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This article examines a class of volatility estimation
models, all of them based on a weighted sum of squared devia-
tions from the mean for historical returns. We show how some
popular methods, such as RiskMetrics™, GARCH, and

non-parametric density estimation, fall into this class. Ve also
conduct a brief empirical comparison of these methods. We find
density estimation and RiskMetrics™ forecasts to be the most
accurate for forecasting short-term interest rate volatility.

inancial institutions and corporations are

becoming increasingly aware of the impor-

tance of risk management, which has led to

considerable interest in tools for risk mea-
surement. This increased interest has prompted some
discussion of the ability of various techniques to fore-
cast volatility, tail behavior, and correlations, in both
the academic literature and practitioners’ publications
(see Figlewski [1997] for a survey; see also Longer-
staey and Zangari [1995]).

Our article provides an analysis of various meth-
ods for estimating volatility. The goal is to show how
some of the most prominent methods for volatility esti-
mation are related, and, as an aside, to discuss approach-
es for benchmarking and comparing volatility forecasts.

From a methodological perspective, this article
provides a unified framework for estimating volatility
that includes, as special cases, historical volatility, expo-
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nentially smoothed volatility, GARCH, and MDE (mul-
tivariate non-parametric density estimation). We demon-
strate that these methods differ only in the weights
given to historical asset return data (e.g., for a cur-
rency) or to changes in the level of an economic
variable (e.g., short-term interest rates). We describe
the advantages and disadvantages of each of these
approaches, and discuss such issues as the trade-off
between parametric and non-parametric models for
forecasting volatility.

A key point is that we are interested in forecast-
ing volatility, which imposes a cost on highly parame-
terized models. Imposing as little structure as possi-
ble, via non-parametric modeling, is a priori a poten-
tially promising approach. The empirical example is
from the world of fixed-income securities, namely,
forecasts of the volatility of changes in U.S. short-
term interest rates.
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I. A UNIFYING APPROACH

Asset returns (denoted R _,) can be broken up
into a forecastable part, L = E [R ] (i.e., the condi-
tional mean, where E_reflects conditioning on the
information available at time t), and an unpredictable
portion, € ,:

Rt+1 = ut + 8t+1 (1)

. . 2
The conditional variance of asset returns, O},
is then just

ol = E[R2,] - u! = Elel] 2)

Let us abstract from the issue of estimating the
conditional mean and focus on methods for estimat-
ing the conditional second moment. For the purposes
of the discussion, assume W = 0, so that the square
root of the conditional second moment is in fact
volatility. This is a common assumption in the asset
pricing literature, corresponding closely to the notion
of market efficiency and the random walk hypothesis.
In our empirical example below, we forecast the
volatility of short-term interest rates. There, we chose
to mean-adjust the series to allow for the effect of
mean reversion in interest rates.

Most empirical methods for predicting volatili-
ty on the basis of past data start with the premise that
volatility clusters through time; that is, large returns
tend to be followed by additional large returns of
either sign. Motivated by this viewpoint, one popular
class of volatility estimates can be written as the
weighted sum of past squared returns. Specifically:

A2 2 k 2
Gt = EI[RH-l] = 0)0 + _Emi(t)RtH-i (3)

i=1

where @,(t) are the weights, which can time-vary
depending on information available today, i.e., period
t; and @, is a constant term (that may be zero).

The class of estimators in Equation (3) cap-
tures many of the empirical volatility forecasting
methods currently used in finance. Volatility fore-
casting models that do not fall into this class include
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1) weighting past absolute errors, a method that
some believe is superior in terms of statistical robust-
ness (to deviations from normality, for example); 2)
using implied volatility from explicit asset pricing
models such as Black-Scholes, which, modeling
error aside, may provide a better estimate because
the approach is forward-looking in nature; and 3)
more complex models that cannot be written as a
simple weighted sum of past changes squared (e.g.,
stochastic volatility models).

While these models are popular in some spe-
cific cases, they may be inappropriate or inapplicable
elsewhere (e.g., using Black-Scholes for options on
fixed- income securities). They thus fail to provide a
unified approach to volatility forecasting.

There are various widely applicable volatility
forecasting models that fall under our unifying frame-
work. The models we examine are, for that very rea-
son, the most popular for risk management. We show
how each of the models we examine relates to the
representation in Equation (3).

II. NAIVE MODELS

Historical Volatility

Perhaps the simplest and most popular way to
forecast the volatility of a series is to take its historical
volatility over some prior window. This model is
often termed “naive” because it places no structure
on how volatility might evolve through time and puts
constant weights on past observations. Its advantage,
of course, is that it is less subject to problems associat-
ed with overfitting, and involves only one choice
variable, namely, the observation period. In terms of
Equation (3),

A 13
Grz = 'th2+1—i “)

where ®,(t) = 1/s, i.e., equal weights on the past s
observations, and the constant term is zero.

Exponentially Smoothed Volatility Forecasts

Even within the class of “naive” models,
there are two obvious criticisms of historical volatil-
ity. First, if volatility clusters, it follows that more
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recent returns should be given more weight.
Returns in the last period provide more informa-
tion about current volatility than returns some time
ago. This is a result of the fact that the relevant state
variables, which may differ across return series, are
often autoregressive, or, more generally, of a period-
ic nature. Such is the case for financial
variables such as interest rates and spreads, and for
related economic variables such as real growth rates,
unemployment rates, or storage costs.

Second, the choice of the length of the obser-
vation period is somewhat arbitrary. Weight is given
to observations that occur within the most recent s
periods, while no weight is given to observations
beyond this window. This procedure is ad hoc at best.

From a practical viewpoint, volatility estimates
may often exhibit spurious clustering (due to the
equal weights) and spurious drops (when large obser-
vations leave the window). Informally, a reasonable
way to think of the relevance and effect of economic
news after it becomes publicly known is that it has a
diminishing effect through time. In this sense, we may
expect the pattern of volatility to be such that large
increases occur every once in a while, and then
volatility smoothly diminishes.

The resulting model is one where exponen-
tially declining weights are given to past volatilities,
proxied by squared returns (as in RiskMetrics™, for
example). This weighting procedure gives more
weight to recent observations, yet smooths the
series as all observations from period to period are
given only slightly different emphasis. In terms of
Equation (3):

62 = (1 - 09X R, . (5)

i=1

where .(t) = 871(1 — 8), and 6 equals the exponen-
tial weighting parameter (0 < 0 < 1).

Of course, the researcher must truncate the
return series since only a finite number of observa-
tions are available for estimation. This is, however, a
minor consideration with financial data that are
observed with high frequency.! More important, the
value of the weighting parameter needs to be chosen
by the researcher, and the model itself implies a
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restrictive set of weights. One parsimonious way of
choosing these weights is to estimate them from his-
torical data using a parametric model of returns, giv-
ing rise to the ARCH/GARCH class of models.

III. ARCH/GARCH MODELS

ARCH(p) Volatility

Engle [1982] introduced the autoregressive
conditional heteroscedasticity (AR CH) model for
estimating and forecasting volatility. The idea behind
ARCH modeling is that volatility is persistent, but
the exact form of this persistence is unknown. Thus,
one way to estimate volatility using the class of mod-
els in Equation (3) is to estimate the weights as a
function of past data. In particular, the ARCH (p)
mode] can be written as:

A2 I P . _ 5

where p represents the order of the ARCH process,
and ©,(T) = &, the weights from the ARCH (p)

estimation.

In order to estimate parameters governing the
weights, the researcher may specify the conditional
distribution of returns (possibly ignoring the condi-
tional mean). While one popular model is the normal
distribution, other distributional assumptions (such as
Student-t) are also possible. Although exact distribu-
tional assumptions are not in general required (see
Engle and Gonzalez-Rivera [1991]), it is convenient
to make explicit distributional assumptions because
the estimation can then be performed easily using
maximum-likelihood techniques.

The econometrician must also choose both an
order for the ARCH process and the length of the
sample period in which to estimate the ARCH
parameters. This can lead to several difficulties in pre-
dicting volatility. First, like the historical volatility
procedure, ARCH volatility forecasts can produce
spurious peaks. This phenomenon is especially pro-
nounced in the case of ARCH, because only p obser-
vations obtain any weight. Since p is most commonly
small (say, one to ten), large moves will produce even
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larger peaks. The problem arises from the fact that
researchers ignore information in returns going back
more than p periods.?

Second, while there are standard criteria for
determining the order p in-sample, the effect of esti-
mation error on forecasting is an unknown quantity.
Third, the estimation itself is subject to misspecifica-
tion, depending on the appropriateness of the
assumption about the returns distribution. Fourth,
even under the null, the small sample properties of
the estimates are weak; hence, large amounts of data
may be required.

The tremendous advantage of ARCH estima-
tion is that the weights are no longer determined in
an ad hoc manner. If, for example, the weights are
not equal or proportional, ARCH modeling will cap-
ture this; “naive” models will not. That is, if the true
process is given by Equation (6) with any set of s,
then, given enough data, ARCH will recover the
parameters (which are the weights). Furthermore,
some of the disadvantages of volatility estimation can
be reduced by generalizing the ARCH model.

GARCH (p, q) Volatility

Bollerslev [1986] extended the ARCH (p)
model for volatility forecasting to the now common-
ly used generalized autoregressive conditional het-
eroscedasticity [GARCH (p, q)] model. The idea
behind the GARCH extension is similar to that of
the exponentially smoothed version of historical
volatility. That is, ARCH (p) is too restrictive
because it implies that returns more than p periods
ago have no influence on current volatility. GARCH
(p, Q) places the same type of distributional assump-
tion on returns but now assumes that the conditional
variance follows:

where p and q represent the order of the GARCH
process, and (Stj and Bj are the parameters from the

GARCH (p, q) estimation.

Equation (7), like Equation (5), can be written
as an infinite weighted average of past squared returns.
That is:
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6"2r =8 + ZSiR’ZI‘H-—i ®)
i=1

where @.(T) = 8., and the 0, are non-linear func-
tions of the parameters of the GARCH (p, q) pro-
cess, o and P.

To gain some intuition for the weights implied
by the parameters, consider the popular GARCH (1, 1)
process. In this case, Equation (8) can be rewritten as

+ SOBTR T ©
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where ,(T) = o,B;”". This looks very similar to
Equation (5) for the exponentially smoothed estima-
tor of ¢2. In fact, exponential smoothing is a con-
strained version of GARCH (1, 1).

Specifically, the parameter constraints on the
GARCH (1, 1) process are o, = 0, B, = 6, and o, =
1 — 6. Unfortunately, this means that exponentially
smoothed volatility, in general, and RiskMetrics™
volatility, in particular, are based on a non-stationary
GARCH process, since &, + B, = 1. Thus, the pro-
cess implicit in RiskMetrics™ estimates with any
smoothing parameter has an infinite fourth moment,
meaning that the (unconditional) variance of the vari-
ance process is undefined. While this non-stationarity
may be viewed as a theoretically unattractive feature
in time series modeling, it does not invalidate expo-
nentially smoothed volatility as a useful approach for
forecasting volatility.

On the other hand, there are still potentially
significant difficulties with GARCH (p, q) processes.
While GARCH solves the problem of the spurious
choppiness of the estimates that is characteristic of
ARCH processes, and may require fewer numbers of
parameters to fit the data, the remaining difficulties
are similar to the ones described for AR CH.

All the techniques discussed so far imply, for a
given sample, state-independent weights. That is, the
only information used is information contained in
past squared returns. This restricts the type of infor-
mation that can impact volatility. Of course, in a
rolling estimation setting, the weights will change as
observations enter and leave the estimation window.
Weights will not depend on whether these observa-
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tions are more or less informative, given current
information, however.?

IV. NON-PARAMETRIC MODELS:
MULTIVARIATE DENSITY ESTIMATION

Multivariate density estimation (MDE) is a
method for estimating the joint probability density
function of a set of variables. For example, one
could choose to estimate the joint density of
returns and a set of predetermined factors such as
the slope of the term structure, the inflation level,
and the state of the economy. From this distribu-
tion, the conditional moments, such as the mean
and volatility of returns, conditional on the state,
can be calculated.*

The MDE volatility estimate provides an intu-
itive alternative to the standard set of approaches to
weighting past (squared) changes in determining volatil-
ity forecasts. The key feature of MDE is that the weight
function is no longer constant over time as in the other
methods. Instead, it depends on how the current state
of the world compares to past states of the world. If the
current state of the world, as measured by the state vec~
tor X,, is similar to a particular point in the past, then
that past squared return is given a lot of weight in form-
ing the volatility forecast, regardless of how far away in
time it is. This contrasts with more standard approaches,
which weight past observations according to how long
ago they occurred, whatever the economic environ-
ment looked like at the time.

To the extent that the state variables are auto-
correlated, the MDE weights will also capture some
of the decay features present in the exponentially
smoothed GARCH and RiskMetrics™ volatility
forecasts. That is, recent observations will be weight-
ed more heavily.

Of course, selecting the appropriate state vari-
ables is critical to the performance of the volatility
estimate. These variables should be useful in describ-
ing the economic environment in general, and be
related to volatility specifically. For example, suppose
that the level of return volatility is related to the level
of inflation; then inflation will be a good condition-
ing variable. Good candidates tend to be the same
variables that one might select for use in the aug-
mented GARCH model described in endnote 3. The
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advantages of the MDE estimate are that it can be
interpreted in the context of weighted lagged returns,
and that the functional form of the weights depends
on the true (albeit estimated) distribution of the rele-
vant variables.

Using the MDE method, the estimate of con-
ditional volatility is

s
62 = Yo )R (10)
i=1
where
o(x, ) = K(—%}/Z;ﬂ((x—t"—‘—ﬁﬁ)

Here, x,, the vector of variables describing the eco-
nomic state at time t (e.g., the term structure), deter-
mines the appropriate weight ®(x,_,) to be placed on
observation t — i, as a function of the “distance”
between the state x_; at that time and the current
state x,. The relative weight of “near” versus “distant”
observations from the current state is measured via the
kernel function K(-).

The kernel function has to obey some mild
regularity conditions to ensure asymptotic conver-
gence. For the application studied in this article, we
choose K(z) = (2r)™2¢1/%% where m is the num-
ber of conditioning variables. The reader will recog-
nize this as a multivariate normal density. This is cho-
sen for convenience, and relates only to the efficiency
of the density estimate; it is not a distributional
assumption per se.

The bandwidth, h, is related to sample size and
the relative sparseness of the data. It determines how
variable the weights are. As the bandwidth is
increased, the weights become less variable, and, in
the limit, the conditioning information is ignored and
each observation gets equal weight. The bandwidth we
use, as suggested by Scott [1992], is h, = Y f @)~/

3

where 6’_i 1s the standard deviation of the variable X;.
MDE is extremely flexible in allowing the
researcher to introduce dependence on state variables.
For example, we may choose to include past squared
returns as conditioning variables. In doing so, the
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volatility forecasts will depend non-linearly on these
past changes. Or, the exponentially smoothed volatili-
ty estimate can be added to an array of relevant con-
ditioning variables. This may be an important exten-
sion to the GARCH class of models. Of particular
note, the estimated volatility is still based directly on
past squared returns and thus falls into the class of
models described by Equation (3).

The added flexibility becomes crucial when
there are other relevant state variables that can be added
to the current “state” For example, it is possible to
capture 1) the dependence of interest rate volatility on
the level of interest rates, 2) the dependence of equity
volatility on current implied volatilities, and 3) the
dependence of exchange rate volatility on interest rate
spreads or proximity to intervention bands.

There are potential costs in using MDE. To esti-
mate volatility, the researcher must choose a bandwidth,
a kernel function, a set of conditioning variables, and
the number of observations to be used. For our purpos-
es, the bandwidth and kernel function are chosen
objectively (using standard criteria). Although they may
not be optimal choices, it is important to avoid prob-
lems associated with data snooping and overfitting.

While the choice of conditioning variables is a
matter of discretion and subject to abuse, the choice
does provide a considerable advantage. Theoretical
models and existing empirical evidence may suggest
relevant determinants for volatility estimation, which
MDE can incorporate directly. These variables can be
introduced in a straightforward way for the class of
stochastic volatility models in Equation (3).

The most serious problem with MDE is that it
is data-intensive. Considerable data are required in
order to estimate the appropriate weights that capture
the joint density function of the variables. The quan-
tity of data needed increases quickly as the number of
conditioning variables used in the estimation grows.
On the other hand, for many of the relevant markets
this concern is somewhat alleviated since the relevant
state can be adequately described by a relatively small
number of factors.

V. APPLICATION: A COMPARISON OF
INTEREST RATE VOLATILITY FORECASTS

Qur illustration of the implementation of these

68 INVESTIGATION OF A CLASS OF VOLATILITY ESTIMATORS

methods, and how one could go about benchmarking
various methods against one another, is not meant fto
provide an all-inclusive search for the optimal set of
parameters and horizon lengths for each method.
Instead, the results of the “horse race” between meth-
ods should be considered at best suggestive of some of
the issues that might arise.

We calculate volatility estimates of daily
changes in the annualized interest rate on three-month
Treasury bills. Each estimate is calculated using 150
daily observations on a rolling basis. In other words,
the first 150 observations in the sample are used to
compute an estimate for the following day (day 151),
using each of the four methodologies described below.
This estimate is then evaluated on an out-of-sample
basis, i.e., in terms of the realized volatility. The whole
exercise is then rolled forward one day. The models are
reestimated using observations 2 through 151 in order
to estimate volatility for day 152.

Interest rate changes are mean-adjusted using
the sample mean from the 150-day estimation period,
although the ranking of the methodologies and the
relative performance are not sensitive to the fact that
we mean-adjust. The analysis is performed over the
period 1983-1992.

The models we compare are:

Historical standard deviation.

e Exponentially smoothed volatility with 6 = 0.94
(the RiskMetrics™ model).

e GARCH (1, 1) volatility (estimated via maxi-
mum likelihood).

e MDE volatility with the state variables being x, =
(interest rate level, term structure slope).’

Note that in every case we use only 150 obser-
vations to estimate the models. An alternative strategy
would be to increase the number of observations as
the out-of-sample exercise moves forward through
time. As the length of estimation sample increases,
however, concerns about non-stationarity do so as
well. That is, the parameters of the models (e.g.,
GARCH) may be changing over time. We make no
effort to optimize this trade-off between estimation
error and capturing time-varying parameters.

To illustrate the four methodologies, Exhibit 1
gives weights on past squared interest rate changes as
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of June 1, 1992. The weights for the standard devia-
tion and exponentially smoothed weighting schemes
are the same every period and will vary only with the
window length and the smoothing parameter. The
GARCH (1, 1) weighting scheme varies with the
parameters, which are reestimated daily, given each
day’s previous 150-day history. The date is selected at
random. For that particular day, B, = 0.74. Given that
B, is relatively low, it is not surprising that the weights
decay relatively quickly.

Exhibit 1 is particularly illuminating with
respect to MDE. As with GARCH, the weights
change over time. The weights are high for dates t
(June 1, 1992) through t — 25 (twenty-five days
prior), and then start to decay. The weights decrease
because the economic environment, as described by
the interest rate level and spread, is moving farther
away from the conditions observed at date t. We do,
however, observe an increase in the weights for dates t
— 80 to t — 120. Economic conditions in this period
(the level and spread) are similar to those at date t .
MDE puts high weight on relevant information, regard-
less of how far in the past this information is.

Exhibit 2 compares, on a period-by-period
basis, the extent to which the forecasts from the vari-
ous models match realized future volatility. We define
realized daily volatility as the average squared daily
changes during the week following, from day t + 1 to
day t + 5. These changes are mean-adjusted using the
sample mean from the 150-day estimation period.

Note that we use this five-day average as an
estimate of the realized daily volatility at time t + 1.
An alternative estimate would be simply the squared
interest rate change on day t + 1, but this estimate is
extremely noisy. Using five observations to estimate
the daily volatility reduces the magnitude of the esti-
mation error at the cost of introducing a small bias
associated with the change in daily volatility over the
course of the week.

We compare realized and forecasted volatility
in two ways. First, we compare the out-of-sample
performance over the entire period using the mean
squared error of the forecasts. That is, we take the
difference between each model’s volatility forecast
and the realized volatility, square this difference, and
average through time. Second, we regress realized
volatility on the forecasts and document the regres-
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EXHIBIT 1
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sion coefficients and R%.

The first part of Exhibit 2 is quite illuminating.
First, while all the means of the volatility forecasts are
of a similar order of magnitude (approximately 7 basis
points per day), the standard deviations are quite dif-
ferent, with the most volatile forecast provided by
GARCH (1, 1). This result is somewhat surprising,
because GARCH (1, 1) is supposed to give a relative-
ly smooth volatility estimate (due to the moving aver-
age term). For rolling, out-of-sample forecasting,
however, the variability of the parameter estimates
from sample to sample induces variability in the fore-
casts. These results are, however, upwardly biased,
since GARCH would commonly require much more
data to yield stable parameter estimates.

From a practical perspective, everything else
the same, volatile forecasts for volatility are a disad-
vantage. In particular, to the extent that such numbers
serve as inputs in setting time-varying rules in a risk
management system (for example, by setting trading
limits), smoothness of rules is a virtue.

To measure the forecasting performance of the
various volatility models, Exhibit 2 reports the mean
squared error (MSE). For this particular sample and
window length, MDE comes in first, with the lowest
MSE (0.887), and RiskMetrics™ is a close second,
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EXHIBIT 2
OuUT-0F-SAMPLE VOLATILITY FORECASTING

STD RM MDE GARCH

Mean 0.070 0.067 0.067 0.073
Std. Dev. 0.022 0.029 0.024 0.030
Autocorr. 0.999 0.989 0.964 0.818
MSE 0.999 0.930 0.887 1.115

LINEAR REGRESSION

B 0.577 0.666 0.786 0.559
(s.e) (0.022)  (0.029) (0.024) (0.030)
R2? 0.100 0.223 0.214 0.172

Daily data on the three-month T-bill rate are provided by the
Federal Reserve over 19831992 for a total of 2,250 observations.
Volatility is estimated using mean-adjusted interest rate changes
over a moving window of 150 days. The methods for volatility
estimation are:

STD — simple standard deviation.

RM — RiskMetrics™ volatility with 8 = 0.94.

MDE — non-parametric multivariate density estimation using the
level and spread as state variables.

GARCH — GARCH (1, 1) estimated via maximum likelihood.

Summary statistics are calculated for the standard deviation rather
than the variance of interest rate changes. Interest rates are in per-
cent; a mean forecast of 0.07 represents a standard deviation of 7
basis points per day. Comparison across methods is achieved by
measuring: 1) the mean squared error (MSE) of the daily volatility

forecast versus realized daily volatility o‘fﬂ‘, which is estimated
using the following five trading days, and 2) the regression coef-
ficient and R? in a regression of realized volatility on the volatili-
ty forecast:

2t 2
cyt+1 =0 + BGI + 8t+l

with an MSE of 0.930. Note that, while GARCH
comes out the worst here, this comparison involves
just one particular GARCH model [i.e., GARCH (1,
1)], over a short estimation window.

One would need to investigate other window
lengths and specifications, as well as other data series,
to reach more general conclusions. It is interesting to
note, however, that, non-stationarity aside, exponen-
tially smoothed volatility is a special case of GARCH
(1, 1) in-sample, as shown above. The results here
suggest the potential cost of estimation error on an
out-of-sample basis.

An alternative approach to benchmarking the

70 INVESTIGATION OF A CLASS OF VOLATILITY ESTIMATORS

various volatility forecasting methods is via linear
regression of realized volatility on the forecast. If the
conditional volatility is measured without error, then
the coefficient should equal one; if the forecast is
unbiased but contains estimation error, then the coef-
ficient will be biased downward. Deviations from one
reflect a combination of this estimation error plus any
systematic over- or underestimation.

The ordering in this “horse race” is quite
similar to that in the previous one. In particular,
MDE exhibits the B coefficient closest to one
(0.786), and exponentially smoothed volatility
comes in second, with a B of 0.666. The goodness
of fit measures, the R%s of the regressions, are similar
for both methods.

VI. CONCLUDING REMARKS

We have provided 2 unifying framework for
considering a number of popular volatility estima-
tion methods, including exponentially smoothed
historical volatility and GARCH, as well as a non-
parametric method that uses conditioning informa-
tion. These methods are illustrated and compared in
an out-of-sample daily interest rate volatility fore-
casting exercise.

One natural and important question that we
do not address is how to extend these volatility fore-
casts to longer horizons. For historical volatility esti-
mates, the answer is simple — multiply the daily
volatility estimate by the horizon length. That is, the
volatility forecast over the next n days is simply nG 2
where the daily forecast (AStZ comes from Equation (4)
or Equation (5). ARCH and GARCH processes
imply more complex, but still tractable, multiperiod
volatility forecasts based on Equations (6) and (7).

The only caveat in these cases is that, while the
one-day innovation is normally distributed for stan-
dard specifications, the multiperiod innovation has a
much more complicated distribution, which makes
interpretation of the volatility estimate more difficult.
Finally, multiperiod volatility forecasting using MDE
requires more work. Daily volatility depends on the
level of the conditioning variables, so multiperiod
volatility depends on the future levels of these condi-
tioning variables.

One might think of estimating the one-day

SPRING 1997



ahead distribution of these variables using the same
non-parametric methods and conditioning informa-
tion as those used to estimate volatility. Expectations of
the convolution of this distribution function provide
the appropriate values of the conditioning variables for
the calculation of weights as in Equation (10).

ENDNOTES

1Using one year of past data (250 daily observa-
tions) and a smoothing parameter of 0.96, for example, the
truncation is done at a point where the weight on all the
omitted observations would have been 0.000037. Note also
that with high-frequency data, the chosen smoothing
parameter is generally close to 1 so as to give non-negligible
weight to more than just the few most recent observations.

2Note that information beyond p periods is used
in estimating the parameters O; to the extent that these
parameters are constant, however, the information is not
explicitly incorporated into the volatility forecasts.

3There are several extensions to GARCH mod-
els that do allow other information to enter the estima-
tion, but these cannot be written in the form of Equation
(3). For example, modified GARCH models specify con-
ditional volatility in terms of other predetermined vari-
ables, X ; that is:

A2 N 3 . 2 PAr 5 LA
Oy = Oy + _zlaiRtH—i + ZPiG:—i + '%YiXtH—i
1= 1= 1=

Conditional volatility above will depend on past values of
X, directly and not through the weights on past returns.
Thus, modified GARCH models lie outside the family of
volatility models described in Equation (3). Depending on
the particular application, however, these models may be
a useful alternative to models that do allow state-depen-
dent weights.

*For more details on the intricacies of density esti-
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mation as it applies to our problem, and for relevant
econometric references, please see Boudoukh et al. [1996].

SThe state variables are defined as the yield on
three-month T-bills and the spread between the yields on
ten-year Treasury notes and three-month T-bills. This
choice is motivated by results in the literature (see, for
example, Boudoukh et al. [1996]).
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