
The Canonical Correlations 
of Color Images 
and their use in

Inverse Problems

The Canonical Correlations The Canonical Correlations 
of Color Images of Color Images 
aandnd their use intheir use in

Inverse ProblemsInverse Problems

Yacov Hel-Or 
School of Computer Science
The Interdisciplinaty Center      



The Image PriorThe Image Prior

• A color image is typically represented by three bands:

• Independent of the representation, a prior statistical distribution 
over natural images is required in many applications:

f(x,y) = [ R(x,y) G(x,y) B(x,y) ]T

PF(f)Image space

1

0



Does the HVS use an Image prior?Does the HVS use an Image prior?



Image Prior and Inverse ProblemsImage Prior and Inverse Problems

• An Inverse problem of color images aims at reconstructing an 
image f(x,y) from its degraded version m(x,y):

• The degradation operation is non-invertible or ill-posed!
• Examples:

– Image demosaicing.
– Image Scaling.
– Image Sharpening.
– Image Denoising.

m(x,y) = D[f(x,y)]

Degradation Model



• A possible solution using the Maximum a Posteriori (MAP) 
estimator:

• Using Bayes conditional rule:

( )mfPf MFf |maxargˆ
|=

( ) ( )fPfmPf FFMf |maxargˆ
|=

( ) ( )fPfmP FFMf log|logmaxarg | +=

Degradation 
Model

(data term)

Image Prior 
Model

(prior term)



Data Term

Prior Term

m(x,y)

f(x,y)

( )fmP FM ||

( )fPF



• If the degradation model is noise free, the “data term” has a 
ridge distribution and becomes a constraint:

m(x,y)

f(x,y)

( )fPF



• The  “data term” PM|F is derived from the degradation process 
and is (relatively) easy to model (Gaussian Noise, noise free).

• The “prior term” PF defines a prior over natural color images:
– Defined over a huge dim. space (3E6 for 1Kx1K color 

image)
– Known to be non Gaussian.
– Very complicated to model.
– Crucial for any reconstruction method.

Main Goal:
Modeling a (useful) prior distribution  

of natural color images



“All statistical models are wrong, but only 
some are useful”

Quoted from: Statistics of Images .. by Mark. L. Green.



Towards Useful Priors:  
Dimensionality Reduction
Towards Useful Priors:  
Dimensionality Reduction

• Due to the dimensionality of Pf , modeling the entire joint 
distribution is impractical.

• In order to build a useful model we must reduce the 
dimensionality of the problem.

• Common approaches for image modeling use 2 types of 
reductions:
– Reduction in the Spatial domain.
– Projection onto informative subspaces.



Reduction in the Spatial DomainReduction in the Spatial Domain

• A reasonable assumption: A natural image can be viewed as 
a realization of a Markov Random Filed:
1. A large enough neighborhood of an image pixel 

completely characterizes its p.d.f.:

2. This p.d.f. is similar for all pixels (the homogeneity 
property of images).

• We have to model only the  
distribution of local contexts:

( ) ( )qpp,|qPN|qP q ≠=

Nq

q( )qNq,P



Projection onto Informative SubspacesProjection onto Informative Subspaces

• Further reduction can be achieved by modeling only marginal 
distributions over subspaces of the context space.

• Subspaces should be chosen such that “informative”
information will not be lost.

• A crucial problem: what are “informative” subspaces?



Informative Subspaces  Informative Subspaces  

• Informative subspaces are task driven.

• If our task is to predict y form x (and visa versa) we should 
choose subspaces in which the two variables are most 
correlated.

The Canonical Correlation Analysis (CCA)

finds such subspaces.



The Canonical Correlation Analysis (CCA)  The Canonical Correlation Analysis (CCA)  

• Assume two multidimensional random variables: x and y .

• We are looking for two projection vectors wx and wy such that 
the correlation between                and                  is  maximized:x

Tx wx=′ y
Ty wy=′

( ) { }
{ } { }22yx yExE

yxE,wwρ
′′

′′
=



Simple Example  Simple Example  
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The Canonical Correlation Analysis (CCA) Hoteling 1936The Canonical Correlation Analysis (CCA) Hoteling 1936

• The solution for wx and wy satisfies the eigenvalue equations:

where:

x
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• The CCA characteristics:

– wx,1 and wy,1corresponding to the greatest eigenvalue ρ1
2

define the directions with the maximal correlation ρ1.

– The subsequent 2 eigenvectors are the second best 
directions, and so forth.

– The set of eigenvectors are the CC basis vectors.

– The corresponding eigenvalues are the Canonical 
Correlations.

– The CCA basis vectors also decorrelate off-diagonal terms, 
i.e. Cxx Cyy and Cxy are diagonal in the new basis

– If x and y are Gaussians CCA maximizes also their mutual 
information.



CCA  V.S.  PCACCA  V.S.  PCA

CCA PCA

Variables distinct entities augmented

Mutual Correlations Maximizes Minimizes

Affine Trans. independent dependent

Consideration between classes between and within
classes



Simple Example  Simple Example  y=1-x2+n

X1
X2

Y

PCA

Due to the 
within
correlations of x, 
PCA fails to 
provide useful 
information.

CCA



Previous Example  Previous Example  
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The CC of Color ImagesThe CC of Color Images

• In the following we 
consider natural color 
image.

• All values are presented 
in  log(RGB) space:
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A Special Case of Marginal: Pure SpectralA Special Case of Marginal: Pure Spectral

• The following joint histograms show the marginal p.d.f. of the 
image in the pure spectral domain:

( )byxBgyxGryxRbgrP ===∝ ),(,),(,),(#),,(
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A joint Histogram of g v.s. b
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A joint Histogram of r v.s. b
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• Observations:
– The spectral components are correlated.
– There are diagonal line structures in the histograms.
– The histogram shapes are not stable over different images.

• Question: Do we loose information if we model the image 
prior over the pure spectral domain?



The CCA  of  1x2 neighborhoodsThe CCA  of  1x2 neighborhoods
• Applying the CCA over (R,G,B) where each variable is a 1x2 

neighborhood gives the following results: 

Red CC Green CC

• The CC basis is composed of x-derivatives

• Similar results for each color pair.



The CCA  of  2x1 neighborhoodsThe CCA  of  2x1 neighborhoods
• Applying the CCA over (R,G,B) where each variable is a 2x1 

neighborhood gives the following results: 

Red CC Green CC

• The CC basis is composed of y-derivatives
• Similar results for each color pair.



• The following joint histograms show the marginal p.d.f. along 
the first CCA  direction, for 1x2 neighborhoods:
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A joint Histogram of rx v.s. gx
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A joint Histogram of gx v.s. bx

Green derivative
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A joint Histogram of rx v.s. bx
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The CCA  of  2x2 neighborhoodsThe CCA  of  2x2 neighborhoods
• Applying the CCA over (R,G,B) where each variable is a 2x2 

neighborhood gives the following results: 

The 4 CC vectors of 
the Red plane

The 4 CC vectors of 
the Green plane
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The CCA  of  5x5 neighborhoodsThe CCA  of  5x5 neighborhoods
• Applying the CCA over (R,G,B) where each variable is a 5x5 

neighborhood gives the following results: 

Green Plane Red Plane 

The 25 CC vectors
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• Observations:
– The histogram shapes are highly stable over different 

images.

– CC directions in 1x2 and 2x1 neighborhoods are the 
x-derivative and y-derivatives.

– For kxk neighborhoods:

In all but one direction the DC value is zero.

In all DC=0 directions the CC values are almost 
identical.

Any linear combination of CC vectors with 
identical CC values, is a legitimate CC vector. 



Comparison with PCA 1st PCComparison with PCA 1st PC
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Comparison with PCA 1st PCComparison with PCA 1st PC



Color Image RepresentationColor Image Representation
• From now on we consider x and y derivatives as the CC 

directions (high pass filters).
• We define a new color basis (l,c1,c2):
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• Since spatial derivative is commutative we have that (lx,c1x,c2x) is a rotated 
version of (Rx,Gx,Bx):

• In the new coordinate system:
– It is improbable to have high derivative values in the chrominance 

components.
– It is probable to have high derivative values in the luminance 

component.
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High derivatives Low derivatives Low derivatives

Claim:  The HVS’ high spatial sensitivity in the Luminance 
domain and low spatial sensitivity  in the Chrominance 
domains is an outcome of the statistical properties of color 
images!



Image Prior

HVS’
Characteristics

Problem 
to Solve



Parametric Prior for Color ImagesParametric Prior for Color Images

• Useful Observation: The marginals in the (lx , C1,x , C2,x) basis are 
statistically independent.

• Therefore it is possible to represent the p.d.f. as a product of marginals:

• Similarly for (ly , C1,y , C2,y) :

• Assuming x-derivatives and y-derivatives are stat. independent, we 
estimate the prior of color images in the CC subspaces:

( ) ( ) ( ) ( )xxxxxx cPcPlPcclP ,2,1,2,1 ,, =

( ) ( ) ( ) ( )yyyyyy cPcPlPcclP ,2,1,2,1 ,, =

( ) ( ) ( )yyyxxx cclPcclPBGRP ,2,1,2,1 ,,,,,, ≈



• First Approximation – A Joint Gaussian

• The p.d.f. For α=1/5  and β=1/120
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• Let h(x,y) be the image in the new basis:

• Using the joint Gaussian model:

where
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• Note: The Joint Gaussian model is convenient when applying it to inverse 
problems, however the marginals are Super-Gaussians:
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• Better Approximation – A Joint Laplacian

• The p.d.f. For α=1/5  and β=1/80
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• Let h(x,y) be the image in the new basis:

• Using the joint Laplacian model:

( )( ) ( ) ( ) ( ){ }yx,lβyx,cαyx,cαexp
K
1, 21 ∇−∇−∇−=yxPH h

( ) ( )yxTyx ,, fh =



Inverse Problem: Image DemosaicingInverse Problem: Image Demosaicing

• The CCD sensor in a digital camera 
acquires a single color component for 
each pixel.

• Problem: How to interpolate the 
missing components?



Inverse Problem: Image DemosaicingInverse Problem: Image Demosaicing
• Degradation Model:

– f(x,y) the original image in the RGB basis
– m(x,y) the mosaic image
– s(x,y) a sampling mask
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• Using MAP estimator, the optimal solution satisfies:

• Joint Gaussian case: Minimization is applied using POCS:
– Minimizing the prior term:

– Projecting temporary results onto the constraint:
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The Demosaicing Algorithm (Gaussian Model)The Demosaicing Algorithm (Gaussian Model)

Input: m Initial interpolation: 
Bilinear

f(RGB)→h(LC1C2)

Strongly Smooth C1 and C2

Slightly Smooth L h(LC1C2) → f(RGB)

Reset original values from m

Output: f



RemarksRemarks

• Since each iteration applies a linear operation, the entire algorithm 
can be implemented using a single linear operation.

• A similar algorithm can be produced using only the characteristics 
of the HVS where minimizing                      can be interpreted as a 
perceptual penalty.

• Modeling PH(h) using a joint Laplacian p.d.f. yields an adaptive 
filtering which preserves edges (TV norm for Laplacian
distribution).
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Initial Solution



Initial Solution



Final Solution



Initial Solution



Final Solution



Demosaicing Results using adaptive filteringDemosaicing Results using adaptive filtering

Optimal Linear Demosaicing Adaptive CC Demosaicing



ConclusionsConclusions

• Modeling the prior of natural color images is important.
• Modeling the prior in the Canonical Correlation directions is useful in 

some applications (e.g. demosaicing).
• The statistical properties of color images in the CC directions conforms 

with the characteristics of the HVS.

• Future Work:
– Noise removal using Soft / Hard thersholding in the CC  basis

CC  luminance CC chrominance
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Example: x and y are 20D random vectors where:
x(2i)-x(2i-1)= y(2i)-y(2i-1)
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