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ABSTRACT

This article provides an analytical solution to the problem of an institution optimally

managing the market risk of a given exposure by minimizing its Value-at-Risk using options.

The optimal hedge consists of a position in a single option whose strike price is independent

of the level of expense the institution is willing to incur for its hedging program. This

optimal strike price depends on the distribution of the asset exposure, the horizon of the

hedge, and the level of protection desired by the institution. Moreover, the costs associated

with a suboptimal choice of exercise price are economically signi�cant.
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1 Introduction

Only recently have academics begun to study the risk management practices of �nancial

institutions and other corporations.1 This is surprising given that the majority of �rms,

according to surveys (Smithson (1996a,b)), have been applying modern �nancial techniques

to the managing of some of their exposure to interest rates, equities, or exchange rates for

some time now. One of the di�culties in analyzing these institutions' risk management

programs is that their concept of risk is quite di�erent from the standard measures implied

by multifactor pricing models. Ceteris paribus, according to modern �nance theory, it is

cheaper for shareholders to diversify project risks on their own. Thus, a company's need to

hedge either the systematic or unsystematic risk of its cash ows is limited.

However, there are several reasons why this standard argument may not hold true.2 First,

with costly external �nancing, �rms may need risk management programs to maintain their

access to cheap capital, that is, internal funds (Froot, Scharfstein, and Stein (1993) and Stulz

(1990)). Second, in order to reduce the value of the government's implicit call option on the

�rm's assets via taxes, risk management programs which lead to lower earnings volatility

may be optimal (Smith and Stulz (1985)). Third, without some type of risk management at

the institutional level, it may not be possible to disentangle business-related pro�ts/losses

from pro�ts/losses associated with market exposures (DeMarzo and Du�e (1995)). Fourth,

�nancial institutions facing risk-based capital requirements may �nd reducing risk cheaper

than raising additional capital. Finally, risk management programs can reduce the costs of

�nancial distress (Smith and Stulz (1985)).

Of course, the above motivations for risk management are not driven by the magnitude

of the �rm's market risk, but instead by the magnitude of its total risk. More speci�cally,

it is the probability and magnitude of potential losses that determine the desire to hedge,

especially in the case of hedging motivated by the costs of external �nancing and �nancial

1See Allayannis and Ofek (1996), DeMarzo and Du�e (1995), Froot, Scharfstein and Stein (1993), May

(1995), Mian (1996), Smith and Stulz (1985), Stulz (1990) and Tufano (1996), among others, for a discussion

of the underlying theory and empirics for why �rms may have incentives to hedge, and, given these incentives,

how �rms implement the hedges.

2See Stulz (1997) for a general overview of institutions' risk management practices and incentives.
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distress. As a result of this di�erent criteria for risk, the Value-at-Risk (VaR) concept has

become the standard tool in the exploding area of risk measurement and management. In

brief, VaR is de�ned as an estimate of the probability and size of the potential loss to be

expected over a given period. While a growing number of approaches exist to answer the

question of how to measure this VaR, academics and practitioners alike have been silent on

the question of how to go about managing this risk.

We provide an analytical approach to optimal risk management in a framework that

relies on two key assumptions. First, the institution's risk management criteria is VaR.

Second, the institution's hedging strategy involves options, rather than forwards, futures,

or swaps. The problem is to �nd a put option strategy that minimizes the VaR (given

a maximal expenditure for hedging) by determining the optimal tradeo� between the put

options' ability to reduce the VaR level and the initial cost of these options. The solution

is in the form of the put options' strike prices as a function of the underlying asset value,

the mean and volatility of this asset, the risk-free rate, and the VaR hedging period. The

analysis is performed in a Black-Scholes setting; therefore, it is better suited to the problem

of hedging exposures to exchange rates, equities, or similarly distributed assets.

The main results can be summarized as follows. First, the optimal strategy involves a

hedge position in a single option whose strike price is independent of the level of expense

the institution is willing to incur for its hedge program. That is, given the fundamental

parameters, the optimal option always has the same strike price.

Second, we are able to characterize the functional relation between the choice of a put

option and the underlying parameters. The optimal strike price of this option is increasing in

the asset's drift, decreasing in its volatility for most reasonable parameterizations, decreasing

in the risk-free rate, and nonmonotonic in the maturity of the hedge. The distribution of

the underlying asset exposure is the most important factor, and the optimal choice is very

sensitive to the relative magnitude of the drift and di�usion of this exposure. Interestingly,

the strike price is also increasing in the level of protection desired by the institution (i.e.,

the percent of the distribution relevant for VaR); therefore, this choice is not innocuous.

Third, we show that the bene�ts of choosing the option optimally are economically signif-
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icant. For example, using parameters which are typical for equity indexes, the VaR reduction

using at-the-money options can be 45% less than the VaR reduction with an optimal hedge.

Alternatively, using at-the-money options can require over 80% more in hedging expenditures

to achieve the same VaR.

The paper is organized as follows. Section 2 describes the general problem and motivates

the underlying assumptions. In addition, we provide two important preliminary results and

build intuition via a graphical analysis of the problem of minimizing VaR using options.

Section 3 presents the main theoretical analysis, including the solution to the VaR control

problem and the comparative static results. We also illustrate these results in the context

of a numerical example, and we quantify the bene�ts from the optimal choice of options.

Section 4 concludes.

2 The General Optimization Problem

2.1 Speci�cation

The starting point of our analysis is the classical hedging example, where an institution has

an exposure to the price risk of an underlying asset, St, whose process is governed by the

following stochastic di�erential equation:

dSt
St

= �dt+ �dzt;

where � and � are the drift and the di�usion of the asset value, and zt is a standard Brownian

motion. This asset may be an exchange rate, or a basket of exchange rates, in the case of

a multinational corporation, oil prices in the case of an energy provider, gold prices in the

case of a mining company, etc. The only requirement is that this portfolio's return follows a

geometric Brownian motion. As such, the analysis is better suited to an institution concerned

with its exposure to commodity prices, equities, or exchange rates.

The institution hedges the asset's value using put options. De�ne the market price today

(i.e., time t) of a � -period put as Pt = P (St; X; r; �; �), where the strike price of the option

equals X and the interest rate is r. For simplicity, we assume that all options are priced
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according to the Black-Scholes option pricing model:

Pt = Xe�r��(d1)� St�(d2)

where d1 =
ln (X=S)�

�
r � �2

2

�
�

�
p
�

; d2 =
ln (X=S)�

�
r + �2

2

�
�

�
p
�

;

and �(�) is the cumulative normal distribution. A put option strategy consists of long

positions, hi, i = 1; : : : ; n, in n options with strike prices Xi, i = 1; : : : ; n. The total cost of

the put option strategy,
Pn

i=1 hiPit, cannot exceed a given �xed threshold, C. In addition, we

assume that the exposure is never fully hedged, i.e.,
Pn

i=1 hi < 1. In general, this constraint

will not bind for reasonable levels of expenditures on hedging.3

Finally, the institution is concerned about its exposure to the asset over the next �

periods, and the relevant measure of risk is the position's VaR. De�ne VaRt+� as the dollar

loss at the �% level of the distribution on the institution's exposure relative to investing the

time t value of the portfolio in the risk-free asset. This future value provides the natural

benchmark since a riskless portfolio will thereby yield a VaR of zero. The VaR of a position

translates to the statistical statement: \With (1��)% con�dence, the dollar loss in the future

value of the cash ow in � periods will not exceed $VaRt+� ." To calculate this VaR, note

�rst that the conditional distribution of the future value of the unhedged asset is lognormal:

lnSt+� � N
h
m; s2

i
;

where m = lnSt +
�
�� 1

2
�2
�
�; s = �

p
� :

Consequently, the VaR of the unhedged position is

VaRt+� = St exp(r�)� Stexp(�(�));

where �(�) � (�� 1

2
�2)� + c(�)�

p
� ;

and c(�) is the cut-o� point of the cumulative distribution of a standard normal. The second

term in the VaR is simply the expected payo� of the asset at the �% level.

Hedging with options a�ects the VaR in two ways: (i) the cost of the hedge reduces the

future cash ows in every state of the world, and (ii) the payo�s on the options increase the

3The more general case is solved and discussed in Ahn et al. (1997).
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cash ows when they �nish in the money. It can never be optimal to purchase options with

exercise prices below the expected payo� at the �% level because they will not a�ect the

VaR. Consequently, for the purposes of the VaR calculation, we can assume that the put

options �nish in-the-money. The resulting VaR is

VaRt+� = St exp(r�)�
" 

1�
nX
i=1

hi

!
Stexp(�(�)) +

nX
i=1

hiXi �
 

nX
i=1

hiPit

!
exp(r�)

#
:

The VaR depends on the �% payo� of the partially unhedged exposure, the payo�s of the

options, and the future value of the cost of the hedge. An equivalent interpretation of this

last term is that the institution borrows the cost of the options and pays back the loan at

expiration. Given this VaR, the institution's optimization problem is

Minhi;Xi
VaRt+�

subject to
Pn

i=1 hiPit � C;
Pn

i=1 hi < 1; hi � 0 8i:
(1)

The institution minimizes its VaR using long positions in put options, subject to a cost

constraint on hedging and a constraint that the exposure be underhedged.

Before proceeding to a discussion of the solution to the optimization problem, there are

three aspects of the speci�cation that warrant further attention: (i) the choice of VaR as

the measure of risk, (ii) the restriction of the set of hedging instruments to put options, and

(iii) the expenditure constraint.

While VaR is clearly not the result of some optimization over all possible risk management

criteria, it may be a close �rst approximation. VaR, and similar measures, can be motivated

via capital requirements in the case of �nancial institutions, or through some minimum level

of funds necessary to perform business as usual in the case of other corporations. In any

event, VaR is becoming an industry standard, and it provides an objective measure of risk.

Using forwards or futures to minimize the VaR of an institution's assets is straightforward

and less interesting. Credit and basis risk aside, the VaR can be reduced to zero in the

context of the optimization problem speci�ed above. The key distinction between forwards

and options is that the former instrument gives up some of the right tail of the distribution

in order to reduce the left tail, while the latter works on the left tail only, albeit at an initial

upfront cost. Moreover, while transacting forward is a common hedge methodology, recent
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surveys suggest that the use of options is also commonplace.4 There are a number of reasons

why institutions use options as a hedging vehicle. For example, the institution may be willing,

or even have the desire, to take the underlying asset exposure, leading to only a partial

hedge of its cash ows. This will be true if the motivations for risk management are external

�nancing costs, �nancial distress possibilities, managerial incentives, or tax optimization. In

addition, institutional constraints, such as GAAP hedge accounting guidelines, might lead

to forwards not being a viable alternative for some corporations. Even in the case where

forwards are used to hedge some of the exposure, our optimization problem will still apply

to hedging the VaR of the residual exposure.

The constraint on the cost of the hedge is motivated by issues of both practicality and

liquidity. From a liquidity perspective, institutions may have a limited availability of funds

for hedging, and raising additional funds may be di�cult and costly. From a practical

perspective, institutions have a limited appetite for costly VaR reduction. The solution to

the optimization problem provides the VaR/cost frontier that shows the tradeo� between

hedging expenditures and VaR reduction for many expenditure levels, allowing the institution

to select its desired point.

2.2 Preliminary Results

The optimization problem in equation (1) appears complex; however, there are two pre-

liminary results that permit substantial simpli�cation. First, the optimal hedging strategy

consists of investment in a single put option. In other words, there is a single exercise price,

from the set of available strike prices, that will provide the optimal tradeo� between cost

and VaR improvement. Intuitively, since the exposure is not fully hedged, the choice of

option to hedge the remaining exposure at any level of current expenditure will always be

the same. Alternatively, consider a strategy using puts with di�erent exercise prices. Using

a single put, whose exercise price is a weighted average of these exercise prices, generates

the same payo� at the critical VaR percentile. However, the cost of this put is lower due to

4See, for example, recent surveys reported by Smithson (1996a,b).
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the convexity of put prices.5

Second, the constraint on hedging expenditures is binding. Given that the exposure is

not fully hedged and that a single strike price is used, the last dollar spent provides the same

cost/bene�t tradeo� as the �rst dollar. Consequently, the institution will always spend the

maximum available.6 Note, however, that this result does not imply that the institution will

always wants to spend more on hedging. Solving the optimization problem at a variety of

cost levels yields a VaR/cost frontier, i.e., the lowest level of VaR that can be achieved for

each level of expenditure. The point on this frontier that the institution chooses may depend

on liquidity constraints, capital requirements, or managerial preferences.

To build intuition for the optimal choice of strike price, consider the tradeo� between

cost and exposure. Put options with lower strike prices provide less protection, but they are

cheaper; therefore, the institution can a�ord to hedge a greater fraction of its exposure. In

Section 3, we provide analytical results for this problem, but it is worthwhile �rst to consider

the problem from a graphical viewpoint.

Denote the future value of the hedged asset by Vt+� . If the put option �nishes out

of-the-money, then the value is

Vt+� jSt+� � X = St+� � hPt exp(r�);

and the distribution of this value is lognormal, shifted to the left by the future value of the

cost of the option. If the put option �nishes in-the-money, then the value is

Vt+� jSt+� < X = (1� h)St+� + hX � hPt exp(r�);

and the distribution is again lognormal, due to the partially unhedged exposure, shifted to

the right by the proceeds of the exercised option less the future value of the cost. Combining

5A proof of this result is available from the authors.
6There are some extreme parameter values for which it is not optimal to spend any money on hedging;

however, if any amount of hedging is optimal, then the constraint will bind.
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these distributions:

f(Vt+� ) =

8>>>>>>>><
>>>>>>>>:

1p
2�s(Vt+�+hPt exp(r�))

exp

�
�

1
2

�
ln(Vt+�+hPt exp(r�))�m

s

�2�
if Vt+� � X � hPt exp(r�)

1p
2�s(Vt+��hX+hPt exp(r�))

if hX � hPt exp(r�) < Vt+�

exp

�
�

1
2

�
ln (Vt+��hX+hPt exp(r�))�ln(1�h)�m

s

�2�
< X � hPt exp(r�)

0 if Vt+� � hX � hPt exp(r�)

Figures 1A-B use the above results to illustrate the tradeo� between the strike price and

the hedge ratio for three feasible combinations of exercise price and hedge ratio out of the

continuum of possible choices. Figure 1A shows the distribution of the hedged payo�s, with

the distribution of the unhedged payo� given by the solid line. The graph is based on the

parameter values St = 100, � = 0:10, � = 0:15, r = 0:05, and � = 1, and the hedging cost is

�xed at 0.35% of the value of the underlying asset. For hedge ratios of 0.25, 0.5, and 0.75, the

corresponding options are approximately 8%, 13%, and 15% out-of-the-money. As the hedge

ratio increases, the strike price must decrease in order to maintain a �xed hedging cost. This

tradeo� is clear in the respective distributions. At a hedge ratio of 0.75 and a low exercise

price, the distribution is almost fully hedged below a payo� of 80, but the protection declines

rapidly thereafter. In contrast, at a hedge ratio of 0.25 and a higher exercise price, extreme

events are more likely but a larger range of payo�s is hedged. The problem, of course, is to

choose the option position to minimize the VaR at a given percentage level. Interestingly,

the optimal exercise price (and hedge ratio) will depend on the particular percentage level

chosen.

This dependence is illustrated in Figure 1B, which presents the value of the hedged

position at maturity (i.e., Vt+� ) versus the value of the underlying asset. The 45
o line (solid

line) is the payo� assuming no hedging. The hedged payo�s for all the hedge ratios lie

parallel to this line above their respective exercise prices because the option �nishes out-of-

the-money, and the institution loses the future value of the hedging expenditure. Below the

exercise price, the slope of the hedged payo� depends on the hedge ratio { the higher the

hedge ratio, the atter the line. For a fully hedged position, the payo� would be horizontal

below the exercise price.

From this graph it is relatively simple to calculate the �% VaR for a given hedge ratio
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and exercise price pair, and thus to choose the best option. First, �nd the unhedged payo�

that corresponds to the �% level. The corresponding hedged payo� is the �% payo� for

the hedged distribution. Consequently, the hedge ratio (and exercise price) that provides

the lowest VaR for a given percentage level corresponds to the highest payo� line for that

corresponding underlying asset value. For small percentage levels (i.e., when the institution

is concerned about larger potential losses that occur with a smaller probability), the optimal

exercise price is lower and the hedge ratio is higher. For large percentage levels, it is optimal

to use options with a higher exercise price and lower hedge ratios. At intermediate percentage

levels, an intermediate exercise price is optimal.

3 Minimizing VaR with Options

3.1 Solution to the Minimization Problem

Given the results in Section 2, the optimization problem faced by the institution given in

equation (1) can be rewritten as

Minh;X VaRt+� = St exp(r�)�
h
(1� h)Ste

�(�) + hX � hPt exp(r�)
i

subject to C = hPt; 0 � h < 1:

Substituting in the hedging cost constraint,

X� = argminX St exp(r�)�
��
1� C

Pt

�
Ste

�(�) +
C

Pt

X � C exp(r�)
�

= argmaxX C

"
X � Ste

�(�)

Pt

#
= argmaxX

"
X � Ste

�(�)

Pt

#
: (2)

Some observations are in order. First, and perhaps most striking, the VaRt+� is an a�ne

function of the hedging cost, C, and so it will not a�ect the choice of X. The optimal X

is determined by the cash ow of the asset, and the hedge ratio will adjust depending on

the hedging costs.7 This result also con�rms the fact that the cost constraint is binding.

7Recall that this result holds only if the resulting optimal hedge ratio is less than one. Ahn et al.

(1997) discuss the less interesting case where hedging expenditures are su�ciently large so as to violate this

assumption.
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The VaR is linear in the hedging expenditure, so each additional dollar generates the same

reduction in VaR. There are no diminishing bene�ts to hedging.

Second, equation (2) shows that the minimization of VaRt+� is equivalent to the max-

imization of the ratio of the distance between the exercise price and the �% level of the

unhedged payo�, and the price of the put option. Loosely speaking, the objective function

can be interpreted as the ratio of the bene�t of hedging and the cost of hedging. Increasing

the strike price of the option hedges a greater fraction of the distribution, but the option

becomes more expensive.

The �rst order condition for the maximization problem in equation (2) is

Pt �
�
X � Ste

�(�)
�

@Pt

@X

P 2
t

= 0:

Hence, the solution X� satis�es the nonlinear equation,

X� � Ste
�(�) =

Pt

@Pt

@X

= X� � Ste
r� �(d2)

�(d1)

=) Ste
�(�) = Ste

r� �(d2)

�(d1)
: (3)

One can interpret equation (3) in the following way. The strike price is chosen such that the

�% payo� of the unhedged position is equal to the risk-neutral expectation of the exposure

conditional on the option being exercised.8 In arriving at the above solution, we impose the

budget constraint C = hP (X). Consequently, h� = C=P (X�), i.e., the hedge ratio at the

optimal exercise price is simply the cost divided by the value of the put option at that strike

price. While there is no closed-form solution for X�, closed form expressions are available

for comparative statics using the implicit function theorem.

8Note that in equation (3), a necessary condition for the existence of solution X� is that � � r� because

�(d2)=�(d1) < 1. For most reasonable parameter values, this restriction will be satis�ed. It essentially

requires that the asset's drift not be too large relative to its di�usion. We thank Bruce Grundy for this

observation.
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3.2 Comparative Statics

Rewriting equation (3), the optimal choice of X satis�es

�(d1) exp(�(�)� r�) = �(d2): (4)

De�ne � = (�; �; r; �). Since X = X(St; �), using the implicit function theorem yields,

@X

@�
=

N(d2)
@d2
@�
�N(d1)

�(d2)
�(d1)

@d1
@�
� �(d2)

@(��r�)
@�

N(d1)
�(d2)
�(d1)

@d1
@X

�N(d2)
@d2
@X

where
@d1
@X

=
@d2
@X

=
1

�
p
�X

;

and N(�) is the standard normal pdf. Taking the derivative of d1 and d2 with respect to

each element of the parameter vector, �, yields the desired comparative statics results. The

proofs of all these results can be found in Ahn et al. (1997).

The derivative of the optimal exercise price with respect to the drift of the underlying

asset is

@X

@�
=

��(d1)�(d2)�X� 3=2

N(d1)�(d2)�N(d2)�(d1)
� 0:

The e�ect of increasing the mean of the distribution is to increase the optimal strike price.

The future distribution of the asset is shifted to the right relative to its current value;

therefore, the optimal exercise price is also increased to preserve its relation relative to the

�% level of the unhedged payo�.

The derivative with respect to the underlying asset's volatility is

@X

@�
=

X
p
� [N(d1)�(d2)d2 �N(d2)�(d1)d1 + �(d1)�(d2) (�

2� � c(�)�
p
�)]

N(d1)�(d2)�N(d2)�(d1)

>

<
0;

which is of an indeterminate sign. As � increases, the price of the put increases. Higher

volatility also increases the dispersion of the distribution of the underlying asset. Conse-

quently, the exercise price must decrease to preserve its relation relative to the �% level of

the unhedged distribution, for reasonable values of �. Since both these e�ects work in the

same direction, we might expect that as � rises, the optimal strike price falls. For most

parameterizations this is true. However, if � > 50%, then the �% level of the unhedged
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distribution is increasing in volatility and the unhedged VaRt+� is decreasing in volatility.

For a su�ciently high � this e�ect can o�set the cost e�ect, and the optimal exercise price

will be increasing in volatility.

The derivative with respect to the risk-free rate is

@X

@r
=

X
h
N(d1)�(d2)� �N(d2)�(d1)� + �(d1)�(d2)��

3=2
i

N(d1)�(d2)�N(d2)�(d1)
� 0:

As the interest rate increases the optimal strike price decreases. The optimal strike price

falls because of the corresponding fall in the cost of the put. However, because the e�ect on

the cost is small and there is no e�ect on the distribution of the underlying asset, the overall

e�ect of interest rate changes is small.

The derivative of the optimal exercise price with respect to the hedging horizon is

@X

@�
=

X
h
N(d1)�(d2)1 �N(d2)�(d1)2 � 2���(d1)�(d2)

�
�� 1

2
�2 � r + c(�)�

2
p
�

�i
2
p
� [N(d1)�(d2)�N(d2)�(d1)]

>

<
0

where 1 = �d2 + 2r
p
� ; 2 = �d1 + 2r

p
� :

The horizon over which the partial option hedge takes place can have a large, yet nonmono-

tonic, e�ect on the optimal level of moneyness of the option. On the one hand, as the

horizon increases, the positive drift in the asset's return dominates, and the strike price rises

to reect the shift in the distribution of the asset's value away from its current value. On the

other hand, the volatility of the asset increases with the horizon, and the distribution gets

more disperse, leading to lower optimal exercise prices. As the horizon gets very long, the

former e�ect dominates, and the strike price increases. For shorter horizons, the volatility

e�ect dominates, and the strike price decreases. In general, this reversal will always occur

(as long as the drift is positive); however, its point of inection depends on the underlying

parameter values themselves.

A �nal interesting question to consider is how the optimal strike price changes as a

function of the institution's desired protection level, i.e., the tail percent of the distribution

used to calculate the VaR. Again, using the implicit function theorem,

@X

@�
=
��(d1)�(d2)X�2���1

0

(�)

N(d1)�(d2)�N(d2)�(d1)
� 0; (5)

12



where ��1
0

(�) is the derivative of inverse function of the cumulative normal distribution. Both

the denominator and the numerator are negative, so the optimal exercise price is increasing

in �. This result is consistent with the intuition provided at the end of Section 2.2. Of

particular interest, since this level is a choice variable of the institution, one could imagine

using these results to help the institution tradeo� the choice of options against the amount

they are willing to pay and the desired level of protection.

3.3 An Illustration of Optimal Hedging

In order to illustrate some of the above results, and to quantify the bene�ts associated with

optimal hedging, we turn to a numerical example. Throughout this example we use the

parameter values St = 100, � = 0:10, � = 0:15, r = 0:05, � = 1, and � = 2:5%.

For the above parameter values, the optimal X� is $87.59, and the institution should

purchase options 12.41% out-of-the-money. If no hedging takes place, the VaR is $23.68;

however, by purchasing $0.35 worth of put options, the VaR is reduced to $21.15. As shown

above, the VaR is linear in the hedging expenditure, and, for this example, every $0.10 of

put options reduces the VaR by $0.72. The institution can then tradeo� its VaR reduction

versus the cost of this reduction. One key point is that the optimal level of the moneyness

of the option is invariant to these costs.

It is worthwhile to quantify the bene�t of a judicious (i.e., optimal) choice of exercise

price relative to a suboptimal choice. To do this, we compare the VaR and cost of a hedged

position using options with various exercise prices. We answer two related questions. First,

given a certain cost allocation for hedging, how does the VaR using the optimal exercise

price options compare to the VaR using other exercise prices? Second, given a targeted VaR

level, how does the cost of implementation di�er across di�erent choices of exercise prices?

The results are presented in Figures 2A-B.

Figure 2A plots the VaR as a function of the exercise price. Each line represents a certain

level of expenditure on the options hedge. The VaR declines as the cost allocated for the

hedge increases, but it is also sensitive to the exercise price of the put option. The VaR of

the position is minimized for options with an exercise price of $87.59 for any expenditure
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level, since the optimal exercise price is independent of cost. For a cost of $0.35, the VaR

is minimized at $21.15, a reduction of $2.53 relative to the unhedged level. Increasing the

exercise price to $100, i.e., using an at-the-money option, yields a VaR of $22.30, a reduction

of only $1.38. In other words, an economically meaningful 45% of the hedging bene�t is

lost by using a suboptimal exercise price. Similar magnitudes are evident for all expenditure

levels.

Figure 2B addresses the same issue from a slightly di�erent perspective, showing the

cost of hedging across various exercise prices holding the targeted VaR level �xed. The

expenditure is minimized at the optimal exercise price, and deviations from this optimal

point again yield economically meaningful losses. For example, if a VaR of $21.5 is desired,

implementing it using at-the-money options would cost $0.55, while at the optimal exercise

price the cost would be $0.30. The institution must increase its expenditure by more than

80% to achieve the same risk reduction using a suboptimal exercise price.

Figures 3A-D illustrate how X� varies with the underlying parameters. Figure 3A pro-

vides a contour graph that illustrates the optimal strike price as a function of the distribution

of the future value of the underlying asset, i.e., the parameters � and �. The exercise price is

positively related to the drift and negatively related to the volatility. As a result, it depends

on the relative level of the two parameters. For example, for the pairs (� = 0:04; � = 0:08),

(� = 0:065; � = 0:10), and (� = 0:09; � = 0:115), the optimal exercise price is 92, or 8%

out-of-the money. As the drift and volatility vary from these values, the optimal strike price

can vary quite dramatically, from deep out-of-the-money to in-the-money.

In contrast, Figure 3B shows that, while the strike price is decreasing in the risk-free rate,

the e�ect is of second order. For example, increasing r from 5% to 20% causes the optimal

level of moneyness to fall from 12.5% to only 14.4% out-of-the money. Note that the y-axis

scale is identical for the remaining �gures.

Figure 3C shows that the horizon over which the partial option hedge takes place has

a large and nonmonotonic e�ect on the optimal level of moneyness of the option. As the

horizon increases to 1 year, the optimal strike price decreases from 6% to 12% out-of-the-

money. Between 1 and 2 years the relation between horizon and strike price reverses. It is
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at this point that the mean e�ect begins to dominate the volatility e�ect. For a horizon of

7 years, the optimal exercise price is 10% in-the-money.

The �nal determinant of the exercise price is the level of desired protection. Figure 3D

graphs the optimal strike price against the desired �% level of protection. Obviously, as

additional protection is desired, more and more of the distribution of the asset needs to

be hedged against, and the strike price rises. However, the �gure shows that this relation

between the strike price and � is highly nonlinear. Consequently, an institution or regulatory

body setting capital requirements should take these results into account when deciding on

the appropriate tail probability. For example, going from � = 2:5% to � = 10% increases

the optimal exercise price of the option from $87.59 to $100.00 and signi�cantrly decreases

the fraction of the exposure that is hedged.

4 Conclusion

This paper provides a formal analysis of optimal risk control using options in a simpli�ed

framework in which an institution wishes to minimize its VaR. The complication arises

when considering a menu of possible pairs of exercise prices and hedge ratios given a level of

expenditure, since such di�erent choices imply di�erent levels of hedged VaR. We �nd that

the optimal strike price is independent of the level of cost; therefore, the cost/VaR frontier

is linear. That is, given the parameters governing the distribution of asset returns, and

the desired con�dence level, an institution faces the choice of increasing the position in an

optimal exercise price option, thereby reducing its VaR. Interestingly, the choice of optimal

exercise price is sensitive to the desired con�dence level.

There are several natural extensions of our analysis to non-normal distributions, mean

reverting processes, �xed income securities, etc. The most natural extension, however, is to

multiple asset exposures. Examples include an exporter/importer with exposure to various

exchange rates, a pension fund manager with exposure to equity and bond markets, or an

energy company with exposure to the cost of various energy sources. The optimization can

then be extended to the question of the optimal choice of a menu of options on the di�erent

underlying exposures, taking into consideration a richer set of parameters, namely the cor-

15



relations among assets (which may provide a natural hedge). However, since a portfolio of

options is generally more expensive than an option on a portfolio, the risk management prob-

lem is best addressed by approaching the over-the-counter options market, and constructing

an option on the compound position. In doing so, the analysis falls back within the realm of

our model, as long as the distributional assumptions hold. One might argue that the recent

explosion in the use of over-the-counter, basket options is related to this issue.
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Figure 1: The Exercise Price/Hedge Ratio Tradeo�

The probability density function of the hedged value (top) and the hedged value versus the

unhedged value (bottom) for di�erent choices of hedge ratio h and exercise price X, given a

�xed hedging cost. Parameter values are � = 0:10, � = 0:15, r = 0:05, � = 1, St = 100, and

C = 0:35.
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Figure 2: The Cost of Suboptimal Hedging

VaR for a �xed hedging cost (top) and hedging cost for a �xed VaR (bottom) as a function

of the exercise price. The parameter values used are St = 100, � = 0:10, � = 0:15, r = 0:05,

� = 1, and � = 2:5%.
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Figure 3: The Determinants of the Optimal Exercise Price

The e�ects of changing the mean and volatility (top left), the interest rate (top right), the

horizon (bottom left), and the percentile (bottom right) on the optimal exercise price. The

underlying parameter values are St = 100, � = 0:10, � = 0:15, r = 0:05, � = 1, and

� = 2:5%.
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