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Abstract

A simple and efficient method is presented to enhance the
depth perception of an image. The approach termed Depth-
Stretch (D-stretch) is a tone mapping operation that is ap-
plied to the shading component of the given image.Although
re-rendering a scene under geometric transformations typi-
cally requires extracting the 3D model of the scene, we show
that under very simple assumptions D-stretch can be imple-
mented without 3D reconstruction, while still providing a
convincing effect of depth enhancement.

1. Introduction

Improving depth impression in still images is a desired
goal of many photographers and artists. For this purpose, a
photographer may emphasize the scene perspective by com-
position tricks, she may carefully design the illumination
setup to increase cast shadows, or amplify de-focus blur
during acquisition or using post-production operations. Had
the photographer the ability to actually stretch the 3D scene
and increase its depth along the camera viewing direction,
this would have strengthened the shading cues of the re-
sulting photograph and thus increased its depth impression.
However, such a manipulation requires 3D modeling of the
scene, a demanding and still unresolved problem using a
single RGB image.

In this work we present a novel method of post produc-
tion depth enhancement termed Depth-Stretch or D-stretch.
D-stretch is performed by manipulating the shading cues
exaggerating the shading effects. We show that under very
simple assumptions on the lighting setup and the the scene,
D-stretch boils down to a simple tone mapping operation
that is applied to the shading component of the given image.
The proposed method is embarrassedly simple but efficient
and effective, easily implemented using a single lookup ta-
ble. The bottleneck of the approach is the necessity of com-
puting the shading component of the image (or equivalently
- the intrinsic image) which is known to be a complicated
task [2]. Nevertheless, we show visually that the intrinsic

image, and thus the shading component, need not be com-
puted at a high quality level. In fact, crude shading com-
putations with inferior quality are sufficient to produce very
convincing D-stretch effects.

We further show the relation of the suggested approach
with that of other known detail enhancing methods, includ-
ing global or local tone mapping, unsharp masking and
high-dynamic range (HDR) compression methods. Under
specific conditions, these enhancing techniques can be ex-
plained under the D-stretch theory. However, in contrast to
the other suggested methods, the proposed scheme is prov-
ably justified and derived directly from the image formation
model. It does not rely on ad-hoc manipulations or common
practice. In retrospect, the proposed approach may suggest
an educated explanation why some of the ad-hoc manip-
ulations, such as, edge-preserving details enhancement or
high-dynamic range compression, emphasize in practice the
depth perception.

2. Background and Previous Works

3D perception in a 2D image is captured by various vi-
sual cues [13]. Some cues are manifested through geomet-
ric properties such as linear perspective, texture gradient, or
relation to objects in the scene whose real sizes are known.
Other cues are based on atmospheric effects such as hazing
where distant objects appear dull or de-saturated in color
due to dust or particles in the atmosphere [24, 7]. Acqui-
sition devices and their adjustment may also produce depth
cues in the image, e.g. the loss of sharpness of objects dis-
tant from the plane of focus [18].

Another effective cue, which we exploit in this paper, is
the shading effect [12]. Since the radiance reflected from
any point in the scene depends, amongst others, on the ob-
ject’s geometry, the shading variations in the image provide
a strong percept of depth and shape [12, 1]. In contrast to
the above mentioned cues that provide qualitative depth per-
ception, shading effects produce quantitative depth details
which can be exploited for 3D reconstruction using shape
from shading or photometric stereo techniques [12, 36, 35].

Given an already acquired image, one must resort to



post-production methods to enhance the depth percept. Var-
ious approaches have been suggested.In [8], shading and
surface details are manipulated by exploiting a collection of
images of a scene illuminated from different directions. The
strongest shading effects in all images are integrated using
edge-aware multi-scale decomposition. Similar input (al-
though in a more controlled setup) is used in [22] to extract
surface normals and manipulate surface photometric param-
eters (e.g. increasing the specular component). The goal of
these methods is similar to that of this paper, however, they
require a set of images obtained using a controlled setup
with artificial illumination while this paper assumes a sin-
gle input image acquired without controlled illumination. In
[21], depth perception is emphasized by artificially intro-
ducing Gibbs artifacts (halos) near depth discontinuities.

Other approaches perform image enhancement from a
single image by either requiring the depth or depth gradi-
ents at each pixel [27, 32], or estimating the depth or normal
at each pixel of the input image [15, 20]. These methods
directly rely on the depth information of the scene for en-
hancement. Finally, we mention studies in creation of bas-
reliefs. These studies compress an original full depth struc-
ture into a restricted depth range, thus controlling the per-
ceived depth of the final relief. However, these methods all
assume as given, either 3D models, depth maps or z-buffer
values on which height compression is performed [34, 29].
We emphasise that in our proposed approach, depth percep-
tion is enhanced with no depth, height or 3D information.

Other studies take a different approach and ignore the 3D
structure of the image and apply detail enhancing operations
irrespective of the 3D structure. Such approaches involve
global or local contrast enhancement and high-frequency
enhancement [6, 9, 4, 31]. In Section 6.3 we show that our
proposed technique bears many similarities to these tech-
niques but the suggested formulation is theoretically justi-
fied and is derived directly from the image formation model.
Our approach performs precise mapping with no ad-hoc or
qualitative operations.

In this paper we propose to enhance depth perception
by manipulating the shading component of an image. Our
contributions in relation to other detail enhancement ap-
proaches are:

• The manipulation we apply in this work is mathemati-
cally justified and derived directly from the image for-
mation model. Thus, the approach suggested here is
not an ad-hoc approach that looks good but a theoreti-
cally justified and precise method.

• The approach shows that, under reasonable assump-
tions on the image acquisition process, the exact depth-
stretching reduces to a global tone-mapping with no
need of depth information and relies only on the shad-
ing values. Although this is a known practice in some
applications,this is the first paper that proves this point.

3. Depth Stretching without 3D Modeling

Assume an image is acquired of a general scene whose
3D model is represented in the viewer’s coordinate system.
That is, the Z axis coincides with the camera’s optical axis
and the X,Y axes are parallel to the x, y axes in the pro-
jection plane (image plane). Assuming the scene is illumi-
nated by a point light source l = (lx, ly, lz) where the di-
rection of l indicates the light direction and the magnitude
of l is the light intensity. The diffuse component reflected
from a scene point, whose projection in the image plane is
at (x, y)1 is given by Lambert’s law [12]:

I(x, y) = ρ(x, y)(l ∙ n(x, y)) (1)

where ρ(x, y) is the diffuse coefficient (albedo), n(x, y)
represents the 3D normal of the physical point projected
to (x, y) and (l ∙ n) is a scalar product between l and n.
Note, that the above equation depends on the light’s spec-
tral wavelength but due to the trichromatic model of the
human visual system three independent equations, one for
each color band of the image, suffices. For the sake of sim-
plicity we express our scheme on a single band. Given the
3D surface model Z(X,Y ), the normal of a point at the
surface whose projection on the image plane is at (x, y) is:

n(x, y) =
[p, q,−1]

√
p2 + q2 + 1

(2)

where p(x, y) and q(x, y) are the surface derivatives: p =
dZ
dX and q = dZ

dY , and the denominator is a normalization
factor to form a unit vector.

Assume for the moment that light direction is fronto-
parallel and originates from the direction of the camera, thus
l = kp[0, 0,−1] where kp is the light intensity. Substituting

1We assume the scene is distant from the camera and weak perspective
can be used.

Figure 1. D-stretch tone curves for various α values.



(a) (b) (c) (d) (e)
Figure 2. Comparison of rendered 3D model vs D-stretch. a) Rendered Model b) Rendered 3D-scaled model c-e) D-stretch of (a) with
α = 1.5, 2.5, 3.5. Lighting position and camera are frontal-parallel.

l and n back into Equation 1, we obtain:

I(x, y) = ρ(x, y)kp
1

√
p2 + q2 + 1

= R(x, y)S(x, y) (3)

where R(x, y) = ρ(x, y)kp represents the reflectance com-
ponent and S(x, y) = 1√

p2+q2+1
is the shading component.

Note, that the shading is in the range [0, 1] and depends only
on the geometry of the scene.

Following the above notation, if the surface is stretched
along the Z direction by a factor of α so that Z ′(X,Y ) =
αZ(X,Y ), the surface derivatives change accordingly:
p′ = dZ′

dX = αp and q′ = dZ′

dY = αq, and the shading
component now reads:

S′(x, y; α) =
1

√
α2p2 + α2q2 + 1

(4)

The reflectance component remains unchanged. Typically,
in order to re-render the shading component under any geo-
metrical transformation, the 3D structure of a scene must be
reconstructed. Surprisingly, under the above assumptions
re-rendering the scene under depth stretching can be applied
easily using a mapping function on S(x, y). Given that
S(x, y) = 1/

√
p2 + q2 + 1 (Equation 3), isolating p2 + q2

we obtain:
p2 + q2 = 1/S2(x, y) − 1

Substituting the above into Equation 4 we obtain:

S′(x, y; α) =
1

√

α2
(

1
S2(x,y) − 1

)
+ 1

(5)

Equation 5, defines the D-stretch algorithm. If we are
able to separate the shading component from the reflectance
component, re-rendering the image with a stretched depth
can be applied easily using a mapping function on S(x, y)
as given in Equation 5. Figure 1 shows the mapping func-
tion for various values of α. Note, that α > 1 implies depth
stretching while α < 1 implies attenuation of depth or D-
shrinking.

Figure 2 displays a comparison of the D-stretch result
with true rendering of a 3D model. Figure 2a shows a ren-
dering of a 3D model with fronto-parallel lighting and view-
ing direction (l = [0, 0,−1]). The 3D model was scaled by
a factor of 2.5 along the z-axis and re-rendered as shown in
Figure 2b. D-stretch was applied to the 2D image of Fig-
ure 2a in order to reproduce the effect of depth stretching
in the model. Figures 2c-e show the results of applying D-
stretch using stretch parameter α = 1.5, 2.5, 3.5. It can be
seen that using α = 2.5, the effects of actual 3D stretching
of the model is perfectly reproduced (MSE between Fig-
ures 2b and 2d is zero - see Figure 13 for 0◦).

It should be emphasized that the above formulation was
developed under the assumption that the light direction is
[0, 0,−1]. When light direction differs, the exact same
formulation can be applied while representing the surface
Z(X,Y ) in a coordinate system whose Z axis is parallel
to the light direction. In this case, however, the depth is
stretched towards the light direction and not towards the
viewing direction. However, the perceived depth is still
boosted as long as the light originates from the viewing
hemisphere. Fortunately, this is the case in most images
(otherwise cast and self shadows may cause interference in
the image). See also Section 6.1 and Figure 13 for a discus-
sion on change of lighting position.

Figure 3. Extracting the reflectance component of an image. A
1d image is shown having a large reflectance change and smaller
shading changes (solid black). The reflectance component can be
viewed as the upper envelope bounding the image (dashed red).
Applying Poisson reconstruction to the large derivatives results in
a smooth profile of the image (double-dashed green). This profile
is lifted to meet the upper envelope and produce the reflectance
component of the image.



a. b. c. d.
Figure 4. Image decomposition and D-stretch. a) Original. b) D-stretched with α = 1.5 c) Reflectance component. d) Shading component.

4. Obtaining the Shading Image

To apply D-stretch on an image, the shading component
must be extracted. Various approaches have been suggested
to compute the shading image, typically associated and
computed in combination with the intrinsic (reflectance)
image [2] and sometimes with additional layers of image
content such as specular map, diffuse map, shading, re-
flectance and illumination components. Reflectance and
shading image decomposition have been proposed based
on multiple images [33, 23, 16] or from a single image
[30, 10, 28, 1].

In our testing, several techniques provided very good vi-
sual results, however, for the sake of consistency, in all the
presented examples we have used shading extraction based
on reflectance derivatives similar to [30]. The image is first
converted into the log domain so that the reflectance and
shading components are additive. Under the assumption
that reflectance changes and shading changes rarely occur
at the same location, Tappen et. al. suggested to classify
each pixel derivative as originating either from changes in

the reflectance or from changes in the shading. In our sys-
tem, classification of pixel gradients is performed follow-
ing the Retinex heuristics [17] which assumes that image
derivatives with a large magnitude correspond to reflectance
changes, while small derivatives are most likely caused by
shading. Thus we define pixel gradients as reflectance gra-
dients if they exceed a given threshold. Denote by Rx and
Ry the images of the x and y derivatives of the pixels la-
belled as reflectance (and zeros elsewhere). The reflectance
image R is then extracted by solving the normal Poisson
equation:

[
DT

x , DT
y

]
[

Dx

Dy

]

R =
[
DT

x , DT
y

]
[

Rx

Ry

]

where Dx and Dy are the x and y derivative operators de-
fined in matrix form. The solution R is obtained using the
conjugate gradient algorithm. The desired shading image is
extracted by completion.

Consider the visualization in Figure 3. An image I(x,y) is
visualized as a 1D function of luminance v.s. coordinate x.
The image is depicted as having a single large reflectance
change and smaller shading changes. Since the shading

α = 0.10 α = 0.35 α = 0.5 α = 1.0 α = 1.5 α = 2.0
Figure 5. D-stretch of ’Sun’ image from the MIT database [11]. Bottom: D-stretched shading image. Top: Resulting D-stretched image.



Figure 6. D-stretch applied to coin images. In each pair, original on left, D-stretched on right.

Figure 7. D-stretch applied to art reliefs images. In each pair, original on left, D-stretched on right.

Figure 8. D-stretch applied to map and textile images. In each pair, original on left, D-stretched on right.

component is bounded in the range [0..1], the reflectance
component can be viewed as the upper envelope bounding
the luminance image (dashed red line). However, the re-
flectance image computed as described above does not form
an upper envelope (double-dashed green line). Thus values
”lifting” is performed to the reflectance image so that its
profile will bound the original image from above. In prac-
tice, care must be taken to avoid over-lifting due to image
highlights, thus the lifting is performed so that 95% of the
image values are below the lifted profile. Highlight pixels
are removed and later added back into the final image (i.e.
no D-stretch is applied to these pixels). Figure 4 shows ex-
ample results of extracting the shading and reflectance com-
ponents of an image.

5. Results and Applications
In this section we present results of applying D-stretch

under various scenarios using different variations and to-
wards a selection of different goals.

5.1. Stretching Depth

Figure 5 shows the effect of D-stretch on an image from
the MIT Intrinsic Images dataset [11]. The Database pro-
vides the ground truth intrinsic image as well as the true
shading image associated with the source image. D-stretch
is applied to the shading image according to Equation 5 with
different values of α. The change in perceived depth is sig-
nificant as can be seen in the images.

In the case when the ground truth shading image is not
provided, we extract the shading image (as well as the in-
trinsic image) using the method described in Section 4. D-

stretch is then applied to the computed shading image and
recombined with the intrinsic image as in Figure 4. Fig-
ures 6-8 display D-stretch examples of coins, art reliefs,
maps and textiles. The original image in each pair is on
the left and the D-stretched image is on the right. As can
be seen, D-stretched coin images show enhanced depth of
the imprinted figures and text (Figure 6) and the shading
cues in the relief art are enhanced following D-stretch (Fig-
ure 7). These percepts are also confirmed in a user study as
described in Section 6.4.

5.2. Enhancing Flash Photography

Flash photography is used in dark scenes to illuminate
the objects of interest but also in situations where a directed
light source forms displeasing shadows in the scene (see
Figures 9a). In both cases it is well known that flash pho-
tography, although illuminating the scene well, often causes

a. b. c.
Figure 9. D-stretch applied to flash photography. a) No flash image
has dark regions. b) Flash photography illuminates dark regions
but attenuates shading cues. c) D-stretch enhances shading cues
lost in flash. Pumpkin region enlarged at top for visualization.



a. b. c. d.

a. b. c. d.
Figure 10. D-stretch using generic face shading image. a. Original image (Hbuterne by Modigliani - top) b. D-stretched face (alpha = 2.0).
c. Shading image used (obtained by warping generic face shading image). d. Original generic face shading image.

”flattening” of the scene, namely attenuation of the shading
cues [18] (see e.g. Figures 9b). Several studies attempt
to recover the image details and accordingly, the shading
cues, in the flash photograph by incorporating information
from the non-flash image [25, 14, 26, 5]. These approaches
require access to both flash and non-flash images of the
same scene. In contrast, D-stretch can be applied directly
to the flash images to re-introduce or enhance the shading
cues without necessitating additional images. Figures 9c
shows an example of D-stretch applied to a flashed photog-
raphy. Notice the enhanced shading cues in the pumpkins
and pavement tiles of Figure 9.

5.3. Using Generic Shading Models

In the case when the ground truth shading image is not
provided or can not be computed from the image, another
option is to exploit a generic shading image. Figure 10-top
shows an example of D-stretching an image of Modigliani’s
Hébuterne painting. Modigliani’s style of ”flat” faces does
not allow us to extract a shading image. Thus a generic face
shading image is used instead (Figure 10d). The generic
shading image is geometrically warped to align with the
geometric features of the face in the original image (Fig-
ure 10c). The warped shading image is used to D-stretch
the original Modigliani image shown in Figure 10a. An-
other example is given in Figure 10-bottom where a ”flat
painting” has been D-stretched.

5.4. Depth Shrinking: De-wrinkling & De-pimpling

The process of D-stretching can be modified to atten-
uate rather than enhance shading cues by setting α < 1.

This is useful in cases where shading is to be ”flattened
out”. Classic examples are skin wrinkles and pimples. Fig-
ure 11 shows an example of D-shrinking an image of skin
wrinkles. Skin images contain shading cues at different
frequency scales. Figure 12-left shows an example of D-
shrinking the low frequency content of the shading thus pre-
serving the fine details of the skin texture. Figure 12-right
shows an example where the skin image contains fine tex-
ture details as well as low frequency shading content that
induces the percept of a curved arm. D-shrinking the shad-
ing image produces a ”flattened” image where in addition
to the attenuated pimples, both the fine skin features and the
surface curvature have been attenuated if not eliminated. To
attenuate the pimples alone, the shading image is filtered
so that only mid frequency shading content is attenuated by
D-shrink. The resulting image in Figure 12c preserves the
fine skin features as well as the curved structure of the arm,
while attenuating the pimples. Note, that in addition to the
shading cues, the pimples are also distinguished by change
in albedo, this however, is not removed by D-shrinking.

a. b.
Figure 11. D-shrink applied to wrinkled skin. a) Original image.
b) Applying D-shrink attenuates wrinkles.



a. b. c. a. b. c.
Figure 12. D-shrink applied to pimpled skin. a) Original image. b) Applying D-shrink to all shading content produces attenuated pimples
however fine features as well as the global structural depth are attenuated as well. c) Applying D-shrink to low (left) or mid (right) frequency
content of the shading image, pimples are attenuated yet the original skin’s fine features as well as the global structure are preserved.

6. Discussion

6.1. Lighting Position

The D-stretch formulation developed in Section 3 as-
sumes that the lighting direction coincides with the cam-
era viewing direction l = [0, 0,−1]. When lighting direc-
tion deviates from the assumed direction, D-stretch can be
shown to provide shading effects as expected from stretch-
ing the scene along the light direction. This effect still pro-
vides enhancement in depth perception as long as the light
direction does not deviate greatly from the viewing direc-
tion. Figure 13 plots the differences between a rendered 3D
model and D-stretch results. The 3D model used in Figure 2
was scaled along its z-axis at various scale factors. The
MSE between the scaled model’s image and the D-stretched
original model image is plotted as a function of the scale
factor (D-stretch parameter α). Plots are shown for differ-
ent lighting positions given as deviation from the frontal-
parallel position. It can be seen that when lighting is fronto-
parallel (0◦) as assumed in the D-stretch derivation, indeed
the resulting D-stretched image perfectly reproduces the im-
age of the scaled model (MSE = 0) for all scale factors. As
the lighting position deviates from 0◦, error increases with
deviation angle. Error is greater for larger scaling factors.
Visually, however the D-stretch still produces the percept of
enhanced depth even for extreme lighting position, as can

Figure 13. MSE difference between D-stretch results and rendered
3D model as a function of the D-stretch parameter alpha, for differ-
ent lighting positions given as deviation from the frontal-parallel
lighting position.

be seen in Figure 14 for a deviation of 40◦.

6.2. D-stretch vs. Gamma Tone Mapping

Both D-stretch and Gamma tone mapping are point oper-
ations with a non linear tone mapping curve. There are two
main distinctions that we emphasize. First, Gamma manip-
ulation is applied directly to pixel values whereas D-stretch
is applied to the shading component. Indeed, D-stretching
a scene with a uniform reflectance boils down to applying a
global tone-mapping. In such cases, Gamma mapping (with
γ > 1) bears similarity to the D-stretch operation. How-
ever, in other cases where chromatic edges exist in the im-
age the two approach are conceptually different (see Fig-
ure 15). Second, Gamma Correction is typically applied
to correct for the camera to monitor non-linearities, thus
γ < 1 is used (typical value is around γ = 1/2.2). The
D-stretch mapping curve enhances depth when α > 1 hav-
ing a mapping curve that significantly differs. Figure 16a
shows the D-stretch tone mapping curve for various α val-
ues and Figure 16b shows the Gamma curve for different
values of Gamma. Even for similar values of α > 1, the
tone curves of Gamma and D-stretch differ in mode (e.g.
consider the α = 5 curve): D-stretch more strongly attenu-
ates the lighter tones compared to the Gamma Mapping and
the Gamma Mapping affects the darker tones more strongly
than D-stretch.

6.3. D-stretch v.s. Detail Enhancement

A significant body of work has been produced in the con-
text of detail enhancement. These techniques were not de-

a. b. c.
Figure 14. Comparison of rendered 3D model vs D-stretch for ex-
treme lighting angle. a) Rendered Model b) Rendered 3D scaled
model c) D-stretch of (a) with α = 1.5. Lighting position is at 40◦

deviation from frontal-parallel.



Figure 15. D-stretch v.s. Gamma Mapping. a) Original b) Gamma
Mapping (D-shrinking the intensity image) c) D-shrinking (using
the shading image) d) Original shading image e) Shading image
after D-shrinking.

signed specifically to enhance 3D sensation, but rather pro-
duce an ‘enhanced’ and more pleasing image enabling an
improved visibility of edges and details. However, the end
results are often comparable. We refer here to two types of
enhancements: The high dynamic range (HDR) compres-
sion techniques [31, 19, 4, 9] and the detail enhancement
techniques [6, 31, 3]. The HDR methods, consider large
changes in the image to be due to illumination changes. The
image is decomposed into ‘base’ and ‘details’ components,
where the ‘base’ is extracted using edge-aware smoothing
operations in the log domain The illumination changes are
assumed to be sharp and strong, thus are encoded in the
‘base’ component. For enhancement, either the variations
in the ’base’ component are attenuated, or the ‘details’ com-
ponent is stretched, before recombining the two compo-
nents. In both cases the ‘details’ are amplified relative to
the ‘base’. Similarly, in the D-stretch case, the goal is to
separate the shading component from the reflectance com-
ponent and stretching the shading component. Although the
methods are similar in spirit they are conceptually different.
The first distinction is that HDR methods attempt to sepa-
rate the illumination from the reflectance components and
do not consider the shading component per se. While detail
enhancement methods do not care about the physical source
of image gradients and simply follow the goal of amplify-
ing small and mid range variations. The second distinction
is in the shape of the mapping curve applied. In our method
the curve is theoretically derived from the image formation
model while in the enhancement methods the details are lin-
early multiplied in the log domain resulting in a tone map-
ping similar to a Gamma curve in the linear domain.

a. b.
Figure 16. D-stretch vs Gamma. a) D-stretch tone curves for vari-
ous α values ranging in {0.2. . . 5.0}. b) Gamma curves for various
Gamma values ranging in {0.2. . . 5.0}.

6.4. User Study

Finally, we support our results with a user study that
shows that indeed visual percept of the D-stretched images
strongly correlates with stretching of scene depth. 37 sub-
jects, of clear or corrected vision, ranging in ages 20-38,
were recruited. Subjects were shown 20 pairs of images
consisting of an original color image and its D-stretched
version. Positioning of the original and the D-stretched im-
age on the screen, was randomized. Examples of such im-
ages include figures shown above, in this paper. Subjects
were asked to select the image perceived to have greater
depth variation. Results show that subjects selected the D-
stretched image as that showing greatest variation in depth,
between 90-100% of the time for each image pair with a
total average response of 96.44% over all image pairs.

Next, subjects were shown randomized sequences of 4
D-stretched images of the same original, using 4 different
α values as in Figure 5. Subjects were asked to rank the
images in order of increasing depth percept. The resulting
ranking confusion matrix shows consistency between per-
ceived ranking of depth and the α value. The Pearson Cor-
relation coefficient for these results is 0.892.

Depth Order Ranking Confusion Matrix
depth order 1 2 3 4

1 66 5 1 2
2 5 65 3 1
3 1 3 64 6
4 2 1 6 65

In a final test, users were again shown pairs of images
consisting of an original color image and its D-stretched
version. Subjects were asked to select the image which is
perceived as ”better looking”. This is an ambiguous request
and many factors independent of D-stretch, may come into
play affecting the subjects’ responses. Notwithstanding, re-
sults show that 70% of the responses indicated a prefer-
ence for the D-stretched images. The largest inconsistencies
were found for images containing faces or human subjects,
known to be a source of complexity in terms of perception.
For the remaining test set, without faces, responses showed
80% preferences for the D-stretched images.

7. Conclusions

We have presented a simple tone mapping operation
termed D-stretch that is shown to improve the depth per-
cept of an image. The attractive feature about the proposed
approach is that it does not require any 3D reconstruction
and is applied directly to the shading component of an im-
age. The approach is mathematically proven and simulation
results demonstrate the visible effect of depth enhancement.
Results are further supported by a user study.
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