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Some Trivial Facts about 
the Visual Pathway 
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Ø Cornea  -  תינרק
Ø Pupil - ןושיא
Ø Iris - תיתשק
Ø Retina - תיתשר

The Human Eye
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The Retina



• The retina contains two types of photo-receptors:
– Cones: Photopic vision, can perceive color tones
– Rods: Scotopic vision, can perceive brightness only
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A side note:
• Humans and some monkeys have three 
types of cones (trichromatic vision); most 
other mammals have two types of cones 
(dichromatic vision).
• Marine mammals have one type of cone.
• Most birds and fish have four types. 

The Cones
• Three types of sensors: L, M, and S, each with different 

photo-pigment, composing the trichromatic color vision
• 6-7 million cone receptors, located primarily in the central 

portion of the retina



Cone Receptor Mosaic (from Roorda and Williams, 1999)

• Ratio of L to M to S cones is approx. 75:20:5
• Almost no S cones around the fovea

Phenomena 1:
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Distribution of rod 
and cone 
photoreceptors
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Cone Distribution:
• L-cones (Red) form about ~65% of the cones in the retina .
• M-cones (green) form about ~30% of the cones.
• S-cones (blue) form about ~2-5% of the cones  

fovea



Question 1:
Why is the distribution of L M S cones not uniform?

Common Answer 1:  
Chromatic aberration of  the lens, blurs the range of the 
S spectrum.

Common answer 2:  
Blue colors are commonly smooth 

Common answer 3:  Evolution (no blue in Odyssey , the 

Iliad, and in the Bible).



Derrington (1984)

Phenomena 2:  
Neurons in the visual cortex are sensitive to 
opponent signals (luminance/chrominance)



Blue-Yellow
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Opponent Cells: possible neural connections

LuminanceChrom. Chrom.



Question 2:
Why does the HVS encode color information 

in opponent space?

Common Answer: 
“Efficient Coding“ – In order to reduce data redundancies 

opponent basis de-correlates color information (Barlow 

89, Field 87) .



Efficient Coding

data 

memory

representation

bottle-neck



Efficient Coding

Method: 

• Collect spatio-chromatic data from natural images.

• Whiten the data by  projecting onto the principal 
components of PCA or ICA.



Efficient Coding using ICA Hoyer & Hyvärinen 2000

• Oriented, localized, and band passed basis
• Luminance/Chrominance arrangement (B-Y & R-G)
• High freq. for luminance basis and low freq. for chrominance
• Fewer number of chromatic basis
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Phenomena 3: Luminance:

Red-Green:

Blue-Yellow:

• The HVS is more 
sensitive to high-
frequencies in the 
luminance channel than 
in the chrominance
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Original Image
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After blurring the two chrominance bands
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After blurring the luminance band



Common Answer: Efficient Coding →		Chrominance 
cells are tuned for low spatial freq. and luminance cells 
for high spatial freq.

Question 3:
Why is the HVS less sensitive to high spatial 
frequencies in the chrominance channels?



Efficient Coding and the HVS

Data Whitening (PCA &  ICA) H.V.S.
Luminance/Chrominance arrangement of 
basis vectors (B-Y & R-G)

Luminance/chrominance 
pathways in the visual cortex

Spatial basis vectors are oriented, localized, 
and band passed.

Resembles the Simple/Complex 
cells RFs

High spatial freq. for luminance basis vectors 
and low freq. for chrominance basis.

HVS is more spatially sensitive 
to luminance data.

Fewer number of chromatic basis vectors. In accord with RFs in the HVS.

Buchsbaum & Gottschalk 83, Attick & Redlich 92, Olshausen &  Field 96, Ruderman
et.al. 98, Hoyer and Hyvärinen 2000, and more... 

Efficient coding agrees with the characteristics of the HVS 
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Summary:
1. The retina contains many more L, M cones than S cones.
2. The visual pathway encodes color information using 

luminance/chrominance channels.
3. The HVS is insensitive to high spatial-frequencies in the 

chrominance channel.

Our claim:  
• All the above are related and stems from the statistical 

properties of color images and the shortage of sensory 
interface.
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The statistical properties of color images
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• Given a color image ! modeling the entire joint 
probability "# is impractical.

• In order to build a useful model we must reduce 
the dimensionality of the problem.

• Common approaches to image modeling use 2 
types of reductions:
– Reduction in the Spatial domain.
– Projection onto informative subspaces.

The statistical properties of color images
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Reduction in the Spatial Domain

• A reasonable assumption: A natural image can be 
viewed as a realization of a Markov Random Field:
– A large enough neighborhood of an image pixel 

completely characterizes its p.d.f:

( ) ( )qpp,|qPN|qP q ¹=

( )qNq,P

Nq

q

– This p.d.f is similar for all pixels 
(the homogeneity property of 
images)
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• Modeling the Statistical properties of !×!×3 spatio-
chromatic patch is complicated, but an approximation 
can be inferred using marginal statistics in some 
projected subspace.

• Subspaces should be chosen such that “informative”
information will not be lost.

• A crucial problem: what are “informative” subspaces?

Projection into Informative Subspace
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Informative Subspaces in Color Images 

• Suggested approach: Choose subspaces in which the 
correlations between the color bands will be maximized.

The Canonical Correlation Analysis (CCA)

finds such subspaces.
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• Assume two multidimensional random variables: x and y .

• We are looking for two projection vectors !" and !# such 
that the correlation between $% = $'!" and  (% = ('!#
is  maximized:                                                                                       
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The Canonical Correlation Analysis (CCA)  

Wx
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Taken from Kidron et. Al.
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• "#$ and "%$ define the directions with the maximal 
correlation &$

• "#' and "%' are the second best directions, and so forth

• The set "#( ,"%( are the C.C. basis vectors

• The corresponding &( are the canonical correlations

CCAx(, y(
"#$,"%$, &$
"#',"%', &'

⋮



Illustrating Example  

x1-x2=2y1+y2

x=(x1,x2) y=(y1,y2)
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Previous Example using PCA  

x1-x2=2y1+y2

x=(x1,x2) y=(y1,y2)
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y=1-x2+n

X1
X2

Y

PCA

Due to the within
correlations of x, 

PCA fails to expose 
the mutual 

dependencies 
between x and y.

CCA

CCA  V.S.  PCA



CCA  V.S.  PCA



• In the following 
demonstrations we 
consider this image

• All values are presented 
in  log(RGB) space

The CC of Color Images
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• Applying the CCA over (R,G,B), where each variable is a 
1x2 neighborhood, gives the following results:

• The CC basis is composed of  x-derivatives 

• Similar results for each color pair

The CC of 1x2 neighborhoods

Red CC Green CC



• Applying the CCA over (R,G,B), where each variable is a 
2x1 neighborhood, gives the following results:

• The CC basis is composed of  y-derivatives 

• Similar results for each color pair

The CC of 2x1 neighborhoods

Red CC Green CC



• The following joint histograms show the marginal p.d.f
along the first CCA  direction, for 1x2 neighborhoods: 

( )BGR yxyxyxHbgrP wbwgwr ×××µ ),(,),(,),()',','(

r’
g’
b’



A joint Histogram of rx v.s. gx

Red derivative
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A joint Histogram of gx v.s. bx

Green derivative

Bl
ue
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A joint Histogram of rx v.s. bx

Red derivative
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• Applying the CCA over (R,G,B) where each variable is a 
2x2 neighborhood gives the following results: 

The 4 CC vectors of 
the Red-Green plane

The 4 CC vectors of 
the Green-Blue plane
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The 4 CC values for the CC vectors
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• Applying the CCA over (R,G,B) where each variable is a 
5x5 neighborhood gives the following results: 

The 25 CC vectors

Red Plane Green Plane 



The 25 CC values for the CC 
vectors
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• The histogram shapes are highly stable over various 
images

• CC directions in 1x2 and 2x1 neighborhoods are the x-
derivative and y-derivatives

• For kxk neighborhoods, all CC direction except one are 
high-frequency kernels (DC=0)

• The high-frequencies in different channels are highly 
probable to be identical. 

Observations



• Let’s consider the joint histogram of CC directions

• We define a new color basis (l,c1,c2):

Opponent Representation
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• The ! channel encodes the luminance 
• C1 and C2 channels encode the chrominance
• In the chrominance channels, high freq. are attenuated 

(canceled out)
• In the luminance channel, high freq. are maintained.
• The 3 opponent channels are uncorrelated in the high freq.

Observations:
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High derivatives Low derivatives Low derivatives



Low Pass High Pass



Log histogram of H(R)  v.s. H(G)



Log histogram of  L(R)  v.s. L(G)



Log histogram of  L(R)  v.s. L(G)



Log histogram of  L(R)  v.s. L(G)



• Observation 1: Chrominance channels lack high spatial 
freq. because these are canceled out.

• Observation 2: The HVS is insensitive to high spatial freq. 
in the chrominance domain because it is improbable to 
have high freq. in those channels.

• Observation 3: Luminance/chrominance representation 
de-correlates the high spatial frequencies.

CCA Observations:



Due to lack of space in the retina (fovea) we must plan 
spatio-chromatic sampling in an optimal way.

• Prop. 1:  Non-uniform distribution of cones in the retina  
is a direct outcome of optimally sampling the spatio-
chromatic space while taking into account the 
statistical prior.  

• Prop. 2: Luminance/chrominance representation is a 
necessary step towards image reconstruction from 
the sensory data.

Efficient Reconstruction

Lack of memory →	Efficient CodingLack of sensory data →	Efficient  Reconstruction



Efficient Reconstruction

data 

sensor

representation

bottle-neck



• For illustration, assume two types of sensors: R and G.
• What is the reconstructed resolution when equal-rate of 

sampling is applied?

• Nyquist already answered this!

Reconstruction in Opponent Space



Reconstruction in Opponent Space
• Let’s assign more Red sensors.
• What is the reconstructed resolution of the Red channel?

• Nyquist already answered this!

• What is the reconstructed resolution of 
the Green channel?

• The resolution of the Red channel.



Reconstruction in Opponent Space

R =  RH  +  RL

G =  GH  +  GL

!" = $%&'() "

GL-RL

=

Sparse sampling 
is sufficient

Dense sampling

Sparse sampling

Opponent Channel

!* = $%&'() * − " + "



• Sample images using RGB sampling rates with probability 
!, #, (1 − ! − #)

• Apply simple reconstruction using the suggested scheme

Let’s try it on real images:
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Efficient Reconstruction is proposed as a model 
for retinoscopic representation
• Q1: Why is the distribution of L M S cones non uniform?

• A1: Optimal sampling

• Q2: Why does the HVS encode color information in 
opponent space?

• A2: Data reconstruction

• Q3: Why is the HVS less sensitive to high spatial 
frequencies in the chrominance channels?

• A3: High freq. in chrominance channels are attenuated. 
Sparsely sampled chrominance channels is sufficient. 

To Conclude:



• We propose a new viewpoint which unifies several 
cortical observations.

• Unlike the current belief that the cortical representation 
stems from “efficient coding”, we argue that the sensory 
setup as well as the cortical representation are outcome 
of “efficient reconstruction”.

• The ultimate goal is to maximize the amount of  
information (resolution) extracted from a limited amount 
of samples.  

Summary:





• Can we design a psychophysical/physiological  
experiments verifying the propositions?

• Does the LMS sampling rate conform with the 
observed RGB correlation values?

Questions:



CCA  V.S.  PCA

CCA PCA

Variables distinct entities augmented

Mutual Correlations Maximizes Minimizes

Affine Trans. independent dependent

Consideration between classes between and within
classes


