Efficient Coding vs. Efficient Reconstruction in the Visual Cortex

Yacov Hel-Or

Efi Arazi School of Computer Science
The Interdisciplinary Center
Herzliya, Israel

Some Trivial Facts about the Visual Pathway

The Human Eye

קרנית - Cornea
אישון - Pupil
קשתית -
> Retina - רשתית

The Retina

Fig. 1. Human retina as seen through an opthalmoscope.

- The retina contains two types of photo-receptors:
- Cones: Photopic vision, can perceive color tones
- Rods: Scotopic vision, can perceive brightness only

light

The Cones

- Three types of sensors: L, M, and S, each with different photo-pigment, composing the trichromatic color vision
- 6-7 million cone receptors, located primarily in the central portion of the retina

A side note:

- Humans and some monkeys have three types of cones (trichromatic vision); most other mammals have two types of cones (dichromatic vision).
- Marine mammals have one type of cone.
- Most birds and fish have four types.

Phenomena 1:

- Ratio of L to M to S cones is approx. 75:20:5
- Almost no S cones around the fovea

Cone Receptor Mosaic (from Roorda and Williams, 1999)

Cone Distribution:

- L-cones (Red) form about $\sim 65 \%$ of the cones in the retina .
- M-cones (green) form about $\sim 30 \%$ of the cones.
- S-cones (blue) form about $\sim 2-5 \%$ of the cones

Question 1:

Why is the distribution of L M S cones not uniform?

Common Answer 1:
Chromatic aberration of the lens, blurs the range of the
S spectrum.

Common answer 2:
Blue colors are commonly smooth

Common answer 3: Evolution (no blue in Odyssey, the Iliad, and in the Bible).

Phenomena 2:

Neurons in the visual cortex are sensitive to opponent signals (luminance/chrominance)

Derrington (1984)

Opponent Cells: possible neural connections

Chrom.
Chrom. Luminance

Question 2:
 Why does the HVS encode color information in opponent space?

Common Answer:
"Efficient Coding" - In order to reduce data redundancies opponent basis de-correlates color information (Barlow 89, Field 87).

Efficient Coding

Efficient Coding

Method:

- Collect spatio-chromatic data from natural images.
- Whiten the data by projecting onto the principal components of PCA or ICA.

Efficient Coding using ICA

- Oriented, localized, and band passed basis
- Luminance/Chrominance arrangement (B-Y \& R-G)
- High freq. for luminance basis and low freq. for chrominance
- Fewer number of chromatic basis

Phenomena 3:

- The HVS is more sensitive to highfrequencies in the luminance channel than in the chrominance

Luminance:

Red-Green:

Blue-Yellow:

Original Image

After blurring the two chrominance bands

After blurring the luminance band

Question 3:

Why is the HVS less sensitive to high spatial frequencies in the chrominance channels?

Common Answer: Efficient Coding \rightarrow Chrominance cells are tuned for low spatial freq. and luminance cells for high spatial freq.

Efficient Coding and the HVS

Efficient coding agrees with the characteristics of the HVS

Data Whitening (PCA \& ICA)	H.V.S.
Luminance/Chrominance arrangement of basis vectors (B-Y \& R-G)	Luminance/chrominance pathways in the visual cortex
Spatial basis vectors are oriented, localized, and band passed.	Resembles the Simple/Complex cells RFs
High spatial freq. for luminance basis vectors and low freq. for chrominance basis.	HVS is more spatially sensitive to luminance data.
Fewer number of chromatic basis vectors.	In accord with RFs in the HVS.

Buchsbaum \& Gottschalk 83, Attick \& Redlich 92, Olshausen \& Field 96, Ruderman et.al. 98, Hoyer and Hyvärinen 2000, and more...

Summary:

1. The retina contains many more L, M cones than S cones.
2. The visual pathway encodes color information using luminance/chrominance channels.
3. The HVS is insensitive to high spatial-frequencies in the chrominance channel.

Our claim:

- All the above are related and stems from the statistical properties of color images and the shortage of sensory interface.

The statistical properties of color images

The statistical properties of color images

- Given a color image f modeling the entire joint probability P_{F} is impractical.
- In order to build a useful model we must reduce the dimensionality of the problem.
- Common approaches to image modeling use 2 types of reductions:
- Reduction in the Spatial domain.
- Projection onto informative subspaces.

Reduction in the Spatial Domain

- A reasonable assumption: A natural image can be viewed as a realization of a Markov Random Field:
- A large enough neighborhood of an image pixel completely characterizes its p.d.f:

$$
\mathrm{P}\left(\mathrm{q} \mid \mathrm{N}_{\mathrm{q}}\right)=\mathrm{P}(\mathrm{q} \mid \mathrm{p}, \mathrm{p} \neq \mathrm{q})
$$

- This p.d.f is similar for all pixels (the homogeneity property of images)

$$
\mathrm{P}\left(\mathrm{q}, \mathrm{~N}_{\mathrm{q}}\right)
$$

Projection into Informative Subspace

- Modeling the Statistical properties of $k \times k \times 3$ spatiochromatic patch is complicated, but an approximation can be inferred using marginal statistics in some projected subspace.
- Subspaces should be chosen such that "informative" information will not be lost.
- A crucial problem: what are " \square "e" subspaces?

Informative Subspaces in Color Images

- Suggested approach: Choose subspaces in which the correlations between the color bands will be maximized.

The Canonical Correlation Analysis (CCA)
finds such subspaces.

The Canonical Correlation Analysis (CCA)

- Assume two multidimensional random variables: x and y.
- We are looking for two projection vectors W_{x} and W_{y} such that the correlation between $x^{\prime}=x^{T} W_{x}$ and $y^{\prime}=y^{T} W_{y}$ is maximized:

$$
\rho\left(w_{x}, w_{y}\right)=\frac{\operatorname{cov}\left(x^{\prime}, y^{\prime}\right)}{\sigma_{x^{\prime}} \sigma_{y^{\prime}}}
$$

Taken from Kidron et. Al.

$$
\left\{\left(\mathrm{x}_{i}, \mathrm{y}_{i}\right)\right\} \longmapsto \mathrm{CCA} \rightleftarrows \begin{aligned}
& \left\{\left(W_{x}^{1}, W_{y}^{1}, \rho^{1}\right)\right\} \\
& \left\{\left(W_{x}^{2}, W_{y}^{2}, \rho^{2}\right)\right\}
\end{aligned}
$$

- W_{x}^{1} and W_{y}^{1} define the directions with the maximal correlation ρ^{1}
- W_{x}^{2} and W_{y}^{2} are the second best directions, and so forth
- The set $\left\{\left(W_{x}^{i}, W_{y}^{i}\right)\right\}$ are the C.C. basis vectors
- The corresponding $\left\{\rho^{i}\right\}$ are the canonical correlations

Illustrating Example

$$
\begin{aligned}
& x^{\prime}=(1,-1) \boldsymbol{x} \\
& y^{\prime}=(2,1) \boldsymbol{y}
\end{aligned}
$$

Canonical Correlations

Previous Example using PCA

$\mathbf{x}=\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right)$

$\mathbf{y}=\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)$

$$
x_{1}-x_{2}=2 y_{1}+y_{2}
$$

Canonical Correlations

Principal Components

CCA V.S. PCA
 $$
\mathrm{y}=1-\mathrm{x}_{2}+\mathrm{n}
$$

Due to the within correlations of x, PCA fails to expose the mutual dependencies between x and y .

CCA V.S. PCA

Subspace	Correlation	Entropy	Mutual Inf.	Cond. Ent.
Pure Spectral	0.91	8.60	1.75	6.84
PCA 2×1	0.94	8.19	1.78	6.40
PCA 1×2	0.94	8.24	1.76	6.48
PCA 3×3	0.94	8.13	1.86	6.26
CCA 2×1	0.99	5.03	1.65	3.38
CCA 1×2	0.98	5.04	1.50	3.54
CCA 2×2	0.99	4.64	1.72	2.92
CCA 3×3	0.99	4.53	1.68	2.84

Table 1: Statistical values for various projected subspaces. All values were calculated for the Red and Green bands, and were averaged over 20 different natural images. The statistical values are (left to right): a. The correlation between Red and Green values: $\operatorname{Corr}(\mathbf{R}, \mathrm{G})$. b. The differential entropy $H(R, G)$. c. The mutual information $I(R, G)=H(R, G)-H(R)-H(G)$. d. Two sided conditional entropy $H(R \mid G)+H(G \mid R)=H(R, G)-I(R, G)$.

The CC of Color Images

- In the following demonstrations we consider this image
- All values are presented in $\log (R G B)$ space

$$
\mathrm{f}(x, y)=\log \left(\begin{array}{l}
R(x, y) \\
G(x, y) \\
B(x, y)
\end{array}\right)
$$

The CC of 1×2 neighborhoods

- Applying the CCA over ($\mathrm{R}, \mathrm{G}, \mathrm{B}$), where each variable is a 1×2 neighborhood, gives the following results:

- The CC basis is composed of x-derivatives
- Similar results for each color pair

The CC of 2×1 neighborhoods

- Applying the CCA over ($\mathrm{R}, \mathrm{G}, \mathrm{B}$), where each variable is a 2×1 neighborhood, gives the following results:

- The CC basis is composed of y-derivatives
- Similar results for each color pair
- The following joint histograms show the marginal p.d.f along the first CCA direction, for 1×2 neighborhoods:

$$
P\left(r^{\prime}, g^{\prime}, b^{\prime}\right) \propto H\left(\mathbf{r}(x, y) \cdot \mathbf{w}_{R}, \mathbf{g}(x, y) \cdot \mathbf{w}_{G}, \mathbf{b}(x, y) \cdot \mathbf{w}_{B}\right)
$$

A joint Histogram of r_{x} v.s. g_{x}

A joint Histogram of g_{x} v.s. b_{x}

A joint Histogram of r_{x} v.s. b_{x}

- Applying the CCA over ($\mathrm{R}, \mathrm{G}, \mathrm{B}$) where each variable is a 2×2 neighborhood gives the following results:

The 4 CC vectors of the Red-Green plane

The 4 CC vectors of the Green-Blue plane

The 4 CC values for the CC vectors

- Applying the CCA over ($\mathrm{R}, \mathrm{G}, \mathrm{B}$) where each variable is a 5×5 neighborhood gives the following results:

Green Plane

The 25 CC vectors

The 25 CC values for the CC vectors

The 25 DC values for the CC vectors

Observations

- The histogram shapes are highly stable over various images
- CC directions in 1×2 and 2×1 neighborhoods are the $x-$ derivative and y-derivatives
- For kxk neighborhoods, all CC direction except one are high-frequency kernels (DC=0)
- The high-frequencies in different channels are highly probable to be identical.

Opponent Representation

- Let's consider the joint histogram of CC directions
- We define a new color basis ($\mathrm{I}, \mathrm{c}_{1}, \mathrm{c}_{2}$):

$$
\left(\begin{array}{l}
l \\
c_{1} \\
c_{2}
\end{array}\right)=T\left(\begin{array}{l}
R \\
G \\
B
\end{array}\right) \text { where } T=n\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & -1 & 0 \\
1 & 1 & -2
\end{array}\right) \longleftarrow \text { sum to } 0
$$

A joint Histogram of r_{x} v.s. g_{x}

l- luminance
C_{1} - red/green
C_{2} - blue/yellow

Observations:

- The L channel encodes the luminance
- C_{1} and C_{2} channels encode the chrominance
- In the chrominance channels, high freq. are attenuated (canceled out)
- In the luminance channel, high freq. are maintained.
- The 3 opponent channels are uncorrelated in the high freq.

A joint Histogram of r_{x} v.s. g_{x}

High derivatives

Low derivatives

Low derivatives

Log histogram of L(R) v.s. L(G)

CCA Observations:

- Observation 1: Chrominance channels lack high spatial freq. because these are canceled out.
- Observation 2: The HVS is insensitive to high spatial freq. in the chrominance domain because it is improbable to have high freq. in those channels.
- Observation 3: Luminance/chrominance representation de-correlates the high spatial frequencies.

Efficient Reconstruction

Due to lack of space in the retina (fovea) we must plan spatio-chromatic sampling in an optimal way.

- Prop. 1: Non-uniform distribution of cones in the retina is a direct outcome of optimally sampling the spatiochromatic space while taking into account the statistical prior.
- Prop. 2: Luminance/chrominance representation is a necessary step towards image reconstruction from the sensory data.

Lack of sensory data \rightarrow Efficient Reconstruction

Efficient Reconstruction

Reconstruction in Opponent Space

- For illustration, assume two types of sensors: R and G .
- What is the reconstructed resolution when equal-rate of sampling is applied?
- Nyquist already answered this!

Reconstruction in Opponent Space

- Let's assign more Red sensors.
- What is the reconstructed resolution of the Red channel?
- Nyquist already answered this!
- What is the reconstructed resolution of the Green channel?

- The resolution of the Red channel.

Reconstruction in Opponent Space

Dense sampling $\quad R=R_{H}+R_{L}$

Sparse sampling
$G=G_{H}+G_{L}$

$$
\begin{aligned}
& \hat{R}=\operatorname{interp}(R) \\
& \widehat{G}=\operatorname{interp}(G-R)+R
\end{aligned}
$$

Sparse sampling

Opponent Channel

Let's try it on real images:

- Sample images using RGB sampling rates with probability $\alpha, \beta,(1-\alpha-\beta)$
- Apply simple reconstruction using the suggested scheme

Single image

10 images

To Conclude:

Efficient Reconstruction is proposed as a model for retinoscopic representation

- Q1: Why is the distribution of $\mathrm{L} M \mathrm{~S}$ cones non uniform?
- A1: Optimal sampling
- Q2: Why does the HVS encode color information in opponent space?
- A2: Data reconstruction
- Q3: Why is the HVS less sensitive to high spatial frequencies in the chrominance channels?
- A3: High freq. in chrominance channels are attenuated. Sparsely sampled chrominance channels is sufficient.

Summary:

- We propose a new viewpoint which unifies several cortical observations.
- Unlike the current belief that the cortical representation stems from "efficient coding", we argue that the sensory setup as well as the cortical representation are outcome of "efficient reconstruction".
- The ultimate goal is to maximize the amount of information (resolution) extracted from a limited amount of samples.

Questions:

- Can we design a psychophysical/physiological experiments verifying the propositions?
- Does the LMS sampling rate conform with the observed RGB correlation values?

CCA V.S. PCA

	CCA	PCA
Variables	distinct entities	augmented
Mutual Correlations	Maximizes	Minimizes
Affine Trans.	independent	dependent
Consideration	between classes	between and within classes

