
Reoptimization of the Minimum Total Flow-Time Scheduling

Problem∗

Guy Baram† Tami Tamir†

Abstract

We consider power-aware reoptimization problems arising in production planning. Due to
unexpected changes in the environment (out-of-order or new machines, modified jobs’ process-
ing requirements, etc.), the production schedule needs to be modified. That is, jobs might
be migrated from their current machine to a different one. Migrations are associated with
a cost – due to relocation overhead and machine set-up times. The goal is to find a good
modified schedule, with a low transition cost from the initial one. We consider the objective
of minimizing the total flow-time, denoted in standard scheduling notation by P ||

∑
Cj .

We study two different problems: (i) achieving an optimal solution using the minimal
possible transition cost, and (ii) achieving the best possible schedule using a given limited
budget for the transition. We present optimal algorithms for the first problem and for several
classes of instances of the second problem.

1 Introduction

This work studies a power-aware reoptimization variant of the classical scheduling problem of
minimizing the total flow-time (denoted in standard scheduling notation by P ||

∑
Cj [15]). The

minimum total flow-time problem can be solved efficiently by the simple greedy SPT rule [28, 8]
that assigns the jobs in nondecreasing order by their length. This algorithm, as many other
algorithms for combinatorial optimization problems, solves the problem from scratch, for a single
arbitrary instance without having any constraints or preferences regarding the required solution
- as long as it achieves the optimal objective value. However, many of the real-life scenarios
motivating these problems involve systems that change dynamically over time. Thus, throughout
the continuous operation of such a system, it is required to compute solutions for new problem
instances, derived from previous instances.

Moreover, since there is some cost associated with the transition from one solution to another,
a natural goal is to have the solution for the new instance close to the original one (under certain
distance measure).

Solving a reoptimization problem involves two challenges:

1. Computing an optimal (or close to the optimal) solution for the new instance.

2. Efficiently converting the current solution to the new one.

∗A preliminary version of this paper appears in the proceedings of the 1st Mediterranean Conference on Algo-
rithms (MedAlg) December 2012, Ein-Gedi, Israel.

†School of Computer Science, The Interdisciplinary Center, Herzliya, Israel.
E-mail: guy.baram@gmail.com, tami@idc.ac.il.

1

Each of these challenges, even when considered alone, gives rise to many theoretical and practical
questions. Obviously, combining the two challenges is an important goal, which shows up in many
applications.

The reoptimization problem of minimizing the total flow-time arises naturally in production
planning. Due to unexpected changes in the environment (out-of-order or new machines, timeta-
bles of task processing, etc.), the production schedule needs to be modified. Rescheduling tasks
is costly, due to relocation overhead and machine set-up times. The goal is to find a new feasible
schedule, which is as close as possible to the previous one.

Applications: As mentioned above, the scenario we consider often arises in manufacturing
systems. In fact, our work is relevant to any dynamic scheduling environment, in which migrations
of jobs are associated with a transition cost, energy-loss, or overhead caused due to the need to
absorb the migrating jobs. We describe below several less intuitive applications in cloud computing
and semiconductor wafers production line.

Consider an RPC (Remote Procedure Call) service. In this environment, a cloud of servers
can provide service to a limited number of simultaneous users. If the number of requests is high,
another virtual server could be temporarily rented, where the cost for using it is per user. The
options are to put the RPC in a queue, thus causing latency in the service, or renting more virtual
servers, enabling faster service and paying the additional servers’ cost. In this application, the
transition cost is not due to the migration itself, but due to the activation cost of the additional
resources.

Some of our results will be extended to consider modifications that occur after the processing
has begun, that is, at time t > 0. For this extension (see Section 2.2) we distinguish between
environments in which the currently processed jobs can migrate and be restarted on different
machines, and applications in with restarts are not allowed, and a currently processed job must
complete its partial processing. The following application describes a system in which restarts
are not allowed: In a semiconductor wafers production line, some of the coating methods involve
purely physical processes such as high temperature vacuum evaporation (physical vapor deposition
- PVD). During the process, a vacuum is created to enable the coating. Once the elements are in
a vacuum environment, the process cannot be stopped as if the machine halts, it will be severely
damaged [21]. Assume that at time t > 0 machines are added. Transferring jobs is costly - to
capture the transition overhead and the changes required in programming the machines workplan.
Also, the elements that are currently produced, that are already in vacuum state, must complete
their production.

We note that our results for change at t = 0 are not necessarily static, as in many systems,
the same workplan is repeated periodically (daily, etc.), thus, every period can be considered as a
schedule starting at time t = 0. A change in the fixed periodic schedule is equivalent to a change
at time t = 0.

1.1 Problem Statement and Notation

An instance of our problem consists of a set J0 of n0 jobs and a set of m0 identical machines.
Denote by pj the processing time of job j. A schedule S0 of the initial instance is given. That is,
for every job in J0, it is specified on which machine it is assigned and on which time interval it
is going to be processed. At any time, a machine can process at most one job and a job can be
processed by at most one machine.

At time t ≥ 0, a change in the system occurs. Possible changes include addition or removal

2

of machines and/or jobs, as well as modification of processing time of jobs in J0. Let J denote
the modified set of jobs, and let n = |J |. Let M denote the modified set of machines, and let
m = |M |. Our goal is to suggest a new schedule, S, for the modified instance, with good objective
value and small transition cost form S0. Assignment of a job to a different machine in S0 and S
is denoted migration and is associated with a cost. Formally, we are given a price list θii′j , such
that it costs θii′j to migrate job j from machine i to machine i′. We consider two problems:

1. Rescheduling to an optimal schedule using the minimal possible transition cost.

2. Given a budget B, find the best possible modified schedule that can be achieved without
exceeding the budget B.

Some of our results assume unit transition costs, that is, for all j and i ̸= i′, θii′j = 1.1

For a given schedule, let Cj be the completion time of job j, that is, the time when the process
of j completes. In this work we consider the problem of minimizing the sum of completion times,
denote by

∑
Cj and also known as total flow-time. In the reoptimization problem, given J, J0,

the goal is to find a good schedule for J that is close to the initial schedule S0.
Example 1: Assume that six jobs of lengths 1, . . . , 6 are scheduled on a single machine in an
optimal SPT order. Assume that a second machine is added, and that all migrations have unit
transition cost. Figure 1(a) presents an optimal modified schedule, for which the total flow-time
is

∑
Cj = 34. Migrating jobs appear in grey. The budget required to reach this schedule (or

any other schedule with
∑

Cj = 34) is 3. For a given budget, B = 2, it is possible to move, for
example, to the modified schedules given in Figures 1(b) and (c), having total flow-time 36 and
35, respectively. The schedule (c) is optimal for this budget.

1

2

3

4

5

6

M1

M2

1 2

3

4

5

6M1

M2

1 2 3 4

5 6

M1

M2

(a) (b) (c)

1 2 3 4 5 6M1S0:

Figure 1: (top) An initial assignment, (a) an optimal reassignment achieved with transition cost 3, (b) a
possible, and (c) an optimal reassignments achieved with limited budget B = 2.

Example 2: Figure 2(a) presents an optimal SPT schedule of 12 jobs of on three machines.
Assume that a forth machine is added. Figure 2(a) presents an optimal modified schedule, for
which the total flow-time is

∑
Cj = 55. The budget required to reach this schedule (or any other

schedule with
∑

Cj = 55) is 4. An important observation is that even though the number of jobs
on the added machine is 3, and the initial schedule is optimal, it is not possible to move to an
optimal schedule with budget B = 3. An optimal solution for B = 3 is presented in Figure 2(c).
It has total flow-time 56.

1Note that the constant 1 can be replaced by any other constant.

3

1 2

3

M1

M2

(a) S0

4

M3

M1

M2

(b)

M3

M4

1

1

3

3

3

4

4

4

1

2

3

4

1

1

3

3

3

4

4

4

M1

M2

(c)

M3

M4

1 2

3

4

1

1

3

3 3

4

4

4

Figure 2: (a) An initial assignment, (b) an optimal reassignment requires transition cost 4, and (c) an
optimal reassignment for B = 3.

Natural Heuristics: The above examples demonstrate some of the challenges in solving our
reoptimization problems, and the fact that simple natural heuristics do not solve the problem
optimally, even if all migrations have unit transition cost. Note first that the natural greedy
approach of migrating the long jobs if the budget is low (as in Example 1(b)) is sub-optimal.
Another natural approach is prefix-SPT – use the budget to maximize the prefix of the schedule
that agrees with an SPT schedule. This approach fails on Example 1 (jobs of lengthes 2 and 4
will be migrated, resulting in

∑
Cj = 37). Moreover, prefix-SPT as well as suffix-SPT (maximize

the suffix of the schedule that agrees with an SPT schedule) are not well-defined since the tie-
breaking rule, in case of multiple jobs having the same processing time, is crucial - as demonstrated
in Example 2.

1.2 Related Work

The ‘single-shot’ minimum total flow-time, P ||
∑

Cj , can be solved in polynomial time by using the
shortest processing time (SPT) rule [28, 8]. The problem is solvable also on unrelated machines,
R||

∑
Cj , by a reduction to a minimum-weight complete matching problem [6, 17].

The work on reoptimization problems started with the analysis of dynamic graph problems
(see e.g. [11, 30] and a survey in [9]). These works focus on developing data structures supporting
update and query operations on graphs. Reoptimization algorithms were developed also for some
classic problems on graphs, such as shortest-path [23, 22] and minimum spanning tree [1].

A different line of research deals with the computation of a good solution for an NP-hard
problem, given an optimal solution for a close instance. Among the problems studied in this
setting are TSP, [4, 5], Steiner Tree on weighted graphs [12] and Knapsack [2]. A survey of
other research in this direction is given in [3]. In all of the above works, the goal is to compute
an optimal (or approximate) solution for the modified instance. The resulting solution may be
significantly different from the original one, since there is no cost associated with the transition
among solutions.

The paper [26] suggests the framework we adopt for this work, in which the solution for the
modified instance is evaluated also with respect to its difference from the initial solution. This
framework is in use also in [25], to analyze algorithms for data placement in storage area network.
Considering both the quality of the solution and the transition cost from an initial solution can
also be seen as a special case of multi-objective optimization problems. In these problems, there
are several weight functions associated with the input elements. The goal is to find a solution

4

whose quality is measured with respect to a combination of these weights (see e.g., [24, 16]).
Other related work consider several graph algorithms that we apply or adjust in this work.

A matching M ⊆ E in a graph G = (V,E) is set of edges such that each node in V appears
in at most one edge in M . A Bipartite graph G = (V,E) is a graph in which the vertex set
V can be divided into two disjoint subsets V1 and V2 such that E ⊆ V1 × V2. A complete
matching in a bipartite is a matching of size min(|V1|, |V2|). A min-weight complete matching can
be found using the hungarian method [20] or the Push-relabel algorithm [14]. Their runtime is

O(
√

|V ||E| log(|V |2/|E|)
log |V |) [19]. Another problem whose solution we use as a black box, is the problem

of finding a min-cost max-flow in a network. Different approaches have been proposed for solving
the min-cost max-flow problem. The classical algorithms for min-cost max-flow problems are the
algorithm of Ford-Fulkerson [13] and the minimum-cost augmentation method [10]. The minimum
mean-cost cycle-canceling algorithm, developed by Goldberg and Tarjan, is a strongly polynomial
time algorithm for min-cost max-flow [14]. Its running time is O(|V |2|E|3 log |V |) [19].

1.3 Our Results

In Section 2 we explore the problem of moving to a modified optimal schedule using the minimal
required budget. We present optimal algorithms that return both an optimal schedule and the
minimal budget B required to reach an optimal schedule. We first describe an optimal algorithm
for arbitrary migration costs and arbitrary changes in the instance. Its running time is dominated
by the time required to find a minimum weight complete matching in a complete bipartite graph
with O(nm) vertices. We then present a more efficient algorithm for instances with unit migration
costs. The time complexity of this algorithm varies between O(n) (if the initial schedule is
optimal) and O(n log n) (for arbitrary initial schedule). The first algorithm is described assuming
the modification takes place at time t = 0. In Section 2.2 we describe how and under which
conditions it can be extended to handle modifications at time t > 0. The second algorithm is
valid for changes at any time t ≥ 0. In Section 2.4, we characterize instances for which it is
possible to solve the problem by a simple linear-time algorithm.

In section 3 we consider the problem of rescheduling with a limited budget. The goal is to
utilize the budget in the best possible way, that is, the modified schedule should have a low total
flow-time - the minimal possible among all schedules that can be achieved using the given budget.
Our results for this model assume unit migration costs, thus, the budget B gives the maximal
number of allowed migrations. We present optimal algorithms for two cases: when the budget is
a constant and when migrations are allowed only to new machines.

We conclude, in Section 4, with a discussion and some directions for future work. We note
that our results can be applied also on a sequence of modifications. That is, the environment
might change more than once, and the algorithms are performed after each modification.

2 Optimal Modified Schedule Using Minimal Budget

In this section we consider the problem of moving to a modified optimal schedule with respect to
the minimal total flow-time objective using the minimal required budget.

5

2.1 Arbitrary Costs and Modifications at time t = 0

Let S0 be a given initial schedule. We do not assume that S0 is optimal nor that it has a
specific structure or properties. Assume that at time t = 0, the environment is modified. Possible
modifications include addition or removal of machines and/or jobs, and changes in jobs’ processing
times. The price-list θii′j specifies for every job j assigned to machine i, how much it costs to
migrate j to machine i′. The goal is to find a new schedule, S, which is optimal with respect to
the total flow-time, and has the minimal transition cost from S0 among all optimal schedules.

We reduce the problem into a minimum weight complete matching problem in a bipartite
graph. This approach was suggested by Horn [17], and Bruno, Coffman and Sethi [6] for solving
the problem of minimum flow-time on unrelated machines (R||

∑
Cj). While the processing time

of the jobs do not change due to migrations, it is possible to adopt this technique for our problem
by setting the weights in the corresponding bipartite graph in a way that reflects the migration
overhead.

Recall that n and m represent the number of jobs and machines in the modified instance. Let
G = (V,E), where V = J ∪U . The set J represents the set of n jobs (a single node per job). The
set U consists of mn nodes, qik, for i = 1, . . . ,m and k = 1, . . . , n, where node qik represents the
kth from last position on machine i. The edge set E includes an edge (vj , qik) for every node in J
and every node in U (a complete bipartite graph). The following is an optimal algorithm for our
problem. Note that edge weights (determined in Step 2) consist of two components: a dominant
component (with large factor Z) corresponding to the contribution of a job assigned in a specific
position to the total flow-time, and a minor component corresponding to the associated transition
cost. Both components are combined to form a single weight. Figure 3 illustrates the bipartite
and the edges corresponding to a single job.

Algorithm 1 - An optimal algorithms for rescheduling using minimal budget

1. Let θii′j be a price list, i.e., it costs θii′j to migrate job j from machine i to machine i′. In
particular, for all i, j, θiij = 0.

Let ∆ = maxj,i,i′ θii′j , and let Z be a constant lager than n∆.

2. Let G be the complete bipartite graph corresponding to the problem. Set the edge weights
w : E → R as follows:

• For every job that is assigned to i, let w(vj , qik) = Zkpj .

• For every i′ ̸= i, let w(vj , qi′k) = Zkpj + θii′j .

3. Find a min-weight complete matching in G. Let H denote the set of edges in this matching.

4. Return the schedule corresponding to H. That is, for every (vj , qi′,k) ∈ H, assign j in the
kth from last position on machine Mi′ . The minimum transition cost is

∑
(vj ,qi′,k)∈H

θii′j ,

where i is the machine on which j is assigned in S0.

6

1

j

n

q11

q1k

q1n

qi1

qik

qin

qm1

qmk

qmn

Zpj+θi1j

Zkpj

Znpj+θimj

Znpj+θi1j

Zkpj+θi1j

Zpj

Znpj

.

.

.

.

.

.

Figure 3: The bipartite graph for Algorithm 1. The job j is assigned to machine i in S0.

Theorem 2.1 Algorithm 1 returns an optimal schedule using the minimal possible transition cost
from S0.

Proof: The proof consists of two claims, the first concerning the optimality with respect to
the total flow-time, and the second concerning the optimality with respect to the transition cost.

Consider the modified instance and assume that transitions are not associated with costs. We
get a simple P ||

∑
Cj problem on the modified set of machines. While it is possible to solve the

problem by SPT rule, it is also possible to solve the corresponding R||
∑

Cj problem on unrelated
machines assuming that for any machine i and job j it holds that pi,j = pj . Let G′ denote the
bipartite graph built for solving the corresponding min-weight matching problem [17, 6]. The
graph G′ has the same vertex-set and the same edge-set as the graph G built in Algorithm 1.
The graphs G and G′ differ in the edge weights. It is well known that if job j is the kth from the
last job to run on Mi, it contributes exactly k times its processing time to the sum of completion
times. Therefore, in G′, the weight w′(vj , qik) of an edge (vj , qik) is simply kpj . Since we assume
no transition costs, these weights are independent of the machine i.

Claim 2.2 The set of edges H found in step 3, induces a feasible schedule S with minimum total
flow-time.

Proof: We show that the set of edges H is a minimum weight matching also in G′ - and thus, as
shown in [17, 6], it corresponds to a feasible schedule with minimum total flow-time. First, since
G and G′ differ only in edge weights, H is a legal matching in G′. Assume by way of contradiction
that H is not minimal with respect to the weights w′ in G′, and that H∗ is a complete matching
in G′ with a lower weight. Therefore,

1 +
∑
e∈H∗

w′(e) ≤
∑
e∈H

w′(e). (1)

By definition of w and w′, the weight of H∗ in G is∑
e∈H∗

w(e) = Z
∑
e∈H∗

w′(e) +
∑

e=(vj ,qik)∈H∗

θii′j .

7

By definition of Z, it holds that
∑

e=(vj ,qik)∈H∗ θii′j ≤ n∆ < Z. Therefore,∑
e∈H∗

w(e) < Z(1 +
∑
e∈H∗

w′(e)). (2)

Since H is a min-weight matching with respect to the weights w, it holds that∑
e∈H

w(e) ≤
∑
e∈H∗

w(e). (3)

Combining Equations (1) (multiplied by Z),the definitions of w and w′, (3) and (2), we get the
following contradiction:

Z(1 +
∑
e∈H∗

w′(e)) ≤ Z
∑
e∈H

w′(e) ≤
∑
e∈H

w(e) ≤
∑
e∈H∗

w(e) < Z(1 +
∑
e∈H∗

w′(e)).

We conclude that the schedule S returned by the algorithm is a feasible schedule minimizing
the total flow-time, and turn to show it also minimizes the transition cost from S0.

Claim 2.3 Among all schedules achieving minimum total flow-time, the schedule S induced by
H has the minimal transition cost from S0.

Proof: Let H∗ be any perfect matching in G, corresponding to a schedule, S∗, achieving
minimum total flow-time. We show that the transition cost from S0 to S∗ is not lower than the
transition cost to S. We know that H is a min-weight complete matching in G, therefore,∑

e∈H
w(e) ≤

∑
e∈H∗

w(e). (4)

Also, since both induce schedules achieving minimum total flow-time and the weights w′ in G′

reflect the total flow-time without the transition costs,∑
e∈H

w′(e) =
∑
e∈H∗

w′(e). (5)

The definition of w implies that for every matching Ĥ, it holds that∑
e∈Ĥ

w(e) = Z
∑
e∈Ĥ

w′(e) +
∑

e=(vj ,qik)∈Ĥ

θii′j , (6)

where the second term is exactly the transition cost from the initial schedule to the schedule
induced by Ĥ. Therefore, by applying Equation (6) on both H and H∗, and using Equations (5)
and (4), we get: ∑

e=(vj ,qik)∈H∗

θii′j −
∑

e=(vj ,qik)∈H

θii′j =
∑
e∈H∗

w(e)−
∑
e∈H

w(e) ≥ 0.

We conclude that the transition cost to S∗ is not lower than the transition cost to S.

8

2.2 Modification Occurs at time t > 0

In this section we extend the algorithm to consider systems that are modified after the processing
has begun, that is, at time t > 0. Denote by Jt the set of jobs processed at time t, and let,
for every machine i, γi ≥ 0 denote the time required to complete the job from Jt processed at
time t on machine i. As detailed in the introduction, in some systems, the processing of a job
j ∈ Jt must complete on its current machines. In other systems, currently processed jobs can be
migrated to another machine. We present different algorithms for the two settings.

2.2.1 Restarts are not allowed

When restarts are not allowed, the modification of machines’ removal, is not possible - if machines
can be removed, and restarts are not allowed then the problem is not well-defined for the jobs that
are currently processed. Thus, we assume that the modifications are machines’ addition and/or
changes in the set or processing times of jobs. The goal is to determine the schedule of jobs
whose processing did not begin before time t. An optimal algorithm for this case is based on the
observation that for the modified schedule machine i is available starting at time γi. Algorithm
1 can be generalized by setting the weights wnoR : E → R in the bipartite graph (determined in
Step 2) in the following way:

• For every job that is assigned to Mi, let wnoR(vj , qik) = Z(kpj + γi).

• For every i′ ̸= i, let wnoR(vj , qi′k) = Z(kpj + γi′) + θii′j .

Since restarts are not allowed, the only difference from the case in which the modification
occurs at time t = 0 is the fact that machine i is available only from time γi. Thus, if job j is the
kth from the last job to run on Mi, it contributes exactly γi plus k times its processing time to the
sum of completion times. As in Algorithm 1, the weights consist of a dominant component (with
large factor Z) ensuring that schedule achieves minimum total flow-time, and a minor component
ensuring the minimal possible transition cost.

The availability time of machine i is added to the dominant component, as it affect the flow-
time of the jobs assigned to it. The proof of the following theorem follows directly the proof of
Theorem 2.1.

Theorem 2.4 Algorithm 1 with weights wnoR returns an optimal schedule using the minimal
possible transition cost from S0, when restarts are not allowed.

2.2.2 Restarts are allowed

When restarts are allowed, a job j ∈ Jt might complete its processing on its current machine, but
can also migrate to a different machine. If migrated, the corresponding transition cost is applied
and the job must restart. We assume that preemptions are not allowed2. Another possibility for
a job j ∈ Jt is to remain on its current machine, but delay its processing - letting jobs migrating
from other machines precedes it. In this case, the job must restart, but no transition cost is
applied, as no migration is performed.

Recall that for every machine i, γi ≥ 0 denotes the time required to complete the job from
Jt processed at time t on machine i. Our algorithm assumes that the initial schedule, S0, was

2Enabling preemptions affects all the jobs of the instance, thus causing the problem to be intractable [27].

9

optimal and that the modification includes machines’ addition. Algorithm 1 can be generalized
by setting the weights wR : E → R in the bipartite graph (determined in Step 2) in the following
way:

• For every job j ∈ Jt that is currently processed on Mi let wR(vj , qik) = Zkγi.

• For every job j ̸∈ Jt that is assigned to Mi, let wR(vj , qik) = Zkpj .

• For every i′ ̸= i, let wR(vj , qi′k) = Zkpj + θii′j .

Note that the processing time of the currently processed job j on i is assumed to be γj even
though j might not be assigned to be the first job on Mi. The next lemma justifies these settings.

Lemma 2.5 For every machine i, let j ∈ Jt be the job processed by Mi at time t, then there is
no optimal schedule in which j is in round 2 or more on Mi.

Proof: Assume that there exists an optimal reschedule S∗ in which j is scheduled second (or
later) on the machine M1 on which it was assigned in the initial configuration. Recall that γ1
is the remaining processing time of j on M1. Since in any optimal schedule, the jobs on every
machine are sorted from shorter to longer, there must be at least one job, j′, not longer than γ1,
before j. If γ1 = pj′ then by swapping j and j′, the value of the total flow-time is unchanged and
j is assigned first as required. Thus, we assume that pj′ < γ1. Since we assume that the initial
schedule is SPT, and j was processed at time t by M1, the job j′ was assigned on a different
machine at time t. Given that two jobs from Jt are on M1 in S∗, by the pigeonhole-principle,
there must be a machine, M2, on which no job from Jt is assigned in S∗. Let j∗ be the first job
on M2 in S∗ (see Figure 4(a)). Since j∗ ̸∈ Jt it must be that pj∗ ≥ γ1 > pj′ . Denote by k1 and k2
the number of jobs on M1 and M2 in S∗, respectively.

j’

j*

M1

M2

(a)

j

j’ j*

M1

M2

(b)

j

j’

j*M1

M2

(c)

j

Figure 4: (a) The assumed schedule, (b) A better schedule if k1 > k2, and (c) a better schedule if k1 ≤ k2.

If k1 > k2, move j′ to be first on machine M2 (see Figure 4(b)). The contribution of j′ to the
total flow-time before the migration is k1pj′ . The contribution of j′ to the total flow-time after
the migration is (k2+1)pj′ . For any k2 < k1, this migration does not increase the total flow-time.
Moreover, it might save the transition cost of j′ (if its original machine is M2), thus, the resulting
schedule is either better than S∗, contradicting its optimality, or has the same total flow-time and
transition cost as S∗, and it satisfies the requirement that j is first on M1.

If k1 ≤ k2, move j and j∗ to be the first and second jobs on M1, and move j′ to be the first
job on M2 (see Figure 4(c)). The contribution of these three jobs to the total flow-time before the
change is k1pj′+(k1−1)γ1+k2pj∗ . The contribution of these three jobs to the total flow-time after
the change is k1γ1+(k1−1)pj∗+k2pj′ . The total flow-time reduced by (pj∗−pj′)(k2−k1)+pj∗−γ1,
which is positive for any pj∗ ≥ γ1 > pj′ and k2 ≥ k1. Thus, the resulting schedule has lower total
flow-time, contradicting the fact that S∗ is optimal.

10

We conclude that Algorithm 1 with the weights wR solves optimal the reoptimaization problem
with modifications at time t > 0 and restarts allowed. Note that the output of the algorithm is
an SPT schedule, therefore, the algorithm can also handle a sequence of modifications.

2.3 An Efficient Algorithm for Identical Migration Costs

In this section we consider systems with identical migration costs, that is, for all j, i, i′, it holds
that θj,i,i′ = θ. We present an efficient algorithm for finding an optimal modified schedule using
the minimal possible budget. The algorithm can be applied for addition or removal of machines
and/or jobs, as well as changes in jobs’ processing times.

The algorithm is based on some properties of the SPT algorithm [28, 8] for P ||
∑

Cj . For
completeness, we describe a specific form of SPT algorithm: Given an instance of n jobs and m
parallel machines, add dummy jobs of length 0 such that the total number of jobs is a multiple
of m. Specifically, if n is not a multiple of m, then add to the instance m − (n mod m) jobs
of length 0. The dummy jobs can be scheduled on arbitrary machines and (when rescheduling)
their migration cost is 0. Given that n is a multiple of m, the SPT algorithm can be described
as follows: First, sort the jobs in non-decreasing order of processing time (break ties arbitrarily).
Next, partition the jobs into n/m rounds of m jobs each. The k-th round consists of the jobs
indexed (k − 1)m+ 1, . . . , km in the sorted list. Schedule on each machine one job from the first
round, followed by one job from the second round, etc.

We use the following known property of SPT schedules: the internal assignment of jobs from
a particular round to the machines does not affect the total flow-time. That is, any schedule in
which the m jobs of round k are assigned on the k-th slots of the m machines is optimal.

Let L be the set of job-lengths in the modified instance. The set L includes at most n distinct
values. By the above property of SPT schedules, an optimal schedule can be characterized by the
numbers nℓ,k, for all ℓ ∈ L and 1 ≤ k ≤ n

m , where nℓ,k is the number of jobs of length ℓ in round
k, in any optimal schedule. Moreover, the problem of finding an optimal schedule using minimum
transition cost reduces to the problem of finding a schedule obeying the optimal nℓ,k values with
a minimal number of migrations from the initial schedule. The following is an overview of our
optimal algorithm:

Algorithm 2 - An efficient optimal algorithm for rescheduling with identical migration costs.

1. For every length ℓ ∈ L and round 1 ≤ k ≤ n
m , calculate nℓ,k, the number of jobs of length ℓ

in round k, in any optimal modified schedule.

2. Partition L into two sets of job lengths: Let L1 ⊆ L be the set of lengths such that ℓ ∈ L1

if and only if nℓ,k > 0 for a single round k. Let L2 = L \ L1 be the set of lengths such that
ℓ ∈ L2 if and only if nℓ,k > 0 for more than a single round.

3. For every round 1 ≤ k ≤ n
m , schedule a maximal number of non-migrating jobs in round

k. First, assign jobs having lengths in L1, then in L2. When assigning jobs from L2, give
higher priority to short jobs.

4. Schedule migrating jobs.

The idea is to assign first a maximal number of non-migrating jobs, and then assign the

11

migrating jobs. When assigning the non-migrating jobs, we first assign the more restricted jobs
– having lengths in L1, and must be assigned in a specific round, and then the more flexible jobs
whose lengths are in L2 (and can be assigned in more than one specific round).

Denote by S the schedule built by the algorithm. Steps (3-4) are implemented as follows:
Denote by Si,k the slot in the kth round on machine i. Initially, for all 1 ≤ i ≤ m, 1 ≤ k ≤ n

m
it holds that Si,k is available (= ∅). During steps (3-4) some slots are assigned to non-migrating
jobs. Whenever a job j of length ℓ is assigned to the k-th slot on machine i, the corresponding
variable Si,k is set to j, and the corresponding counter of nℓ,k is reduced by one. Specifically,
steps (3-4) are implemented as follows:
Step 3: Step 3 consists of n

m iterations. In iteration k, the algorithm assigns non-migrating jobs
into slots of round k. Consider a slot Si,k. Let ForFree(i, k) denote the set of jobs that can be
assigned to Si,k with no migration. Formally, j ∈ ForFree(i, k) if and only if (i) npj ,k > 0, (ii) j
is assigned to Mi in S0, and (iii) j was not assigned to Mi in earlier rounds.

In step 3, if possible, the algorithm assigns to Si,k a job from ForFree(i, k) giving priority to
lengths in L1, and then to shorter lengths in L2. Formally,

For k = 1 to n
m

For i = 1 to m
Calculate ForFree(i, k).
If ForFree(i, k) ̸= ∅

If there exists j ∈ ForFree(i, k) such that pj ∈ L1. Set Si,k = j , npj ,k = npj ,k − 1.

Else, let j be the shortest job in ForFree(i, k) such that pj ∈ L2.
Set Si,k = j , npj ,k = npj ,k − 1.

Step 4: Step 4 consists of n
m iterations. In iteration k, the algorithm assigns, with migrations,

jobs to slots Si,k for which ForFree(i, k) = ∅. Formally,

While there exist ℓ, k such that nℓ,k > 0,
Assign any unassigned job j of length ℓ to any machine i s.t. Si,k = ∅.

Set Si,k = j , nℓ,k = nℓ,k − 1.

The number of migrations is the number of non-dummy jobs assigned in step 4. This number
is the minimal budget required to reach an optimal schedule. We prove the optimality of the
algorithm by combining two lemmas.

Lemma 2.6 The algorithm produces an optimal schedule with respect to the total flow-time.

Proof: The schedule S satisfies the nℓ,k values calculated by SPT algorithm, therefore it must
be optimal. Since these values were calculated according to the amounts of jobs in the modified
instance, all jobs are assigned, that is, in Step 4, while there exist ℓ, k such that nℓ,k > 0, it is
guaranteed that there is an available empty slot for a job of length ℓ in round k.

Lemma 2.7 Every schedule minimizing the total flow-time requires at least the same number of
migrations as the number of migrations applied by the algorithm.

Proof: We prove the following greedy choice property: for every round k there exists an optimal
solution minimizing the total number of migrations, in which the non-migrating jobs assigned to
round k are identical to those selected by the algorithm. The following simple observation will be
used to analyze the assignment of jobs having lengths in L2.

12

Observation 2.8 For every round k, there are at most two lengths ℓ1, ℓ2 ∈ L2 such that nℓ1,k > 0
and nℓ2,k > 0.

Proof: By definition, jobs of lengths in L2 span across more than one round in any optimal
schedule. Another known property of SPT schedules is that all job lengths in round k are not
shorter than job lengths in round k − 1 and not longer than job lengths in round k + 1. It is not
possible to have three different lengths, all spanning over round k and an additional round, since
in order to preserve the above SPT property, jobs of the middle length, must all be assigned to
round k.

We prove the greedy choice property for round k: Assume that an optimal schedule agrees
with the algorithm in rounds earlier than k, and consider the assignment to round k. For every
machine i, if ForFree(i, k) = ∅ then this is valid also for the optimal assignment, and a migration
from another machine to Si,k is inevitable. If ForFree(i, k) includes at least one job then we use
exchange argument to show that any selection of job to Si,k that is different from the algorithm’s
choice can be changed to the algorithm’s choice without hurting the total number of non-migrating
jobs. Let j ∈ ForFree(i, k) be the job assigned by the algorithm to Si,k. Let j′ ̸= j be the job
assigned in the optimal schedule to Si,k. If j

′ ̸∈ ForFree(i, k), then by switching j and j′, we can
only reduce the number of non-migrating jobs. If j′ ∈ ForFree(i, k), we distinguish between two
cases:

1. pj ∈ L1. In this case, j must be assigned to round k, and assigning it to Si,k is the only way
to assign it for free. By switching the assignment of j′ and j in the optimal assignment, we
avoid the migration of j, and cause a migration to j′, thus, the total number of migrations
does not increase.

2. pj ∈ L2. Since the algorithm gives priority to jobs whose lengths are in L1, it must be that
all job lengths in ForFree(i, k) are in L2 and in particular, pj′ ∈ L2. By Observation 2.8,
pj , p

′
j are the only lengths of jobs in ForFree(i, k). Among lengths in L2, the algorithm

gives priority to shorter jobs, therefore, pj < pj′ . Moreover, k is the last round in which jobs
of length pj will be assigned, as otherwise, the SPT order is not preserved (given that jobs
of length pj′ are assigned on both k and k+1). Therefore, assigning j to Si,k is the only way
to assign it for free. By switching the assignment of j′ and j in the optimal assignment, we
avoid the migration of j, and cause a migration to j′, thus, the total number of migrations
does not increase.

We conclude that any optimal assignment can be modified such that it agrees with the algorithm’s
choice, without hurting the number of migrations. Thus, the algorithm produces an optimal
assignment.

Time complexity analysis: Algorithm 2 consists of four steps. In order to calculate the nℓ,k

values in Step 1 the jobs should be sorted by processing times. If the initial schedule S0 is arbitrary,
or if the modification includes jobs addition or jobs’ length modification, then the sorting takes in
O(n log n) time. If the initial schedule is optimal, that is, in SPT order, and the modification does
not include jobs’ length modification, then the algorithm only needs to sort the jobs of each round
in S0 separately, and concatenate the resulting lists. As there are m0 jobs in each round we get
an O(n logm0) time algorithm. If in the initial SPT schedule the jobs are assigned sequentially
on the machines, or if m0 is a constant, then Step 1 takes O(n) time.

The partition of job lengths into L1, L2 in Step 2 is clearly linear. Step 3 iterates on the
rounds and in each round assigns jobs using the already sorted list. The ForFree structure can

13

be implemented using a list of pointers. Since ForFree jobs are assigned in a non-decreasing
order and since, by observation 2.8, at most two different lengthes from L2 are considered in each
round, Step 3 takes O(m) for each round and a total of O(m n

m) = O(n). In step 4, the algorithm
assigns the remaining jobs in time O(n).

We conclude that the time complexity of the algorithm varies between O(n) and O(n log n),
depending on the initial schedule and the allowed modification in the instance.

2.4 Linear-time algorithms for some special cases

Algorithm 2 uses the minimal budget required to achieve an optimal schedule assuming unit
migration cost. For several cases of m0,m, and when the original schedule is optimal (SPT) we
can calculate an optimal solution in linear time and determine the required budget in constant
time. We consider the two cases of adding or removing machines, where in each case we explore
several options and show the analysis of the minimal budget bound. Recall that M0 denotes the
initial set of machines and m0 = |M0|, M denotes the modified set of machines, and m = |M |. Let
M ′ denote the set of added / removed machines, and m′ = |M ′|. Thus, in machhines’ addition,
m′ = m − m0 and in machines’ removal, m′ = m0 − m. Denote by S0, S the original and the
modified schedule respectively. Let R0k, Rk denote the kth round in the initial and in the modified
schedule, respectively.

2.4.1 Adding machines

The case m0 ≤ m′: we show that the optimal schedule for this case can be achieved using only
migrations to the new machines (there are no internal migrations). Specifically, we show that
there exists an optimal schedule in which no job scheduled on M0 migrates to a different machine
in M0. Thus, the minimal budget is the minimum number of jobs on the new machines in an

optimal schedule, which is m′
⌊

n
m0+m′

⌋
. As S0 is optimal (SPT), there exists an optimal schedule

S where for all k, each of the jobs of R0k is scheduled in S in round that is not higher than any
round on which a job from R0k+1 is assigned.

If m′ is a multiple of m0, that is, for some integer x, m′ = xm0, there exists an optimal
schedule where every x + 1 rounds of S0 unite to one round of S. Therefore, in every round Rk

it is possible to assign m jobs on their original machines (see Figure 5 for x = 2). Specifically,
assigning jobs from the first round of the x + 1 rounds on their original machines in S. Clearly,
such an assignment is optimal and as all machines m ∈ M0 are assigned with non migrating jobs,
there is no optimal schedule with less migrations.

14

21 43 65 87 9 41

2

7

85

63 9

(a) (b)

Figure 5: (a) The initial schedule (b) An optimal modified schedule when m′ = 2m0.

If m0 ≥ m′, and m′ is not a multiple of m0, it might be that jobs from one round in S0 will end
up in different rounds in S. Still, we show that there exists an optimal schedule S achieved using

no internal migrations. Thus, a budget of m′
⌊

n
m0+m′

⌋
is sufficient. Since m0 < m′, the number

of jobs in every round in S is more than 2m0, therefore, every round of S includes at least one
whole round of S0. This implies that in every round of S it is possible to assign m jobs on their
original machines. Clearly, such assignment is optimal and as all machines m ∈ M0 are assigned
with non migrating jobs, there is no optimal schedule with less migrations. Such an assignment is
demonstrated in Figure 6. The second round includes jobs from R03, R04, R05 where R04 is fully
included in R2. It is possible to assign all the jobs in R04 on their original machines.

21 43 5 41

2

5

3

53

(a) (b)

Figure 6: (a) The initial schedule (b) An optimal modified schedule when m0 < m′

The case m0 > m′: In this case, as demonstrated in Figure 2 in the introduction, it might be
inevitable to have internal migrations within M0. We cannot bound the minimal required budget

by m′
⌊

n
m0+m′

⌋
, and Algorithm 2 should be applied.

Finally, we note that as demonstrated in Figure 7, if the initial schedule S0 is not optimal or
if the modification includes changes of job lengths, the bound is not valid even in the simplest
case m′ = 1.

15

1 2 3

4 5 6

M1

M2

1

2

3

4

5

6

M1

M2

(a) (b)

M3

Figure 7: (a) An initial non optimal assignment, (b) M3 is added, an optimal reassignment requires 4
migrations.

2.4.2 Removing machines

When m′ is a multiple of m: Assume that for some integer x, m′ = xm. We show that the
minimal budget required for achieving an optimal schedule in this case is the number of jobs on
the removed machines. Specifically, we show that there exists an optimal schedule in which no
job from M0 \M ′ migrates.

As m′ = xm, there exists an optimal schedule where every round of S0 forms x+1 subsequent
rounds of S. For all k, the jobs of R0k that are assigned on machines that are not removed might
spread on x+ 1 different rounds. Still, each of these jobs can remain on its machine (see Figure
8 for x = 2). Clearly, such an assignment is optimal and, as all machines m ∈ M0 are assigned
with non migrating jobs, there is no optimal schedule with less migrations.

3A
3B
3C

2A
2B
2C

2A
2B
2C

2A
2B
2C

3A
3B
3C

3A
3B
3C

2A1A

1B

3A

3B2B

2C1C 3C

1A
1B
1C

1A
1B
1C

1A
1B
1C

(a) (b)

Figure 8: (a) The initial schedule (b) An optimal modified schedule when m′ = 2m.

When (m′ mod m) ̸= 0: In this case internal migrations within M might be inevitable. For
m > m′, consider the example in Figure 9. The initial schedule on m0 = 4 machines is optimal.
Assume that M4 is removed. Any optional modified schedule must satisfy n34 = 3, thus one
internal migration is inevitable - a job of length 4 must leave M3.

16

M1

M2

(a)

M3

M4

1

2

43

3

3 4

4

5

3 5

5

M1

M2

(b)

M3

1

2 4

3

3

3

4

4

5

3 5

5

Figure 9: (a) An initial optimal assignment, (b) M4 is removed, an optimal reassignment requires 4
migrations.

For m ≤ m′, consider consider the example in Figure 10(a) and 10(b). The initial schedule on
m0 = 5 machines is optimal. Assume that 3 machines, M3,M4,M5 are removed. Any optional
modified schedule must satisfy n32 = 1 and n22 = 1, thus one internal migration is inevitable -
one job must leave M1.

M1

M2

(a)

M3

M4

1

2 3

4

M5

1 4

1 4

1 4

M1

M2

(b)

1

2

3 4

1 41

41

4 1

2

3

4

5

6

M1

M2

1 2

3 4

5 6

M1

M2

(d)(c)

M3

Figure 10: (a) An initial optimal assignment, (b) M3,M4,M5 are removed, an optimal reassignment
requires 7 migrations. (C) An initial non-optimal assignment, (d) M3 is removed, an optimal reassignment
requires 4

Thus, when (m′ mod m) ̸= 0 for both m < m′ and m > m′, internal migrations might be

inevitable and a budget of (m0 −m′)
⌊

n
m0

⌋
might not be sufficient.

Finally, we note that as demonstrated in Figure 10(c) and 10(d), if the initial schedule S0 is
not optimal or if the modification includes changes of job lengths, the bound is not valid even in
the simplest case m′ = 1.

3 Rescheduling with a Limited Budget - Unit Migration Costs

In this section we consider the rescheduling problem assuming a limited budget. Naturally, the
goal is to utilize the budget in the best possible way, that is, the modified schedule should have
a low total flow-time – the minimal possible among all schedules that can be achieved using the
given budget. We assume unit migration costs, that is, θii′j = 1, independent of the job j and
the involved machines. Thus, the budget B gives the maximal number of allowed migrations. We

17

also assume that n > B, as otherwise an optimal schedule can be found by ignoring the migration
costs.

The problem can be described as the following weighted matching problem: Similar to the
technique used in Section 2.1, let G = (V,E), be a complete bipartite graph with n nodes on
one side and mn nodes in the other side. The node qik, for i = 1, . . . ,m and k = 1, . . . , n,
corresponds to the kth from last position on machine i. The edge (j, qik) has weight kpj , reflecting
the contribution of j to the total flow-time if it is assigned on the kth from last position on machine
i. We color the edges of G as follows: If an edge (j, qik) corresponds to a migration of j, that is,
i is not the machine j is assigned to in S0, then the edge is red, otherwise the edge is blue.

It is easy to verify that a min-weight perfect matching with at most B red edges corresponds
to an optimal reschedule. For an arbitrary bipartite graph with arbitrary weights, the complexity
of the above restricted matching problem is unknown. Some special cases for which efficient
algorithms exist include bipartite graphs with unit-weights [18], or with equal sizes (Kn,n) [31].
The more general problem of determining whether a complete weighted bipartite graph has a
complete matching with a specific weight w in known to be NP-hard [7]. We present optimal
polynomial time algorithms for several classes of instances of our problem.

3.1 The budget B is a constant

Assume that the modification occurs at time t = 0, and the budget B is a constant. Clearly, every
job j may either migrate or not, and as the budget is a constant, there are at most

(
n
B

)
< nB

possible ways to select the subset of jobs that are allowed to migrate. The following algorithm
considers each selection separately.

Algorithm 3 An optimal algorithm for rescheduling when the budget B is a constant

For every possible selection of B jobs J ′ ⊂ J :

1. Let G = (V,E), be a bipartite graph with n nodes on one side and mn nodes in the other
side. The node qik, for i = 1, . . . ,m and k = 1, . . . , n, corresponds to the kth from last
position on machine i. For every job j ∈ J ′, there is an edge (j, qik) for every i = 1, . . . ,m
and k = 1, . . . , n. For every job j ̸∈ J ′, there is an edge (j, qik) for every k = 1, . . . , n, but
only for the machine i on which j is assigned to in S0. The weight of (j, qik) is kpj .

2. Find a min-weight complete matching in G.

Return the schedule induced by the min-weight matching.

Theorem 3.1 Algorithm 3 returns a modified schedule whose total flow-time is minimal among
all schedules achieved with budget at most B.

Proof: Let S∗ be an optimal modified schedule. Let J∗ denote the set of migrating jobs in S∗.
Consider the iteration in which J ′ = J∗. The bipartite graph built in this iteration includes edges
connecting vertices corresponding to jobs from J∗ to vertices corresponding to slots on all the
machines, in particular, to machines that are different from their original machines. The weight
of an edge (j, qik) corresponds to the contribution of j to the total flow-time if it is assigned on the
kth from last position on Mi. Therefore the min-weight matching found in this iteration induces
the schedule S∗.

18

3.2 Migrations are allowed only to new machines

Another case for which it is possible to solve the problem optimally is when the system’s modi-
fication consists of machines addition and the only allowed migrations are to the new machines.
This scenario arises in practice when the system is upgraded with new machines that are ready to
receive tasks, while the old machines are not capable to accept new tasks. We present an optimal
algorithm for this problem based on a reduction to a min-cost max-flow problem. An illustration
of the flow network is given in Figure 11. Each edge is labeled by its capacity and the cost of one
flow unit.
An overview of the flow network: The set of nodes rik for 1 ≤ i ≤ m0, 1 ≤ k ≤ n correspond
to positions on the initial machines. The set of nodes qi′k for 1 ≤ i′ ≤ m′, 1 ≤ k ≤ B correspond
to positions on the added machines. All the q-nodes are connected to node d. The capacity of
the edge (d, t) is the budget B. This limited capacity guarantees that the total number of slots
occupied on the new machines will not exceed B. The set of nodes 1 ≤ j ≤ n correspond to the
jobs. Every job j that is assigned to machine i in S0 is connected to the nodes corresponding to
positions on machine i and to all the q-nodes. The capacities of all edges except for (d, t) are 1.
The cost of an edge connecting job j to a node corresponding to a kth from last position (on any
machine) is kpj . All other edges have cost 0.

Theorem 3.2 A minimum-cost maximum-flow (of value n) in G corresponds to an optimal sched-
ule without exceeding the budget B.

Proof: First, note that every valid schedule corresponds to a maximum-flow in G. On the
other hand, not every maximum-flow in G corresponds to a schedule, since a job might be assigned
to the kth from last position in some machine, while less than k jobs are assigned to that machine.
However, such a maximum-flow is clearly not of minimal cost - a better matching can be obtained
by shifting the k′ < k jobs assigned to that machine into the k′ last slots. Therefore, a schedule
of minimum total flow-time corresponds to a minimum-cost maximum-flow in G.

As the capacity of (d, t) is B, while all other edges’ capacity is 1, at most B q-nodes have
incoming flow. These nodes correspond to migrating jobs. Thus, a minimum-cost maximum-flow
in G corresponds to an optimal schedule without exceeding the budget B.

1

j

n

q11

qi’k

qm’B

s

1,0

1,0

1,0

q1B

qm’1

d

t

ri1

rik

rin

B,0

1,0

1,0

1,0

1,pj

1,kpj

1,npj

1,pj

1,kpj

1,Bpj

1,0

1,0

1,0

r11 rm1

rmnr1n

1,0

1,0

Figure 11: The flow network built for the rescheduling with limited budget problem.

19

This algorithm can be extended for the case in which the systems’ modification occurs at
time t > 0 - similar to the extensions described in Section 2.2. If restarts are allowed, then our
extension assumes that every currently processed job is the shortest job on its machine (which is
true if the initial schedule is optimal, or if the schedule is a result of our algorithm - even on a
sequence of modifications). If restarts are not allowed then our extension is valid for any initial
schedule.

4 Conclusions and Future Work

We studied reoptimization problems arising in production planning, in which the goal is to combine
the objective of finding a schedule with low total flow-time, with the goal of efficiently converting a
given initial schedule to the modified one. We presented the first positive results in this framework.
We presented algorithms for finding an optimal schedule achieved using the minimal possible
transition cost, and algorithms for optimal utilization of a limited number of migrations.

Several interesting important problems remain open:

1. Identify the complexity status of the second problem for arbitrary transition costs and
arbitrary modifications. As explained in Section 3, even with unit transition costs this is a
special case of a more general open problem (min-weight matching with limited number of
red edges).

2. Identify the range of budget B for which it is guaranteed that an optimal reschedule can
be achieved using no internal migrations. It is easy to see that this range is included in
m′ < B ≤ m′ n

m0+m′ .

3. Another open research direction is to consider different objective functions. In particular,
minimizing the makespan of the schedule, given by the last completion time of some job.
Since the problem is NP-hard, the reoptimization problem is clearly also NP-hard. The
goal is to develop an algorithm for the reoptimization problem whose approximation-ratio is
similar to the best approximation-ratio known for the original problem. For the minimum
total-flow problem, we were able to reduce the reoptimization problem on identical parallel
machines to the same problem on unrelated machines (R||

∑
Cj). It seems that a similar

reduction can be applied also for the minimum makespan problem. The best approximation
ratio for the resulting problem (R||Cmax) is 2−1/m, and it is based on solving an LP problem
[29]. We believe that a simpler greedy algorithm tailored for the reoptimization problem can
have a similar performance. Note that the order of the jobs assigned to a specific machine is
not important. Thus, some of the challenges involved in scheduling remainders of currently
processed jobs as first on their machines are not relevant in this problem.

References

[1] G. Amato, G. Cattaneo, and G. F. Italiano. Experimental analysis of dynamic minimum spanning
tree algorithms. In Proc. of 8th SODA, 1997.

[2] C. Archetti, L. Bertazzi, and M.G. Speranza. Reoptimizing the 0-1 knapsack problem. Discrete applied
mathematics, vol. 158(17), 2010.

20

[3] G. Ausiello, V. Bonifaci, and B. Escoffier. Complexity and approximation in reoptimization. In
Computability in Context: Computation and Logic in the Real World, B. Cooper, A. Sorbi Eds.,
Imperial College Press/World Scientific, 2011.

[4] G. Ausiello, B. Escoffier, J. Monnot, and V. Th. Paschos. Reoptimization of minimum and maximum
traveling salesmans tours. J. of Discrete Algorithms 7(4):453-463, 2009.

[5] H.J. Böckenhauer, L. Forlizzi, J. Hromkovič, J. Kneis, J. Kupke, G. Proietti, and P. Widmayer. On the
approximability of TSP on local modifications of optimally solved instances. Algorithmic Operations
Research 2(2), 2007.

[6] J.L. Bruno, E.G Coffman, and R. Sethi. Scheduling independent tasks to reduce mean finishing time.
Communications of the ACM, 17:382-387, 1974.

[7] R. Chandrasekaran, S.N. Kaboadi, and K.G. Murty. Some NP-complete problems in linear program-
ming. Operations Research Letters, 1:101-104, 1982.

[8] R.W. Conway, W.L. Maxwell, and L.W. Miller. Theory of Scheduling. AddisonWesley, 1967.

[9] C. Demetrescu, I. Finocchi, and G.F. Italiano. Dynamic graph algorithms. Handbook of Graph Theory,
J. Yellen and J.L. Gross eds., CRC Press Series, in Discrete Math and Its Applications, 2003.

[10] J. Edmonds, and R. Karp. Theoretical improvements in algorithmic efficiency for network flow prob-
lems. Journal of ACM, 248-264 (1972).

[11] D. Eppstein, Z. Galil, and G.F. Italiano. Dynamic graph algorithms, Chapter 8. In CRC Handbook of
Algorithms and Theory of Computation, ed. M. J. Atallah, 1999.

[12] B. Escoffier, M. Milanič, and V. Th. Paschos. Simple and fast reoptimizations for the Steiner tree
problem. DIMACS Technical Report 2007-01.

[13] L.R. Ford, and D.R. Fulkerson. Flows in networks. Princeton Univ. Press, Princeton, NJ (1962).

[14] A.V. Goldberg, and R.E. Tarjan. Finding minimum-cost circulations by canceling negative cycles.
J. Assoc. Comput. Mach., 36(4):873-886, 1989.

[15] R.L. Graham, E.L. Lawler, J.K. Lenstra, and A.H.G. Rinnooy Kan. Optimization and approximation
in deterministic sequencing and scheduling: A survey. Annals of Discrete Math. 5, 287-326, 1979.

[16] F. Grandoni, R. Zenklusen. Optimization with more than one budget. In Proc. of ESA, 2010.

[17] W. Horn. Minimizing average flow-time with parallel machines. Operations Research, 21:846-847,
1973.

[18] A.V. Karzanov. Maximum matching of given weight in complete and complete bipartite graphs.
Kibernetika, 1:7-11, 1987. English translation in CYBNAW 23(pp. 8-13).

[19] J. R. Kenney Solving unweighted and weighted bipartite matching problems in theory and practice.
Ph.D Thesis, Stanford University, 1995.

[20] H. W. Kuhn. The Hungarian method for the assignment problem. Naval Res. Logist. Quart., 2:83–97,
1955.

[21] D. Mattox. Handbook of Physical Vapor Deposition (PVD) Processing, 2nd Edition. Elsevier, 2010.

[22] E. Nardelli, G. Proietti, and P. Widmayer. Swapping a failing edge of a single source shortest paths
tree is good and fast. Algorithmica 35, 2003.

[23] S. Pallottino, and M. G. Scutella. A new algorithm for reoptimizing shortest paths when the arc costs
change. Operations Research Letters, vol. 31, 2003.

[24] R. Ravi, and M. X. Goemans. The constrained minimum spanning tree problem. In 5th Workshop on
Algorithm Theory, 66-75, 1996.

21

[25] H. Shachnai, G. Tamir, and T. Tamir, Minimal cost reconfiguration of data placement in storage area
network. Theoretical Computer Science. vol. 460, pages 42-53, 2012.

[26] H. Shachnai, G. Tamir, and T. Tamir. A theory and algorithms for combinatorial reoptimization. In
Proc of 10th LATIN, April 2012.

[27] R.A Sitters. Two NP-hardness results for preemptive minsum scheduling of unrelated parallel ma-
chines. Proc. 8th International IPCO Conference, LNCS, Springer, 396-405, 2001.

[28] W.E. Smith. Various optimizers for single-stage production. Naval Research Logistics Quarterly. vol.
3, pp. 5966, 1956.

[29] E.V. Shchepin and N. Vakhania. An optimal rounding gives a better approximation for scheduling
unrelated machines. Operations Research Letters, 33:127–133, 2005.

[30] M. Thorup, and D.R. Karger. Dynamic graph algorithms with applications. In Proc of 7th SWAT,
2000.

[31] T. Yi, K.G. Murty, and C. Spera. Matchings in colored bipartite networks. Discrete Applied Mathe-
matics, 121:261-277, 2002.

22

