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Figure 1: Multi-directional human face editing. Each row indicates changes in a subspace associated with a particular
attribute: (top to bottom) gender, age and race.

Abstract

This paper describes a new technique for finding disen-
tangled semantic directions in the latent space of StyleGAN.
Our method identifies meaningful orthogonal subspaces
that allow editing of one human face attribute, while min-
imizing undesired changes in other attributes. Our model
is capable of editing a single attribute in multiple direc-
tions, resulting in a range of possible generated images. We
compare our scheme with three state-of-the-art models and
show that our method outperforms them in terms of face
editing and disentanglement capabilities. Additionally, we
suggest quantitative measures for evaluating attribute sep-
aration and disentanglement, and exhibit the superiority of

our model with respect to those measures1.

1. Introduction
Recent developments in computer vision have enabled

the generation of photorealistic, high-resolution synthetic
images. The most notable technique is Generative Adver-
sarial Networks (GANs) [11], which have advanced the
progress of many applications, including image generation,
super-resolution, image inpainting, and more. In particu-
lar, the generator of StyleGAN [1], one of the most notable
GAN models, has been extensively explored by researchers.

StyleGAN samples a latent vector z ∈ R512 from a

1Project page and code are available at https://chennaveh.
github.io/MDSE/
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Gaussian distribution N (0, I), and maps it to an interme-
diate vector w ∈ W = R512 using a mapping network.
This vector is then used to generate a 1024x1024 RGB im-
age. The vector w is inserted into 18 multi-resolution style
blocks that control various characteristics of the synthe-
sized image. Vectors at lower resolutions determine high-
level features such as pose and hair. Intermediate resolu-
tions affect facial expressions, while vectors at higher res-
olutions dictate fine details like colors and texture. The
original StyleGAN model uses the W latent space and the
same w vector for all 18 style blocks. Subsequent stud-
ies [1, 2, 26, 32] utilize the W+ = R18·512 space, which ex-
tends the W space, and applies different w vectors to differ-
ent style blocks. This allows for enhanced control over the
resulting image. The W+ latent space is commonly used
for inverse mapping, converting an image into w ∈ W+.

Recent works have explored methods for gaining con-
trol over the synthesized images by altering the latent space
vectors [3, 7, 12, 25, 28, 29]. For instance, shifting the la-
tent vector of a generated image towards the direction cor-
responding to “smile” can progressively amplify the smile
in the output image. While these methods showcase im-
pressive and realistic editing capabilities, pinpointing the
attribute directions remains a challenge. One approach is
to use vectors in latent space sampled from the GAN model
combined with attribute ground truth (either manually la-
beled or determined using a pre-trained attribute estima-
tor) [10, 16, 28]. A linear classifier in the latent space is
then employed. The normal to the classification bound-
ary corresponds to the most significant direction of the at-
tribute. These models often suffer from issues of entangled
data and biases in the training set. Such biases might re-
sult in attribute correlations, like glasses with age or beard
with gender. Consequently, adding glasses to a face may
inadvertently age it. Other methods use unsupervised tech-
niques [12, 29], such as PCA, to find meaningful orthogo-
nal directions in the latent space. However, these directions
typically require subjective human post-annotation to link
directions to attributes in the synthesized images. All these
models share the notion of a singular direction for each at-
tribute, despite the possibility of some attributes defined by
multiple dimensions (e.g., age might be affected by factors
like hair color and skin wrinkles, see Fig. 1).

In this work, we present MDSE, an acronym for Multi-
Directional Subspace Editing. This framework aims to
identify orthogonal semantics within the latent space of a
pre-trained StyleGAN. Our goal is to discover meaningful
subspaces that are mutually orthogonal, with each subspace
controlling specific facial attributes. “Multi-directional
editing” means altering a latent vector within a particular
subspace in various directions. This approach enables the
generation of a wide range of images, each varying in a
specific attribute. Furthermore, because the subspaces are

mutually orthogonal, modifications in one attribute result
in minimal changes to others. We explore the disentangle-
ment capabilities of our model and quantitatively assess its
performance in comparison to leading image editing tech-
niques.

2. Related Work
2.1. Generative Adversarial Networks (GANs)

Generative models have revolutionized the generation of
vast amounts of visual content. They can produce visually
compelling content with remarkable fidelity, making them
indispensable for image editing applications. GAN mod-
els learn a mapping from a specific distribution (usually
Gaussian or uniform) to the target distribution. The gen-
erator G(·) is trained to fool an adversary D(·), which aims
to differentiate between the generated images and the real
ones. Both models G(·) and D(·) are trained concurrently
using the min-max loss [11]. The GAN approach is widely
recognized and often outperforms other techniques, such as
variational autoencoders (VAEs) [21]. Recently, denoising
diffusion probabilistic models (DDPM) [15] have risen in
prominence and showcased superior results. However, de-
spite their leading performance in image generation, their
potential in image editing and semantic interpretation re-
mains relatively unexplored. In this work, our attention is
centered on a GAN-based generator, specifically the Style-
GAN [18–20], which exhibits exceptional capability in the
human face domain.

GAN Latent Space. Given a pre-trained generator x =
G(w), GAN inversion ŵ = G−1(x) is the process of in-
verting a specified image x into a latent vector ŵ that faith-
fully reconstructs the image using the generator. In other
words, G(ŵ) ≈ x. Most of the common methods either
train an encoder [24, 26, 32] from the image space into the
latent space or optimize the latent vector, using backpropa-
gation, directly until it generates the desired image [1,2,22].
Recent approaches that modify the generator’s weight have
gained traction, resulting in enhanced image reconstruction
[5, 27]. Previous works show that the latent space of a pre-
trained GAN model encodes image semantics in a meaning-
ful structure. Hence, latent codes corresponding to images
with similar semantics tend to cluster closely in the latent
space [28]. For instance, within the domain of human face
generation, faces sharing characteristics (e.g., being young
and blond) will have nearby latent vectors. This founda-
tional insight drives modern image editing techniques.

2.2. Multi-Directional Manipulation in Latent
Space

The idea of editing an image through latent space manip-
ulation has been extensively explored in recent years [7,25].
Such approaches aim to harness the strong capabilities of



the generator. Therefore, they keep the generator network
static and conduct vector operations solely in the latent
space. Recent works primarily rely on a linear latent space
assumption and demonstrate pleasing-looking results of im-
age editing by adding or subtracting vectors within the la-
tent space [12, 28, 29]. InterFaceGAN [28] employs pre-
trained binary classifiers to label images with facial fea-
tures, such as young-old, male-female, and with/without
glasses, among others. It then trains a linear classifier
(specifically, a Support Vector Machine or SVM) on the re-
spective latent vectors to derive a classifying hyperplane.
The normal to this hyperplane serves as the 1D direction
for editing the relevant attribute.

GANSpace [12] adopts a data-driven approach, applying
PCA on a set of vectors sampled from W to find meaning-
ful directions. The eigenvectors associated with the largest
eigenvalues serve as the editing directions. Some derived
directions can be entangled, such as head rotation and gen-
der. To address this issue, edits are restricted to a specifi-
cally selected subset of the generator’s layers.

Another work, SeFa [29], avoids the image sampling
pre-processing step. Instead, it determines a closed-form
factorization of the latent space by utilizing an eigen-
decomposition of the generator’s weights. For StyleGAN,
the style affine transformation matrices are employed for
vector decomposition. The eigenvectors corresponding to
the greatest variations are selected to define the semantic
directions. However, this unsupervised method faces two
main issues. Firstly, there’s a subjective post-annotation
process to match the directions with relevant semantics.
Secondly, the directions that are derived often mix several
semantics (e.g., age and glasses), a result of biases present
in the training data.

A distinct set of studies moves away from the linear ap-
proach, opting instead to learn non-linear functions to ma-
nipulate latent vectors. StyleFlow [3] employs continuous
normalizing flows conditioned on the image attribute vec-
tor. This attribute vector must be provided using pre-trained
networks before every edit. Another non-linear approach is
StyleRig [30], which incorporates a 3D semantic network
and harnesses it to perform rigid edits such as pose and
light. Although non-linear approaches generally perform
better, our research primarily emphasizes the more compre-
hensive linear approach.

All previous methods that manipulate the latent space of
StyleGAN define a semantic as a singular direction. Both
linear and non-linear approaches ultimately derive positive
and negative directions for editing a desired attribute. We
believe that this oversimplification may restrict the editing
capabilities and limit the diversity of the generated images.
For example, imagine we want to edit the gender of a given
face. One person may argue that hairstyle is a distinguishing
factor between men and women, while another might think

of facial structure or the presence of facial hair as a more
prominent factor. In this work, we overcome this variability
by associating an attribute with an n-dim subspace where
n ≥ 1, containing more than a single direction, in the se-
mantic space. We call this a multi-directional subspace, as
different vectors within the subspace can affect the resulting
image differently, but all affect the associated attribute (see
examples in Fig. 1). We also require different attributes to
be associated with mutually orthogonal subspaces, to pro-
mote disentanglement between attributes.

We outline our contributions as follows:

• We propose MDSE to extend the concept of mean-
ingful latent directions to multi-directional subspaces,
thereby diversifying and expanding the capabilities of
the editing process.

• MDSE identifies orthogonal directions in StyleGAN’s
latent space, to promote disentanglement. We intro-
duce an orthogonality loss in the model training and
demonstrate its significance in preserving some image
attributes while editing others. We visualize the results
and demonstrate improved results in consecutive edits
of multiple attributes (refer to Fig. 4).

• We develop a new metric for evaluating the disentan-
glement properties of image editing. In addition to
the conventional approaches of visual comparisons, we
suggest using our evaluation metrics as a quantitative
measurement of disentanglement capabilities.

3. Method
Given a set of attributes, B ≜ {gender, glasses, · · · },

we aim to find a subspace for each attribute bi ∈ B so that
editing within this subspace leads to changes in the associ-
ated attribute bi. Different directions in each subspace are
responsible for distinct visual semantics. To achieve disen-
tanglement, we desire that each subspace solely influences
its respective attribute.

Certain attributes, such as glasses and age, have been
observed to correlate with each other [28], making disen-
tangled editing challenging. To overcome this problem,
our model seeks to decompose the latent space W+ into
multiple orthogonal subspaces each of which is associated
with a single attribute. This requirement has two main out-
comes. Firstly, editing within a subspace facilitates multi-
directional edits of a single attribute. Secondly, the orthogo-
nality ensures that altering a specific facial attribute doesn’t
affect other attributes.

3.1. Latent Space Decomposition

We decompose W+ into N + 1 orthogonal subspaces
{Si}Ni=0 and define each subspace Si as

Si ≜ span
{

p1
i ,p2

i , · · · ,pni
i

}
, ni < dim(W+) (1)



where pj
i ∈ W+, and {pj

i}
ni
j=1 are linearly independent vec-

tors. Therefore, {pj
i}

ni
j=1 form a basis for subspace Si with

cardinality ni. There are N + 1 subspaces, where N = |B|
is the size of the attribute set B. Each Si corresponds to
bi respectively, while S0 is associated with all other infor-
mation that is not labeled in B. This may include other
semantics, e.g., clothing and image background. The cor-
respondence of Si and bi will be elaborated on later in the
paper.

To ensure orthogonality, we require the following condi-
tions:

Si ⊂ W+ ,∀i ∈ {0, · · · , N} (2)

N⊕
i=0

Si = W+ (3)

Si ⊥ Sj ,∀i ̸= j (4)

where
⊕

denotes direct sum, and ⊥ signifies orthogonal
subspaces. Notice that the entire vector set {pj

i} forms a
basis for W+. As a result, we can uniquely express every
vector w ∈ R18·512 with a set of scalars {aji} and represent
w as the following linear combination:

w =

N∑
i=0

ni∑
j=1

ajipj
i (5)

This expression can also be represented in matrix form:

w =


 | |

p1
0 · · · pn0

0

| |


︸ ︷︷ ︸

P0

· · ·

 | |
p1
N · · · pnN

N

| |


︸ ︷︷ ︸

PN





 a10
...

an0
0


... a1N
...

anN

N




(6)

w =

N∑
i=0

Piai =
[
P0, · · · ,PN

]︸ ︷︷ ︸
P

 a0
...

aN


︸ ︷︷ ︸

a

(7)

where P is a matrix defined by:

P =
[
p1
0 · · · pn0

0 · · · p1
N · · · pnN

N

]
(8)

and aT = [aT
0 , . . . , aTN ] is a vector of coefficients. Finding

P that satisfies Eq. (2)-(4) is the core part of our framework.

3.2. Training Procedure

Our dataset consists of a set of 2,000 vector pairs{
(w(i), y(i))

}2000

i=1
. The latent vectors

{
w(i)

}
are generated

from random vectors sampled from a Gaussian distribution
z(i) ∼ N (0, 1) and then mapped to W+ space using the
StyleGAN mapping function: w(i) = M(z(i)). Each sam-
ple w(i) ∈ R18·512 is mapped onto the image space using
the StyleGAN generator, x(i) = G(w(i)) and then anno-
tated using pre-trained classifiers to determine an attribute
score vector:

y(i) ≜ (y
(i)
1 , · · · , y(i)N ) =

(
C1(x(i)), · · · , CN (x(i))

)
(9)

Here, each y
(i)
k denotes the bk attribute score for sample i.

Depending on the attribute, y(i)k is either a discrete or con-
tinuous number. Ck represents the pre-trained classifier for
attribute k. For age, smile, gender, and glasses, we used
the face attribute classifier from [13] trained on the FFHQ
dataset [19]. For the pose attribute, we utilized img2pose
[6] for face estimation. Additionally, we employed a race
classifier [17] trained on the Yahoo YFCC100M dataset
[31].

The primary goal during the training phase is to deter-
mine the matrix P and use it to reconstruct all samples from
the training set. To satisfy Eq. (5), we jointly learn a vector
a(i) for each vector w(i) such that w(i) = Pa(i). We then
introduce the following loss:

L(i)
rec =

∥∥∥w(i) −Pa(i)
∥∥∥
1

(10)

where Lrec represents the reconstruction loss. Instead of
pixel-based image reconstructions, we use a L1 loss in the
latent space using the original vector w(i) = M(z(i)) as the
target value.

Additionally, to enforce disentanglement, as referred in
Eq. (4), we introduce an orthogonality loss:

Lorth =
∑
i ̸=j

∥∥PT
i Pj

∥∥2
2

(11)

and require that the columns of matrices Pi,Pj be orthog-
onal for i ̸= j, where ∥·∥2 is the element-wise Frobenius-
norm.

Since learning disentangled representations is funda-
mentally impossible without a supervised inductive bias on
the data [23], we leverage the attribute vector y(i) and in-
troduce a mixing loss to establish the association between
Sk and bk. Given a vector w(i), we can import attribute bk
from a randomly chosen vector w(j), to generate w(i)

mix:

w(i)
mix = Pka(j)k +

∑
l ̸=k

Pla
(i)
l (12)



and its corresponding image x(i)
mix ≜ G(w(i)

mix). For the
modified image we require Ck(x(i)mix) to be similar to y

(j)
k

while keeping the other attributes unchanged. Thus a mix-
ing loss is added to the network to force changes only in
bk:

L(i)
mixing = Lk

(
Ck(x(i)mix), y

(j)
k

)
+
∑
l ̸=k

Ll

(
Cl(x(i)mix), y

(i)
l

)
(13)

Li are loss functions that vary based on the attribute
types. For categorical labels, we use softmax with cross-
entropy loss, whereas continuous labels are optimized using
the L1 loss. In practice, we mix all attributes together from
randomly chosen vectors. This introduces complex changes
to the image and encourages the association of a single sub-
space with a single attribute.

Finally, our model is trained using an objective function
comprised of the three losses:

L = λorthLorth +
1

n

∑
i

L(i)
rec + λmixingL(i)

mixing (14)

where λorth, λmixing are hyperparameters.

4. Experiments
In this section, we evaluate the performance of our model

compared to state-of-the-art image editing models, all of
which utilize the StyleGAN generator for image synthesis.

To test our model, we generated a source and target la-
tent vector, projected them onto a subspace Sk, and replaced
the projections of the source vector with those from the tar-
get. Since our subspaces are orthogonal, we expect to see
changes only in the corresponding attribute bk. Example
results are presented in Fig. 2. Notably, if the source face
wears glasses, these remain post-edit since we only incor-
porate pose, smile, and race from the target face.

4.1. Comparison with Previous Methods

We compared our model with three previous image edit-
ing methods: InterFaceGAN [28], StyleFlow [3], and SeFa
[29]. We evaluated the editing and disentanglement qual-
ities of these models for a common set of attributes sup-
ported by all of them, such as age, gender, smile, pose, and
glasses. Additionally, since our method discovers a sub-
space rather than a single direction, to ensure a fair com-
parison, we trained a linear SVM inside each subspace. We
then used the normal to the hyperplane as the direction for
editing. This model is used in Section 4.2 and Section 4.3.

4.2. Qualitative Comparison

Figure 3 offers a comparative assessment of the quality
of real image editing. We inverted the images into Style-
GAN’s latent space using HyperStyle [4]. Our observations

Source

Ta
rg

et

Figure 2: Image editing capabilities using source images
and target attribute images. The attributes derived from the
target images include pose, smile, and race.

indicate that multiple edits on a single image can signifi-
cantly diminish its quality, making it more prone to visual
artifacts. Moreover, due to biases in the FFHQ dataset [19],
some attributes are more correlated in StyleGAN’s latent
space than others (e.g., younger individuals are less likely to
wear glasses). As depicted in Fig. 3, while most models can
effectively modify a single attribute, our model outperforms
others in terms of accuracy when changing all attributes si-
multaneously and better maintains each individual attribute
edit. Sequential editing is illustrated in Fig. 4, showing that
as edits progress, the images retain previous attributes with-
out a loss in quality.

In Fig. 1 we visualize our model’s capability of gener-
ating diverse results for different attributes due to its multi-
directional nature. The images are generated by shifting
the latent vectors to different directions inside the relevant
subspace. We found that some attributes (e.g., smile, pose)
behave like binary attributes, meaning they contain most of
the information in a single direction. Others (e.g., gender,
age), however, can be edited in multiple directions resulting
in various images. Additional results can be found in the
supplementary material.

4.3. Quantitative Comparison

To evaluate our model’s disentanglement capabilities, we
develop and utilize two different methods: attribute corre-
lation and face preservation. Furthermore, to measure the
diversity introduced by multi-directional subspace editing,
we utilize the LPIPS score [33] and the Frechet Inception
Distance (FID) [14] to evaluate image fidelity.
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Figure 3: Comparison of real image editing between our method and the baseline approaches. The edit direction for each
attribute was determined using a linear SVM classifier.



edit direction−−−−−−−→

Input +Smile +Age +Gender +Glasses +Pose

Figure 4: Sequential human face editing result.

Correlation between edited attributes: We can assign
an attribute score to an image x using Ck as a feature extrac-
tor. The activation vector l(x), derived from the last hidden
layer of Ck, is used to compute the distance between the
feature vector l(x) and the classifying hyperplane. This hy-
perplane is defined by

{
v | cTk v + tk = 0

}
.

The attribute score of an image x is given by the dis-
tance of l(x) from the separating hyperplane: distk(x) =
cTk l(x)+tk

|ck| .
To assess the disentanglement capability of our model,

we began by generating an evaluation set comprising 1K

pairs of images paired with their desired face attributes.
These images were directly sampled from the StyleGAN
generator, while the attributes were independently gener-
ated for each image. For each image, we manipulated its
latent vector w ∈ W+ along the learned directions and fed
it to the generator to produce an edited version, denoted as
xedit. It’s worth noting that in practice we change all at-
tributes simultaneously.

Next, we measured the difference in attribute score be-
tween the original and the edited images. Taking the at-
tribute “smile” as an example, we defined the perceptual
distance as: ∆smile = distsmile(xedit)− distsmile(x).

For the final assessment, we computed the Pearson cor-
relation between the perceptual distances of every pair of
attributes. Each entry in Table 1 displays the absolute cor-
relation value. For instance, for the attributes “smile” and
“pose”, we determine the perceptual distances ∆smile and
∆pose across the entire evaluation set. The correlation value
shown in the table is:

corr(pose, smile) =

∣∣∣∣ cov(∆pose,∆smile)

E[∆pose]E[∆smile]

∣∣∣∣ (15)

Table 1 presents the correlation results of various meth-
ods. As previously mentioned [8, 12, 28, 29], we observe
that certain attributes exhibit stronger correlations than oth-
ers. For instance, the glasses-age correlation is consistently
higher than the smile-pose correlation across all models.

Table 1: Attribute correlation matrices of edited images (in absolute values).

(a) SeFa (b) InterFaceGan
Pose Smile Age Gender Glasses

Pose 1.000 0.150 0.039 0.133 0.051

Smile 0.150 1.000 0.001 0.170 0.233

Age 0.039 0.001 1.000 0.533 0.367

Gender 0.133 0.170 0.533 1.000 0.339

Glasses 0.051 0.233 0.367 0.339 1.000

Avg 0.093 0.115 0.235 0.293 0.247

pose Smile Age Gender Glasses
Pose 1.000 0.098 0.090 0.017 0.079

Smile 0.098 1.000 0.154 0.198 0.084

Age 0.090 0.154 1.000 0.565 0.600

Gender 0.017 0.198 0.565 1.000 0.363

Glasses 0.079 0.084 0.600 0.363 1.000

Avg 0.071 0.133 0.352 0.285 0.281

(c) StyleFlow (d) Ours
Pose Smile Age Gender Glasses

Pose 1.000 0.113 0.126 0.103 0.056

Smile 0.113 1.000 0.264 0.011 0.074

Age 0.126 0.264 1.000 0.581 0.494

Gender 0.103 0.011 0.581 1.000 0.338

Glasses 0.056 0.074 0.494 0.338 1.000

Avg 0.099 0.115 0.366 0.258 0.240

Pose Smile Age Gender Glasses
Pose 1.000 0.018 0.008 0.029 0.046

Smile 0.018 1.000 0.120 0.050 0.100

Age 0.008 0.120 1.000 0.388 0.363

Gender 0.029 0.050 0.388 1.000 0.203

Glasses 0.046 0.100 0.363 0.203 1.000

Avg 0.025 0.072 0.219 0.167 0.178



The table’s final row sums the off-diagonal columns, repre-
senting the average correlation score. Our method’s lower
scores highlight its superior disentanglement capabilities
compared to the other techniques.

In our previous assessment, all attributes were adjusted
simultaneously. To test the stability of attributes when only
one is modified, we conducted an experiment editing one
attribute at a time and measured the perceptual distances
using the classifiers’ final layers. Fig. 5 displays results
from various methods. The x-axis represents changes in
the edited attribute, while the y-axis indicates unintentional
changes in other attributes. As edits become more exten-
sive, the inter-attribute effect is more pronounced. Among
all models, our approach shows the least deviation, indicat-
ing superior attribute disentanglement.

Face Identity Preservation: Following the approach of
the face identity score [3], we assess the edited images using
a pre-trained face embedding network [9]. We restricted our
edits to attributes that should preserve identity, such as pose,
glasses, and smile. After editing, we embedded the images
into a latent space using the network. We then calculated

Table 2: Identity preservation scores by different models.

Edit Metric SeFa InterFaceGan StyleFlow Ours

Smile Cs ⇑ 0.970 0.978 0.989 0.991
Ed ⇓ 0.329 0.276 0.192 0.174

Pose Cs ⇑ 0.978 0.979 0.981 0.982
Ed ⇓ 0.283 0.279 0.2662 0.253

Glasses Cs ⇑ 0.966 0.978 0.984 0.985
Ed ⇓ 0.348 0.270 0.227 0.215

All Cs ⇑ 0.911 0.933 0.935 0.948
Ed ⇓ 0.622 0.537 0.534 0.467

Notation: Cs - Cosine Similarity; Ed - Euclidean Distance.

the Euclidean distance, Ed, and the cosine similarity, Cs,
between the original and edited images.

Table 2 displays the results for face identity preserva-
tion. Our method consistently surpasses other techniques
across all types of edits. While StyleFlow shows compara-
ble scores for individual attribute edits, our model excels in
preserving identity when multiple edits are combined.
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Figure 5: Comparative analysis of the inter-attribute effects exhibited by different models. The upper rows display how
changes in one attribute vary as a function of changes in another attribute. The bottom row provides an average of all the
rows above.



4.4. Diversity Analysis

In the previous sections, we introduced a single-direction
variant of our model. Now, we will explore the performance
of our model when multiple directions in the subspace are
utilized for editing. To measure the diversity of the images
produced by our model, we employed the LPIPS perceptual
similarity score [33]. A lower LPIPS score indicates higher
similarity between images, whereas a higher score signifies
perceptual differences.

We generated a batch of 1,000 images and applied 5 ran-
dom edits to each image. For every set of 5 edits, the sim-
ilarity score between each pair of edited images was com-
puted. Subsequently, all these scores were averaged to de-
rive the final diversity score. We benchmarked our model
against StyleFlow and the single-direction variant of our
model, referred to as SVM, as detailed in Section 4.1. The
FID score was also calculated to assess the visual quality of
the generated images.

The results, summarized in Table 3, reveal that our ap-
proach — when multi-directional subspace editing is em-
ployed — not only fosters greater image diversity (as indi-
cated by the LPIPS score) but also ensures superior visual
quality (as denoted by the FID score). It’s noteworthy that
there is a marked enhancement in the multi-directional it-
eration of our model (subspace) when compared against its
single-direction counterpart (SVM) or against StyleFlow.

Table 3: Diversity score results for edited images. Our
multi-directional model achieves a higher score which indi-
cates its ability to generate more diverse results while main-
taining a lower FID score.

Method LPIPS ⇑ FID ⇓
StyleFlow 0.213 27.467
Our (svm) 0.229 26.926
Our (subspace) 0.321 23.648

4.5. Ablation Study

To validate the importance of our orthogonality loss out-
lined in Section 3.2, we carried out an ablation study. We
trained a version of our model with λorth = 0, keeping all
other configurations, including losses and the training pro-
cess, consistent. Post-training, we conducted consecutive
edits starting from an original image, and the results can be
viewed in Fig. 6.

We found that images edited with the orthogonality loss
exhibit crisper details and fewer visual artifacts when sub-
jected to multiple edits. We also carried out the same quan-
titative evaluations as detailed in Section 4.3. The results in
Tables 4 and 5 indicate that our orthogonality loss leads to
better attribute disentanglement in our model.

λorth = 0

Po
se

Sm
ile

λorth = 0.001

Po
se

Sm
ile

Figure 6: Comparison using orthogonality loss: First and
third rows show reduced pose-glasses entanglement; second
and fourth rows show better preservation of hair and shirt
color.

Table 4: Attribute correlation matrices with and without or-
thogonal loss. The values represent the average correlation
between an attribute and others.

Model Pose Smile Age Gender Glasses
λorth = 0 0.149 0.242 0.342 0.283 0.253
λorth = 0.001 0.025 0.072 0.219 0.167 0.178

Table 5: Comparison of identity preservation using orthog-
onal loss.

Edit Metric λorth = 0 λorth = 0.001

All Cs ⇑ 0.932 0.948
Ed ⇓ 0.536 0.467

Notation: Cs - Cosine Similarity; Ed - Euclidean Distance.

5. Conclusions

In this work we proposed MDSE, a disentangling gen-
erative model for multi-attribute image editing. We in-
troduce the concept of orthogonal subspaces that support
multi-directional edits for diverse image generation. Addi-
tionally, this model effectively identifies disentangled latent
subspaces, allowing precise control over the generated im-
ages and the displayed face attributes. We believe that inte-
grating these concepts during the generator’s training could
further enhance the performance of disentangled models.
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Hervé Le Borgne. Multi-attribute balanced sampling for dis-
entangled gan controls. arXiv preprint arXiv:2111.00909,
2021. 7

[9] A. Geitgey. face recognition. https://github.com/
ageitgey/face_recognition, 2021. 8

[10] Lore Goetschalckx, Alex Andonian, Aude Oliva, and Phillip
Isola. Ganalyze: Toward visual definitions of cognitive im-
age properties. In Proceedings of the ieee/cvf international
conference on computer vision, pages 5744–5753, 2019. 2

[11] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial nets. In Advances
in neural information processing systems, pages 2672–2680,
2014. 1, 2

[12] Erik Härkönen, Aaron Hertzmann, Jaakko Lehtinen, and
Sylvain Paris. Ganspace: Discovering interpretable gan con-
trols. Advances in Neural Information Processing Systems,
33:9841–9850, 2020. 2, 3, 7

[13] Keke He, Yanwei Fu, Wuhao Zhang, Chengjie Wang, Yu-
Gang Jiang, Feiyue Huang, and Xiangyang Xue. Harness-
ing synthesized abstraction images to improve facial attribute
recognition. In IJCAI, pages 733–740, 2018. 4

[14] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,
Bernhard Nessler, and Sepp Hochreiter. Gans trained by a

two time-scale update rule converge to a local nash equilib-
rium. Advances in neural information processing systems,
30, 2017. 5

[15] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffu-
sion probabilistic models. Advances in Neural Information
Processing Systems, 33:6840–6851, 2020. 2

[16] Ali Jahanian, Lucy Chai, and Phillip Isola. On the” steer-
ability” of generative adversarial networks. arXiv preprint
arXiv:1907.07171, 2019. 2

[17] Kimmo Karkkainen and Jungseock Joo. Fairface: Face
attribute dataset for balanced race, gender, and age for
bias measurement and mitigation. In Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer
Vision, pages 1548–1558, 2021. 4

[18] Tero Karras, Miika Aittala, Samuli Laine, Erik Härkönen,
Janne Hellsten, Jaakko Lehtinen, and Timo Aila. Alias-free
generative adversarial networks. Advances in Neural Infor-
mation Processing Systems, 34, 2021. 2

[19] Tero Karras, Samuli Laine, and Timo Aila. A style-based
generator architecture for generative adversarial networks.
In Proceedings of the IEEE/CVF conference on computer vi-
sion and pattern recognition, pages 4401–4410, 2019. 2, 4,
5

[20] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten,
Jaakko Lehtinen, and Timo Aila. Analyzing and improv-
ing the image quality of stylegan. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 8110–8119, 2020. 2

[21] Diederik P Kingma and Max Welling. Auto-encoding varia-
tional bayes. arXiv preprint arXiv:1312.6114, 2013. 2

[22] Zachary C Lipton and Subarna Tripathi. Precise recovery of
latent vectors from generative adversarial networks. arXiv
preprint arXiv:1702.04782, 2017. 2

[23] Francesco Locatello, Stefan Bauer, Mario Lucic, Gunnar
Raetsch, Sylvain Gelly, Bernhard Schölkopf, and Olivier
Bachem. Challenging common assumptions in the unsuper-
vised learning of disentangled representations. In interna-
tional conference on machine learning, pages 4114–4124.
PMLR, 2019. 4

[24] Stanislav Pidhorskyi, Donald A Adjeroh, and Gianfranco
Doretto. Adversarial latent autoencoders. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 14104–14113, 2020. 2

[25] Alec Radford, Luke Metz, and Soumith Chintala. Un-
supervised representation learning with deep convolu-
tional generative adversarial networks. arXiv preprint
arXiv:1511.06434, 2015. 2

[26] Elad Richardson, Yuval Alaluf, Or Patashnik, Yotam Nitzan,
Yaniv Azar, Stav Shapiro, and Daniel Cohen-Or. Encoding
in style: a stylegan encoder for image-to-image translation.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 2287–2296, 2021. 2

[27] Daniel Roich, Ron Mokady, Amit H Bermano, and Daniel
Cohen-Or. Pivotal tuning for latent-based editing of real im-
ages. arXiv preprint arXiv:2106.05744, 2021. 2

[28] Yujun Shen, Ceyuan Yang, Xiaoou Tang, and Bolei Zhou.
Interfacegan: Interpreting the disentangled face representa-

https://github.com/ageitgey/face_recognition
https://github.com/ageitgey/face_recognition


tion learned by gans. IEEE transactions on pattern analysis
and machine intelligence, 2020. 2, 3, 5, 7

[29] Yujun Shen and Bolei Zhou. Closed-form factorization of
latent semantics in gans. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 1532–1540, 2021. 2, 3, 5, 7

[30] Ayush Tewari, Mohamed Elgharib, Gaurav Bharaj, Florian
Bernard, Hans-Peter Seidel, Patrick Pérez, Michael Zoll-
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