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Abstract

We consider a packing problem arising in storage management of Video on Demand (VoD)
systems. The system consists of a set of video files (movies) and several servers (disks), each
having a limited storage capacity, C, and a limited bandwidth (load capacity), L. The goal in
the storage allocation problem is to assign the video files to the servers and the bandwidth to
the clients. The induced class-constrained packing problem was studied in the past assuming
each client provides a single request for a single movie. This paper considers a more general and
realistic model – in which each client ranks all the movies in the system. Specifically, for each
client j and movie i, it is known how much client j is willing to pay in order to watch movie i.
The goal is to maximize the system’s profit.

We prove that the problem is NP-complete and present approximation algorithms and heuris-
tics for systems with a single or multiple disks. For a single disk we present an (1 − 1/e)-
approximation algorithm that we extended for systems with storage costs, and for k-round
broadcasting, in which each client might be serviced multiple times. For multiple disks we
present a (C−1)(e−1)/Ce-approximation algorithm, two heuristics for determining the storage
allocation, and an optimal bandwidth-allocation algorithm.

In our simulation of a VoD system, we compared the performance of the suggested heuristics
for systems with variable parameters and clients with variable preference distributions. We
focused on systems in which client preferences and payment are power-law distributed: a few
movies are very popular and clients are willing to pay significantly more for watching them.

Our results can be applied to other packing and subset selection problems in which clients
provide preferences over the elements.
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1 Introduction

This paper considers a variant of the knapsack problem arising in storage management of Video
on Demand (VoD) systems. VoD services allow users to select and watch video content at their
desired time. Formally, a VoD system services n clients, that are interested in watching movies
from a collection of M movies f1, f2, . . . , fM . The system has limited resources: it consists of N
identical disks d1, d2, . . . , dN , each having a limited storage capacity, C, and a limited bandwidth
(load capacity), L. Each transmission requires a dedicated stream of one bandwidth (load) unit.
This implies that each of the N disks can store movies of total size C and can transmit broadcasts
to at most L clients simultaneously. The L transmissions are of movies stored on the disk, with no
restrictions on their distribution (in particular, all L streams might broadcast the same movie).

The problem is therefore reduced to a class-constrained packing problem, in which the items to be
packed (streams) are drawn from M classes (movies) and have the same unit size. The bins (disks)
have a limited capacity, L, and can pack items from at most C classes. This storage management
problem motivated the study of class-constrained packing in recent years (see e.g. [7, 12, 18]). In
all previous work it is assumed that each client specifies a single movie he wishes to watch and
the goal is to allocate storage to movies and transmissions to clients in a way that maximizes the
number of clients whose request is granted. In this paper we define and study a more generalized
setting: For each client j and movie i, let bi,j denote the payment that client j is willing to
pay for watching movie i. That is, each client provides his complete preference over the whole
collection of movies. The previously studied system is in fact the special case in which for each
client j, bi,j = 1 for a single movie i, and bi′,j = 0 for any i′ 6= i 1. The objective is to allocate
storage to movies and transmissions to clients in a way that maximizes the system’s profit given
by P =

∑n
j=1{bi,j | movie i is transmitted to client j}.

For this objective, we consider systems with a single disk or with multiple disks. We distinguish
between the single-round problem, in which each client is watching at most one movie, and the
k-round problem, in which there are k synchronized rounds and the goal is to maximize the total
profit. For multiple disks, we assume that all movie files require the same storage. For single disk
our results are suitable also when movie files have arbitrary sizes or are associated with arbitrary
storage costs (that are reduced from the profit P ). Table 1 provides a glossary of the notations
used in the paper.

For a single disk, we also consider a variant in which, instead of specifying its potential payments,
each client provides an ordered tie-free list of preferences of the movies. That is, a list of length M
in which the first element is the 1st choice of the client, etc. We consider two objectives for this
variant: maximizing the lexicographic profile of an assignment, which quantify the total satisfaction
of the clients, and maximizing the fairness, which measures the satisfaction of the least-satisfied
client.

1.1 Related Work

VoD systems have been studied extensively in recent years. Many new algorithmic problems arose
with the study of these systems. In particular, the storage allocation problem got much attention

1In practice, naturally, clients will not rank the whole selection of movies. Our model does not require a complete
ranking, and the payment for any number of movies can be zero.
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notation meaning
M Number of movies.
n Number of clients.

bi,j The payment that client j is willing to pay for watching movie i.
N Number of disks.
L Load capacity of each disk.
C Storage capacity of each disk.
P System’s profit.
k Number of rounds in the multiple-round problem.

Table 1: Glossary of notations.

(e.g. [7, 12, 23, 24, 26, 16]). In particular, the induced class-constrained packing problem was
studied in [7, 18, 19] and the generalization to packing with a sharable dimension in [12, 20]. In all
the above work it is assumed that each client specifies a single request for a single transmission (no
payment vectors), and the goal is to maximize the number of serviced clients. In [18] the problem
is defined and shown to be NP-hard. The moving window (MW) algorithm is presented and shown
to be optimal for certain systems. The paper [7] gives a general analysis of the MW algorithm and
presents the first PTAS for the storage allocation problem. More general PTASs were developed
for systems with variable disks [19], or variable movie files [12].

Other works deal with dynamic storage allocation, where the load on the disks is balanced using
file deletion and replication. The papers [4, 23, 26] suggest dynamic storage allocation schemes –
that are suitable for systems in which client preferences (movies popularity) is changing over time.
Better performance of the VoD system can be achieved also by data sharing techniques. i.e., a
single stream is used to service several clients. This can be done by batching (see e.g., in [22]),
stream-merging [1], or buffering [3, 14]. Each of these techniques can be applied independently of
the data placement scheme, to improve the overall performance of the system.

Our work is also related to the study of set-cover [8] and subset-selection [13, 17, 21]. Generally,
in traditional covering or selection problems, the input is a collection of sets S = {S1, S2, . . . , Sm}
over elements U , and the goal is to find a subset of S that covers as many elements from U as
possible. Given the selected subset, an element is either covered (if it is a member of a selected set)
or not. The problem considered in this paper is a generalization of set-cover: the elements of U
are not simply covered or not by the selected set, but there is a profit associated with each element
from U and set from S, and the goal is to find a subset of S that maximizes the total profit (where
the profit from each element is the maximal profit of this element from a selected set). Note that
set cover is the special case in which the profits are in {0, 1}.

1.2 Our Results

For a VoD system with a single disk we present a hardness proof (Section 2.1) and a (1 − 1/e)-
approximation algorithm (Section 2.2). We then extend the approximation algorithm for systems
with variable file sizes and/or storage costs (Section 2.3), and for k-round broadcasting (Section 2.4).

Rank-related objectives are considered in Section 2.6. We show that the problem of finding an
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assignment with maximal lexicographic profile is NP-hard, and present a greedy algorithm that
finds an assignment maximizing the number of clients getting their top-preference. The fairness
assignment problem is also shown to be NP-hard. Moreover, for some instances some clients are
guaranteed to get their (M − C + 1)th choice. A simple greedy algorithm achieves this bound.

For multiple disks we first present, in Section 3.1, a (C−1)(e−1)/Ce-approximation algorithm.
Next, we propose algorithms for solving the problem in two stages. In the first stage an allocation of
movies to the disks is determined. In the second stage, given the storage allocation, the bandwidth
allocation problem is to decide which of the clients will be serviced by which disk. We present two
heuristics for the first task (Section 3.3), and an optimal algorithm for the second task (Section 3.2).
The bandwidth-allocation problem can be reduced to a special case of a min-cost max-flow problem.
For this flow problem we present and implement an algorithm based on dynamic programming for
efficient detection of negative-cost cycles (in our terms, these are profit-improving cycles).

In order to better evaluate the performance of our algorithms we simulated a VoD system, and
compared their performances. In our simulated system, as in the real-world, client preferences and
payment vectors are power law distributed [25]. We used the Zipf distribution to determine the
popularity and payment-readiness of clients [27]. As a result, a few movies are very popular and
clients are willing to pay significantly more for watching them. All the algorithms suggested in the
paper for the single-round problem, and also some intuitive greedy heuristics, were simulated and
their performances was compared. The experiments and their results are described in Section 2.5
(single disk) and Section 3.4 (multiple disks).

2 Storage Allocation on a Single Disk

In this section we consider the case in which the system consists of a single disk. The resulting
problem is a C-out-of-M subset-selection problem. For each subset S of C movies, let bS,j be
the profit from servicing client j assuming the movies of S are stored. Since the client can be
transmitted any stored movie, bS,j = maxfi∈S bi,j . Let P (S) denote the profit gained by storing
S on the disk. If L < n, then P (S) is the sum of the L highest bS,j values. If L ≥ n, that is, all
clients can be serviced, then P (S) =

∑n
j=1 bS,j .

We show that the problem is NP-complete and prove that a greedy algorithm achieves (1 −
1/e)-approximation to the maximal profit. Note that the problem can be solved by a brute-force
O(min(2M ,MC))-time algorithm. Thus, we assume that M and C are non constants.

2.1 Hardness Proof

Theorem 2.1 The storage allocation problem is NP-complete even for a single disk, unit-size files,
and unlimited load capacity.

Proof: First, the problem is in NP since it is possible to check efficiently if a given subset of
files provides a specific profit. The hardness proof is by reduction from the maximum coverage
problem. An instance of maximum coverage consists of elements U = 1, 2, ..., n, a family of subsets
S = S1, S2, ..., SM of U , and a number C. The goal is to select C members of S that cover as
many items of U as possible. Given an instance for maximum coverage we construct the following
instance for the storage allocation problem: There are |U | clients and M = |S| movies. Define bi,j
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to be 1 if j ∈ Si and otherwise bi,j = 0, also define the load capacity of the single disk to be L = n
and its storage capacity to be C. We get that a selection of C subsets covers z elements if and only
if the associated set of movies satisfies z clients (who are willing to pay 1 for at least one of the
selected movies).

We note that the above reduction is approximation-preserving, therefore, by [5] the best we can
expect is a (1−1/e)-approximation. The next section provides a (1−1/e)-approximation algorithm.

2.2 An (1− 1/e)-approximation Greedy Algorithm

The paper [17] presents a general greedy algorithm for maximizing the profit gained by selecting
a subset of C out of M elements given that the profit function is nondecreasing, polynomially
computable, and sub-modular. A function f is sub-modular for a given set system if for every
collection of subsets S and T it satisfies f(S) + f(T ) ≥ f(S ∪T ) + f(S ∩T ). The greedy algorithm
starts with an empty set S and performs C iterations in each of which the element v maximizing
f(S ∪ {v}) − f(S) is added. This algorithm is shown to achieve approximation (1 − 1/e) to the
optimal profit.

In our setting, as explained above, the profit P (S) from a subset S of movies is the sum of
min(L, n) highest bS,j values. In order to show that the above greedy algorithm can be used, we
note that for any movie v and set S, P (S ∪ {v}) − P (S) can be calculated efficiently in O(nM)
time, and we prove below that the profit function P fulfills the requirements in [17].

Claim 2.2 The profit function P is nondecreasing, polynomially computable, and sub-modular.

Proof: Clearly, P is nondecreasing since by adding more movies to the stored set, clients might
be assigned to more profitable movies. Also, P is computable in O(nM) by summing the most
profitable available movie for each of the n clients. To show that P is sub-modular, assume w.l.o.g
that min(L, n) = L (the proof for the other case is identical). Consider two sets S, T . Assume
that out of the L clients contributing to P (S ∪ T ), nS clients are watching a movie in S \ T and
their total profit is PS ; nT clients are watching a movie in T \ S and their total profit is PT ; and
n2 clients are watching a movie in S ∩ T and their total profit is P2. Clearly, nS + nT + n2 = L.
This implies that out of the L values contributing to P (S ∩ T ), n2 values are the corresponding n2

values contributing to P (S∪T ), whose total profit is P2. Similarly, out of the L values contributing
to P (S), nS + n2 values appear also in P (S ∪ T ) and their total profit is PS + P2, and out of the
L values contributing to P (T ), nS + n2 values appear also in P (S ∪ T ) and their total profit is
PS + P2.

Summing up we get that P (S) + P (T ) = PS + PT + 2P2 + P ′, where P ′ is the profit from the
remaining (2L−2n2−nS−nT ) = L−n2 values in P (T ) and P (S) that do not contribute to P (S∪T ).
Also, P (S∪T )+P (S∩T ) = (PS +PT +P2)+(P2 +P ′′), where P ′′ is the profit from the remaining
L−n2 values in P (S∩T ) that do not contribute to P (S∪T ). Since S∩T ⊆ S and S∩T ⊆ T , each
value contributing to P ′′ is a potential value in composing P ′. In other words, when composing P ′

clients have a wider collection of movies, so P ′ might include higher values achieved by selecting
movies from S \ T and T \ S. Thus P ′ ≥ P ′′, implying P (S) + P (T ) ≥ P (S ∪ T ) + P (S ∩ T ).

Corollary 2.3 The greedy algorithm achieves (1 − 1/e)-approximation to the single disk storage
allocation problem with unit-size movies.
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2.3 Storage costs

Another version of the problem is when there is a cost associated with storing movies on the disk.
In this section we consider two possible ways to measure this cost. First, the case in which different
movie files have different sizes, and the goal is to maximize the profit from a disk having C storage
units. Formally, let si denote the storage requirement of movie i, then the goal is to select a subset S
of movies such that

∑
i∈S si ≤ C and P (S) is maximized. The paper [21] presents a general greedy

algorithm for subset selection problems in which (i) elements are weighted, (ii) there is a constraint
on their total weight, and (iii) the profit function is nondecreasing, polynomially computable, and
sub-modular. The algorithm considers all possible subsets of three elements, extends each such
subset greedily, and picks the best output.

In our setting, in each iteration the greedy algorithm adds the file fi for which (P (S ∪ {fi})−
P (S))/si is maximal. Note that the sub-modularity proof given in Claim 2.2 is independent of the
file sizes and is therefore valid also here. Also, P (S) is nondecreasing and polynomially computable.

Another way to consider storage costs is when there is a cost ci associated with each movie i.
The goal is to maximize the profit from the movies minus the total storage cost. I.e., to find the
most profitable subset of movies S, where the profit is defined by

P (S) =
∑

j is serviced
bS,j −

∑

i∈S

ci (1)

This function is still submodular since the second term is modular: cost(S) + cost(T ) = cost(S ∪
T ) + cost(S ∩ T ). The first term is submodular as before. However, in order to apply the greedy
algorithm from [21] we need to assume that the storage costs are relatively low so that P (S) is
nondecreasing and it worth using the whole storage capacity. Finally, it is possible to combine
storage costs with variable movie-file sizes. We get the following result.

Theorem 2.4 The greedy algorithm from [21] achieves (1− 1/e)-approximation to the single disk
storage allocation problem with variable size movies and/or storage costs for which P (S) given in
Equation (1) is nondecreasing.

2.4 k-round Broadcasting

In previous sections we assumed that every client is watching a single movie. In the k-round
problem, there are k synchronized rounds and the goal is to maximize the total profit. We assume
that each client j provides the payment vector bi,j , and is willing to watch any subset T of the
movies in arbitrary order during the k rounds. The profit from client j for this service is

∑
i∈T bi,j .

In the following we show that the greedy algorithm from [21] can be applied here. In particular
we show that the profit function defined over feasible sets of movies can be calculated efficiently
and is sub-modular. Our results hold when the number of rounds k is a constant or O(M), and
also when movie-files have variable sizes or storage costs.

For a given set S of movies, let P (S) denote the total profit it is possible to gain from S during
all k rounds. In order to use the greedy algorithm we need to be able to calculate P (S). Practically,
each client is expecting to watch a different movie in each round; therefore, a client can watch at
most k′ = min(k, |S|) movies during the whole broadcast. If L ≥ n then all clients can be serviced
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in each round. The profit Pj(S) gained from client j is simply the sum of the top k′ values in
{bi,j |i ∈ S}. Therefore, the total profit is P (S) =

∑
j Pj(S).

The other case, in which L < n, is more complicated as it might be that some clients are serviced
only in some of the rounds. For k = 1, it was clear that the clients with the top L payments will be
serviced. However, for k > 1, one challenge of the algorithm is to select the set of clients serviced
in any round.

We present an algorithm, based on dynamic programming that outputs, for a given set S, which
clients are services in which round, what movie each of these clients is watching, and the resulting
total profit P (S). Assuming that clients do not limit the order in which they wish to watch the
movies, we can assume w.l.o.g that in the ith round in which it is serviced, a client is watching its
ith top selection (in S). This implies that for a given set S of movies, the algorithm only needs to
determine how many transmissions will be allocated to each client.

Given the set S, we consider for each client j only the top k′ values in {bi,j |i ∈ S}. For any
` ∈ {1, . . . , k′}, let H`,j be the sum of the highest ` payments of client j for movies from S. Define
P`,z to be the maximal possible profit from a total of ` transmissions assuming only clients 1..z are
in the system. For z = 1, ..., n, initialize P0,z to 0 and P1,z to be the maximal single payment of
any of the first z clients. Finally, initialize P`,1 = H`,1, that is, the sum of top ` payments of client
1, for ` = 1, ..., k′.

Next, calculate the values of P`,z for z = 2, ..., n, and ` = 2, ..., kL, using the formula

P`,z = max
a=1,..,min(`,k′)

(P`−a,z−1 + Ha,z).

In the above formula, we combine for any number a, 1 ≤ a ≤ min(`, k′), the transmission of a
movies to client z, with the best allocation of ` − a transmissions to the first z − 1 clients. The
optimal solution is given by P (S) = PkL,n. For any `, z, the value of P`,z can be calculated in O(k′),
thus, the whole table is calculated in time O(Lkk′) ≤ O(Lk2). In order to determine the actual
transmission schedule, the number of transmissions per client should be traced for each entry of
the table P .

Once it is determined in how many rounds each client is going to be serviced, the schedule
is done greedily: in each round, the L clients with the maximal number of remaining views are
serviced. Since each client gets at most k′ broadcasts and the total number of broadcasts is kL, it
is possible to show (using exchange arguments) that this greedy approach always terminates with
a valid transmission schedule.

Corollary 2.5 Given a feasible subset of movies S, it is possible to determine in time O(Lk2) what
is the profit P (S) that can be gained from storing S and how to achieve this profit.

Finally, in order to use the greedy algorithm, we also need to show that the profit function is
submodular and nondecreasing. In fact, the proof of Claim 2.2 is valid, only replace the number L
of transmissions with min(kL, k′n).

Claim 2.6 The profit function P in k-round broadcasting is sub-modular.

As in the single round problem, the following is valid also for variable size movie-files having
storage costs (assuming that P (S) is non-decreasing).
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Theorem 2.7 The greedy algorithm from [21] achieves (1− 1/e)-approximation to the single disk
storage allocation problem for k-round broadcasting.

2.5 Experiments for a Single Disk

We have implemented the greedy algorithm described in Section 2.2 and compared it with some
natural heuristics. Our main challenge was to create instances reflecting real life scenarios. As
suggested by Zipf [27], human behavior and preferences tend to have a power-law distribution; that
is, there are a few movies that are very popular and clients are willing to pay significantly more for
watching them. A recent study of user behavior in VoD systems [25] confirmed this suggestion. In
order to create such instances we used Zipf distribution functions. In a Zipf distribution over M
items with parameter 0 ≤ θ ≤ 1, the probability of the i-th item is pi = c/(i1−θ). The normalization
constant c ensures that all probabilities sums up to 1, that is c = 1/(

∑
1≤i≤M 1/(i1−θ)). When θ = 1

the result is a uniform distribution, while as θ decreases and approaches 0, the distribution is more
skewed.

Two Zipf functions over M elements were used in our experiments. The first one was used to
create the values bi,j associated with a client j whose total budget is given (a higher θ value implies
more uniform payments). A second Zipf was used to define, for each 1 ≤ i ≤ M , what is the
probability that movie i is the client’s top preference, and was used to create the client’s ranking.
The first distribution was used to match the i-th ranked movie to the ith largest bi,j value.

We compared the greedy algorithm with some intuitive heuristics. The first, denoted Greedy
Profit, selects the C movies with the highest total payments (given by

∑
j bi,j). The second, denoted

First Choice, selects the C movies that were ranked as first by most clients. It can be shown that
this algorithm maximizes the number of clients that get their top preference movie. For small values
of M , for which it was reasonable to calculate an optimal solution, we compared the algorithms
with the optimal solution.

Some of our experiments considered systems with variable storage costs. For these systems, in
the Greedy Profit heuristic, the storage cost is reduced from the movie’s profit. We also considered
a third heuristic, denoted Take Cheapest, that simply selects the C cheapest movies. The real-life
scenario guided us also when determining the storage costs – popular movies are more expensive
than unpopular movies.

Finally, the other parameters of our system were as follows: The number of clients, n, and the
load capacity, L, were both set to 1000. The number of movies, M , was set to 200, and the storage
capacity, C was varying between 1 and 150. The θ parameters of the Zipf functions were varying
between 0.2 and 0.8.
Experimental Results: Figure ?? shows two sample results of our experiments for a single disk
with no storage costs. In all the experiments the profit achieved by the greedy algorithm was always
higher than those achieved by the other two heuristics. Figure ??(a) presents one extreme, in which
all clients have the same budget and share the same popularity distribution. Moreover, both Zipf
functions are highly skewed (with θ = 0.2). In this non-challenging instance, the movies selected by
all three algorithms were close to coincide and the achieved profit is similar. Figure ??(b) presents
the results for a more challenging instance, in which 10% of the clients are rich and strange: the
budget of a rich client is 10 times higher than the budget of a non-rich client, and their preferences
are totally different – determined by the same Zipf function but applied on a reversed order of the
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movies. For such instances the superiority of the greedy algorithm is significant. In general, we
found out that the more the sets selected by the three algorithms differ from each other, the higher
the gap between the profits. We also found out that the first choice heuristic performs better than
the greedy profit one when the preferences are more skewed.

Figure ?? shows two sample results of our experiments for a single disk with storage costs.
In both experiments all clients have the same budget and preference distributions that are highly
skewed (θ = 0.2). In experiment (b) the storage costs are on average 2.5 times higher than the costs
in experiment (a). Once again, the greedy algorithm achieves the best results. It is interesting to
note the good performance of the simple take cheapest heuristic when costs and available storage
become higher.

Finally, we note that for small values of M (at most 15) we calculated also the optimal profit
and find out that the greedy algorithm performs much better than its theoretical bound – within
5% of the optimal profit, for variable values of n and payments distributions.

2.6 Rank-Related Objectives

In this section we consider a variant in which, instead of specifying its potential payments, each
client provides an ordered tie-free list of preferences of the movies. That is, a list of length M
in which the first element is the 1st choice of the client, etc. In this section we consider several
objectives that are suitable for this variant.

2.6.1 Lexicographic Profile

The profile of an assignment is a vector in which the jth element is the number of clients allocated
their j-ranked movie. An assignment is rank-maximal if it has the maximal possible lexicographic
profile. We show that the problem of finding a rank-maximal assignment is NP-hard and present
a greedy algorithm that finds an assignment thats maximizes the first element in the profile.

Theorem 2.8 Finding a rank-maximal assignment is NP-hard.

Proof: The proof is by reduction from vertex cover of regular graphs that is known to be NP-
hard [6]. Given a d-regular graph G = (V, E) and the question whether G has a vertex cover of size
C, construct the following instance of the assignment problem: The VoD system consists of a single
disk having C storage units. There are 2|E| clients, two for each edge, and |V | movies, one for each
vertex. The preference-lists of the two clients originated from an edge e = (u, v) begin with u, v
and with v, u. The order of the remaining |V | − 2 vertices in each of these lists is arbitrary.

Claim 2.9 The graph G has a vertex cover of size C if and only if the profile of the rank-maximal
assignment is 〈dC, 2|E| − dC, 0, . . . , 0〉.
Proof: First, note that for any selection of C movies, the number of clients who receive their
1st choice movie is exactly dC – since for any v, there are exactly d clients for which v is the 1st

choice movie. Having 2|E| clients, it means that 〈dC, 2|E|−dC, 0, . . . , 0〉 is the best possible profile
for this instance.

Assume that G has a vertex cover of C vertices. In the assignment problem, select the C movies
associated with these vertices. We show that the resulting profile is 〈dC, 2|E| − dC, 0, . . . , 0〉. As
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mentioned above, there are dC clients whose 1st choice movie is one of the C movies selected. Also,
for each client, ej , one of the two movies associated with the vertices at the endpoints of e was
selected, therefore, each client is allocated one of its top-2 preferences.

Assume now that there is an assignment with profile 〈dC, 2|E| − dc, 0, . . . , 0〉. It means that
each client is allocated one of its top-2 preferences. That is, for each edge (u, v), at least one of u, v
is one of the C selected movies. Clearly this implies that the movies associated with the selected
movies form a vertex cover.

We note that the greedy algorithm that runs in C iterations and selects in each iteration the
movie that improves the ranking the most (relative to lexicographic order) maximizes the number
of clients getting their 1st-choice movie.

2.6.2 Fairness

For the variant where the input is given as preference lists (ranking) of the movies by the clients,
another possible objective is Fairness. An assignment is k-fair if each client get one of its top
k choices. For example, if all the clients get their first choice except for one client that gets its
(3M/4)-th choice, then the assignment is 3M/4-fair. The goal is to find the minimal k such that a
k-fair assignment exists. In other words, to find a k-fair assignment with a minimal value of k.

We first show that the fairness problem is NP-hard for any k > 1. Note that for k = 1 the
problem is simply to determine if the set of first-choice movies is of size at most C, which can be
done in linear time.

Theorem 2.10 The fairness problem is NP-hard

Proof: The proof is by reduction from vertex cover. Given a graph G = (V,E) and the question
whether G has a vertex cover of size C, construct the following instance for the fairness problem:
There are |E| clients, one for each edge, and |V | movies, one for each vertex. The preference-list
of client j originated from the edge ej = (vj1, vj2) begins with vj1, vj2. The order of the remaining
|V | − 2 vertices is arbitrary. It is easy to verify that a vertex cover of size C exists if and only if a
2-fair assignment exists when C movies can be selected.

Next, we show that no algorithm that packs C movies can be better than (M −C +1)-fair. We
will do so by describing an instance for which every solution is at most M−C +1-fair. The instance
consists of n = M ! clients whose preference lists are the M ! possible permutations of 1 . . . M .

For each selection of C of movies there are at least C! clients for which these movies form the
tail of their preference list. Each of these clients will be M − C + 1-fair at most.

On the other hand, the following naive algorithm achieves at least M − C + 1-fairness for all
instances.

Algorithm 2.1 (naive algorithm for fairness)

1. Initialize S ← ∅.
2. For i : 1 → C do

2.1. Add to S a movie that improves the fairness the most.

Theorem 2.11 The greedy algorithm achieves M − C + 1-fairness.
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Proof: In fact, the following analysis is valid for any selection of C different movies: Consider
the preference list of any client. Since C different movies are selected by the algorithm, in the worst
case these are the C movies forming the tail of its list, thus at least one of its top M −C +1 movies
is selected.

3 Multiple Disks

We turn to consider the more general case where the system consists of N identical disks, each
having a limited storage capacity, C, and a limited load capacity, L. We first present an approxi-
mation algorithm based on selecting a-priori the movie to be seen by each client, such that these
selections are guaranteed to be granted and their total profit is within ratio (C − 1)(e − 1)/Ce
from the optimal profit. Next, we propose algorithms for solving the problem in two stages. In
the first stage a storage allocation of movies to the disks is determined. In the second stage, given
the storage allocation, the problem is to allocate the bandwidth, that is, to decide which of the
clients will be serviced by which disk. We present two heuristics for the first task and an optimal
algorithm for the second task.

Throughout this section we assume that NL ≥ n, that is, the system has enough streaming
capacity to service all clients. This assumption is valid in real VoD systems, and enable us to focus
on the problem of best exploiting this streaming capacity.

3.1 A (C − 1)(e− 1)/Ce-Approximation Algorithm

The paper [18] considers systems in which each client is interested in a single movie and the goal
is to maximize the number of serviced clients. The Moving Window algorithm (MW) presented in
[18] assigns movies to the disks in a way that satisfies all clients whenever C · N ≥ M + N − 1.
This algorithm is used as a subroutine in our algorithm for the problem with client preferences.

Algorithm AMW :

1. Let M ′ = N · (C − 1) + 1. Use the greedy algorithm (Section 2.2) to select M ′ movies,
assuming a single disk with storage capacity M ′. Let SM ′ be the set of selected movies.

2. For each client j, let ij be the movie in SM ′ for which bi,j is maximal. In other words, ij is
the movie achieving the maximal profit from client j out of the movies in SM ′ .

3. Define an input for the MW algorithm: The single request of client j is for the movie ij .

4. Run the MW algorithm. Since M ′, the total number of different movies requested, fulfills
C ·N ≥ M ′ + N − 1, the MW algorithm terminates with an assignment in which each client
j is allocated a transmission of ij .

In the first step the algorithm selects the movies whose copies will be stored. Next, the algorithm
calculates, based on client preferences, how many transmissions from each of these movies will be
required. The result is an input to the MW algorithm, that is guaranteed to halt with a storage
enabling all these transmissions. Recall that that NL ≥ n so all clients can be serviced.
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Theorem 3.1 Algorithm AMW provides (C− 1)(e− 1)/Ce-approximation to the optimal profit on
multiple disks.

Proof: In the first step the greedy algorithm is used to select M ′ = N · (C − 1) + 1 movies. By
Theorem 2.3, the profit from these movies is within (1−1/e)-ratio from the optimal profit from any
set of M ′ movies. The moving window algorithm guarantees that each client will get his top choice
from the M ′ selected movies. An optimal solution can pack at most C ·N movies. Therefore, the
approximation ratio of our algorithm is at least

alg

opt
≥ N · (C − 1) + 1

N · C · e− 1
e

≥ (C − 1)(e− 1)
Ce

3.2 Optimal Bandwidth Allocation for a Given Storage Allocation

In this section we present an algorithm for finding an optimal bandwidth allocation for a given
storage allocation. A bandwidth allocation is also denoted client assignment, since by assigning a
client to a disk it is granted one stream of unit bandwidth. It is easy to see that this problem is
not trivial in a sense that a greedy algorithm cannot do the job. We present a pseudo-polynomial
time algorithm based on reducing the problem to a min-cost max-flow problem. The graph in the
resulting flow problem has a special structure, that enables simple detection of negative cost cycles
by dynamic programming. In our experiments, the min-cost max-flow problem was solved using
this method.

The system is represented by a complete bipartite G = (U∪V, E) where each client is represented
by a vertex in U , and each disk is represented by a vertex in V . Let Mk denote the set of
movies stored on disk k. For each j ∈ {1, . . . , n} and k ∈ {1, . . . N}, the edge (uj , vk) has weight
wj,k = maxi∈Mk

bi,j . That is, the weight represents the profit gained if client j is assigned to disk k
- and will naturally watch the most profitable movie among those stored on dk. A valid assignment
is a set of edges E′ that forms a semi-matching [10] with the following properties:

(P1) Each uj ∈ U is an endpoint of at most one edge in E′. These constraints imply that each
client is watching at most one movie.

(P2) Each vk ∈ V is an endpoint of at most L edges in E′. These constraints imply that each disk
is servicing at most L clients - as required by its load capacity.

The goal is to find a set E′ with a maximal total weight – reflecting the resulting profit of
the assignment. This problem can be represented as a min-cost max-flow problem (see Figure 1):
The network consists of the bipartite G, a source s, connected to all the vertices of U , and a sink
t connected from all the vertices of V . The capacities of each edge (s, ui), or (uj , vk) is 1. The
capacity of each edge (vk, t) is the load capacity L. Edges of type (s, uj) or (vk, t) have cost 0, while
edges of type (uj , vk) have negative cost (= revenue) of value −wj,k.

Note that the value of the max-flow in this network is n = min{n,NL}. The following claim
proves the reduction to the flow problem.

Claim 3.2 A flow having cost −C corresponds to client assignment achieving profit C, and a client
assignment achieving profit C corresponds to a valid flow in the network whose cost is −C.
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Figure 1: A min-cost max-flow problem representing the bandwidth allocation problem. Each edge
is labeled by its capacity and cost.

Proof: Given a flow, since all (s, U)-edges have capacity one, then the flow on all (s, U)- and
(U, V )-edges must be 0 or 1 (all capacities are integers in {0, 1}.. The flow cost is exactly

∑
j,k−wj,k

summing over all j, k pairs for which one unit of flow travels from uj to vk. This flow induces the
following assignment: if the flow on the edge (s, uj) equals 1, then client j is serviced by the disk
k for which the edge (uj , vk) carries a flow of value 1. This disk transmits to j the most profitable
movie for j among the movies stored on dk. Thus, this client contributes wj,k to the total profit.
The edge vk, t has capacity L guaranteeing that disks do not exceed their load capacity. The other
direction is similar - given a client assignment achieving profit C, determine the flow to be 1 on an
edge (s, uj) iff client j is serviced, and on an edge (uj , vk) iff it is serviced by dk. The flow on a
(vk, t)-edges equals the number of clients serviced by dk. Since in a valid assignment, each disk is
servicing at most L clients, this flow is at most L. It is easy to verify that the above flow is valid
and has cost −C.
In particular, the min-cost max-flow induces an optimal assignment of clients to disks in which n
clients are serviced. In the following we describe the technique we used in order to solve the flow
problem. This technique is tailored for bipartite graphs and is simpler than the general method of
detecting negative cost cycles [15]. We also find it more efficient in our experiments.

For a given semi-matching E′, we are looking for negative cost cycles alternating between
vertices of V and U , that is, of type P = ({v1, u1}, {u1, v2} . . . {u`, v1}) with vi ∈ V, u1 ∈ U and
{vi, ui} ∈ E′ for each i. Each such cycle corresponds to migrating the service of client uj from
disk vj to disk vj+1 (mod `). Note that the load on each of the disks is preserved. If the total
profit of applying these migrations is positive, then the corresponding cycle has negative cost and is
therefore a profit-increasing cycle (PIC). A similar method was used in [10] for finding an optimal
semi-matching in a bipartite. However, in [10], edges have uniform costs and the goal is to find
cost reducing paths (not cycles) for which only the load on the endpoint nodes is changing.

Optimal Bandwidth-Allocation Algorithm: (i) find an initial client assignment having prop-
erties (P1) and (P2) above, (ii) improve it by finding profit increasing cycles and apply them on
the graph until no profit increasing cycle exists. The correctness of this algorithm follows from the
correctness of the general method of removing negative cost cycles [15].
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(i) Finding an Initial Feasible Assignment: This step is done greedily by assigning in each
step the next client j to the disk k enabling the highest wj,k value.

(ii) Finding Profit-Increasing Cycles: Our algorithm for finding profit increasing cycles is based
on dynamic programming. This technique ensures that every potential sub-path is considered only
once, and therefore the whole detection is practically efficient. Define δk

i,j as the maximal possible
change in the total profit achieved when one unit of load is transmitted from disk i to disk j along
a path in which k clients are re-assigned. In other words, δk

i,j measures the change in the profit
achieved by an alternating path of 2k edges that starts at vertex di and ends at vertex dj . Note
that the δ values might be negative - if any such path results in decreasing the total profit.

Initially, the values of δ1
i,j are calculated for all pair i, j of disks. For each pair, all n clients are

considered. Formally, recall that Mj denotes the set of movies stored on disk j, then

δ1
i,j =

n
max
`=1

{max
z∈Mj

b`,z − max
z∈Mi

b`,z}.

For k > 1, the values of δk
i,j are calculated using the following recursion:

δk
i,j =

N
max
h=1

{δk−1
i,h + δ1

h,j}

That is, every path from i to j in which k clients are reassigned can be viewed as a concatenation
of a path from i to some disk h in which k − 1 clients are reassigned, and a path from h to j in
which one client is reassigned.

In order to detect a profit increasing cycle, the values δk
i,i, that lay in the diagonal of the δ-table,

are considered after δk
i,j is calculated for k > 1. If a positive value is found, a profit-increasing cycle

is induced (and can be retrieved by additional O(1) book-keeping along the calculation). Else,
the algorithm proceeds to calculate the table δk+1

i,j . The maximal length of a PIC is 2N edges,
therefore, if no positive δk

i,i value is detected for k = N , the algorithm terminates with an optimal
assignment.

The time complexity of calculating the N × N table δ1
i,j is O(N2n), the time complexity of

calculating each entry of the N ×N table δk
i,j is O(N), therefore the whole calculation of δk

i,j takes
O(N3). Assume that the shortest PIC has 2k edges, then the total time of detecting this path is
O(N2n) + O(kN3). If no PIC exists, the algorithm terminates after O(N2n) + O(N4) operations.
We note that this time complexity is higher than the time complexity required to detect a cost-
reducing path in the semi-matching problem [10] because now the profit from the internal disks in
the path is changed, and in the semi-matching only the load on the endpoint vertices is affected.
Due to this crucial difference, the cost of using any sub-path of any length must be considered.
We also note that in practice we found the above algorithm faster than our implementation of the
general method of detecting negative cost cycles from [15].

3.3 Heuristics for Initial Storage Allocation

In this section we describe the two heuristics we have used to determine an initial storage as a
preprocessing for the optimal bandwidth allocation algorithm described in Section 3.2. The goal
is to determine which movie files will be stored on each disk, in a way that achieves high profit
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when combined with an optimal bandwidth allocation. The first heuristic is based on a round robin
algorithm, the second heuristic uses a variant of the moving window algorithm [18].

Our experiments show that both algorithms are doing a very good job and have similar perfor-
mances, with a slight advantage to the second heuristic.

Weighted Round Robin Assignment: The Weighted Round Robin assignment algorithm is
a simple and fast method for determining an initial storage allocation. It first decides what are
the NC copies of movies that will be stored and then distributes them on the disks using round
robin. Assume that ni ≤ N copies of movie i need to be stored, then n1 copies of f1 are stored
on d1, . . . dn1 ; n2 copies of f2 are stored on dn1+1, . . . , dn1+n2 , etc., where the calculation is modulo
N . In order to determine the value of ni we first use the greedy algorithm (Section 2.2) to select
NC movies, assuming a single disk with storage capacity NC, and then each client selects its top
preference from this set. We get a vector of ’votes’ that sums up to n. This vector serves as input
for the apportionment problem [11], whose solution determines, for each i, the value of ni in a way
that it is proportional to the number of votes for fi, and

∑
i ni = NC.

Initial Assignment using the Moving Window Algorithm: In section 3.1 we showed that if
we run the Moving Window algorithm with M ′ = N · (C − 1) + 1 then we get at least (C − 1)/C-
fraction of greedy’s profit on a single disk having storage M ′. When the value of M ′ increases then
clients have a larger variety of movies but on the other hand there is no guarantee that the MW
algorithm will succeed in granting all requests for these movies. We suggest the following heuristic:
Initially, as in the round-robin solution, select M ′ = NC movies, and let each client select its top
preference among this set. Then run the MW algorithm for the resulting set of requests. Indeed,
the MW algorithm might allocate to some movies less transmissions than their client demand.
However, as our experiments reveal (see Section 3.4) this heuristic performs very good in practice.

3.4 Experiments for Multiple Disks

Our experiments compare the performance of all the algorithms and heuristics suggested for multiple
disks. As described in Section 2.5 we used two Zipf distributions in order to build the client
preferences and payment vectors in a way that reflects a real life scenario in which few movies are
very popular, and clients are willing to pay significantly more for their top choice movies. In our
experiments we tried to compare the various algorithms and to find out which algorithm performs
better for specific system parameters and payment vector distributions.

For the algorithms that are based on two phases (finding a storage allocation and then assign
the bandwidth to clients), the challenge was to isolate the contribution of each phase to the overall
performance. In order to do this we combined two strategies: (i) we replaced the min-cost max-
flow algorithm with a simple greedy algorithm that for a given storage allocation iterates over the
clients and in each step allocates the next client to the most profitable (and available) disk. (ii) we
run each of the two storage allocation algorithms with the above greedy algorithm and with the
min-cost max-flow algorithm. Therefore, in each experiment we tested 5 algorithms:

1. The (C − 1)(e − 1)/Ce-approximation algorithm, that runs the MW algorithm with M ′ =
C(n− 1) + 1.

2. Storage allocation by weighted round-robin, and optimal bandwidth allocation.

14



3. Storage allocation by weighted round-robin, and greedy bandwidth allocation.

4. Storage allocation by MW algorithm with M ′ = CN , and optimal bandwidth allocation.

5. Storage allocation by MW algorithm with M ′ = CN , and greedy bandwidth allocation.

The other parameters in our experiments were as follows: The number of clients, n, was set to
1000. The number of movies, M , was set to 200, the number of disks, N , was varying between 4
to 20. The load capacity L was defined to be n/N . That is, all clients can be serviced independent
of the number of disks. The storage capacity, C, varies from 1 to 10. Also, in all the experiments
all clients have the same budget, ∀j, ∑

i bi,j = 1. This enables us to isolate the influence of each of
the varying parameters on the system’s profit.
Experimental Results: Figures 2 and 3 present the experimental results for two different popu-
larity and budget distributions (θ values), and two different storage capacities. The graphs present
the profit achieved as a function of the number of disks N . In all four experiments the total number
of broadcasts is n = NL = 1000, therefore, a system with many disks is more powerful only since
it has more storage capacity. In other words, the bandwidth is better exploited (profit function is
increasing), only thanks to the increased storage.

In all four experiments we see that the combination of the MW algorithm with the optimal
bandwidth allocation achieves the best results. In particular, the MW algorithm is a better storage
allocation algorithm than the round-robin algorithm. We also learn that the greedy bandwidth
allocation algorithm achieves fair results. Clearly, it is worse than the optimal one, but the average
gap in the profit is only about 10%, and it is much faster (O(nN) vs. O(N2n) + O(N4) for the
optimal). From comparing systems with low and high storage capacities ((a) vs. (b) experiments),
we learn that the performance of the MW algorithm with M ′ = N · (C−1)+1 is improved, relative
to the other algorithms, when the storage capacity is high.

From comparing systems with different client-preference distributions (Fig. 2 vs. 3), we learn
that when θ is increased (movie popularity and clients’ payments are more uniform) then the total
profit is decreased. This can be explained by observing that in high-θ instances there is no small
set of movies that is highly requested and has high payment readiness. Low θ values are more
challenging, and the results show higher gaps between the different algorithms. This is explained
by the fact that any deviation in the allocation might result in large gaps in the profit, while for high
θ’s the storage allocation is less crucial, since any movie is among the top choices of some clients,
and the payments for closely ranked movies are not significantly different. Unlike the single disk
case, where solving the problem for low θ values was done efficiently even by simple heuristic, for
systems with multiple disks we conclude that selecting the right algorithm is crucial as θ decreases
and as the system’s resources are enlarged.
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