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We investigate the relation between returns on stock indices and their corresponding
futures contracts to evaluate potential explanations for the pervasive yet anomalous
evidence of positive, short-horizon portfolio autocorrelations. Using a simple theoret-
ical framework, we generate empirical implications for both microstructure and par-
tial adjustment models. The major findings are (i) return autocorrelations of indices
are generally positive even though futures contracts have autocorrelations close to zero,
and (ii) these autocorrelation differences are maintained under conditions favorable for
spot-futures arbitrage and are most prevalent during low-volume periods. These results
point toward microstructure-based explanations and away from explanations based on
behavioral models.

Arguably one of the most striking asset pricing anomalies is the evidence of
large, positive, short-horizon autocorrelations for returns on stock portfolios,
first described in Hawawini (1980), Conrad and Kaul �1988�1989�1998�
and Lo and MacKinlay (1988, 1990b). The evidence is pervasive both across
sample periods and across countries, and has been linked to, among other
financial variables, firm size [Lo and MacKinlay (1988)], volume [Chordia
and Swaminathan (2000)], analyst coverage [Brennan, Jegadeesh and
Swaminathan (1993)], institutional ownership [Badrinath, Kale and Noe
(1995) and Sias and Starks (1997)], and unexpected cross-sectional return
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dispersion [Connolly and Stivers (1999)].1 These results are puzzling to finan-
cial economists precisely because time variation in expected returns is not a
high-frequency phenomenon; asset pricing models link expected returns with
changing investment opportunities, which, by their nature, are low-frequency
events.
As a result, most explanations of the evidence have centered around so-

called partial adjustment models in which one group of stocks reacts more
slowly to aggregate information than another group of stocks. Because the
autocovariance of a well-diversified portfolio is just the average cross-auto-
covariance of the stocks that make up the portfolio, positive autocorrelations
result. While financial economists have put forth a variety of economic the-
ories to explain this lagged adjustment, many of these models rely on either
an underlying behavioral model, that is, irrationality on the part of some
agents that matters for pricing, or asymmetric information with market fric-
tions that prevents arbitrageurs from entering the market [see, e.g., Holden
and Subrahmanyam (1992), Brennan, Jegadeesh, and Swaminathan (1993),
and Jones and Slezak (1999)]. Alternative and seemingly less popular expla-
nations focus on typical microstructure biases [Boudoukh, Richardson and
Whitelaw (1994)] or transaction costs which prevent these autocorrelation
patterns from disappearing in financial markets [Mech (1993)]. The latter
explanation, however, does not explain why these patterns exist in the first
place.
This article draws testable implications from the various theories by exploit-

ing the relation between the spot and futures market.2 Specifically, while
much of the existing focus in the literature has been on the statistical prop-
erties of artificially constructed portfolios (such as size quartiles), there are
numerous stock indices worldwide that exhibit similar properties. Moreover,
many of these indices have corresponding futures contracts. Since there is a
direct link between the stock index and its futures contract via a no-arbitrage
relation, it is possible to show that, under the aforementioned economic the-
ories, the futures contract and the underlying index should exhibit the same
time-series properties. In contrast, why might the properties of the returns
on the index and its futures contract diverge? If the index is valued using
mismeasured prices (e.g., stale prices or bid and ask prices), then the link

1 Another powerful and related result is the medium-term continuation of returns, the momentum effect, doc-
umented by Jegadeesh and Titman (1993). While this evidence tends to be firm specific, it also produces
positive autocorrelation in portfolio stock returns [see Moskowitz and Grinblatt (1999) as a recent example].
Moreover, this evidence holds across countries [e.g., Rouwenhorst (1998)] and across time periods.

2 Miller, Muthuswamy, and Whaley (1994) and Boudoukh, Richardson, and Whitelaw (1994) also argue that
the properties of spot index and futures returns should be different. Miller, Muthuswamy, and Whaley (1994)
look at mean reversion in the spot-futures basis in terms of nontrading in S&P 500 stocks, while Boudoukh,
Richardson, and Whitelaw (1994) look at combinations of stock indices, like the S&P 500 and NYSE, in order
to isolate portfolios with small stock characteristics. While the conclusions in those articles are consistent
with this article, those articles provide only heuristic arguments and focus on limited indices over a short time
span. This article develops different implications from various theories and tests them across independent,
international data series.
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between the two is broken. Alternatively, if transaction costs on the individ-
ual stocks comprising the index are large enough, then the arbitrage cannot
be implemented successfully. This article looks at these possibilities in a sim-
ple theoretical framework and tests their implications by looking at spot and
futures data on 24 stock indices across 15 countries.
The major results are as follows:

• The return autocorrelations of indices with less liquid stocks (such as
the Russell 2000 in the United States, the TOPIX in Japan, and the
FTSE 250 in the United Kingdom) tend to be positive even though their
corresponding futures contracts have autocorrelations close to zero. For
example, the Russell 2000’s daily autocorrelation is 22%, while that of
its corresponding futures contract is 6%. The differences between these
autocorrelation levels are both economically and statistically significant.

• Transaction costs do not appear to explain the magnitude of these auto-
correlation differences, as the magnitude changes very little even when
adjusting for periods favorable for spot-futures arbitrage. We view this
as evidence against the type of partial adjustment models put forth in
the literature.

• Several additional empirical facts point to microstructure-type biases,
such as stale prices, as the most probable source of the differences
between the autocorrelations of the spot index and the futures contracts.
For example, in periods of generally high volume, the return autocor-
relation of the spot indices drops dramatically. The futures contracts’
properties change very little, irrespective of the volume in the market.

• All of these results hold internationally, as well as domestically. This
fact is especially interesting given that the cross-correlation across inter-
national markets is fairly low, thus providing independent evidence on
the issues at hand.

The article is organized as follows. In Section 1, we provide an analysis of
the relation between stock indices and their corresponding futures contracts
under various assumptions, including the random walk model, a stale price
model, and a partial adjustment model. Of special interest, we draw implica-
tions for the univariate properties of these series with and without transaction
costs. Section 2 describes the data on the various stock indices and futures
contracts worldwide, while Section 3 provides the main empirical results of
the article. In Section 4 we make some concluding remarks.

1. Models of the Spot-Futures Relation

There is a large literature in finance on the relation between the cash mar-
ket and the stock index futures market, and, in particular, on their lead-
lag properties. For example, MacKinlay and Ramaswamy (1988), Stoll and
Whaley (1990), and Chan (1992), among others, all look at how quickly
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the cash market responds to market-wide information that has already been
transmitted into futures prices. While this literature shows that the cash and
futures market have different statistical properties, there are several reasons
why additional analysis is needed. First, while there is strong evidence that
the futures market leads the cash market, this happens fairly quickly. Second,
most of the analysis is for indices with very actively traded stocks, such as
the S&P 500 or the MMI, which possess very little autocorrelation in their
return series. Third, these examinations are at the intraday level and are not
concerned with longer horizons that are more relevant for behavioral-based
models.
In this section we provide a thorough look at implications for the uni-

variate statistical properties of the cash and futures markets under various
theoretical assumptions about market behavior with and without transac-
tion costs. In order to generate these implications, we make the following
assumptions:

• The index, S, is an equally weighted portfolio of N assets with corre-
sponding futures contract, F .3

• To the extent possible (i.e., transaction costs aside), there is contem-
poraneous arbitrage between the spot and futures market. That is, the
market is rational with respect to index arbitrage.

• Prices of individual securities, Si� i = 1� � � � �N , follow a random walk
in the absence of any partial adjustment effects. This assumption basi-
cally precludes any “equilibrium” time variation in expected returns at
high frequencies.

• The dividend processes for each asset, di, and the interest rate, i, are
constant.

Under these assumptions, we consider three models. The first is the stan-
dard model with no market microstructure effects or partial adjustment behav-
ior. The implications of this model are well known and are provided purely
as a benchmark case. The second model imposes a typical market structure
bias, namely stale prices, on a subset of the stocks in the index. The third
model imposes a lagged adjustment process for some of the stocks in the
index. In particular, we assume that some stocks react to market-wide infor-
mation more slowly due to the reasons espoused in the literature. Transaction
costs are then placed on trading in the index to better understand the rela-
tion between the cash and futures markets. More detailed derivations of the
results for the three models are provided in the appendix.

3 The assumption of equal weights is used for simplicity.
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1.1 Case 1: the random walk model
Applying the cost of carry model and using standard arbitrage arguments,
the futures price is simply the current spot price times the compounded rate
of interest (adjusted for dividends):4

Ft�T = Ste
�i−d��T−t��

where Ft�T is the futures price of the index, maturing in T − t periods, St

is the current level of the index, i is the continuously compounded rate of
interest, d is the continuously compounded rate of dividends paid, and T is
the maturity date of the futures contract. Thus, under the cost of carry model,
we can write the return on the futures as

rFt = rSt − i� (1)

where rF is the continuously compounded return (i.e., the log price change)
on the futures and rS is the return on the underlying spot index (see the
appendix for details). Note that the change in the continuously compounded
interest rate (adjusted for the dividend rate), ��i−d�, drops out due to the
assumption of constant interest rates and dividend yields (see footnote 4).
Two observations are in order. First, under the random walk model, the

autocorrelation of futures returns will mimic that of the spot market, that
is, it will be zero. Second, even in the presence of transaction costs, these
results should hold, as the futures price should still take on the properties of
the present value of the future stock index price, which is the current value
of the index in an efficient market.

1.2 Case 2: the stale price model
The market microstructure literature presents numerous examples of market
structures that can induce non-random walk behavior in security prices. One
particular characteristic of the data that has received considerable attention
in the literature is nonsynchronous trading. Nonsynchronous trading refers to
the fact that stock prices are assumed to be recorded at a particular point in
time from period to period, when in fact they are recorded at irregular points
in time during these periods. For example, stock indices are recorded at the
end of trading using the last transaction price of each stock in the index. If
those stocks (i) did not trade at the same time and (ii) did not trade exactly
at the close, then the index would be subject to nontrading-induced biases in
describing its characteristics. The best known characteristic, of course, is the
spurious positive autocorrelation of index returns.

4 See, for example, MacKinlay and Ramaswamy (1988). Note that we assume that interest rates and dividend
yields are constant. In practice, this assumption is fairly robust due to the fact that these financial variables
are significantly less variable than the index itself.
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Models of nontrading have appeared throughout the finance literature,
including, among others, Fisher (1966), Scholes and Williams (1977), Cohen
et al. (1986), Atchison, Butler, and Simonds (1987), Lo and MacKinlay
(1990a), and Boudoukh, Richardson, and Whitelaw (1994). There is also
substantial empirical literature on the ability of nontrading to explain port-
folio autocorrelations at a daily frequency.5 In perhaps the most definitive
study, in which nontrading frequencies are calibrated to those found in intra-
day data, Kadlec and Patterson (1999) find that nontrading can explain 85%,
52%, and 36% of daily autocorrelations on portfolios of small, random, and
large stocks, respectively. In other words, nontrading is important but not the
whole story. Similar conclusions are reached by researchers who minimize
nontrading by eliminating stocks that do not trade on the relevant days [e.g.,
Mech (1993), Ogden (1997), and Chordia and Swaminathan (2000)]. Note
that ensuring that a stock trades each day is not sufficient to eliminate the
nontrading effect, since the last trade may occur at some time other than the
close.
Conditioning on trading volume is a natural way to explore the issue of

nontrading, but the most relevant study, Chordia and Swaminathan (2000),
uses turnover (the number of shares traded divided by the number of shares
outstanding) instead of share volume. This methodology leads to the problem
that stocks with large share volumes and large numbers of shares outstanding
can still be classified as low “volume” stocks. Koutmos (1997) uses volatility,
which is correlated with volume, and shows that, across six international
markets, index autocorrelations are decreasing in volatility.
If nontrading is unable to explain portfolio autocorrelations completely,

what are other potential sources of stale prices? On the NYSE, market mak-
ers are rewarded for maintaining price continuity. Specifically this is one
dimension on which they are evaluated, and these evaluations play a role
when the NYSE decides to which specialist company to assign a new stock
(listing). Consequently a specialist may be willing to take a loss on a few
small trades in order to avoid updating a price on a thinly traded security
too quickly. Alternatively, investors may be slow to remove limit orders after
the arrival of new information.6 Consequently some trades may take place at
these stale prices.
On the Nasdaq, there is substantial evidence that SOES bandits (individ-

ual investors using the Small Order Execution System) trade profitably by
exploiting the stale quotes of Nasdaq market makers [Harris and Schultz
(1998)]. These trades lead to transactions at stale prices. Note that, in gen-
eral, SOES bandits are exploiting information that is already in the market in

5 There are also puzzling positive autocorrelations at the weekly frequency for some artificially constructed
portfolios, but for our indices, spot autocorrelations are essentially zero at this frequency; therefore extending
the horizon is of no interest.

6 We thank Ron Masulis for pointing out this explanation.
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the form of updated quotes from other dealers who make markets in the same
stocks. There are a substantial number of SOES bandits—more than 2,000
according to Harris and Schultz (1998). Why don’t market makers hire addi-
tional employees to maintain updated quotes? The obvious answer is that it
is cheaper to allow SOES bandits to provide this service, and to make losses
on these trades, than to hire additional employees. Harris and Schultz (1998)
also speculate that it is difficult for dealers to structure contracts with their
traders to give them the appropriate incentives to maintain updated quotes.
More generally, if there is any cost to either updating quotes or to updat-

ing/removing old limit orders, we would expect to see stale prices. Of course,
these stale prices are much more likely to be observed for thinly traded
stocks. The key point is that these prices are not the result of behavioral
biases, but rather of imperfect markets, that is, costs and frictions. That is,
the prices do not represent market values at which one could actually trade
a reasonable number of shares.
In this article we choose a slightly modified version of the simple model

of Lo and MacKinlay (1990a) to illustrate the relation between the spot and
futures markets in the presence of stale prices. In any given period there is
an exogenous probability �i that the price of stock Si is not updated, either
due to nontrading or some other feature of the market. Furthermore, each
security’s return, ri, is described by a zero-mean, i.i.d. factor, m. Lo and
MacKinlay (1990a) show that the measured excess returns on an equally
weighted portfolio of N securities, denoted rŜ , can be written as

rŜt = �+ �1−��
�∑
k=0

�kmt−k�

where � is the average mean return of the N stocks, and � is the probability
of observing a stale price assuming equal probabilities across the stocks. Of
course, the true returns are simply described by

rSt = �+mt�

where any idiosyncratic risk has been diversified away.
In a no-arbitrage world, the price of the futures contract will reflect the

present value of the stock index at maturity. That is,

Ft�T = PV�ŜT �e
i�T−t� (2)

(see the appendix for details). Note that due to nontrading the present value
of the index is no longer its true value, but instead a value that partly depends
on the current level of staleness in prices. This is because the futures price
is based on the measured value of the index at maturity, which includes
stale prices. Within the Lo and MacKinlay (1990a) model, prices today have
some, albeit a small amount of, information about the staleness of prices in
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the distant future. However, as long as the contract is not close to expiration,
the effect, which is of order �T−t , is miniscule. In particular, it is possible
to show that the corresponding futures return is

rFt+1
= �1−�T−t��rSt+1

− i� (3)

(see the appendix for details).
Not surprisingly, in contrast to the measured index returns, futures returns

will not be autocorrelated, due to the efficiency of the market and the no
arbitrage condition between the cash and futures market. However, the futures
return will differ slightly from the true excess spot return because it is priced
off the measured value of the spot at maturity.

1.3 Case 3: the partial adjustment model
As an alternative to market microstructure-based models, the finance litera-
ture has developed so-called partial adjustment models. Through either infor-
mation transmission, noise trading or some other mechanism, these models
imply that some subset of securities partially adjust, or adjust more slowly,
to market-wide information. While there is some debate about whether these
models can be generated in both a reasonable and rational framework, all
the models impose some restrictions on trading so that the partial adjustment
effects cannot get arbitraged away. There are a number of models that produce
these types of partial adjustment effects [e.g., see Holden and Subrahmanyam
(1992), Foster and Viswanathan (1993), Badrinath, Kale, and Noe (1995),
Klibanoff, Lamont, and Wizman (1998), Chordia and Swaminathan (2000),
and Llorente et al. (2001)].
Here we choose one particular model, which coincides well with Section

1.2, namely Brennan, Jegadeesh, and Swaminathan (1993). We assume that
the index is made up of two equally weighted portfolios of stocks, S1 and
S2, which are full (S1) and partial (S2) response stocks. Brennan, Jegadeesh,
and Swaminathan (1993) consider stocks followed by many analysts versus
those followed by only a few analysts. Assume that the returns on these two
portfolios can be written as

r1t = �1+�1mt

r2t = �2+�2mt +�2mt−1�

Thus, for whatever reason, the return on the partial response stocks is affected
by last period’s realization of the market factor. One offered explanation is
that market-wide information is only slowly incorporated into certain stock
prices, yielding a time-varying expected return that depends on that infor-
mation. Note that similar to Lo and MacKinlay (1990a) and Section 1.2
above, we have also assumed that these two portfolios are sufficiently well
diversified that there is no remaining idiosyncratic risk.
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Assume that the index contains a fraction � of the fully adjusting stock
portfolio and a fraction 1−� of the partially adjusting portfolio. Under the
assumption of no transaction costs and no arbitrage, the returns on the index
and its corresponding futures contract can be written as

rSt = �+�mt +�mt−1

rFt = rSt − i
(4)

where

� = ��1+ �1−���2

� = ��1+ �1−���2

� = �1−���2�

The returns on both the stock index and its futures contract coincide and
therefore pick up similar autocorrelation properties. In fact, their autocorre-
lation is

���1+ �1−���2��1−���2

���1+ �1−���2�
2+ ��1−���2�

2
�

For indices with relatively few partial-adjustment stocks (i.e., high �) or low
lagged response coefficients (i.e., small �2), the autocorrelation reduces to
approximately

�1−���2

��1+ �1−���2

�

With the additional assumption that the beta of the index to the factor is
approximately one, an estimate of the autocorrelation is �1−���2. That is,
the autocorrelation depends on the proportion of partially adjusting stocks in
the index and on how slowly these stocks respond.
These results should not seem surprising. With the no-arbitrage condition

between the cash and futures market, the price of the futures equals the
present value of the future spot index, which is just the current value of
the index. That is, though the spot price at maturity includes lagged effects,
the discount rate does also, leading to the desired result. With nontrading,
because the lagged effects are spurious, discounting is done at �, which leads
to zero autocorrelation of futures returns.
In response, a behavioralist might argue that the futures return does not

pick up the properties of the cash market due to the inability of investors to
actually conduct arbitrage between the markets. Of course, the most likely
reason for the lack of arbitrage is the presence of transaction costs, that is,
commissions and bid-ask spreads paid on the stocks in the index and the
futures contract. The level of these transaction costs depend primarily on
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costs borne by the institutional index arbitrageurs in these markets. Abstract-
ing from any discussion of basis risk and the price of that risk, we assume
here that arbitrageurs buy or sell the index at an additive cost of �. Thus
round-trip transaction costs per arbitrage trade are equal to 2�. In this envi-
ronment it is possible to show that, in the absence of arbitrage, the futures
price must satisfy the following constraints:

−��1+ ei�T−t��≤ Ft�T −Ste
�i−d��T−t� ≤ ��1+ ei�T−t��� (5)

In other words, the futures price is bounded by its no arbitrage value plus/
minus round-trip transaction costs.
What statistical properties do futures returns have within the bounds?

There is no obvious answer to this question found in the literature. If the
futures are priced off the current value of the spot index, then, as described
above, futures returns will inherit the autocorrelation properties of the index
return. Alternatively, suppose investors in futures markets are more sophisti-
cated, or at least respond to information in m fully. That is, they price futures
off the future value of the spot index, discounted at the rate �. In this case
the futures returns will not be autocorrelated, and expected returns on futures
will just equal �− i.
Of course, if the futures-spot parity lies outside the bound, then arbitrage

is possible, and futures prices will move until the bound is reached. Futures
prices at time t+ 1 will lie outside the bound (in the absence of arbitrage)
under the following condition:

�mt� ≥
�
(
1+ ei�T−t�

)
�1−���2

� (6)

That is, three factors increase the possibility of lying outside the bound:
(i) large recent movements in the stock index (i.e., �mt�), (ii) low transaction
costs (i.e., �), and (iii) large autocorrelations in the index (i.e., �1−���2).
If Equation (6) is met, then, even in the case of sophisticated futures traders,
expected returns on futures will not be a constant, but instead capture some
of the irrationality of the index. Specifically, if Equation (6) is true, then

Et�rFt+1
�= �− i+ �1−���2mt ±��1+ ei�T−t��� (7)

This model generates a particular pattern in expected futures returns. Within
the bounds, expected futures returns are flat. Outside the bounds, futures
begin to take on the properties of the underlying stock index, and futures
returns are positively autocorrelated for more extreme past movements.
While this represents one possible partial adjustment model, there are alter-

natives. For example, consider a model with two types of traders—rational
ones in the futures markets and irrational ones in the spot market.7 The ratio-
nal traders in the futures market do not price futures as derivatives per se,

7 We thank one of the referees for providing this alternative framework.
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but instead price them off the equilibrium fundamentals in the market. Then,
inside the arbitrage bounds, the stock index, being driven by “irrational”
traders, will reflect the partial adjustment biases and the futures will remain
uncorrelated. Outside the bounds, the index arbitrageurs will cause futures
and spot prices to move together, and the “irrational” spot index will be
forced to pick up the properties of the futures index. In other words, in con-
trast to the model above, the spot index mimics the futures contract, leading
to quite different autocorrelation patterns in the index and corresponding
futures. However, both these models have the same implication that, outside
the bound, the autocorrelation properties of the spot and futures are the same.
It is this common restriction that forms the basis of some of the empirical
analysis to come.

1.4 Implications
The above models for index and corresponding futures prices are clearly
stylized, extreme, and very simple. For example, the Lo and MacKinlay
(1988) model of nontrading has been generalized to heterogeneous nontrad-
ing and heterogeneous risks of stocks within a portfolio, which provides
more realistic autocorrelation predictions [see, e.g., Boudoukh, Richardson,
and Whitelaw (1994)]. Which model is best, however, is beside the point for
this article. The purpose of the models is to present, in a completely trans-
parent setting, different implications of two opposing schools of thought. The
first school believes that the time-varying patterns in index returns are not
tradeable (or at least not tradeable in any relevant quantity), and in fact may
be completely spurious, that is, an artifact of the way we measure returns.
The second school believes that these patterns are real and represent actual
prices, resulting from some sort of inefficient information transmission in the
market, whether it be irrationality or severe trading frictions with asymmetric
information. The implications we draw from these models are quite general
and robust to more elaborate specifications of stale pricing or agents’ ability
to incorporate information quickly.
Figure 1 provides the main implications of the three models—the ran-

dom walk, stale price, and partial adjustment models—in terms of the dif-
ference between expected returns in the spot and futures markets. Given
the lagged realization of the factor, mt−1, what is the current difference in
expected returns, E�rSt − rFt �mt−1�? As discussed in Section 1.2, in a mar-
ket microstructure setting, the index returns will be positively autocorrelated,
while the futures returns will not be autocorrelated (bid-ask bounce aside).
As Figure 1B shows, this leads to a positive slope in the relation between
the lagged shock and the difference in expected returns. In contrast, the par-
tial adjustment model of Section 2.3 predicts spot index and futures returns
will inherit the same autocorrelation properties, that is, the difference will
not depend on the lagged shock. However, in the presence of transaction
costs, this flat relation does not necessarily hold everywhere. As Figure 1C
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Figure 1
A schematic representation of the implications of the three models for the differences in expected returns
between the spot and futures markets, conditional on the value of the lagged market factor.
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shows, the spot index and futures returns will behave similarly in periods of
big stock price movements, when arbitrage is possible, and possibly quite
differently in periods of small movements. The squiggly intermediate line
indicates that there are no definitive predictions for the relation. Finally, the
pure random walk model of Section 1.1 predicts a flat relation for all past
values of the factor as shown in Figure 1A.
In addition, we can make another observation about the relative statistical

properties of index and futures returns. In the stale price setting, the magni-
tude of the difference between spot and futures returns will be related to the
level of microstructure biases. In particular, as the stale price probability �
goes down, that is, higher volume, the properties of spot index returns, such
as their autocorrelation, should look like the true return process. Moreover,
while the properties of the index return change with volume, the properties
of the futures return should remain the same for moderate- to long-maturity
contracts.
Of course, this implication may also be consistent with partial adjust-

ment models. For example, Klibanoff, Lamont, and Wizman (1998) develop
a model to explain the pricing anomalies in closed-end country funds. In their
model there are irrational partial adjustment traders in closed-end country
funds and rational traders in the markets for the underlying assets; however,
they impose a strict prohibition on arbitrage trade across the two markets.
While the model does not have any direct implications for volume, they
argue that it suggests faster adjustment when volume is high. This prediction
is born out in the data. Nevertheless, the relation between autocorrelations
and volume is a necessary condition for most reasonable stale price models,
so it is worth examining in our dataset.
These observations are the basis for an empirical comparison of spot index

and corresponding futures returns. To build up as much independent evidence
as possible, this analysis is performed on over 24 indices across 15 coun-
tries. Because the daily index returns across these countries are not highly
correlated, the results here will have considerably more power to differentiate
between the implications of the two schools.

2. The Data

All the data are collected from Datastream: specifically, price levels of each
stock index and corresponding futures contract at the close of trade every
day, daily volume on the overall stock market in a given country, and daily
open interest and volume for each futures contract. The data are collected
to coincide with the length of the available futures contract. For example,
if the futures contract starts on June 1, 1982 (as did the S&P 500), all data
associated with this contract start from that date.
The futures data are constructed according to the usual conventions. In

particular, a single time series of futures prices is spliced together from indi-
vidual futures contract prices. For liquidity, the nearest contract’s prices are
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used until the first day of the expiration month, then the next nearest is
used. For a futures contract to be used, we require at least four years of data
(or roughly 1,000 observations) to lower the standard errors of the estimators.
This leads us to drop a number of countries such as the Eastern European
block, emerging markets in Asia such as Thailand, Korea, and Malaysia, as
well as some small stock-based indices like the MDAX in Germany. Given
this criteria, we are left with 24 futures contracts on stock indices covering 15
countries. Table 1 gives a brief description of each contract, the exchange it
is traded on, its country affiliation, its starting date, as well as some summary
statistics on the futures returns, open interest, and trading volume. Summary
statistics on the underlying index returns are also provided.
Some observations are in order. First, given the wide breadth of countries

used in this analysis and the fact that daily returns across countries have rela-
tively small contemporaneous correlations (the mean and median correlation
are 0.425 and 0.373, respectively), the data provide considerable independent
information about the economic implications described in Section 1. Second,
the futures contracts have considerable open interest and daily volume in
terms of the number of contracts. Table 1 provides the mean for these con-
tracts, and, for less liquid ones such as the Russell 2000 and Maxi Value
Line, these means are still high relative to less liquid stocks, for example,
455 and 197 contracts per day, respectively. The fact that these contracts are
liquid allows us to focus primarily on market microstructure biases related to
the stocks in the underlying index. Section 3.4 addresses any potential biases
related to the futures contracts.

3. Empirical Results

In this section we focus on providing evidence for or against the implications
derived from the models of Section 1. In particular, we investigate (i) the
autocorrelation properties of the spot index and corresponding futures returns,
(ii) the relative time-varying properties of spot index and futures returns
conditional on recent small and large movements in returns, and (iii) the
relation between these time-varying properties and underlying stock market
volume.

3.1 Autocorrelations
Table 2 presents the evidence for daily autocorrelations of spot index returns
and their corresponding futures returns across 24 contracts. The most startling
evidence is that, for every contract, the spot index autocorrelation exceeds
that of the futures. This cannot be explained by common sampling error, as
many of the contracts have low correlations with each other because of the
15-country cross section. Figure 2 presents a scatter plot of the autocorre-
lations of the futures and spot indices, that is, a graphical representation of
these results. On the 45 degree line, the spot and futures autocorrelations
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Table 2
Daily autocorrelations of index and futures returns

Contract �(Index) SE �(Futures) SE �2
1 p-value

S&P 500 0�0297 0�0272 −0�0367 0�0279 27�1078 0�0000
Russell 2000 0�2247∗∗ 0�0457 0�0711 0�0400 47�4011 0�0000
Nikkei 225 (CME) −0�0345 0�0261 −0�0904∗∗ 0�0264 6�5437 0�0105
NYSE 0�0618∗∗ 0�0284 −0�0582∗∗ 0�0290 45�3993 0�0000
Maxi Value Line 0�1965∗∗ 0�0310 −0�0227 0�0359 63�2965 0�0000
FTSE 100 0�0822∗∗ 0�0314 0�0197 0�0291 14�0510 0�0002
FTSE 250 0�2298∗∗ 0�0657 0�1283∗∗ 0�0569 6�4278 0�0112
TOPIX 0�1164∗∗ 0�0275 −0�0037 0�0275 49�6813 0�0000
Nikkei 225 (OSX) −0�0023 0�0250 −0�0192 0�0255 1�6923 0�1933
Nikkei 300 (OSX) 0�0327 0�0392 −0�0706∗ 0�0349 43�7841 0�0000
DAX 0�0266 0�0282 0�0042 0�0299 3�5746 0�0587
Swiss Market 0�0577∗ 0�0300 0�0318 0�0288 5�5568 0�0184
AEX 0�0346 0�0255 0�0036 0�0279 6�0998 0�0135
BELFOX 20 0�1491∗∗ 0�0394 0�0970∗∗ 0�0365 4�1320 0�0421
Hang Seng 0�0238 0�0438 −0�0409 0�0462 20�5247 0�0000
IBEX 35 Plus 0�1341∗∗ 0�0286 0�0134 0�0310 39�0259 0�0000
MIB 30 0�0265 0�0358 −0�0273 0�0366 11�7325 0�0006
OMX 0�1175∗∗ 0�0263 −0�0372 0�0370 18�3681 0�0000
ATX 0�0976∗∗ 0�0382 −0�0082 0�0399 74�1328 0�0000
Nikkei 225 (SIMEX) −0�0065 0�0271 −0�0459 0�0308 1�2961 0�2549
Nikkei 300 (SIMEX) 0�0302 0�0429 −0�0527 0�0425 7�8216 0�0052
Toronto 35 0�0973∗∗ 0�0310 −0�0751 0�0706 5�6938 0�0170
Australia 0�1024∗∗ 0�0290 −0�0794∗ 0�0381 25�3879 0�0000
CAC 40 0�0486∗∗ 0�0221 0�0125 0�0225 13�1828 0�0003

For each contract/index we report the daily autocorrelations of index and futures returns. The �2
1 statistic tests �(Index) =

�(Futures), and we report the corresponding p-value. Standard errors are serial correlation and heteroscedasticity-adjusted using
Newey and West (1987). ∗� ∗∗Significance at the 10% and 5% levels, respectively.

coincide; however, as the graph shows, all the points lie to the right of this
line. Thus all the spot autocorrelations are higher than their corresponding
futures.
Note that while the autocorrelations of both the index and futures alone

are somewhat difficult to pinpoint due to the size of the standard errors,
the autocorrelation differences should be very precisely estimated given the
high contemporaneous correlation between the index and futures. This is
an important point and one which is crucial to understanding the statistical
evidence presented in this article, especially given the difficulty in estimating
autocorrelations precisely.
To understand this point more clearly, assume that, for expositional ease,

the spot and futures returns are conditionally homoscedastic. Then asymp-
totically, under the random walk null8

√
T

(
�̂S

�̂F

)
∼asy N

((
0
0

)
�

(
1 �2

S�F

�2
S�F 1

))
� (8)

where �S�F is the correlation coefficient between the spot and futures return,
and �̂ is the autocorrelation of the returns. Consider a test of whether �S = �F .

8 See, for example, Richardson (1989). In the actual empirical tests to follow, the statistics are adjusted for
conditional heteroscedasticity using the method proposed by Newey and West (1987).
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Figure 2
Autocorrelations of futures and spot returns for the 24 indices. The dashed line is the 45 degree line on which
spot and futures autocorrelations are equal.

By weighting a squared difference of normals by their variance-covariance
matrix, the resulting statistic will follow a chi-squared distribution. In this
case,

T

(
��̂S − �̂F �

2

2�1−�2
S�F �

)
∼ �2

1 �

For �S�F close to 1, which is clearly the case here, small differences between
the autocorrelation estimators provide strong evidence against the null. For
example, �S�F = 0�99 versus �S�F = 0�95 and �S�F t = 0�50 produces a statistic
5 and 38 times larger, respectively.
Several observations are in order. First, other than the Nikkei 225 (which

has a marginally negative value), all of the spot index returns are positively
autocorrelated. Some of these indices, such as the Russell 2000 (small firm
U.S.), Value Line (equal-weighted U.S.), FTSE 250 (medium-firm U.K.),
TOPIX (all firms Japan), OMX (all firms Sweden), and Australian All-Share,
have fairly large autocorrelations—0.22, 0.19, 0.21, 0.10, 0.12, and 0.10,
respectively. Of interest, these indices also tend to be ones that include large
weights on firms which trade relatively infrequently. In contrast, the value-
weighted indices with large, liquid, actively traded stocks, such as the S&P
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500 (largest 500 U.S. firms), FTSE 100 (100 most active U.K. firms), Nikkei
225 (225 active Japanese stocks), and DAX (active German firms), are barely
autocorrelated—0.03, 0.08, −0�01, and 0.02, respectively.
Second, a quick perusal of Figure 2 shows that autocorrelations in the

futures market tend to be positively related to autocorrelations in the spot
market. That is, the points do not appear to be scattered randomly around
the horizontal line that represents zero autocorrelation in the futures market.
This result is to be expected if there is any sampling error in the estimation,
even if the true futures autocorrelations are all zero. Equation (8) illustrates
the effect of the high contemporaneous correlation between the spot and
futures markets on the correlation of the autocorrelation estimates. Basically
the autocorrelation estimates in the spot and futures markets will pick up the
same estimation error. This feature of the data is why it is so important to
focus on the difference between the spot and futures autocorrelations and to
take account of their relationship to the common underlying fundamentals.
Third, in terms of formal statistical tests, for 21 of 24 contracts we can

reject the hypothesis that the spot index autocorrelation equals that of its
futures contract at the 5% level. To the extent that this is one of the main
comparative implications of market microstructure versus partial adjustment
models, this evidence supports the microstructure-based explanation.9 The
evidence is particularly strong as 17 of the differences are significant the 1%
level. These levels of significance should not be surprising given that the
index and its futures capture the same aggregate information, yet produce
autocorrelation differences of at least 10% on a daily basis in 12 cases.
Fourth, and finally, Equation (8) can be rewritten to reflect the asymptotic

relation between autocorrelation estimators across countries. In particular,

√
T

(
�̂i

�̂j

)
∼asy N

((
0
0

)
�

(
1 �2

i�j

�2
i� j 1

))
�

where �i�j is the correlation coefficient between the returns on country i and
country j . Consider two of the a priori expected stale price portfolios, the
Russell 2000 and the TOPIX. The correlation between their returns is 0.23,
which leads to a correlation between their autocorrelation estimators of just
0.05. Thus the fact that both indices show significant differences between
autocorrelations in the futures and spot markets provides powerful evidence
precisely because the series are fairly independent.

3.2 Time-varying patterns of returns
The results in Section 3.1 are suggestive of differences between the properties
of spot index and futures returns. While this tends to be inconsistent with

9 Of course, due to bid-ask bounce, futures returns should have negative autocorrelations, which could partially
explain the differences even without index microstructure biases. Section 3.4 looks at the extent to which
futures biases can explain the result.
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partial adjustment-based explanations of the data, we showed in Section 1.3
that it is possible to construct a reasonable scenario in which large differences
can appear. Specifically, the reason why partial adjustment models imply a
one-to-one relation between spot and futures returns is that they are linked
via spot-futures arbitrage. If spot-futures arbitrage is not possible due to
transaction costs, then theoretically spot and futures prices might diverge
if their markets are driven by different investors. Figure 1C illustrates the
implication of this transaction-based model. Conditional on extreme recent
movements, the statistical properties of spot and futures returns should be
similar; for small movements, they can follow any pattern, including the spot
return and futures return having quite different autocorrelation patterns.
In order to test this implication directly, consider a piecewise linear regres-

sion of the difference between the spot and futures return on the most recent
lag of the futures return.10 In particular,

rS�t+1− rF �t+1 = a+b1rF �t + �b2−b1�max�0� rF �t −a1�

+ �b3−b2�max�0� rF �t −a2�+ #t+1� (9)

where a1 and a2 are the breakpoints of the piecewise regression. These break-
points are equivalent to the transaction costs bounds described in Section 1.3.
Here we initially choose these points as −1�0% and 1.0%, respectively.
Thus any daily return of plus/minus 1% or greater in magnitude allows index
arbitrage to take place. The coefficients b1� b2, and b3 reflect the slopes of
the piecewise relation. In the context of Figure 1C, b1 and b3 are zero, while
b2 is not specified under the partial adjustment model. In the stale price
model, bid-ask bounce aside, these coefficients are all greater than zero (see
Figure 1B).
Table 3 presents the regression results from Equation (9) for each contract

across the 15 countries. From the partial adjustment viewpoint, Equation (9)
implies, as its null hypothesis, a series of multivariate inequality constraints,
H0 % b1 = 0 and b3 = 0 versus the alternative HA % b1 ≥ 0 and b3 ≥ 0. Eighteen
of the 21 contracts reject the partial adjustment theory at conventional 5%
levels using an inequality restrictions-based test statistic [see Wolak (1987)
and Boudoukh, Richardson, and Smith (1993) for a description of the test
methodology]. Moreover, some of these rejections are so strong that the
p-values are zero to four decimal places. Just as important, however, is the
fact that almost all the b1 and b3 coefficients are positive (i.e., only 3 nega-
tive estimates among 42), which again implies that the time variation of the
expected spot index returns is greater than that of its corresponding futures

10 These tests can only be performed for contracts in which both the futures and spot trade contemporaneously,
thus ruling out, for example, the Nikkei futures contract that trades on the Chicago Mercantile Exchange. Also
note that there is some additional noise because the spot and futures contracts do not close simultaneously. For
example, in the U.S. markets, many of the relevant futures contracts close 15 minutes after the spot market.
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Table 3
Time variation in the spot-futures return spread

Contract b1 SE b2 SE b3 SE �−2
2 p-value

S&P 500 0�0605∗ 0�0341 0�1321∗∗ 0�0121 −0�0115 0�0471 5�6711 0�0257
Russell 2000 0�1604∗∗ 0�0336 0�1463∗∗ 0�0194 0�1247∗∗ 0�0576 24�7584 0�0000
NYSE 0�1012∗∗ 0�0432 0�1782∗∗ 0�0151 0�0707 0�0655 5�7518 0�0249
Maxi Value Line 0�3487∗∗ 0�0870 0�1371∗∗ 0�0225 0�0923 0�0562 19�0777 0�0000
FTSE 100 0�1749∗∗ 0�0290 0�0570∗∗ 0�0123 0�0777∗∗ 0�0358 49�6349 0�0000
FTSE 250 −0�0116 0�0519 0�0206 0�0276 0�4934∗∗ 0�2397 5�0722 0�0336
TOPIX 0�1302∗∗ 0�0388 0�1888∗∗ 0�0172 0�0379 0�0297 11�3162 0�0014
Nikkei 225 (OSX) 0�0246 0�0272 0�0792∗∗ 0�0206 0�0089 0�0373 0�8164 0�3467
Nikkei 300 (OSX) 0�0654 0�0411 0�1408∗∗ 0�0212 0�0734 0�0385 7�3977 0�0091
DAX 0�1037∗∗ 0�0364 0�0023 0�0153 0�0381∗∗ 0�0171 13�0319 0�0005
Swiss Market 0�0176 0�0199 0�0732∗∗ 0�0114 0�0344∗∗ 0�0171 4�6283 0�0408
AEX 0�0107 0�0283 0�0501∗∗ 0�0115 0�0342∗∗ 0�0173 4�0076 0�0566
BELFOX 20 −0�0635 0�0619 0�0920∗∗ 0�0208 0�0150 0�0421 0�2673 0�5132
Hang Seng 0�0836∗∗ 0�0334 0�1622∗∗ 0�0298 0�0838∗∗ 0�0340 8�3740 0�0063
IBEX 35 Plus 0�1084∗∗ 0�0270 0�1451∗∗ 0�0268 0�2147∗∗ 0�0681 24�7747 0�0000
MIB 30 0�0351 0�0249 0�1020∗∗ 0�0258 0�0767∗∗ 0�0290 8�1925 0�0064
OMX 0�1962∗∗ 0�0612 0�0025 0�0300 0�2675∗∗ 0�0984 19�9442 0�0000
ATX 0�1361∗∗ 0�0231 0�0908∗∗ 0�0168 0�1284∗∗ 0�0259 58�3805 0�0000
Toronto 35 0�1111∗∗ 0�0663 0�0533 0�0398 0�4360∗∗ 0�1809 12�8412 0�0005
Australia 0�7034∗∗ 0�0993 0�1889∗∗ 0�0550 0�4208∗∗ 0�1250 55�7928 0�0000
CAC 40 0�0068 0�0240 0�0730∗∗ 0�0129 0�0069 0�0135 0�3000 0�4990

For each index/contract we report the correlation of the spot-futures return spread with the lagged futures return. Large move-
ments in lagged futures returns are based on the cutoff points −1�0% and 1.0%. The regression is

rSt+1− rFt+1 = b0+b1r
F
t + �b2−b1�Max�0� rFt −a1�+ �b3−b2�Max�0� rFt −a2�+ #S−F

t+1 �

where a1 = −0�01 and a2 = 0�01. The �−2
2 statistic tests H0 % b1 = b3 = 0 versus Ha % b1 ≥ 0� b3 ≥ 0, and we report the

corresponding p-value. Standard errors are serial correlation and heteroscedasticity-adjusted using Newey and West (1987).
∗� ∗∗Significance at the 10% and 5% levels, respectively.

contract and that the spot returns are more positively autocorrelated. To the
extent that the microstructure-based theory would imply that all three coef-
ficients �b1� b2� b3� should be positive, 60 of 63 are. Since these coefficients
represent relations over different (and apparently independent) data ranges
and across 15 somewhat unrelated countries, this evidence is, in our opinion,
quite strong. Thus, even for the circumstances most favorable to spot-futures
arbitrage, there is little evidence that futures and spot index returns behave
similarly, the opposite of the implication of the partial adjustment model.
One problem with the tests in Table 3 is that, while they can reject the

strict partial adjustment model of Section 1.3, they cannot reject a model
with both partial adjustment and stale price effects. In other words, the tests
show that stale prices are important, but they do not show conclusively that
there are no partial adjustment effects as well. The autocorrelation evidence
in Table 2 and Figure 2 partially addresses this issue. Specifically, average
futures autocorrelations are approximately zero, which is consistent with the
absence of any partial adjustment effects. Of course, the individual standard
errors are quite large, so the results are not definitive. A different approach
is to examine the magnitudes of the coefficients b1� b2, and b3. Under the
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stale price model, there is no reason to expect the coefficients to be dif-
ferent. In contrast, if there are partial adjustment effects as well, then the
coefficients for large moves (b1 and b3) should be less than the coefficients
for small moves (b2) because these effects should be eliminated when index
arbitrage is feasible. In Table 3, the average coefficients across the 21 con-
tracts are 0.12, 0.10, and 0.13 for b1� b2, and b3, respectively. Basically there
is no evidence of partial adjustment effects. The robustness of these results to
different hypothesized levels of transaction costs can be checked by increas-
ing the magnitudes of the breakpoints. For breakpoints up to 2.5%, the same
basic relation between the coefficients holds. In fact, the average b2 coeffi-
cient is stable, while the average coefficients for extreme returns increase in
magnitude slightly, exactly the opposite of the implication of a model with
partial adjustment. Of course, as the breakpoints increase in magnitude, there
are fewer observations in the extremes, and the standard errors increase com-
mensurately. Consequently it makes little sense to go beyond 2.5% when we
are already estimating coefficients with an average of only 60 observations.
A second potential point of discussion is that Equation (9) describes a

linear (albeit piecewise) relation between differences in the spot and futures
return and the lagged return. For further evidence, Figure 3 provides a

Figure 3
Nonparametric kernel estimates of the relation between the spot-futures return spread (rSt+1 − rFt+1) and the
lagged return on the futures (rFt ) for three indices: the Russell 2000, the FTSE 250, and the TOPIX.
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Figure 4
Nonparametric kernel estimates of the relation between the futures return (rFt+1) the lagged futures return (rFt )
on three futures contracts: the Russell 2000, the FTSE 250, and the TOPIX.

nonparametric graphical presentation of these results for three contracts which
contain illiquid stocks, namely the Russell 2000, TOPIX, and FTSE 250. The
graph represents a kernel estimation of the mean of rSt+1

− rFt+1
, conditional

on the value of rFt . As seen from these three somewhat independent lines, the
implications of the partial adjustment model (i.e., Figure 1C) are not borne
out. Time variation of differences in expected spot and futures returns occurs
for all values of returns, especially for high values, which contradicts the
partial adjustment hypothesis.11

As related evidence, Figure 4 graphs the relation between expected futures
returns and their lags for the same indices and using the same nonparametric
estimation technique. Consistent with a random walk, there is not much time
variation in the estimated expected return. While this is consistent with some
partial adjustment models, it is clearly a necessary condition of any stale
price model.

11 The exception here is the FTSE 250, which is fairly flat except for extreme negative values, which again
contrasts with partial adjustment theories. We view these results more in the context of there being only data
available post-1994, so that there is a shortage of observations. Thus the results fall into the so-called Star
Trek region of the data, and are unreliable.

676



Partial Adjustment or Stale Prices

3.3 Autocorrelations and volume
One obvious implication of the stale price model of Section 1.2 is that there
should be some relation between the spot index properties and volume on that
index, whereas the futures should for the most part be unrelated to volume. Of
course, partial adjustment models may also imply some correlation between
volume and autocorrelations [e.g., as in Klibanoff, Lamont, and Wizman
(1998) and Chordia and Swaminathan (2000)], but it is clearly a necessary
result of the stale price explanation.
In order to investigate this implication, we collected data from Datastream

on overall stock market volume for each of the 15 countries. While this
does not represent volume for the stocks underlying the index, it should be
highly correlated with trading in these stocks because all the indices we look
at are broad-based, market indices. That is, on days in which stock market
volume is low, it seems reasonable to assume that large, aggregate subsets
of this volume will also be relatively low. During the sample periods for
each country, there has been a tendency for volume to increase (partly due
to increased equity values and greater participation in equity markets). The
standard approach is to avoid the nonstationarity issue and look at levels of
detrended volume.
In order to investigate the effect of trading volumes on autocorrelations

of the spot index and its futures return, we consider the following nonlinear
regressions:

rSt+1
= 's

0+
[
's
1+'s

2�max�vols�−volst �
]
rSt + #st+1

rFt+1
= '

f
0 +

[
'

f
1 +'

f
2 �max�vols�−volst �

]
rFt + #

f
t+1�

(10)

where max�vols� is the maximum volume of the stock market during the
sample period. Note that these regressions represent fairly logical representa-
tions of the relation between next period’s return and current returns and vol-
ume. Specifically there are two components to the time variation of expected
returns: (i) the magnitude of last period’s return, and (ii) the level of volume
in the market.
The hypothesis that the trading volume is a factor that influences autocor-

relation differentials can be represented as follows:

Hypothesis 1. The trading volume reduces the autocorrelation of the spot,
but not the futures contract:

's
2 > 0

'
f
2 = 0�

Hypothesis 2. We can interpret 's
1 and '

f
1 as the autocorrelations of the

spot index and the futures contract returns when the trading volume of the
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spot is at its highest level. In that case, the autocorrelation of the spot as
well as the futures should be close to zero:

's
1 = 0

'
f
1 = 0�

Some observations are in order. Hypothesis 1 is an obvious implication of
index returns being driven by stale prices, and the most important compo-
nent of our hypotheses. Note that it is possible that 's

2 = 0, in which case
's
1 represents the autocorrelation of the index return in a world in which

volume plays no role. With respect to Hypothesis 2, it appears to be redun-
dant given Hypothesis 1. However, we want to be able to test whether the
negative relation is strong enough to bring forth the desired result that the
spot index return autocorrelation becomes zero at the highest level of trad-
ing volume. Finally, an important hypothesis to test is whether the futures
contract’s autocorrelation is independent of trading volume.
Table 4 provides results for each of the 24 stock indices across the 15 coun-

tries. First, there is a negative relation between the trading volume and the
autocorrelation of the spot index return for most of the countries (i.e., 's

2 > 0).
While the estimators are individually significant at the 5% level for only
seven of the indices (e.g., the Russell 2000’s estimate is 0.54 with standard
error 0.19), 23 of 24 are positive. Moreover, relative to the futures return
coefficient on volume (i.e., 'f

2 ), about two-thirds have values of 's
2 > '

f
2 .

While only eight of these are individually significant at the 5% level (i.e.,
S&P 500, Russell 2000, NYSE, FTSE 250, Switzerland, Hong Kong, and
Belgium), only one contract goes in the direction opposite to that implied by
the stale price theory.
Second, independent of volume, the relation between futures return auto-

correlations and trading volume is very weak. Even though many of the
autocorrelation coefficients, 'f

2 , are positive, they tend to be very small in
magnitude and are thus both economically and statistically insignificant. Fur-
thermore, the estimates at high volume levels imply negative autocorrelation
in futures returns. Combining the estimates of 'f

1 and '
f
2 together in equa-

tion (10) implies that the autocorrelations of futures returns are rarely posi-
tive irrespective of volume levels. This result is consistent with the bid-ask
bounce effect which will be looked at in Section 3.4.
Third, at the highest level of trading, the autocorrelations of the spot and

futures return are for the most part insignificantly different from zero. Only
five contracts violate this hypothesis. However, for each of these cases, the
autocorrelations are negative at high volume, and thus do not contradict
the stale price theory per se. In fact, 19 of the 24 indices imply negative
autocorrelation of the spot index return during periods of highest volume.
While these autocorrelations are not estimated precisely, it does point out
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that adjustments for trading volume lead to changes in the level of auto-
correlations. For example, the Russell 2000’s autocorrelation changes from
Table 2’s estimate of 0.22 to −0�09 at highest volume levels in Table 4. The
most obvious explanation for the negative values is misspecification of the
regression model in Equation (10).
In order to address this issue, we perform a nonparametric analysis of the

effect of trading volumes on autocorrelations of the spot and futures return for
the Russell 2000 contract. Specifically, using multivariate density estimation
methods, we look at the expected return differential, rSt+1

− rFt+1
, on detrended

market volume and the most recent stock market innovation, estimated by the
futures return rFt . For multidimensional estimation problems like this, it is
important to document the area of relevant data. Figure 5 provides a scatter
plot of detrended volume and futures returns, which represents the applicable
space. Any results outside this area should be interpreted cautiously.
Figure 6 graphs the relation between spot-futures return spreads and past

returns and volume, that is, the nonparametric alternative to the regressions
described in Equation (10). For low volume periods, the differential is posi-
tive and particularly steep when past returns are high, and negative when past
returns are low. In other words, low volume periods seem to be an important

Figure 5
A scatter plot of detrended log trading volume (ln �1+volSt �) in the U.S. spot market and the futures return
(rFt ) on the Russell 2000.
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Figure 6
A three-dimensional plot of the nonparametric kernel estimate of the relation between the spot-futures return
spread (rSt+1 − rFt+1), the lagged return on the futures (rFt ) and detrended log trading volume (ln �1+volSt �)
for the Russell 2000.

factor describing differences in the statistical properties of spot and futures
returns. Of interest, for average and heavy-volume days, there appears to be
little difference in their time-varying properties.
As a finer partition of this graph, Figure 7 presents cut-throughs of the

relation between spot-futures return differentials and past market innovations
for four different levels of volume within the range of the data. As seen
in Figure 7, while there are positive differentials for all levels of volume
(as consistent with the one-dimensional analysis of Sections 3.1 and 3.2),
the most striking evidence takes place during low-volume periods. To the
extent that low-volume periods are associated with stale prices, these results
provide evidence supportive of the type of model described in Section 1.2.
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Figure 7
A two-dimensional cut-through of the relation between the spot-futures return spread (rSt+1 − rFt+1) and the
lagged futures return (rFt ) for the Russell 2000 at different values of the detrended lagged log volume
(ln �1+volSt �).

It is, of course, possible for researchers to devise a partial adjustment model
that fits these characteristics as well, but they must do so in the presence of
spot-futures arbitrage.

3.4 Can bid-ask bounce explain the autocorrelation
differences?

One possible explanation for the differences between spot index and futures
return autocorrelations is that the futures contracts themselves suffer from
microstructure biases. That is, a skeptic might argue that the true autocorre-
lation is large and positive, yet the futures autocorrelation gets reduced by
bid-ask bounce and similar effects. In fact, it is well known that bid-ask bias
leads to negative serial correlation in returns [see, e.g., Blume and Stambaugh
(1983) and Roll (1984)]. How large does the bid-ask spread need to be to
give credibility to this explanation?
Consider a variation of the Blume and Stambaugh (1983) model in which

the measured futures price, F m, is equal to the true price, F , adjusted for the
fact that some trades occur at the bid or ask price, that is,

F m
t = Ft�1+0t��
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where 0t equals the adjustment factor. In particular, assume that 0t equals
s
2

with probability p

2 (i.e., the ask price), − s
2 with probability p

2 (i.e., the bid
price), or 0 with probability 1−p (i.e., a trade within the spread). Here s

represents the size of the bid-ask spread, and can be shown to be directly
linked to the volatility of 0t . Specifically we can show that 12

0 = p s2

4 . In
words, the additional variance of the futures price is proportional to the
size of the spread and the probability that trades take place at the quotes.
Using the approximation ln�1+x�≈ x, it is possible to show that the implied
autocorrelation of futures returns is given by

−ps2

412
RF

+2ps2
� (11)

Table 5 reports the autocorrelation differences between the stock index and
futures returns. If these differences were completely due to bid-ask bias in
the futures market, then Equation (11) can be used to back out the relevant
bid-ask spread. The last two columns of Table 5 provide estimates of the size

Table 5
Futures return autocorrelations and the bid-ask spread

Implied AC difference Implied spread

Low High Low High
Contract AC difference Volume Spread probability probability probability probability

S&P 500 0.0653 1.1911 0.037 0.0001 0.0002 0.86 0.61
Russell 200 0.1487 0.9418 0.150 0.0032 0.0063 1.03 0.73
Nikkei 225 (CME) 0.0564 1.5385 0.060 0.0002 0.0004 1.03 0.73
NYSE 0.1171 1.1799 0.040 0.0001 0.0003 1.14 0.81
Maxi Value Line 0.2147 0.9025 0.100 0.0015 0.0031 1.18 0.84
FTSE 100 0.0574 1.0964 0.150 0.0023 0.0047 0.74 0.53
FTSE 250 0.0881 0.6330 NA NA NA 0.53 0.38
TOPIX 0.1099 1.3280 0.038 0.0001 0.0002 1.25 0.88
Nikkei 225 (OSX) 0.0134 1.4166 0.059 0.0002 0.0004 0.46 0.33
Nikkei 300 (OSX) 0.0892 1.3256 0.500 0.0178 0.0356 1.12 0.79
DAX 0.0239 1.2450 0.060 0.0003 0.0006 0.54 0.38
Swiss Market 0.0241 1.0970 0.014 0.0000 0.0000 0.48 0.34
AEX 0.0322 1.1164 0.089 0.0008 0.0016 0.57 0.40
BELFOX 20 0.0502 0.9214 0.217 0.0069 0.0139 0.58 0.41
Hang Seng 0.0653 1.9631 0.037 0.0000 0.0001 1.42 1.00
IBEX 35 Plus 0.1194 1.4750 0.070 0.0003 0.0006 1.44 1.02
MIB 30 0.0487 1.6605 0.068 0.0002 0.0004 1.04 0.73
OMX 0.1536 1.5853 0.032 0.0001 0.0001 1.76 1.24
ATX 0.0999 1.2468 0.308 0.0076 0.0153 1.11 0.79
Nikkei 225 (SIMEX) 0.0270 1.6491 0.060 0.0002 0.0003 0.77 0.54
Nikkei 300 (SIMEX) 0.0526 1.3230 0.375 0.0100 0.0201 0.86 0.61
Toronto 35 0.1640 1.0129 0.127 0.0020 0.0039 1.16 0.82
Australia 0.1769 1.4475 0.032 0.0001 0.0001 1.72 1.22
CAC 40 0.0345 1.2503 NA NA NA 0.66 0.46

For each contract/index we report the difference between the autocorrelation of returns in the spot and futures markets and
the actual estimated bid-ask spread of each futures contract. Using a Blume and Stambaugh (1993) bid-ask model, we provide
(i) implied autocorrelation differences based on actual spreads, and (ii) the implied spread necessary to explain the actual
autocorrelation differences. Low probability (i.e., 50%) and high probability (i.e., 100%) states refer to the probability that the
trades take place at the quotes rather than within the quoted spreads.
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of this spread in percentage terms of the futures price. The two columns rep-
resent two different values of p, the probability of trading at the ask or bid,
equal to either 0.5 or 1.0. Of course, a value of 1.0 is an upper bound on the
effect of the bid-ask spread. The implied spreads in general are much larger
than those that occur in practice. To see this, we document actual spreads
at the end of the sample over a week period, and find that they are approx-
imately one-tenth the magnitude (see column 4 of Table 5). Alternatively,
using the actual spreads, and the above model, we report implied autocorre-
lation differences that are all close to zero. Therefore the differences in the
autocorrelations across the series are clearly not driven by bid-ask bounce in
the futures market.

4. Conclusion

The simple theoretical results in this article, coupled with the supporting
empirical evidence, lead to several conclusions. First, there are significant
differences between the statistical properties of spot index and corresponding
futures returns even though they cover the same underlying stocks. This is
true even accounting for the presence of transaction costs by examining large
market movements. Second, an important factor describing these different
properties is the level of volume in the market. These two empirical facts can
most easily be associated with market microstructure-based explanations, as
partial adjustment models do not seem to capture these characteristics of the
data.
The unique aspect of this article has been to differentiate, rather generally,

implications from two very different schools of thought and provide evidence
thereon. Our conclusion is generally not supportive of the partial adjustment
models that have become popular as of late.
What then is going on in the market that can describe these large daily

autocorrelations of portfolio returns? Previous authors [e.g., Conrad and Kaul
(1989) and Mech (1993), among others] have performed careful empirical
analyses of nontrading by taking portfolios that include only stocks that have
traded. Their results, though somewhat diminished, suggest autocorrelations
are still positive and large for these portfolios. However, as pointed out in
the article, stale price models are more general. Rational models predict that
the price of a security is the discounted value of its future cash flow. Within
this context, how should we view a trade for 100 shares when there is little
or no other trading? Does it make sense to discard a theory based on a single
investor buying a small number of shares at a stale overvalued or underval-
ued (relative to market information) price, or a dealer failing to adjust quotes
for a small purchase or sale? Our view is that the important issue is how
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many shares can trade at that price (either through a large order or numer-
ous small transactions). What would researchers find if we took portfolios of
stocks that trade meaningfully, and then what would happen if these portfo-
lios got segmented via size, number of analysts, turnover, et cetera? These
are questions which seem very relevant given the results of this article.

Appendix

Case 1: the random walk model
Assume that the ex dividend, log price process of an equally weighted portfolio follows a random
walk with drift

st+1 = st +�−d+mt+1� (A1)

where st = lnSt is the log of the ex dividend portfolio price, � and d are the constant expected
return and dividend yield on the portfolio, respectively, and mt+1 is the mean-zero, i.i.d. market
factor. From the cost of carry model, the price of a futures contract on this portfolio is

Ft�T = Ste
�i−d��T−t�� (A2)

where Ft�T is the futures price on a contract at time t that expires at time T , and i and d are the
periodic, risk-free, interest rate and dividend yield, respectively, both of which are assumed to
be constant.

The futures price follows from the absence of arbitrage. A futures contract can be replicated
by buying the underlying portfolio and borrowing to finance this purchase. The payoff on the
futures contract is ST − Ft�T , and the payoff on the replicating portfolio is ST − Ste

�i−d��T−t�.
Equating these two payoffs yields Equation (A2).

The one-period returns on the portfolio and the futures contract are closely related. Specifically,

rFt+1
= rSt+1

− i� (A3)

where
rFt+1

= ln
Ft+1�T

Ft�T

(A4)

rSt+1
= ln

St+1

St

+d = �+mt+1� (A5)

The futures return equals the excess return on the underlying portfolio.

Case 2: the stale price model
Assume that in every period a fraction � of the prices of the securities within the portfolio are
not updated, that is, the observed portfolio price reflects stale prices. The true price and return
processes are identical to those in case 1, that is,

st+1 = st +�−d+mt+1 (A6)

rSt+1
= �+mt+1� (A7)
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and the measured (i.e., observed) price, ŝ, and return processes can be written as [see Lo and
MacKinlay (1990a)]

ŝt+1 = ŝt +�−d+ �1−��
�∑
k=0

�kmt+1−k (A8)

rŜt+1
= �+ �1−��

�∑
k=0

�kmt+1−k� (A9)

Note from Equations (A6) and (A8) that

sT = st + �T − t���−d�+
T−t−1∑
k=0

mT−k (A10)

ŝT = ŝt + �T − t���−d�+
T−t−1∑
k=0

�1−�k+1�mT−k + �1−�T−t �
�∑

k=T−t

�k−T+t+1mT−k� (A11)

The observed price is subject to the same shocks as the true price, but the weights on these shocks
start at �1−�� and gradually accumulate to 1 as the prices within the portfolio are updated. As
a result, changes in the observed price process always reflect the full history of shocks.

The corresponding futures contract is cash settled on the basis of the observed price ŜT , not
the true price ST ; consequently it is priced off the observed prices. Specifically, analogously to
the cost of carry model in case 1 above,

Ft�T = PVt �ŜT �e
i�T−t�� (A12)

where PVt �ŜT � is the present value at time t of the observed price at time T . Shocks after
time t are risky and hence need to be discounted at �, whereas additional accumulations on
historical shocks are riskless and hence are discounted at the riskless rate i. Therefore, from
Equation (A11),

PVt �ŝT � = ŝt − �T − t�d+�

(
1−�T−t

1−�

)
��− i�+

�∑
k=T−t

�1−�T−t ��k−T+t+1mT−k� (A13)

Consequently,

rFt+1
= PVt+1�ŝT �−PVt �ŝT �− i = �1−�T−t ��rSt+1

− i�� (A14)

The argument above is an equilibrium argument rather than an arbitrage argument for futures
valuation. In the case of stale prices, the arbitrage strategy is more complex than in the random
walk case because the contract is settled based on a nontraded asset, that is, it is not possible
to buy Ŝt . The key to replicating the futures contract is to replicate the exposure to the same
shocks as the futures contract. From Equation (A11), it is clear that the exposure to future shocks
declines over the life of the contract. Consequently the strategy is to purchase �1−�T−t � of the
underlying asset initially, financed by borrowing. In each subsequent period t+ j , the exposure
is reduced to �1−�T−t−j � with the proceeds from the sale used to pay off some of the initial
borrowing. At the maturity of the futures contract, this strategy has a payoff of

T−t∑
k=1

[
�1−�k��ST+1−k −ST−k�+ �1−�k�d

]− T−t∑
k=1

�1−�k�i� (A15)

where the first term is the payoff from the net position in the underlying asset and the second
term is the repayment of the net borrowing. This payoff reduces to

T−t∑
k=1

[
�1−�k���− i�+ �1−�k�mT+1−k

]
� (A16)
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Equating this quantity to the payoff to the futures contract, ŜT − Ft�T , where ŝT is given in
Equation (A11), yields the desired result, which is identical to the equilibrium result in Equation
(A12).

Case 3: the partial adjustment model
Assume that the log price process on the underlying index follows the process

st+1 = st +�−d+�mt+1+�mt� (A17)

Note that this process represents both the true and observed prices, that is, trading is possible at
these prices. With no transaction costs, the standard cost of carry arbitrage argument holds, and
the futures contract is priced at the current spot price as in case 1:

Ft�T = Ste
�i−d��T−t�� (A18)

Consequently there is also the same relation between futures and spot returns,

rFt+1
= rSt+1

− i (A19)

rSt+1
= �−d+�mt+1+�mt� (A20)

but in contrast to the random walk model, both returns are autocorrelated due to partial adjust-
ment in the spot market.

Now assume that there are fixed additive transaction costs � in the spot market (but not in the
futures market or loan market). Replicating a long futures position requires buying the underlying
index initially at a cost of St +� and then selling it at the maturity of the futures contract at
ST − �. Similarly, replicating a short futures position requires shorting the index initially and
then closing out the position at time T . The payoffs to these long and short strategies provide
upper and lower bounds on the futures price, respectively. Specifically

−��1+ ei�T−t��≤ Ft�T −Ste
�i−d��T−t� ≤ ��1+ ei�T−t��� (A21)

The futures price is bounded by its value with no transaction costs plus or minus round-trip
transaction costs.

When the futures price is within the transaction cost bounds, the model does not have
definitive implications for the time-series properties of futures returns. Outside these bounds,
index arbitrage guarantees that the futures will track the underlying index. In particular, if the
spot price follows the process in Equation (A17), futures returns will be positively
autocorrelated.

An alternative model is that Equation (A17) holds within the bounds, but outside the bounds
index arbitrage forces the index prices to track futures prices, which are not subject to partial
adjustment. In this case, futures returns should exhibit no autocorrelation in any range, spot
returns should be positively autocorrelated within the transaction cost bounds and exhibit zero
autocorrelation outside the bounds.
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