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The Role of Redundant Bases and Shrinkage
Functions in Image Denoising

Yacov Hel-Or and Gil Ben-Artzi

Abstract— Wavelet denoising is a classical and effective
approach for reducing noise in images and signals. Suggested
in 1994, this approach is carried out by rectifying the coefficients
of a noisy image, in the transform domain, using a set of
shrinkage functions (SFs). A plethora of papers deals with the
optimal shape of the SFs and the transform used. For example,
it is widely known that applying SFs in a redundant basis
improves the results. However, it is barely known that the
shape of the SFs should be changed when the transform used
is redundant. In this paper, we introduce a complete picture
of the interrelations between the transform used, the optimal
shrinkage functions, and the domains in which they are opti-
mized. We suggest three schemes for optimizing the SFs and
provide bounds of the remaining noise, in each scheme, with
respect to the other alternatives. In particular, we show that for
subband optimization, where each SF is optimized independently
for a particular band, optimizing the SFs in the spatial domain
is always better than or equal to optimizing the SFs in the
transform domain. Furthermore, for redundant bases, we provide
the expected denoising gain that can be achieved, relative to the
unitary basis, as a function of the redundancy rate.

Index Terms— Wavelet transforms, image restoration, image
denoising, shrinkage denoising, cycle spinning, noise removal,
overcomplete representation.

I. INTRODUCTION

CONSIDER a noisy image

y = x + n (1)

where y is the observed image, x the unknown original image
and n the contaminating noise (all in vector notation). The
goal is to reconstruct the original image x given the noisy
measurement y. This is a classical formulation of image
denoising, which is a typical instance of an inverse problem.
Using the maximum a posteriori (MAP) criterion, the solution
aims at maximizing the a posteriori probability given the noisy
image. The MAP solution must consider prior knowledge
about the distribution of x, and generally speaking, the prior
distribution of natural images or any other specific class of
images plays a key role in any denoising approach.
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In the last few years, with the emergence of deep neural
networks (DNN), a large body of works suggests performing
image denoising by feedforward neural networks when the
network aims at learning image-specific or general statistics
of natural images [2]–[5]. Although DNN approaches are very
effective and are the main focus these days, in this paper we
remain loyal to the classical approaches where denoising is
applied in the transform domain using shrinkage mappings.
The reason for taking this position is that we are motivated by
the theoretical bounds and the insights we gain by analyzing
these type of approaches.

Transform based denoising is often implemented using
some type of wavelet transform. The main motivation for
this approach stems from the observation that the wavelet
transform of natural images tends to reduce pixel depen-
dencies [6]–[9]. Hence, it is possible to make a reasonable
estimate about the joint distribution of the wavelet coefficients
from their marginal distributions. When dealing with image
denoising, this leads to a family of classical techniques
known as the wavelet shrinkage methods, first introduced by
Donoho and Johnstone in 1994 [1], [10], [11]. The shrinkage
denoising approach is composed of a wavelet transform:

yu = Uy (2)

where U is a matrix comprising the transform basis. The
transform coefficients are then rectified by a correction step
in which they are modified according to a set of scalar
shrinkage functions, {ψi : � → �}:

ỹu = ψ(yu) (3)

where ψ = (ψ1, ψ2, · · · ) is a vector of scalar mapping
functions applied to each coefficient independently: ỹu[i ] =
ψi (yu[i ]). The denoised image is then obtained by applying
the pseudo-inverse transform to the modified coefficients:

ỹSu = U+ỹu (4)

where the superscript S indicates that we have transformed
back to the spatial (image) domain. In cases where the
transform is unitary or a tight frame, the pseudo-inverse
yields the adjoint; thus, ỹSu = U T ỹu . The resulting image ỹSu
serves as an estimate of the original image; hence, x̂(y) = ỹSu .
The denoising process is summarized in Figure 1.

The performance of shrinkage denoising is intimately
dependent on two factors. The first factor is related to the
choice of the shrinkage functions (SF) {ψi } applied to the
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Fig. 1. The procedure for shrinkage denoising. A noisy image y is
transformed by the wavelet matrix U into the transform coefficients yu . A set
of shrinkage functions ψ rectify the coefficients providing ỹu . The inverse
transform U+ transforms the rectified coefficients back into the image domain
ỹS

u , which is the denoised result.

transform coefficients. The justification for applying a mar-
ginal (scalar) SF to each coefficient independently emerges
from the independence assumption of the wavelet coeffi-
cients when the transform is unitary. Assuming the statistical
distribution of a wavelet band is stationary, and using the
independence assumption of the wavelet coefficients, the SFs
for all coefficients in a particular wavelet band can be shown
to be identical [12]–[14]. Therefore, if the wavelet transform
U is composed of K bands, only K SFs need to be estimated,
when ỹu[i ] = ψband(i)(yu[i ]), where band(i) indicates the
band index of pixel i . Applying the SFs independently for
each wavelet band, and detecting the optimal SF profile for
each band was investigated previously (see e.g., [15], [16]).
In principle, having a marginal prior distribution for a wavelet
band, the associated SF can be derived using Bayesian esti-
mation (e.g., [12], [14]). Alternatively, the SFs can be learnt
directly from the noisy input [1], [10], [11] or from a set of
example images that are given offline along with their clean
counterparts [17]–[19].

The second factor that influences the denoising perfor-
mance is the transform used during the process. Although
the shrinkage approach using unitary wavelet transforms pro-
vides good results, significant improvement is achieved when
implementing this technique with redundant transforms. Such
transforms include preselected bases such as the undecimated
wavelets [20], steerable wavelets [12], and other suggested
transforms [21]–[26], or generated transforms that are adap-
tively learnt from the noisy image [27]–[30]. Note that scalar
SFs can no longer be justified in redundant bases, as the
transform coefficients are mutually dependent due to the
transform redundancy. Nevertheless, the superior results of
applying scalar SFs in the over-complete case suggest that
such a scheme is still very effective in addition to its appealing
efficiency.

The above-mentioned two factors influencing the denoising
performance, namely, the transform used and the applied SFs,
are mutually dependant and cannot be treated independently.
The type of transform used directly influences the shape of the
optimal SFs. Moreover, optimal SFs for a redundant transform,
such as an undecimated wavelet, are shown to differ from the
SFs optimally designed for the unitary basis [13], [27], [31].
To clarify, consider finding the optimal SFs for the unitary case
with respect to the MMSE criterion. In other words, finding a
ψ that minimizes

� = E{�x̂(y)− x�2}

when we have determined that x̂(y) = U Tψ (Uy), the norm
� · � stands for the �2 norm and E{·} indicates the expectation
taken over x and y. Whenever U is unitary, this minimization
can be formulated equivalently in the transform domain (since
UU T = U T U = I ) as:

E{�U Tψ (Uy)− x�2} = E{�ψ (Uy)− Ux�2} (5)

i.e., ψ is optimized so that the noisy transform coefficients Uy
should be as close as possible to the transform coefficients of
the clean image Ux. For an over-complete transform, however,
this equality is no longer valid (since UU T �= I ). This implies
that the optimization for ψ should be expressed in the spatial
domain, which is the relevant domain in our case. Because
the inverse transform couples wavelet coefficients (inside
subband and between subbands), spatial domain optimization
requires a joint minimization of all SFs simultaneously, and
this optimization is far more complicated to apply. In fact, this
might be the reason that SFs applied in redundant bases are
commonly borrowed from the unitary case or optimized in the
transform domain with no real justification.

In [13], Raphan and Simoncelli showed that as long as the
statistics of the image and the noise are stationary, the expected
MSE of the denoised image resulting from applying the
SFs, ψ in the unitary bases, is always greater or equal to
the MSE of the denoised image resulting from applying
the same ψ in the redundant basis (by spatially replicating
the unitary basis using, e.g., cycle spinning or undecimated
subbands [20], [32]). Note that this property was proven irre-
spective of the type of applied SFs, ψ . They also showed that
when working with a redundant basis, there is an advantage
in optimizing the SFs (with respect to the expected error) in
the spatial domain rather than in the transform domain. This
requires, however, optimizing jointly all SFs simultaneously,
making the optimization process a demanding task.

In this paper, we extend the results of [13] and establish a
complete picture of the interrelations between the transform
used, the optimal shrinkage functions, and the domains in
which they are optimized. In particular, we show that for sub-
band optimization, where each ψi is optimized independently,
optimizing each SF in the spatial domain is always better
than or equal to optimizing the SFs in the transform domain.
This option, besides being simple to implement, is proven
to outperform the traditional transform domain optimization
while avoiding the demanding spatial domain optimization of
all SFs simultaneously.

Additionally, for redundant bases, we provide the expected
denoising gain we may achieve, relative to the unitary basis,
as a function of the basis redundancy. This result allows a
user to make a clever decision about the redundancy used
by taking into account the expected denoising gain and the
computational time allocated for this process.

II. REDUNDANT VS. UNITARY TRANSFORMS

A common axiom in image denoising is that denoising
applied in redundant bases (cycle-spinning or undecimated
wavelets) outperforms the results obtained in unitary trans-
forms [13], [20]. In this section we examine the relationships
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between the unitary and redundant transforms. In particu-
lar, we offer theoretical justification for applying shrinkage
denoising in redundant bases. Some of the relationships in this
section were already proven in [13] but we repeat them here for
clarity and to provide a complete picture of the interrelations
between the transformed used and the domain where the MSE
is optimized. To be able to compare different transforms on a
common basis, we limit our discussion to the unitary basis and
their corresponding cycle-spinning transforms. That is to say,
the difference between a unitary and a redundant transform
is that the former is properly decimated and thus forms a
complete basis, while the latter is formed by cycle-spinning
the unitary basis.

A common technique for shrinkage denoising in a redundant
basis is the cycle-spinning framework [20]. Cycle-spinning is
performed by applying a unitary transform on a set of shifted
versions of the image, denoising each version independently,
then averaging the results after properly shifting them back.
Since the transform of a spatially shifted image can be applied
equivalently by shifting the transform basis (by the same
amount but in the opposite direction), the transform can be
seen as a redundant transform, composed of a set of shifted
versions of the original unitary transform:

yui = U Si y = Ui y i = 1 . . . N (6)

where Si is a (cyclic) shift operator by the i -th displacement,
and Ui = U Si is a unitary transform composed of the wavelet
basis after applying the respective shift. The entire transform
is constructed by concatenating together all shifted transforms:

yw = Wy (7)

where the redundant transform is defined as follows:

W = 1√
N

⎡
⎢⎢⎢⎣

U1
U2
...

UN

⎤
⎥⎥⎥⎦ (8)

Note the W is over-complete and tight frame, satisfying
W T W = I ; however, W W T �= I . Since W W T is a projection
matrix,1 it can be shown that this restricts the eigen-values of
W W T to be 1 or 0. If W is an m × n matrix (m > n), then
there are n eigen-values of 1, and m − n eigen-values of 0
[33]. Consequently, for any n × 1 vector x and m × 1 vector
z, we have:

�Wx� = �x� (9)

and

�W T z� ≤ �z� (10)

Similarly, since Ui is unitary, we have U T
i Ui = UiU T

i = I
and accordingly:

�Ui x� = �U T
i x� = �x�, ∀ i (11)

1A square matrix A is a projection matrix iff AA = A.

Denote by n = x − y the contaminated noise in the image
domain before denoising. By applying a unitary transform,
the error is transformed as well:

U(x − y) = Un .= nu

and similarly, by the redundant transform:
W (x − y) = Wn

.= nw

Since the transforms U and W are tight frames, we have
(following Equations 9 and 11):

�n� = �nu� = �nw� (12)

which means that the norm of the error in the transform
domain equals its norm in the image domain, and this is true
for the unitary as well as the redundant case.

Now, after applying the shrinkage functions ψ to the trans-
form coefficients, the distortion value may change. We define:

ñu = Ux − ψ(Uy) and similarly ñw = Wx − ψ(Wy)

For the unitary case, the distortion is propagated to the image
domain via the inverse transform:

U T (U x − ψ(Uy)) = U T ñu
.= ñS

u

and following Equation 11, we have:
�ñu� = �ñS

u � (13)

i.e., after applying the SFs, the MSE distortion in the transform
domain is identical to its distortion in the image domain.
As we will see next, in redundant transforms this property is
not satisfied. In redundant transforms, the error in the image
domain is:

W T (W x − ψ(Wy)) = W T ñw
.= ñS

w

Nevertheless, following Equation 10, we have:
�ñw� ≥ �ñS

w� (14)

Note that the above relations (Equations 14 and 13) are valid
for any shrinkage functions ψ and for any x and y.

Letting s be a vector value depending on x and y, we define
the expected RMSE of s:

�s�E
.=
√

E �s�2 where E �s�2 =
∫

�s�2 P(x, y)dxdy

Since relations 14 and 13 are true for any x and y, we can
rephrase these relations using a statistical point of view:

�ñu�E = �ñS
u �E (15)

and

�ñw�E ≥ �ñS
w�E (16)

These relations are illustrated along the two rows of Figure 2.
We now establish the relationships between the unitary and
redundant transforms that are indicated in the two columns
of Figure 2.

We first show that in the transform domain, for the two
transforms, the expected MSE distortion is equal. This out-
come stems from the stationary property of natural images,
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Fig. 2. The expected remaining noise for unitary vs. redundant bases,
and spatial vs. transform domains. If the transform is unitary, the expected
remaining noise is similar in the transform domain and in the spatial domain:
ñT

u = ñS
u . However, for redundant transform, the remaining noise in the

transform domain is expected to be no less than the remaining noise in the
spatial domain: ñT

w ≥ ñS
w .

where it is assumed that the statistical properties of natural
images are shift invariant.

Theorem 1: After denoising, the expected MSE distortions
in the transform domain are equal for the unitary and for the
redundant transforms. In other words, for any given ψ:

�ñu�E = �ñw�E

Proof 1: In Appendix A.
The last theorem leads to a theoretical justification for

applying shrinkage denoising in a redundant basis. This is
explicitly expressed in the next theorem:

Theorem 2: For any given ψ ,

�ñS
u �E ≥ �ñS

w�E

Proof 2: In Appendix B.
Theorem 2 completes the entire picture of Figure 2: In the

transform domain, the expected remaining noise, after shrink-
age, is identical for the unitary and the redundant (cycle-
spinning) wavelet transforms for any shrinkage functions.
When transforming back into the spatial domain, however,
the remaining noise is expected to decrease in the redundant
transform while staying the same in the unitary transform.
This main conclusion suggests that it is preferable to apply
shrinkage denoising in a redundant basis rather than in the
unitary basis.

III. OPTIMIZING THE SHRINKAGE FUNCTIONS

In this section we deal with the objectives to which the
shrinkage functions (SFs) are optimized. As mentioned earlier,
SFs play a significant role in the resulting performance,
and their optimization is a longstanding topic of study (see,
e.g., [27], [34]–[36], just to name a few). In principle, SFs
can be derived from the joint statistics of the transform
coefficients [13], [34], [35], but, unfortunately, modeling the
precise joint statistics is a complicated and still intractable
problem. Alternatively, one can optimize the SF of each sub-
band independently using marginal statistics, but as mentioned
earlier, this is not optimal in the redundant case. Another

Fig. 3. The denoising process and three optimization schemes for the
shrinkage functions. �1, �2 and �3 are the three quantities used to optimize
ψ1, ψ2 and ψ3, respectively.

option is to learn the optimal SFs from an ensemble of images
using a set of noisy and clean examples [13], [37], where the
SFs are designed to clean the noisy examples in an optimal
manner towards their clean counterparts. As shown next, there
are several domains in which the SFs can be optimized in and
the resulting quality depends on the selected domain.

In undecimated wavelet transforms, the number of coef-
ficients is K times the size of the image, where K is the
number of the wavelet bands. To facilitate the notation for
band operations, we reorder the rows of a transform W so
that transform rows corresponding to a wavelet band are
co-located in a block. Naturally, we extend the same reordering
to yw. Assuming we have K different wavelet bands and a
corresponding permutation matrix P:

B = PW =

⎡
⎢⎢⎢⎣

B1
B2
...

BK

⎤
⎥⎥⎥⎦ and accordingly yB = By =

⎡
⎢⎢⎢⎣

y1
y2
...

yK

⎤
⎥⎥⎥⎦

where yk = Bky represents the coefficients of the kth band.
The new reordering does not change the tight frame property;
thus, if W T W = I , we have BT B = I as well. In the new
reordering, a vector of SFs, ψ = [ψ1, ψ2, · · · , ψK ], can be
represented efficiently as follows in Equation 17. Since ψk is
applied similarly to all coefficients in the kth band, we can
rewrite Equation 3 as

ỹk = ψk(yk) (17)

which means that the scalar mapping ψk : � → � is applied
individually to each entry in yk . The clean image is then
estimated using the adjoint:

x̂(y) = BTψ(yB) =
K∑

k=1

BT
k ỹk

.=
K∑

k=1

ỹSk (18)

where we define ỹSk = BT
k ỹk . This process is illustrated in the

upper pipeline of Figure 3. Let the SFs be a set of mapping
functions taken from a given function space � . The optimal set
of SFs with respect to the MSE criterion is then obtained by
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finding the function set ψ ⊂ � that minimizes the following
objective:

ψ̂ = arg min
ψ∈� �(ψ)

where

�(ψ) =
√

E
{�x − x̂(y)�2

}
(19)

where x̂(y) is as estimate defined in Equation 18 and E{·}
stands for the expectation taken over (x, y).

The above minimization is complicated to accomplish as it
requires modeling the entire joint statistics of natural images.
Below we consider other alternatives for the objective func-
tions. We examine three objectives expressing the optimal set
of SFs. We refer to the definitions illustrated in Figure 3.

• Method 1 (Transform Domain – Independent Bands):
A set of SFs are optimized in the transform domain.
The optimization is applied by minimizing the objective
function:

�1 =
∑

k

√
E
{
�xk − ỹk�2

}

where xk = Bkx is the clean counterpart of ỹk . Since this
objective is composed of a sum of independent terms,
each of which contains a particular band, the minimiza-
tion of this objective can be applied at each wavelet band
independently, using only its marginal statistics (since the
SFs are scalars); namely:
ψ̂k = arg min

ψ∈� E
{
�xk − x̃k�2

}
∀ k ∈ {1, 2, .., K }

where the expectation is over yk, xk .
• Method 2 (Spatial Domain – Independent Bands): A set

of SFs is optimized in the spatial domain. The objective
term for this method reads:

�2 =
∑

k

√
E
{∥∥xSk − ỹSk

∥∥2
}

where xSk = BT
k xk and ỹSk = BT

k ỹk . Note that though
the objective criterion is expressed in the spatial domain,
the SFs can be optimized for each band independently.
Thus, although intra-band dependencies are conveyed
through the adjoint transform and must be considered,
the inter-band dependencies are ignored.

• Method 3 (Spatial Domain – Joint Bands): The objective
goal is expressed in the spatial domain:

�3 =

√√√√√E

⎧⎨
⎩
∥∥∥∥∥
∑

k

(xSk − ỹSk )

∥∥∥∥∥
2
⎫⎬
⎭

It is easy to verify that this objective gives the actual
expected error as defined in Equation 19; thus, �3 =
�. In this scheme, the SFs are evaluated simultaneously
while inter-band as well as intra-band dependencies must
be taken into account.

Denote the deviation of the approximated coefficients from
the clean coefficients by dk = xk − ỹk and similarly

dS
k = BT

k (xk − ỹk) = BT
k dk . Using this notation, the above

objectives read:

�1 =
∑

k

√
E
{�dk�2}, �2 =

∑
k

√
E
{∥∥dS

k

∥∥2
}
, (20)

and

�3 =

√√√√√E

⎧⎨
⎩
∥∥∥∥∥
∑

k

dS
k

∥∥∥∥∥
2
⎫⎬
⎭ = �

For each method defined above, denote an associated opti-
mal SF, ψ̂ i , as follows:

ψ̂ i = arg min
ψ∈� �i , for i = 1..3 (21)

Additionally, the objective �(ψ̂ i ) denotes the actual expected
error as defined in Equation 19 when applying the SF ψ̂ i .
In the following, we show that if the wavelet transform is
unitary, then all three methods produce the same result. This
is illustrated in the upper line of Figure 5.

Theorem 3: For the unitary case we have:
�(ψ̂1) = �(ψ̂2) = �(ψ̂3)

Proof 3: To show the above relations, we prove that
actually, for the unitary case, ψ̂1 = ψ̂2 = ψ̂3, which derives
the theorem. Recall that ψ̂ = [ψ̂1 · · · ψ̂K ] is composed of K
SFs, each of which applies to a particular band. Thus, dk and
dS

k depend only on ψk , and we can apply the optimization to
each band independently. For the kth band, we have:

ψ̂1
k = arg min

ψk
E
{
�dk�2

}
and

ψ2
k = arg min

ψk
E

{∥∥∥BT
k dk

∥∥∥2
}

Since W is unitary, W W T = I , and accordingly, Bi BT
j =

δi, j I . Using this relation we get:∥∥∥BT
k dk

∥∥∥2 = �dk�2

which gives

ψ̂1
k = ψ̂2

k , for k = 1..K

and accordingly ψ̂1 = ψ̂2, which implies the first relation in
the theorem.

Similarly,

ψ̂3
k = arg min

ψk
E

⎧⎪⎨
⎪⎩
∥∥∥∥∥∥
∑

j

BT
j d j

∥∥∥∥∥∥
2
⎫⎪⎬
⎪⎭

However,∥∥∥∥∥∥
∑

j

BT
j d j

∥∥∥∥∥∥
2

=
(∑

i

dT
i Bi

)⎛⎝∑
j

BT
j d j

⎞
⎠ =

∑
j

∥∥d j
∥∥2
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Fig. 4. Illustrated profiles of penalties following Theorem 4. The x-axis indi-
cates various ψ values. �1(ψ) ≥ �2(ψ) ≥ �3(ψ) and ψ̂i = minψ �i (ψ).
Note that in this example, �(ψ̂1) < �(ψ̂2).

Thus,

ψ̂3
k = arg min

ψk
E

⎧⎨
⎩
∑

j

∥∥d j
∥∥2

⎫⎬
⎭ = arg min

ψk
E
{
�dk�2

}
= ψ̂1

k

where k ∈ {1..K }. This yields ψ̂3 = ψ̂1, which implies
the second relation of the theorem. Hence, in the unitary case,
optimizing the SFs using any one of the above methods is
equivalent. �

Theorem 3 establishes the justification for optimizing the
SFs in the transform domain, in cases where the transform
used is unitary. Using Method 1, each individual SF can be
optimized independently, collecting only marginal statistics.
This property makes this scheme very appealing and thus very
popular (e.g., [10], [12], [20]).

The next theorem shows that in the over-complete trans-
form, the situation is totally different, and the domain in which
we apply the optimization makes a difference (see Figure 4
for an illustration).

Theorem 4: Let the transform W be over-complete and tight
frame. In such a case, for each ψ ,

�1(ψ) ≥ �2(ψ) ≥ �3(ψ)

Proof 4: Since W is tight frame, it follows that W T W = I .
It can easily be shown that this restricts the norm of each Bk :
�Bk� = ε(k) ≤ 1, where ε(k) denotes the maximal eigen-value
of Bk BT

k [33]. This yields that for any vector z, �BT
k z� ≤ �z�;

hence,

�1 =
∑

j

√
E
{�d j �2

} ≥
∑

j

√
E
{
�BT

j d j �2
}

=
∑

j

√
E
{
�dS

j �2
}

= �2

and this proves the first inequality. Due to the triangular
inequality of a norm,2 we also have:

�2 =
∑

j

√
E
{
�dS

j �2
}

≥

√√√√√√E

⎧⎪⎨
⎪⎩
∥∥∥∥∥∥
∑

j

dS
j

∥∥∥∥∥∥
2
⎫⎪⎬
⎪⎭ = �3

which gives the second inequality in the theorem. �.

2Note that the expectation value can be inserted into the norm definition.

Theorem 4 reveals that in the over-complete case, optimiz-
ing the SFs in the transform domain is not optimal. In the
following we provide justification for optimizing the SFs using
Methods 1 and 2 as they provide upper bounds for the desired
penalty (� of Method 3), that might be difficult to achieve.

Theorem 5: Let ψ̂ i = arg minψ∈� �i (ψ) as defined in
Equation 21. In the over-complete case,

�1(ψ̂
1) ≥ �2(ψ̂

2) ≥ �3(ψ̂
3) (22)

Proof 5: The SF ψ̂3 minimizes �3; thus, �3(ψ̂
2) ≥

�3(ψ̂
3). Following Theorem 4, however, we have that

�2(ψ̂
2) ≥ �3(ψ̂

2), from which it readily follows that
�2(ψ̂

2) ≥ �3(ψ̂
3). The second inequality can be shown using

a similar argument. Q.E.D.
Note also that according to the proof above, the actual errors

(i.e., �3 = �) using ψ̂2 and ψ̂1 are even tighter, i.e.:

�2(ψ̂
2) ≥ �(ψ̂2) ≥ �(ψ̂3) for Method 2 (23)

�1(ψ̂
1) ≥ �(ψ̂1) ≥ �(ψ̂3) for Method 1 (24)

and since �1(ψ̂
1) ≥ �2(ψ̂

2) (Theorem 5), the SF ψ̂2 has
a better bound than ψ̂1. Thus, it is expected that �(ψ̂1) ≥
�(ψ̂2). Nevertheless, it cannot be assured that the actual error
for ψ̂2 outperforms the actual error of ψ̂1, i.e., the relation:

�(ψ̂1) ≥ �(ψ̂2) (25)

is not necessarily true. To prove this, see a counter-example
in Figure 4.

To conclude, in redundant transforms �3 = � determines
the actual error and it is the optimal penalty to minimize.
Nevertheless, since it requires inter- and intra-bands statistics,
it is sometimes complicated to optimize. �1 is the easiest
term to minimize as it requires collecting only marginal
statistics. Indeed, this approach is commonly used in the
traditional techniques (hard/soft thresholding originated from
this penalty). �2 is a better penalty to minimize than �1 as its
bound is tighter, although it might be harder to optimize as it
requires modeling intra-band statistics. Nevertheless, it is not
guaranteed that �(ψ̂1) ≥ �(ψ̂2). Thus, there is an inherent
trade-off between the three methods, while spatial domain
optimization (Method 3) is preferable with respect to denoising
quality, transform domain optimization (Method 1) is the most
efficient to apply. Weak spatial domain (Method 2) is a good
compromise between quality and efficiency.

In unitary transforms, all optimization objectives (Methods
1, 2, and 3) will generate similar results. Using Theorem 2
above, however, it was proven that it is expected that denois-
ing in redundant transforms will generate better results than
using unitary transforms. These relations are summarized
in Figure 5.

IV. IMPROVEMENT RATES FOR REDUNDANT TRANSFORMS

In this section we analyze the expected improvement of
the remaining MSE with respect to the redundant rate of
the transform used. We assume an over-complete wavelet
transform made by cycle spinning as given in Equation 7:

yw = Wy (26)

Authorized licensed use limited to: Herzeliya IDC. Downloaded on May 08,2021 at 19:53:14 UTC from IEEE Xplore.  Restrictions apply. 



3784 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 30, 2021

Fig. 5. The relationships of the expected error, �(ψ), when applying
shrinkage functions that have been optimized using penalty 1..3 and in unitary
vs. redundant transforms.

Fig. 6. Due to the triangular inequality, �ñS
w� ≤ �n∗� + �P(r̃w)�. Since

�P(r̃w)�E = 1√
k
�r̃w�E , Theorem 6 follows.

where W is composed of k shifted versions of the unitary
transform U .

W = 1√
k

⎡
⎢⎢⎢⎣

U1
U2
...

Uk

⎤
⎥⎥⎥⎦ (27)

The redundancy rate of this transform is k, where k ∈ {1 · · ·n}.
Namely, each subband has k shifts of the corresponding basis
function. Note that if k = 1, the transform reduces to the uni-
tary transform while the maximal redundancy is when k = n.
The transform is composed of a kn × n matrix W , and is
tight frame (W T W = I ). Denote by Col(W ) the column
space of W (see Figure 6). The column space forms an
n-dimensional subspace embedded in R

kn . Since W is tight
frame, it can easily be verified that the distance between two
vectors in the transform domain that are in Col(W ) is identical
to their distance in the spatial domain; i.e., let z1 = Wx1 and
z2 = Wx2. The vectors z1 and z2 are in Col(W ); thus,

�x1 − x2� = �z1 − z2� (28)

On the other hand, if z1 and z2 are two vectors in the
transform domain that are not in Col(W ), their distance in the
spatial domain is identical to their distance in the transform
domain after projecting onto Col(W ). Namely, if x1 = W T z1
and x2 = W T z2 (i.e., z1, z2 are two vectors in the trans-
form domain, and x1, x2 are their counterparts in the spatial

domain), then

�x1 − x2� = �P(z1)− P(z2)� (29)

where P(z) = W W T z is the projection of vector z onto
Col(W ).

Denote by �n� = �y − x� and �nw� = �yw − xw� the
RMSE between x and y in the spatial domain and between
xw and yw in the transform domain, respectively, as defined
in Section II. Since both vectors, xw and yw, are in Col(W ),
the above relations give readily that �n� = �nw�. This
was also verified in Equation 12 above. After applying the
shrinkage functions ỹw = ψ(yw), however, the signal ỹw is
not necessarily in Col(W ). Denote by y∗ the optimal possible
reconstruction result3 and its representation in the transform
domain by y∗

w = Wy∗. Clearly y∗
w ∈ Col(W ) and accordingly,

the optimal reconstructed RMSE is:
�n∗� = �y∗ − x� = �y∗

w − xw�
The shrinkage functions, however, provide ỹw, which deviates
from y∗

w by r̃w (see Figure 6):

r̃w = ỹw − y∗
w (30)

Theorem 6: For an over-complete transform with redun-
dancy k, the expected RMSE is bounded from above by:

�ñS
w�E ≤ �n∗�E + 1√

k
�r̃w�E (31)

where � = �ñS
w�E is the resulting RMSE in the spatial

domain. In other words, the larger the redundancy, the closer
the resulting RMSE is to the optimal one and the convergence
rate goes like 1/

√
k.

Proof 6: Recall that

|ñS
w�E

.= �ỹS
w − x�E = �P(ỹw)− xw�E

= �P(y∗
w + r̃w)− xw�E = �y∗

w + P(r̃w)− xw�E

where the second equality is due to Equation 29 and the fourth
equality is due to the fact that y∗

w ∈ Col(W ). Using the
triangular inequality, we get:
�y∗
w + P(r̃w)− xw�

≤ �y∗
w − xw� + �P(r̃w)� = �n∗� + �P(r̃w)�

Thus,

�ñS
w� ≤ �n∗� + �P(r̃w)� (32)

We follow the same argument that was used in Appendix A
where we showed that due to the stationarity of natural images,
for any W (any redundancy rate), we have: �ñw�E = �ñu�E

where ñw = ỹw − xw and ñu = ỹu − xu . This argument also
holds if we switch x with y∗ providing:

�r̃w�E = �r̃u�E

where r̃w = ỹw − y∗
w and r̃u = ỹu − y∗

u . This gives that
the expected value of �r̃w� is the same for any W of any
redundancy rate and it equals �r̃u�. Thus, the vector r̃w ∈ R

kn

3The solution is biased as we apply scalar mapping functions whereas the
optimal mapping function should be a scalar field [13].
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Fig. 7. Left: The images on which the SFs were trained. Right: The images on which the denoising schemes were applied.

can be seen as a random vector in R
kn whose expected

length is constant for any W . Since P(rw) is an orthogonal
projection of a random vector from kn-dimensional space onto
an n-dimensional space, the expected length of P(rw) is:

�P(r̃w)�E = 1√
k
�r̃w�E (33)

Moreover, the Johnson-Lindenstrauss Lemma shows that
�P(r̃w)� is fairly tight concentrated around �P(r̃w)�E

(see [38]). Combining Equations 33 and 32, we obtain the
relation given in Theorem 6. Q.E.D.

V. RESULTS

In the previous sections we presented three different opti-
mization schemes and how they relate to each other. In this
section we test the empirical behaviour of these methods
on real data. The images we used in the first part for our
experiments are shown in Fig. 7.

To test the three methods, we used the optimization scheme
suggested in [17] in which the shrinkage functions are mod-
elled using piecewise linear mappings:

ψk(yk) = Mk(yk; pk)

where pk is a parameter vector controlling the piecewise
function. Since the shrinkage function Mk is linear with
respect to the parameter vector pk , optimizing for pk can
be solved in a closed form solution using a set of noisy
images along with their clean counterparts. In contrast to
the statistical approaches, this technique does not require
estimation of a prior model for yk or modelling the noise
characteristics. The SFs are designed to perform “optimally”
with respect to the given examples, under the assumption that
they will perform equally well with similar new examples.
Using Methods 1 and 2, the optimization is performed on each
pk independently; however, for Method 3, all pk are optimized
simultaneously. For more information about the optimization
and the implementation, the reader is referred to [17].

In all the experiments described below, we used the
undecimated windowed Discrete Cosine Transform (DCT) as

the image transform. Since the DCT transform is unitary,
the undecimated DCT is a tight frame. Due to the undecimated
form, each wavelet band can be calculated using a single
2D convolution (with the corresponding DCT basis as the
convolution kernel). Additionally, the inverse transform can be
applied by convolving the rectified coefficients with the kernels
forming BT

k , which are the reflected (180 degree rotation) DCT
kernels. More details are given in [17].

A. Comparing All Methods Across a Single Noise Level

In the first experiment, we tested the three shrinkage meth-
ods on six images in order to examine the performance on each
one of these particular images. In the following experiments
we will evaluate the methods on larger sets of images. Unless
mentioned otherwise, the setting parameters were defined as
follows: (1) Training images were grayscale natural images
(see examples in Figure 7-left). (2) Test images were taken
from Figure 7-right. The resolutions of these images are
512 × 512 but the “House” and the “Pepper” images whose
resolution is 256 × 256. (3) The transform bases were the
undecimated 8×8 DCT. (4) Image noise consisted of additive
Gaussian noise at various STD values.

Figure 8 displays several of the SFs obtained for an 8 × 8
DCT basis, using the three methods described above for noise
level with STD σ = 20. SFs on each row correspond to band
indices (i, i) of the 8 × 8 DCT basis, where i = 2..6 (left to
right). Note that a DCT band with an index (i, j) is the result
of convolving the image with a DCT basis whose frequency is
i along the x-axis and j along the y-axis. The top, middle and
bottom rows show the SFs resulting from the first, second and
the third methods, respectively. It can be seen that the SFs of
the three methods differ from each other because each takes
into consideration different statistical correlations as explained
above.

The obtained SFs were applied to several images4 shown
in Figure 7-right. Figure 9 compares the resulting MSE
across the 3 methods and for 6 different images. Each bar

4Taken from http://decsai.ugr.es/javier/denoise/test_images/index.htm
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Fig. 8. Comparison of the produced SFs using Method 1 (top row), Method 2 (middle row), and Method 3 (bottom row). SFs on each row correspond
to band (i, i) of the 8 × 8 DCT basis, where i = 2..6 (left to right). Graph axes are shown in the range [-120,120]. Each graph represents the coefficient
mapping, where the x-axis is the input value and the y-axis is the rectified (output) value. The black line represents the identity mapping.

Fig. 9. MSE after applying the SFs produced by methods 1–3. Each bar is
an average over 10 different noise realizations.

in the figure presents the resulting MSE averaged over 10
realizations of noise with σ = 20. The results demon-
strate the improvement of the second method over the first
method, and the superiority of the third method over the
other two. It can be seen that most of the improvement is
achieved when applying the objective in the spatial domain
(Method 2). Further improvement, although less signifi-
cant, is achieved when incorporating the band dependencies
(Method 3). Note, however, that Method 2 slightly improves
over Method 3 for the FINGERPRINT image. This result is
incontistent with Equation 23. The reason for this outcome
is that the training set for this experiment does not seem to
form a good representative of the statistics of the textured
FINGERPRINT image. This implies that ψ̂2, ψ̂3 are not nec-
essarily the optimal SFs that minimize �2, �3, respectively.
Indeed, training the SFs on statistically similar images and
applying them on the same noisy FINGERPRINT image, pro-
vides an MSE value of 89.55 for Method 3 (compared to
97.07 in the current plot) and MSE values of 91.43 and
98.36 for methods 2 and 1, respectively.

Fig. 10. The resulting MSE with respect to various noise levels. The plot
shows a comparisons for the different optimization schemes. As expected,
the optimal optimization scheme is Method 3. The x-axis shows the input
MSE and the y-axis presents the output MSE.

B. Comparing All Methods on Various Noise Levels

In the following experiments, we tested the relationships
between the different methods and for various Gaussian noise
levels. Performance was tested for eight different equally
spaced noise levels, ranging from σ = 5 up to σ = 40.
We tested the six images presented in Figure 7. We used
each image in turn as a training image, from which the SFs
are constructed, and the remaining images in the set served
as test images. This was performed with 5 different noise
realizations for each noise level. The resulting scores for 8
different noise levels can be seen in Fig. 10. Each value in this
plot is the mean over all noise realizations and over all images.
The x-axis shows the input MSE and the y-axis presents
the output MSE. It can be seen that for each noise level
�(ψ1) ≥ �(ψ2) ≥ �(ψ3). Thus, optimizing the SFs using
Method 3 gives the optimal result while Method 2 gives better
bounds than Method 1 which is the traditional optimization
method.

Authorized licensed use limited to: Herzeliya IDC. Downloaded on May 08,2021 at 19:53:14 UTC from IEEE Xplore.  Restrictions apply. 



HEL-OR AND BEN-ARTZI: ROLE OF REDUNDANT BASES AND SF IN IMAGE DENOISING 3787

TABLE I

IMAGE DENOISING FOR NOISE LEVELS σ = 10:10:70. PSNR AND SSIM
SCORES ARE SHOWN FOR EACH NOISE LEVEL. SCORE VALUES

INDICATE THE MEAN OVER 65 IMAGES

FROM THE CBSD68 DATASET

Fig. 11. The PSNR scores averaged over 65 images from the CBSD68 bench-
mark dataset. For each noise level the resulting PSNR and error bar are shown.

In the next experiment we tested the proposed methods on
a large set of images and calculated the PSNR as well as the
perceptual SSIM score [39] of the denoised results. We used
68 images from the CBSD685 benchmark dataset and applied
methods 1-3 using 7 levels of noise whose σ =10:10:70.
The first 3 images in the dataset were used for training the
SFs, and the rest of the images were tested for denoising.
The score values were averaged over the image set. Table I
shows the denosing results. It can be seen that for all noise
levels, the PSNRs of Methods 3 are greater than Method 2, and
the PSNRs of Method 2 are greater than those of Method 1.
Since the PSNR score is monotonic with the MSE score, this
finding is expected. However, it can be seen that this order is
also preserved for the SSIM scores which is not necessarily
monotonic with the MSE. Figure 11 shows the PSNR scores
shown as a bar plot along with error bars for each noise-
level/method.

5https://github.com/clausmichele/CBSD68-dataset

TABLE II

JPEG COMPRESSION ARTIFACT CORRECTION. FOR EACH COMPRESSION
RATE PSNR AND SSIM SCORES ARE SHOWN. SCORE VALUES

INDICATE THE MEAN OVER 50 RANDOMLY SELECTED

IMAGES FROM THE DIV2K800 DATASET

TABLE III

IMAGE SCALING BY A BILINEAR INTERPOLATION THEN

SHRINKAGE CORRECTION. SCORE VALUES INDICATE

THE MEAN OVER 100 IMAGES FROM THE
BSD100 DATASET

Figure 12 presents visual examples of the denoising results
for methods 1-3. It can be visually verified that Method 3
produces the cleanest and the most visually pleasing result.

C. Cost-Effective Analysis

Optimizing SFs according to Method 2 offers both tight
bounds on the mean MSE distortion and fast implementation.
Figure 13-left shows the fraction of deviation of Methods 1
and 2 from the optimal scheme (Method 3). It can be seen
that Method 2 deviates 4% on average relative to Method 3,
while Method 1 deviates about 16%.

Figure 13-right shows the computation time required to train
the SFs for each method. It can be seen that training using
the optimization scheme of Method 2 takes one quarter of
the time needed by Method 3. Thus, Method 2 introduces
a cost-efficient advantage; By allowing a deviation of 4% in
quality from the optimal optimization scheme, an average gain
of 70% in speed can be obtained.

D. Shrinkage Framework for Additional Corruption Models

In the following experiments we apply the shrinkage frame-
work to two additional reconstruction cases. We used the
shrinkage framework to remove JPEG artifacts and to improve
image upscaling.

In the de-JPEG case, we compress and uncompress an
image using the JPEG compression scheme at various com-
pression rates. The larger the compression rate, the more
artifacts introduced in the uncompressed images. In order to
remove compression artifacts, the shrinkage method is applied.
A set of SFs are trained on clean and uncompressed versions
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Fig. 12. Denoising results for noisy image with noise level σ = 20. A) The original noisy image. B,C,D) The resulting images for methods 1,2,3 respectively.
The PSNR and the SSIM scores are written on each image.

Fig. 13. Left: The plot shows the relative deviation of the output MSE in Methods 1 and 2 relative to Method 3. The x-axis shows the input MSE and the
y-axis presents the relative MSE with respect to Method 3. The deviation is approx. 4% for Method 2 and approx. 16% for Method 1. Right: This plot shows
the training time required for each method.

of images. The original image (before compression) and the
uncompressed image provide clean and “noisy” counterparts
on which the optimal SFs are trained, using methods 1-3.
We tested the restoration results on 50 randomly selected
images from the DIV2K800 dataset [40]. The SFs were trained
on 5 images taken from the same dataset (selected randomly).

Table II presents the resulting scores in PSNR and SSIM
for various compression rates (the lower the quality rate,
the more compression is applied, where 100% quality rate
indicates no compression). It can be seen from the table
that Method 3 outperforms the other two methods, and that
Method 2 provides better results than Method 1. The above is

true for the PSNR and for the SSIM scores as well. Figure 14
shows examples of the de-JPEG results using the 3 methods.
The improvement in image quality due to removing JPEG
artifacts is clearly visible, in particular when using Method 3.

In the second case, we use the shrinkage framework for
image upscaling. In this experiment low resolution images are
scale up using naive bilinear interpolation. These up scaled
images are of low quality, since the high frequencies are
not reproduced correctly. Using a set of SFs, the shrinkage
framework is applied to improve the degraded images. In order
to train the SFs (using methods 1-3) we used a set of high
res images along with their degraded counterparts that were
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Fig. 14. Top image - The original uncompressed image. A) A scaled region
of the uncompressed image. JPEG artifacts are clearly visible B,C,D) Scaled
versions of the de-jpeg results using methods 1,2,3, respectively.

Fig. 15. Up scaled image using ×2 bilinear interpolation (left) and a
sharpened version using the shrinkage method (right).

generated by downscaling and upscaling the images using
bilinear interpolation.

Table III presents the resulting scores in PSNR and SSIM
for various scaling factors. The scores are the mean over
100 images from the BSD100 dataset.6 For the PSNR score,

6https://deepai.org/dataset/bsd100-4x-upscaling

Fig. 16. The SFs for upscaling and sharpen images after ×2 upscaling. The
SFs shown are for the 8 × 8 DCT bands whose indices are: [3..6] × [3..6]
(left to right × top to bottom). Each graph represents the coefficient mapping,
where the x-axis is the input value and the y-axis is the rectified (output) value.
The black line represents the identity mapping.

Fig. 17. Top row: An example of a noisy image and its estimated ground
truth. Image is taken from [41]. Bottom row: Average PSNR values for
the noisy images (blue bars) and after denoising with Methods 1-3 (orange,
yellow, and purple bars). Results are shown for three ISO levels. Note that
all PSNR values were calculated with respect to the estimated ground truth.

Method 3 outperforms the other two methods in all cases.
For the SSIM score, Method 2 provides better scores in two
cases. However this result does not contradict Equation 23 as
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Fig. 18. The performance is improved with the redundancy; The output MSE as a function of the redundancy rate. Left: The filter size was 13 × 13 and
the noise STD was σ = 50. The plot shows the RMSE as a function of redundancy rate. Right: The wider the filter, the more redundancy achieved and the
better the denoising results.

the SSIM is not monotonic with the MSE score. Visual results
of using shrinkage functions for image upscaling can be seen
in Figure 15.

The SFs that were generated by Method 3 are shown
in Figure 16. The SFs shown are for the 8 × 8 DCT bands
whose indices are: [3..6]×[3..6] (left to right × top to bottom).
In contrast to the typical SFs for image denoising where low
values in the transform domain are attenuated, the SFs for
image upscaling boost (up or down) low values in order to
increase the associated high frequencies.

In the last experiment we tested the three methods on images
with real world noise. We used the Smartphone Image Denois-
ing Dataset (SIDD).7 The noisy images in this dataset are
given along with their estimated ground truth [41]. This dataset
was captured by five representative smartphone cameras, under
different light brightness levels, illumination temperatures, and
different ISO levels. The ground truth of the noisy images were
estimated by capturing a sequence of images and applying
a noise estimation procedure [41]. Figure 17-top row, shows
an example of a noisy image and its estimated ground truth.
The images used in this experiment were from the SIDD
small dataset. For each ISO level, a set of nine images
was used as the training set, from which a set of shrinkage
functions were estimated (using the ground truth counterparts).
We tested Methods 1-3 on 120 images, randomly selected
from the dataset. Figure 17-bottom row, presents the resulting
average PSNR of the original noisy images (blue bars), and
the resulting PSNR for Methods 1-3. Three clusters of bars
are presented, one for each ISO value. It can be seen that
all methods significantly improve the original PSNR, how-
ever, the PSNR of Method 3 is not significantly higher than
Methods 1 + 2, showing comparable results for ISO 800 and
slightly better results for ISO 1600 and 3200. Although it is
difficult to provide an educated explanation for this behaviour,
we speculate that since the images were acquired using various
smartphone cameras, under different light brightness levels
and temperatures conditions, the statistics of the noise is not

7https://www.eecs.yorku.ca/ kamel/sidd

distinctive and the training regresses the shrinkage functions
to the mean. Further profiling of the noise statistics for each
sub-category is left for future study.

E. Denoising Improvements Vs. Redundancy Rate

To validate the observations concerning the denoising
improvement with respect to the redundancy rate, we measured
the resulting MSEs for various redundancy rates. Figure 18-left
shows the MSE resulting from denoising applied to a 13 × 13
windowed DCT transform, where the redundancy rates were
implemented by shifting the basis functions by (i, j) along
the x-axis and the y-axis, where (i, j) ∈ {0, 12} × {0, 12}.
Thus, the redundancy rate ranges between k = 1 and k =
169 = 13 × 13. We assume the optimal MSE is given for
k = 169 (maximum redundancy) where in this case ŷ = y∗
and �n∗� = �x − y∗� = Eopt . On the other hand, when k = 1,
we have that ỹw ∈ Col(W ) (in this case W = U ) and thus
�P(r̃w)� = �r̃u� = �ỹS

u − y∗� = �∗. Accordingly, following
Theorem 6, the RMSE should be:

RM SE(k) ≤ Eopt + 1√
k
�∗ (34)

Figure 18-left shows the decrease in the measured MSE
as a function of the redundancy rate. The solid red curve
shows the actual measures while the dashed blue curve shows
the expected RMSE following Equation 34. It can be seen
that the two plots are very similar. The measures were taken
for the BARBARA image where the noise level was σ = 50.
Each MSE measure in this plot is an average over five noise
realizations.

Figure 18-right shows the optimal achieved MSE for each
DCT transform, of 5, 7, 9 and 11 pixels wide. It can be
seen that, in most cases, the wider the filter, the greater the
redundancy that can be achieved and the better the denoising
results.

VI. CONCLUSION

Transform denoising using shrinkage functions is a classical
framework that is widely used in numerous applications.
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In this paper we provide a complete picture of the inter-
relations between the transform used, the optimal shrinkage
functions, and the domains in which they are optimized.
In particular, we provide a theoretical justification for applying
the shrinkage functions in the transform domain and the benefit
of applying them in redundant bases.

Additionally, we provided theoretical bounds for the three
possible optimization schemes of the shrinkage functions.
We showed that for subband optimization, where each ψi is
optimized independently, optimizing the shrinkage function in
the spatial domain is always better than or equal to optimizing
them in the transform domain. This option, besides being
simple to implement, is proven to outperform the traditional
transform domain optimization while avoiding the demanding
spatial domain optimization of all the shrinkage functions,
simultaneously.

For redundant bases, we provided the expected denoising
gain we may achieve, relative to the unitary basis, as a function
of the basis redundancy. This result allows a user to make
a clever decision about the redundancy used by taking into
account the expected denoising gain and the computational
time allocated for this process.

APPENDIX A

Theorem 1: After denoising, the expected MSE distortions
in the transform domain are equal for the unitary and for the
redundant transforms, i.e.:

�ñu�E = �ñw�E

Proof 1: The MSE value �ñu�2
E is defined as:

�ñu�2
E = E

{
�ñu�2

}
=
∫

�Ux − ψ {Uy}�2 P(x, y)dxdy

where P(x, y) denotes the probability distribution function of
(x, y). By changing variables, the above expression can be
rewritten as:

�ñu�2
E =
∫

�U Si x − ψ {U Si y}�2 P(Si x, Si y)| det(ST
i )| dxdy

where Si is a shift operator by the i th displacement. Now,
we exploit the stationary property of natural images. This
property gives that for each Si :

P(Si x, Si y) = P(x, y)

Additionally, we can apply the (adjoint) shift operator to the
transform basis, rather than to the images. Using the notation
U Si = Ui (Equation 6) and having | det(ST

i )| = 1, we get:

�ñu�2
E =

∫
�Ui x − ψ {Ui y}�2 P(x, y)dxdy = �ñui �2

E (35)

Now, since �ñw�2
E = 1

n

∑n
i=1 �ñui �2

E , we conclude:

�ñw�2
E = 1

n

n∑
i=1

∥∥ñui

∥∥2
E = 1

n

n∑
i=1

�ñu�2
E = �ñu�2

E Q.E.D.

APPENDIX B

Theorem 2: For any given ψ ,

�ñS
u �E ≥ �ñS

w�E

Proof 2: After Equation 13 and Theorem 1, we have:
�ñS

u �E = �ñu�E = �ñw�E

However, from Equation 14 it follows that

�ñw�E ≥ �ñS
w�E

and therefore:
�ñS

u �E ≥ �ñS
w�E Q.E.D.
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