omitted variable 

problem in the standard forward premium regression in equation (2) more than doubles the magnitude of 

the average coefficient on the interest rate differential.  

A similar, but smaller, effect operates on the real exchange rate. While this variable primarily 

proxies for deviations from PPP, it also picks up the carry trade effect to a lesser degree. Consequently, 

adding the interest rate differential to a regression with the real exchange rate increases the magnitude of 
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the coefficient on the latter variable as well. Specifically, the average coefficient decreases from -0.31 in 

the univariate regression to -0.39 in the bivariate regression. 

 

B. Reconciling the Forward Premium Anomaly and Forward Interest Rate Differential Regression 

Results 

Section II.C of this paper provides a new way to look at the forward premium puzzle, using past forward 

interest rate differentials rather than current interest rate differentials. While the theoretical implications 

of these two approaches are similar, the empirical results show stark differences. The theoretical model of 

Section III offers an explanation to reconcile these results, namely that past forward interest rate 

differentials at different horizons pick up the two opposing effects – a carry effect and reversion to PPP – 

to different degrees, yielding horizon-dependent coefficients and R2s. In this section, we bring further 

evidence to support this hypothesis. 

As a first pass, we decompose interest rate differentials into forward interest rate differentials (set 

j years ago) and the difference between the two. Note that if the expectations hypothesis of interest rates 

were approximately true, then this decomposition would be equivalent to breaking interest rate 

differentials into their expected value (set j years ago) and unexpected shocks over these j years. 

Specifically, consistent with the simulation analysis of equation (20) in Section III.D, Table 6, Panel A 

presents results for the regression  
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for the three exchange rates (USD/DEM, USD/GBP, USD/CHF) and each horizon. For all three 

currencies, the coefficient jφ  is generally positive and increasing (albeit noisily) in horizon, consistent 

with the simulation results in Table 4, Panel B.  In contrast, the j,0φ  coefficients are all negative and 

declining in magnitude as the horizon increases, again in line with the simulation evidence. The R2s are 

quite impressive. 

For example, for the USD/DEM exchange rate, at forward rate horizons of one to four years, the 

jφ s are 0.55, 0.32, 1.33, and 2.40, respectively, while the j,0φ s are –2.32, –1.03, –0.96, and –0.88. From 

the standpoint of the model, the positive and increasing coefficients on the forward interest rate 

differentials are capturing the probability and magnitude of a currency crash back to PPP, while the 

negative coefficients on the forecast error in the exchange rate regression are capturing the carry trade 

effect. Thus, the negative j,0φ  explains why the forward premium anomaly exists from a statistical 

viewpoint, that is, why we get negative coefficients and low R2s in Table 1, Panel C. Breaking up current 

interest rates into the two components separates information about the magnitude and probability of future 
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currency reversions to PPP contained in the forward curve from current interest rates. By not breaking 

them up, the two information sources offset each other, leading to a low R2.  

One interesting stylized fact from the regression results in Table 2 is that using dated (i.e., old) 

information in forward interest rate differentials increases explanatory power for future exchange rates. 

The theoretical model of Section III argues that this information is important because these differentials 

predict the reversion component of future changes in exchange rates. That is, past forward interest rate 

differentials predict not only the interest rate differential (i.e., carry effect) but also the reversion to PPP. 

As the horizon increases, the latter term dominates.  

To better understand these results, we estimate an analogous regression to equation (23), namely 

annual exchange rate changes (overlapping monthly) on our PPP deviation measure and the past forward 

interest rate differential (instead of the interest rate differential): 
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These results are reported in Table 6, Panel B for the three available currencies (DEM, GBP, CHF), 

relative to the USD, over the horizons j = 0,…,4. The horizon j = 0 is equivalent to the regression 

specification (23) with results also provided in Table 5, Panel B. 

 Table 6, Panel B provides two pieces of evidence in support of the theory described in Section III.  

First, for horizons j = 1,..,4, six of twelve coefficients on the forward interest rate differential are now 

negative (three significantly so). For the regressions in Table 2 that did not include the PPP deviation 

variable, eleven of twelve coefficients on the forward interest rate differential were positive. Recall that 

the forward interest rate differential has information about two components – the carry effect and the 

reversion to PPP. Therefore, the reason that the coefficients flip sign is that in regression specification 

(25) the inclusion of qt proxies for the reversion to PPP component of the forward interest rate 

differential, leaving just the carry effect. As documented in Table 1, Panel C, the carry effect has a 

negative sign. 

Second, and equally important, in contrast to Table 2, Table 6, Panel B shows that the R2s now 

generally decrease with the horizon (with the exception of the final horizon for GBP). The reason is that 

past forward interest rate differentials (due to their staleness) are a poorer measure of real rate 

differentials than the current interest rate differential. Of course, the magnitude of the R2s are higher for 

regression specification (25) with j = 0 than not only the j = 1,…,4 horizons but also the alternative 

forward interest rate differential specifications given by either equations (6) or (24). 
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V. Concluding Remarks 
The forward premium puzzle is one of the more robust and widely studied phenomena in financial 

economics. Our paper makes three important contributions to this large literature.  

First, we document that recasting the UIP regression in terms of forward interest rate differentials, 

rather than spot interest rate differentials, deepens the puzzle. Specifically, the coefficients in these 

regressions are positive in contrast to the negative coefficients in the standard UIP specification, and the 

R2s are generally increasing in the horizon. 

Second, we present a model that can both explain the existing evidence and reconcile it with our 

new evidence. The key insight of the model is that exchange rate changes reflect two distinct but related 

phenomena. A carry trade effect associated with real rate distortions pushes exchange rates in the opposite 

direction to that predicted by a standard model of PPP. However, exchange rates probabilistically revert 

back to their fundamental levels. Forward interest rate differentials at different horizons pick up both of 

these conflicting effects to different degrees, yielding horizon-dependent coefficients and R2s. 

Finally, we show that within the model it is possible to decompose these two effects, either using 

forward rate differentials and shocks to these differentials, or interest rate differentials and real exchange 

rates. The data are consistent with these theoretical decompositions and provided further support for our 

model of exchange rate determination. 

While we present the simplest model that is broadly consistent with the empirical evidence, the 

model can be generalized across a number of dimensions. For example, we could add a real side to the 

economy, we could make the Taylor rule more complex, we could incorporate violations of the 

expectations hypothesis of interest rates, and we could postulate different dynamics for reversion to PPP. 

All of these adaptations could also be asymmetric, i.e., they could look different in the two countries. We 

believe that models along these lines could potentially explain much of the richness in the data. 
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Appendix A: Monte Carlo Exercise 
One potential concern with the results reported in Table 2 is that the standard errors are spuriously low 

and the R2s are spuriously high due to small sample problems in the regressions. We argue in Section II.C 

that the overlap problem is not that serious due to the relatively low predictability of exchange rate 

changes, but it is still important to verify this conjecture. Consequently, we construct a Monte Carlo 

experiment in which we employ a VAR for the relevant forward interest rate differentials, spot interest 

rate differentials, and changes in exchange rates, imposing the expectations hypotheses of interest rates 

and using two different models for exchange rates. In one experiment we impose the expectations 

hypothesis for exchange rates, i.e., we assume uncovered interest rate parity holds, and in the other 

experiment we assume exchange rates follow a random walk, i.e., exchange rate changes are 

unpredictable.  

We also consider two different distributional assumptions for the shocks to exchange rate 

changes. In the first analysis, we assume that the shocks across all equations follow a multivariate normal 

distribution. In the second analysis, we resample the shocks to exchange rates from the series of monthly 

exchange rate changes observed in the data. We then simulate these models, generating 100,000 

replications of 432 monthly observations. For each replication, we aggregate the data to an annual 

frequency, as in the empirical analysis, and we then estimate equation (6). For comparison purposes, we 

also estimate the long-horizon regression version of equation (2) following Chinn and Meredith (2005). 

Thus we can assess the small sample properties of our specification and also compare them to those of the 

alternative long-horizon regressions.  

Specifically, for the first experiment, we assume that the expectations hypotheses of exchange 

rates and interest rates hold at a monthly frequency, and that the longest maturity forward rate differential 

(the forward rate from month 59 to month 60) follows an AR(1) process:13 
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where 
                                                 
13 Throughout this appendix, periods are measured in months (in contrast to the rest of the paper where all periods 
are measured in years). 
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We impose the following structure on the covariance matrix of the shocks: 
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Specifically, we impose that the variances of the shocks to forward interest rate differentials decline in 

maturity and that the correlations between the shocks to forward interest rate differentials decline in the 

difference between the maturities, at fixed rates determined by the parameters iυ  and ijυ , respectively. 

We also impose zero correlation between the shock to exchange rate changes and the shocks to forward 

interest rate differentials. In the data, these correlations are relatively small and negative. However, these 

negative correlations are another manifestation of the violations of UIP that result in negative coefficients 

in the forward premium regressions in Tables 1 and 2. Therefore, we set the correlations to zero for the 

purposes of the Monte Carlo analyses.  

We calibrate the parameters of the model in order to match approximately the covariance matrix 

of the annual exchange rate changes and the annual spot and forward interest rate differentials, and the 

autocorrelation of the 4- to 5-year forward interest rate differentials. Obviously, these values differ 

somewhat across the two exchange rates we employ in the empirical analysis, so we target intermediate 

values. The inferences drawn from the Monte Carlo analysis are not sensitive to the precise choice of the 

parameters.  

Define the state vector 
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Equations (26)-(27) imply that ),0(~1 Ω+ MVNyt , where Ω is a function of ρ and Σ. The simulation 

procedure is as follows: 

 

1. Draw starting values yt from the distribution ),0(~ ΩMVNyt . 

2. Draw an error vector εt,t+1 from the distribution ),0(~1, Σ+ MVNttε . 

3. Compute yt+1 using this error vector and the lagged state vector via equation (26). 

4. Return to step 2 above. 

 

We generate 100,000 simulations of 432 monthly observations. We aggregate these 428 monthly 

data to an annual frequency and construct simulated samples with the appropriate lag structure of annual, 

monthly overlapping data of 361 observations each, the length of our sample. For each sample, we 

estimate the forward premium regressions in equation (6) and compute various test statistics. We also 

estimate the long-horizon versions of the forward premium regression in equation (2), after Chinn and 

Meredith (2005).  

We also conduct a second Monte Carlo exercise, which is identical to the first except that we 

assume that exchange rates follow a random walk: 
s
tttts 1,1, ++ =∆ ε  .      (30) 

Finally, we repeat the analyses above, relaxing the restriction that the shocks to exchange rate changes are 

normally distributed in order to incorporate the possible effects of fat tails in the relevant distribution. 

Instead, we resample with replacement actual monthly exchange rate changes from either the USD/GBP, 

the USD/DEM, or the USD/CHF series. To preserve the excess kurtosis, but to eliminate any sample-

specific mean or skewness effects, we augment the two series with an equal number of observations that 

correspond to the negative of the observed exchange rate changes.  

The second and third to last columns of Table 2, Panel A, discussed in Section II.C, and Table 

A.1 report the key results. Table A.1, Panel A compares the R2s from the regressions in equation (6), i.e., 

using forward interest rate differentials, to those from the long-horizon versions of the regression in 

equation (2), i.e., using long-horizon spot rate differentials, under the expectation hypothesis of exchange 
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rates (βj = 1). The statistics in this panel, and in the remainder of Table A.1, are calculated from 

simulations that resample from the USD/GBP exchange rate changes because this series exhibits the most 

excess kurtosis, but inferences from simulations under normality or using the USD/DEM or USD/CHF 

exchange rate changes are similar. When one uses equation (6), the biases in the R2s are clearly less 

severe than in the corresponding long-horizon regressions. As the horizon goes from one to four years, the 

bias, i.e., the difference between the mean R2 from the simulations and the true R2, ranges from 2.68% 

(5.92% simulated versus 3.24% true infinite sample R2) to 2.60% for regressions using forward interest 

rates, versus an increase from 4.49% (11.28% simulated versus 6.79% true) to 6.71% for the long-horizon 

spot rate regressions.  

Equally problematic for the long-horizon regressions, there is much less independent information 

in these regressions compared with the forward interest rate regressions. The correlations between the 

coefficient estimators range from 0.68 to 0.97 across the various horizons in the long-horizon regressions, 

in contrast to a much lower range of correlations, from 0.36 to 0.86, in the forward interest rate 

regressions.14 

Table A.1, Panel B reports the results under the assumption that the exchange rate follows a 

random walk (βj = 0). Again the forward interest rate regressions have smaller biases in R2s relative to the 

long-horizon regressions, and there is considerably more independent information in the former 

regression system. The regressions using the forward interest rate differentials have a bias that ranges 

from 2.79% to 3.10%, while the biases in the long-horizon regressions increase with the horizon up to 

9.99%. Overall, these simulation results suggest that small sample bias cannot explain the large 

differences in R2s across horizons found in the data, and that the forward interest rate regressions have 

better statistical properties than the corresponding long-horizon regressions. 

Table A.1, Panel C presents simulation results for the Wald and Lagrange multiplier tests for the 

regressions in equation (6) across the horizons with βj  = 1. Consistent with Berndt and Savin (1997) and 

Bekaert and Hodrick (2001), the Wald test substantially over-rejects the null hypothesis, while the LM 

test tends to under-reject the null hypothesis, especially for high significance levels. For example, for the 

hypothesis βj  = 1 across all four horizons, the LM test rejects only 4.6% and 0.2% of the time at the 5% 

and 1% levels, respectively, while the Wald test rejects the null hypothesis in 28.0% and 14.2% of the 

simulations. Moreover, while the LM test performs similarly for both the βj  = 1 and βj equal hypotheses, 

the small sample properties of the Wald test are much worse for the hypothesis βj  = 1.  

                                                 
14 The coefficient estimates are slightly downward biased in both cases, but these results are omitted for brevity. 
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Appendix B: Proofs of Regression Coefficients 
A. Uncovered Interest Rate Parity 

The process for exchange rates is 
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where W~  is the number of periods since the last crash. Rewrite the exchange rate change in terms of 

inflation differentials: 
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To compute this second term, note that (i) the inflation differentials are mean zero, so the covariance is 

just the expectation of the product, (ii) the dummy variable and the inflation differentials are independent 

of each other, and (iii) the covariance between inflation differentials at different points in time is 
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Putting it all back together, 
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B. Uncovered Interest Rate Parity with Forward Interest Rate Differentials 

Consider the regression on lagged forward interest rate differentials: 
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The dependent variable is the same as above. Under the expectations hypothesis of interest rates, the 

independent variable is 
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The regression coefficient is 
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The second term is 
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The finite sum is different from the UIP regression above because the first inflation differential starts 

from t+1 whereas the second inflation differential is at t-1, so there are 2 terms that lead the second 

differential. Splitting the sum, 
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and putting it all back together, 
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Note that the term in large round brackets in the adjustment term is the same as the term in square 

brackets in the adjustment term in the UIP regression. 

 

C. Exchange Rate Determination with Expected and Unexpected Interest Rate Differentials  

Consider the regression: 
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The dependent variable is the same as above. The second independent variable is the same as above for 

the regression based on forward rate differentials. The first independent variable, under the expectations 

hypothesis of interest rates, is 
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The independent variables are uncorrelated, thus 11 βφ = , and the other coefficient is the coefficient from 

a univariate regression 
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By construction, the shocks to the inflation process are uncorrelated with contemporaneous or lagged 

inflation, i.e., the only terms that matter are inflation differentials at t+1 and t. The second term is 

therefore
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Table 1: Preliminaries 
 
 

Panel A: Summary Statistics – Exchange Rates 
Exchange 

Rate 
Start 
Date 

No. of  
Obs. 

Mean 
(%) 

SD 
(%) 

1st Order 
Autocorr. 

12th Order 
Autocorr. 

USD/GBP  1/80 361 -1.35 11.46 0.93 -0.02 
USD/DEM  1/80 361 0.67 12.71 0.93 0.10 
USD/CHF 1/80 361 1.59 12.53 0.92 0.00 
USD/AUD 10/88 256 0.63 12.26 0.93 -0.16 
USD/CAD 1/80 361 0.40 6.93 0.93 -0.05 
USD/JPY 1/80 361 3.20 11.98 0.93 0.11 
USD/NZD 10/88 256 0.77 13.54 0.94 -0.05 
USD/NOK 2/86 288 0.81 10.87 0.91 -0.26 
USD/SEK 1/93 205 0.44 11.92 0.92 -0.06 

 
Correlations 

Exchange 
Rate 

USD 
/DEM 

USD 
/CHF 

USD 
/AUD 

USD 
/CAD 

USD 
/JPY 

USD 
/NZD 

USD 
/NOK 

USD 
/SEK 

USD/GBP 0.71 0.64 0.61 0.47 0.29 0.60 0.76 0.74 
USD/DEM  0.94 0.53 0.34 0.47 0.58 0.86 0.84 
USD/CHF   0.45 0.25 0.53 0.52 0.80 0.75 
USD/AUD    0.78 0.20 0.90 0.67 0.79 
USD/CAD     0.06 0.66 0.55 0.66 
USD/JPY      0.22 0.14 0.20 
USD/NZD       0.69 0.78 
USD/NOK        0.86 

 
 

Panel B: Summary Statistics – Forward Interest Rate Differentials 
1,*1, ++ −

jjjj ifif   
j 

Mean 
(%) 

SD  
(%) 

1st Order 
Autocorr. 

12th Order 
Autocorr. 

US-UK 0 -1.71 1.99 0.95 0.51 
1 -1.05 1.20 0.89 0.40 
2 -1.08 1.28 0.91 0.51 
3 -0.92 1.35 0.88 0.52 
4 -0.96 1.52 0.91 0.60 

US-Germ. 0 1.13 2.37 0.98 0.74 
1 1.38 1.83 0.97 0.73 
2 1.56 1.52 0.96 0.71 
3 1.57 1.46 0.96 0.71 
4 1.48 1.51 0.97 0.72 

US-Switz. 0 2.57 2.52 0.98 0.75 
 1 3.00 2.29 0.95 0.77 
 2 3.22 1.82 0.96 0.77 
 3 3.23 1.76 0.94 0.74 
 4 3.18 1.77 0.96 0.76 
US-Aus. 0 -2.09 1.97 0.98 0.67 
US-Can. 0 -0.62 1.32 0.95 0.60 
US-Jap. 0 3.23 2.05 0.97 0.55 
US-NZ 0 -2.63 1.46 0.96 0.45 
US-Nor. 0 -1.94 2.65 0.98 0.66 
US-Swe. 0 -0.35 2.02 0.99 0.57 
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Panel C: The Forward Premium Puzzle – 1-Year Horizon 
Exchange Rate α Std. Err. β Std. Err. R2 
USD/GBP -2.78 0.02 -0.84 0.88 2.11 
USD/DEM 1.47 0.02 -0.71 0.71 1.77 
USD/CHF 4.83 0.02 -1.26 0.60 6.41 
USD/AUD -0.43 0.03 -0.50 0.97 0.66 
USD/CAD 0.28 0.01 -0.20 0.65 0.14 
USD/JPY 11.63 0.02 -2.61 0.53 20.01 
USD/NZD -0.25 0.06 -0.39 1.98 0.17 
USD/NOK 0.55 0.02 -0.14 0.66 0.11 
USD/SEK 0.00 0.02 -1.24 1.05 4.44 

 
 
Panels A and B report summary statistics (mean, standard deviation, first-order autocorrelation, twelfth-order 
autocorrelation, and cross correlations) for annual changes in log exchange rates and 1-year forward interest rate 
differentials at various horizons, sampled monthly (horizon j = 0 corresponds to spot interest rates). Panel C reports 
coefficient estimates, corresponding standard errors (heteroskedasticity and autocorrelation adjusted using the 
Newey and West (1987) method), and R2s from the forward premium regression at the 1-year horizon 

.)( 1,
*
1,1,1, ++ +−+=∆ tttttt iis εβα  

Exchange rate data cover 1/1980–12/2010 and interest rate data cover 1/1980–1/2010, 1/1979–1/2009, 1/1978–
1/2008, 1/1977–1/2007, and 1/1976–1/2006 for horizons j = 0,…,4, respectively, for a maximum total of 361 
monthly observations (with later start dates and fewer observations as dictated by data availability and noted in 
Panel A). See Section II.A for a detailed description of the data. 
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Table 2: The Expectations Hypothesis of Exchange Rates 
 
 

Panel A: Regression Results 
Exchange Rate j αj Std. Err. β j Std. Err. SD P-value (%) R2 
USD/GBP 0 -2.78 1.99 -0.84 0.88 0.91 4.73 2.11 

1 -0.38 2.35 0.92 1.30 1.01 93.20 0.94 
2 2.34 2.13 3.41 1.01 1.14 4.06 14.61 
3 0.44 1.77 1.94 1.02 1.35 47.54 5.22 
4 1.09 1.90 2.54 0.87 1.71 36.34 11.28 

USD/DEM 0 1.47 1.87 -0.71 0.71 0.97 7.87 1.77 
1 -0.27 1.95 0.68 1.20 1.08 75.19 0.96 
2 -0.52 2.17 0.76 1.29 1.22 83.68 0.83 
3 -2.50 2.37 2.02 1.38 1.44 46.50 5.33 
4 -4.02 2.37 3.17 1.32 1.83 23.29 14.16 

USD/CHF 0 4.83 2.32 -1.26 0.60 1.04 3.41 6.41 
 1 2.06 2.52 -0.16 0.97 1.15 29.28 0.08 
 2 0.23 3.51 0.42 1.22 1.30 64.00 0.38 
 3 -2.92 3.97 1.40 1.32 1.53 78.27 3.85 
 4 -4.99 3.61 2.07 1.21 1.94 57.24 8.59 

 
 

Panel B: Hypothesis Tests 
Exchange 
Rate 

 
j 

 
Test 

 
β 

 
Std. Err. 

Deg. Of 
Freedom 

LM 
Stat. 

 
P-value 

Wald 
Stat. 

 
P-value 

USD/GBP 1-4 = 1.33 0.70 3 4.81 0.19 7.22 0.07 
 0-4 = 0.69 0.49 4 4.97 0.29 10.16 0.04 
 1-4 =1   4 4.75 0.31 8.87 0.06 
 0-4 =1   5 5.20 0.39 10.17 0.07 
USD/DEM 1-4 = 1.27 0.63 3 3.83 0.28 4.33 0.23 
 0-4 = -0.64 0.56 4 5.26 0.26 8.87 0.06 
 1-4 =1   4 3.93 0.42 4.72 0.32 
 0-4 =1   5 10.62 0.06 12.65 0.03 
USD/CHF 1-4 = -0.20 0.53 3 4.39 0.22 6.00 0.11 
 0-4 = -1.07 0.52 4 4.90 0.30 8.17 0.09 
 1-4 =1   4 4.40 0.35 6.80 0.15 
 0-4 =1   5 12.60 0.03 18.06 0.00 

 
 
Panel A reports coefficient estimates, corresponding standard errors (heteroskedasticity and autocorrelation adjusted 
using the Newey and West (1987) method) and R2s from the forward premium regression (see Section II.B) 
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using annual data sampled monthly. All regressions are run using exchange rate data over 1980–2010 (see Section 
II.A for a detailed description of the data). The columns labeled “SD” and “P-value” report simulated cross-sectional 
standard deviations of the estimated coefficient and two-sided P-values for the test β =1, respectively, under the 
Monte Carlo scheme described in Appendix A. Panel B reports tests of the hypotheses that β =1 and that the βs are 
equal for various horizons. The Lagrange Multiplier test statistics (LM Stat.) impose the relevant restrictions and the 
Wald test statistics (Wald Stat.) are based on the unrestricted parameter estimates. We report the restricted parameter 
estimate and associated standard error where relevant. 
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Table 3: Simulation Results from Exchange Rate Model  with Constant Crash Probability 
 
 

   R-squared (%) 
γ δ β0 β1 β2 β3 β4 0 1 2 3 4 
0.0 0 1.00 1.00 1.01 1.02 1.03 64.11 41.3 26.57 17.34 11.33 
0.0 -5 1.00 1.00 1.01 1.02 1.03 64.11 41.3 26.57 17.34 11.33 
0.0 -10 1.00 1.00 1.01 1.02 1.03 64.11 41.3 26.57 17.34 11.33 
0.0 -15 1.00 1.00 1.01 1.02 1.03 64.11 41.3 26.57 17.34 11.33 
0.0 -20 1.00 1.00 1.01 1.02 1.03 64.11 41.3 26.57 17.34 11.33 
0.3 0 0.73 0.73 0.73 0.74 0.75 64.11 41.3 26.57 17.34 11.33 
0.3 -5 0.06 0.21 0.39 0.61 0.80 0.03 0.22 0.50 0.77 0.86 
0.3 -10 -0.60 -0.31 0.05 0.48 0.86 0.71 0.12 0.00 0.11 0.24 
0.3 -15 -1.27 -0.83 -0.29 0.35 0.92 1.37 0.38 0.03 0.03 0.12 
0.3 -20 -1.94 -1.35 -0.63 0.21 0.98 1.77 0.55 0.08 0.01 0.08 
0.5 0 0.62 0.62 0.62 0.63 0.63 64.11 41.3 26.57 17.34 11.33 
0.5 -5 -0.32 -0.12 0.14 0.44 0.71 0.41 0.03 0.03 0.20 0.33 
0.5 -10 -1.26 -0.85 -0.34 0.26 0.79 1.52 0.44 0.05 0.02 0.10 
0.5 -15 -2.20 -1.59 -0.82 0.07 0.87 2.04 0.68 0.12 0.00 0.05 
0.5 -20 -3.14 -2.32 -1.30 -0.12 0.96 2.32 0.81 0.16 0.00 0.04 
0.7 0 0.53 0.54 0.54 0.54 0.55 64.11 41.3 26.57 17.34 11.33 
0.7 -5 -0.61 -0.36 -0.05 0.32 0.65 0.96 0.21 0.00 0.07 0.18 
0.7 -10 -1.75 -1.25 -0.63 0.09 0.74 1.96 0.64 0.10 0.00 0.06 
0.7 -15 -2.89 -2.14 -1.21 -0.13 0.84 2.36 0.83 0.17 0.00 0.03 
0.7 -20 -4.03 -3.03 -1.80 -0.36 0.94 2.57 0.93 0.21 0.01 0.02 

 
 
This table presents regression results from the simulated exchange rate model described in equations (7)-(11). 
Results are based on a single simula 
tion of 100,000 observations with an inflation persistence parameter θ = 0.8 and a constant crash probability of 7% 
per period. Columns 3-7 and 8-12 present coefficients and R2s, respectively, from the forward premium regression 
(see Section II.B) 
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for horizons up to 4 years.  
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Table 4: Simulation Results from Exchange Rate Model with Time-Varying Crash Probability 
 
 

Panel A: Forward Premium Regressions 
     R-squared (%) 
γ δ θ p  β0 β1 β2 β3 β4 0 1 2 3 4 
0.5 -10 0.80 7% -0.41 0.27 1.03 1.82 2.61 0.21 0.06 0.53 1.06 1.41 
0.4 -10 0.80 7% -0.22 0.37 1.02 1.71 2.40 0.08 0.14 0.70 1.26 1.59 
0.6 -10 0.80 7% -0.57 0.19 1.03 1.90 2.79 0.32 0.02 0.42 0.94 1.28 
0.5 -8 0.80 7% -0.21 0.34 0.94 1.58 2.21 0.08 0.14 0.70 1.26 1.59 
0.5 -12 0.80 7% -0.62 0.21 1.10 2.05 3.00 0.32 0.02 0.42 0.94 1.28 
0.5 -10 0.75 7% -0.53 0.28 1.24 2.33 3.47 0.36 0.06 0.63 1.24 1.55 
0.5 -10 0.85 7% -0.27 0.29 0.85 1.40 1.90 0.08 0.07 0.44 0.86 1.14 
0.5 -10 0.80 6% -0.61 0.06 0.82 1.59 2.37 0.42 0.00 0.31 0.76 1.07 
0.5 -10 0.80 8% -0.27 0.46 1.22 1.96 2.74 0.10 0.18 0.81 1.34 1.67 
 
 

Panel B: Bivariate Augmented Forward Premium Regressions 
            R-squared (%) 
γ δ θ p  1,0φ  

2,0φ  
3,0φ  

4,0φ  
1φ  2φ  3φ  

4φ  1 2 3 4 

0.5 -10 0.80 7% -1.63 -1.42 -1.21 -1.04 0.28 1.03 1.83 2.63 1.23 1.98 2.39 2.50 
0.4 -10 0.80 7% -1.28 -1.10 -0.92 -0.76 0.37 1.03 1.72 2.41 1.12 1.87 2.28 2.39 
0.6 -10 0.80 7% -1.94 -1.69 -1.46 -1.27 0.19 1.03 1.91 2.81 1.35 2.08 2.48 2.59 
0.5 -8 0.80 7% -1.18 -1.01 -0.85 -0.71 0.34 0.95 1.58 2.23 1.12 1.87 2.28 2.39 
0.5 -12 0.80 7% -2.09 -1.82 -1.58 -1.36 0.21 1.11 2.06 3.02 1.35 2.08 2.48 2.59 
0.5 -10 0.75 7% -1.58 -1.36 -1.16 -0.99 0.28 1.25 2.34 3.49 1.45 2.25 2.64 2.67 
0.5 -10 0.85 7% -1.74 -1.51 -1.30 -1.10 0.30 0.86 1.41 1.91 1.04 1.70 2.06 2.14 
0.5 -10 0.80 6% -1.80 -1.61 -1.40 -1.22 0.06 0.82 1.60 2.39 1.33 2.03 2.39 2.47 
0.5 -10 0.80 8% -1.57 -1.32 -1.07 -0.89 0.46 1.22 1.97 2.75 1.34 2.15 2.47 2.54 
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Table 4 Cont’d 
 
 

Panel C: Bivariate Real Exchange Rate Regressions 
γ δ θ p  1ψ  2ψ  2R  
0.5 -10 0.80 7%  -0.41 0.21 
0.5 -10 0.80 7% -0.13  7.75 
0.5 -10 0.80 7% -0.21 -2.67 13.73 
0.4 -10 0.80 7% -0.21 -2.18 13.68 
0.6 -10 0.80 7% -0.21 -3.09 13.77 
0.5 -8 0.80 7% -0.21 -2.01 13.68 
0.5 -12 0.80 7% -0.21 -3.32 13.77 
0.5 -10 0.75 7% -0.20 -2.56 13.72 
0.5 -10 0.85 7% -0.21 -2.78 13.49 
0.5 -10 0.80 6% -0.17 -2.68 12.34 
0.5 -10 0.80 8% -0.24 -2.66 15.12 

 
 
This table presents regression results from the simulated exchange rate model described in equations (7)-(10). 
Results are based on a single simulation of 100,000 observations with a time-varying crash probability given by 
equation (15), where the weight is set so that the average crash probability equals the value in column 4. The 
benchmark model is presented in the first row of each panel, and subsequent pairs of rows show deviations around 
this benchmark for a specific parameter, which is highlighted in bold. In Panel A, columns 5-9 and 10-14 present 
coefficients and R2s, respectively, from the forward premium regression (see Section II.B) 
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for horizons up to 4 years. In Panel B, columns 5-12 and 13-16 present coefficients and R2s, respectively, from the 
bivariate augmented forward premium regression model (see Section III.D) 
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for horizons up to 4 years. In Panel C, columns 5-6 and 7 present coefficients and R2s, respectively, from the 
bivariate real exchange rate regression model 
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Table 5: Real Exchange Rates and the Expectations Hypothesis of Exchange Rates 
 
 

Panel A: Summary Statistics 
Exchange 

Rate 
Start 
Date 

No. of  
Obs. Mean SD 

1st Order 
Autocorr. 

12th Order 
Autocorr. 

USD/GBP  1/80 361 0.55 0.12 0.97 0.54 
USD/DEM  1/80 361 0.18 0.16 0.98 0.69 
USD/CHF 1/80 361 -0.27 0.16 0.98 0.69 
USD/AUD 10/88 256 -0.34 0.15 0.98 0.70 
USD/CAD 1/80 361 -0.21 0.11 0.98 0.83 
USD/JPY 1/80 361 6.85 0.19 0.98 0.79 
USD/NZD 10/88 256 -0.50 0.16 0.98 0.68 
USD/NOK 2/86 288 -1.89 0.12 0.97 0.61 
USD/SEK 1/93 205 -1.99 0.14 0.97 0.64 

 
Correlations 

Exchange 
Rate 

USD 
/DEM 

USD 
/CHF 

USD 
/AUD 

USD 
/CAD 

USD 
/JPY 

USD 
/NZD 

USD 
/NOK 

USD 
/SEK 

USD/GBP 0.73 0.63 0.65 0.39 0.27 0.63 0.71 0.63 
USD/DEM  0.96 0.79 0.39 0.60 0.80 0.86 0.91 
USD/CHF   0.69 0.26 0.72 0.74 0.81 0.87 
USD/AUD    0.86 0.03 0.93 0.89 0.74 
USD/CAD     -0.09 0.68 0.82 0.55 
USD/JPY      0.06 0.15 0.45 
USD/NZD       0.83 0.81 
USD/NOK        0.80 
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Panel B: Regression Results 
Exchange 
Rate 

 
α 

 
Std. err. 

 
ψ1 

 
Std. err. 

 
ψ2 

 
Std. err. 

 
R2 

USD/GBP -2.78 1.99 -0.84 0.88   2.11 
25.57 6.86   -0.49 0.12 27.01 
25.68 6.12 -1.49 0.68 -0.54 0.10 33.44 

USD/DEM 1.47 1.87 -0.71 0.71   1.77 
6.60 3.31   -0.33 0.12 18.24 

10.00 2.94 -1.69 0.53 -0.42 0.11 27.05 
USD/CHF 4.83 2.32 -1.26 0.60   6.41 
 -6.28 3.25   -0.29 0.13 13.55 
 -4.38 3.21 -2.45 0.59 -0.45 0.11 33.56 
USD/AUD -0.43 3.02 -0.50 0.97   0.66 
 -7.59 4.77   -0.24 0.14 8.99 
 -15.52 6.56 -1.87 1.00 -0.36 0.14 15.82 
USD/CAD 0.28 1.12 -0.20 0.65   0.14 
 -2.98 2.29   -0.16 0.10 6.65 
 -4.15 2.88 -0.78 0.80 -0.19 0.10 8.57 
USD/JPY 11.63 2.10 -2.61 0.53   20.01 
 145.85 74.68   -0.21 0.11 11.06 
 191.28 60.37 -3.00 0.52 -0.26 0.09 36.85 
USD/NZD -0.25 5.57 -0.39 1.98   0.17 
 -15.24 7.38   -0.32 0.15 15.13 
 -26.82 8.94 -2.51 1.85 -0.42 0.12 20.96 
USD/NOK 0.55 1.89 -0.14 0.66   0.11 
 -72.26 28.11   -0.39 0.15 18.61 
 -74.79 26.99 -0.36 0.55 -0.40 0.15 19.37 
USD/SEK 0.00 2.18 -1.24 1.05   4.44 
 -69.28 31.63   -0.35 0.16 17.40 
 -85.06 24.15 -2.03 0.94 -0.43 0.12 28.41 

 
 
Panel A reports summary statistics for log real exchange rates over the period January 1980 to January 2010 (with 
later start dates as dictated by data availability). Panel B reports coefficient estimates, corresponding standard errors 
(heteroskedasticity and autocorrelation adjusted using the Newey and West (1987) method) and R2s from the 
estimation of the augmented forward premium regression (see Section IV.A for details): 
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using annual data sampled monthly.  
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Table 6: Decomposing Interest Rate Differentials 
 
 

Panel A: Augmented Forward Interest Rate Regression I 
Exchange 
Rate 

 
j 

 
αj 

 
Std. err. 

 

jφ  
 

Std. err. 
 

j,0φ  
 

Std. err. 
 

R2 

USD/GBP 1 -1.69 2.37 0.37 1.37 -1.10 0.84 4.27 
2 0.97 2.30 2.60 1.21 -0.78 0.68 16.44 
3 -0.84 2.16 1.14 1.45 -0.68 0.87 6.59 
4 0.32 1.97 2.03 1.22 -0.38 0.80 11.69 

USD/DEM 1 -0.68 1.95 0.55 1.15 -2.32 0.93 9.79 
2 -0.28 2.17 0.32 1.37 -1.03 0.67 4.05 
3 -1.84 2.40 1.33 1.57 -0.96 0.71 8.42 
4 -3.20 2.45 2.40 1.55 -0.88 0.80 16.84 

USD/CHF 1 2.53 2.67 -0.66 0.87 -2.40 1.03 11.32 
 2 1.47 3.40 -0.30 1.13 -1.66 0.70 9.68 
 3 -0.36 4.00 0.30 1.37 -1.49 0.65 12.50 
 4 -1.84 4.04 0.83 1.42 -1.32 0.66 15.65 

 
 

Panel B: Augmented Forward Interest Rate Regression II 
 j α j Std. Err. β j Std. Err. γ j Std. Err. R2 
USD/GBP 0 25.68 6.12 -1.49 0.68 -0.54 0.10 33.44 

1 29.37 6.86 -2.18 1.11 -0.60 0.13 30.90 
2 22.93 8.15 1.31 1.30 -0.42 0.16 28.55 
3 25.32 6.79 1.16 0.99 -0.47 0.12 28.82 
4 26.29 5.65 2.20 0.88 -0.47 0.11 35.39 

USD/DEM 0 10.00 2.94 -1.69 0.53 -0.42 0.11 27.05 
1 10.21 3.24 -1.45 1.00 -0.42 0.12 21.19 
2 9.73 3.84 -1.32 1.46 -0.39 0.12 20.13 
3 5.24 3.53 0.62 1.08 -0.31 0.11 18.66 
4 2.00 3.43 2.46 1.07 -0.28 0.11 26.36 

USD/CHF 0 -4.38 3.21 -2.45 0.59 -0.45 0.11 33.56 
 1 -5.18 2.99 -2.64 0.61 -0.54 0.11 26.62 
 2 -3.70 3.55 -2.19 1.41 -0.45 0.13 19.30 
 3 -6.21 4.28 -0.05 1.12 -0.29 0.11 13.55 
 4 -9.01 4.18 1.31 1.03 -0.24 0.12 16.52 

 
 
Panel A reports coefficient estimates, corresponding standard errors (heteroskedasticity and autocorrelation adjusted 
using the Newey and West (1987) method) and R2s from the estimation of the bivariate regression of interest rate 
and forward interest rate differentials (see Section IV.B for details): 
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using annual data sampled monthly. Panel B reports coefficient estimates, corresponding standard errors 
(heteroskedasticity and autocorrelation adjusted using the Newey and West (1987) method) and R2s from the 
estimation of the bivariate regression of deviations from PPP and forward interest rate differentials (see Section 
IV.B for details): 
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All regressions are run using exchange rate data over 1980–2010 (see Section II.A for a detailed description of the 
data). 
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Table A.1: Monte Carlo Results 
 

Panel A: βj = 1 
 Forward Interest Rates Long Horizon 
j True R2 Mean R2 SD R2 True R2 Mean R2 SD R2 
0 4.12 6.97 7.46 4.12 6.97 7.46 
1 3.24 5.99 6.83 6.79 11.43 11.76 
2 2.42 5.13 6.15 8.32 14.13 14.27 
3 1.64 4.36 5.47 8.96 15.44 15.55 
4 0.91 3.54 4.63 8.88 15.71 15.99 

 
 Correlation of βj 
 Forward Interest Rates Long Horizon 
j 1 2 3 4 1 2 3 4 
0 0.86 0.69 0.53 0.37 0.95 0.86 0.78 0.69 
1  0.85 0.65 0.46  0.96 0.89 0.80 
2   0.83 0.58   0.97 0.90 
3    0.77    0.97 

 
Panel B: βj = 0 

 Forward Interest Rates Long Horizon 
j True R2 Mean R2 SD R2 True R2 Mean R2 SD R2 
0 0.00 3.07 4.09 0.00 3.07 4.09 
1 0.00 3.05 4.05 0.00 5.63 7.14 
2 0.00 3.01 3.99 0.00 7.62 9.35 
3 0.00 2.95 3.91 0.00 9.00 10.78 
4 0.00 2.78 3.72 0.00 9.87 11.63 

 
 Correlation of βj 
 Forward Interest Rates Long Horizon 
j 1 2 3 4 1 2 3 4 
0 0.87 0.69 0.54 0.37 0.95 0.87 0.79 0.70 
1  0.85 0.65 0.45  0.96 0.89 0.81 
2   0.82 0.56   0.97 0.90 
3    0.76    0.97 

 
Panel C: Hypothesis Tests 

Hypothesis  LM Test Wald Test 
βj = 1 Level (%) 10 5 1 10 5 1 

 Rejection (%) 14.28 5.31 0.24 38.72 28.70 14.71 
βj equal Level (%) 10 5 1 10 5 1 

 Rejection (%) 12.99 4.91 0.27 26.92 17.49 6.82 
 
 

Table A.1 reports the results from a Monte Carlo simulation in which we generate 100,000 replications of 432 monthly 
observations from a model that imposes the expectations hypothesis of interest rates and either the expectations hypothesis of 
exchange rates, βj = 1, or a random walk in exchange rates,  βj = 0. These observations are then aggregated to construct samples 
of 361 annual, monthly overlapping observations. (See Appendix A for a detailed description and Richardson and Smith (1992) 
for an analysis of the benefits of using overlapping observations.) Panels A and B report statistics on the coefficient estimates and 
R2s from the forward premium regressions (see Section II.B) 
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and the long-horizon regressions, after Chinn and Meredith (2005), 
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 “True” refers to the analytical (infinite sample) value, and “Mean” and “SD” refer to the mean and standard deviation of the 
values across the simulations. For the test statistics, Panel C reports the percent of the simulations that reject the null hypothesis 
at the 10%, 5%, and 1% levels under βj = 1.  
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