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The Image Prior

« A color image is typically represented by three bands:

f(xy) = [ R(xy) Gxy) Bxy) ]

* Independent of the representation, a prior statistical distribution
over natural images is required in many applications:

>

Image space




Does the HVS use an Image prior?




Image Prior and Inverse Problems

* An Inverse problem of color images aims at reconstructing an
Image f(x,y) from its degraded version m(x,y):

m(x.y) = D[t(x.y)]

Degradation Model

* The degradation operation is non-invertible or ill-posed!
e Examples:

— Image demosaicing.

— Image Scaling.

— Image Sharpening.

— Image Denoising.



* A possible solution using the Maximum a Posteriori (MAP)
estimator:

]?:argmafoﬂM(f'm)

« Using Bayes conditional rule:

]?:argmafoMW(m'f)PF(f)

=argmax , log P, (m| f)+log P.(f)

Degradation Image Prior
Model Model

(data term) (prior term)






 |f the degradation model is noise free, the “data term” has a
ridge distribution and becomes a constraint:

m(x,y)



« The “dataterm” P, Is derived from the degradation process
and is (relatively) easy to model (Gaussian Noise, noise free).

e The “prior term” P, defines a prior over natural color images:

— Defined over a huge dim. space (3E6 for 1Kx1K color
Image)

— Known to be non Gaussian.

— Very complicated to model.

— Crucial for any reconstruction method.

Main Goal:
Modeling a (useful) prior distribution

of natural color images




“All statistical models are wrong, but only
some are useful”

Quoted from: Statistics of Images .. by Mark. L. Green.



Towards Useful Priors:
Dimensionality Reduction

* Due to the dimensionality of P,, modeling the entire joint
distribution is impractical.

e Inorder to build a usefi/ model we must reduce the
dimensionality of the problem.

e Common approaches for image modeling use 2 types of
reductions:

— Reduction in the Spatial domain.
— Projection onto informative subspaces.



Reduction in the Spatial Domain

A reasonable assumption: A natural image can be viewed as
a realization of a Markov Random Filed:

1. A large enough neighborhood of an image pixel
completely characterizes its p.d.f.:

PlgIN,)=P(q| p,p=q)

2. This p.d.f. is similar for all pixels (the homogeneity
property of images).

We have to model only the

distribution of local contexts:

P(a.N,)

g




Projection onto Informative Subspaces
e Further reduction can be achieved by modeling only marginal
distributions over subspaces of the context space.

» Subspaces should be chosen such that “informative
information will not be lost.

e A crucial problem: what are “informative” subspaces?




Informative Subspaces

* Informative subspaces are task driven.

o If ourtask is to predict y form x (and visa versa) we should
choose subspaces in which the two variables are most

correlated.

The Canonical Correlation Analysis (CCA)

finds such subspaces.



The Canonical Correlation Analysis (CCA)

e Assume two multidimensional random variables: x and y .

« We are looking for two projection vectors w, and w, such that
the correlation between x'=x"w_and )’ =yTWy IS maximized:

) E{x'y'}
) E

p(w, .w



Simple Example

X=X,=2y,1y,

y=(Y1,Y>)

x’'=(l,-1) X
y=02,1y

Canonical Correlations



The Canonical Correlation Analysis (CCA) seing 193¢

 The solution for w, and w, satisfies the eigenvalue equations:

c,Cc,C/,C w, 6 =p°w

c,C,C,/C w, =p’w



The CCA characteristics:

w, 1 and w, ,corresponding to the greatest eigenvalue p,*
define the directions with the maximal correlation p;.

The subsequent 2 eigenvectors are the second best
directions, and so forth.

The set of eigenvectors are the CC basis vectors.

The corresponding eigenvalues are the Canonical
Correlations.

The CCA basis vectors also decorrelate off-diagonal terms,
L.e. C,, C,, and C, are diagonal in the new basis

If x and y are Gaussians CCA maximizes also their mutual
Information.



CCA V.S. PCA

CCA PCA
Variables distinct entities augmented
Mutual Correlations Maximizes Minimizes
Affine Trans. Independent dependent

Consideration

between classes

between and within
classes




Simple Example

Due to the
within
correlations of x,
PCA fails to
provide useful
Information.




Previous Example

Canonical Correlations Principal Components



The CC ofi Color Images

 In the following we
consider natural color

Image.

» All values are presented |1
In log(RGB) space: '

(R(x, )
f(x, y)=log| G(x, )
\B(x,»))




A Special Case of Marginal: Pure Spectral

« The following joint histograms show the marginal p.d.f. of the
Image in the pure spectral domain:

P(r,g,b) c#(R(x,y) =r,G(x,y) = g, B(x,) =b)



A joint Histogram of rv.s. g




A joint Histogram of g v.s. b

/




A joint Histogram of rv.s. b







e Observations:
— The spectral components are correlated.
— There are diagonal line structures in the histograms.
— The histogram shapes are not stable over different images.

e Question: Do we loose information if we model the image
prior over the pure spectral domain?



The CCA of 1x2 neighborhoods

« Applying the CCA over (R,G,B) where each variable is a 1x2
neighborhood gives the following results:

e The CC basis Is composed of x-derivatives

« Similar results for each color pair.



The CCA of 2x1 neighborhoods

« Applying the CCA over (R,G,B) where each variable is a 2x1
neighborhood gives the following results:

e The CC basis is composed of y-derivatives
« Similar results for each color pair.



» The following joint histograms show the marginal p.d.f. along
the first CCA direction, for 1x2 neighborhoods:

P(R',G',B")
oc H(RT (x, y)wy, G” (x, ) wg BT (x, y)w )

\ 2 /
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A joint Histogram of r, v.s. g,
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A joint Histogram of g v.s. b,
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A joint Histogram of r_ v.s. b,
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The CCA of 2x2 neighborhoods

« Applying the CCA over (R,G,B) where each variable is a 2x2
neighborhood gives the following results:

The 4 CC vectors of The 4 CC vectors of
the Red plane the Green plane
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The 4 CC values for the CC vectors



The sum of components of CC vectors



The CCA of 5x5 neighborhoods

« Applying the CCA over (R,G,B) where each variable is a 5x5
neighborhood gives the following results:
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The 25 CC vectors



The 25 CC values for the CC The 25 DC values for the CC
vectors vectors



e (Observations:

— The histogram shapes are highly stable over different
Images.

— CC directions in 1x2 and 2x1 neighborhoods are the
X-derivative and y-derivatives.

— For kxk neighborhoods:
> In all but one direction the DC value is zero.

> n all DC=0 directions the CC values are almost
Identical.

»Any linear combination of CC vectors with
Identical CC values, is a legitimate CC vector.



Comparison with PCA 15t PC

40 60 80 100 120 140 160 180 200

Projected Red Projected Red
V.S. V.S.
Projected Green Projected Blue



Comparison with PCA 1%t PC

Table 1: Statistical values for various projected subspaces. All values were
calculated for the Red and Green bands, and were averaged over 20 different
natural images. The statistical values are (left to right): a. The correlation be-
tween Red and Green values: Corr(R,G). b. The differential entrapy H (R,G).
c. The mutual information I(E,G) = H(K,G)— H(R) — H(G). d. Two sided
conditional entropy H(K|G)+ H(G|R) =H(K,G)—I(R,G).




Color Image Representation

* From now on we consider x and y derivatives as the CC
directions (high pass filters).

» We define a new color basis (l,c,,c,):

! R 11 1 [ — luminance
¢, |=T| G| where T=n1l -1 0 C,- red/green

c, B 1 1 =2 C, — blue/yellow

A joint Histogram of r v.s. g
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Since spatial derivative is commutative we have that (l,,c,,,C,,) IS a rotated
version of (R,,G,,B,):

R, . R . R . [ [
Ox Ox Ox *
B, B B Cy Cy.

In the new coordinate system:.

— It is improbable to have high derivative values in the chrominance
components.

— It is probable to have high derivative values in the luminance
component.

A joint Histogram of rV.s.g,
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High derivatives Low derivatives Low derivatives

Claim: The HVS’ high spatial sensitivity in the Luminance
domain and low spatial sensitivity in the Chrominance
domains is an outcome of the statistical properties of color
images!



\

A

Problem
to Solve

e /
Characteristics



Parametric Prior for Color Images

 Useful Observation: The marginals in the (/,, C, ,, C,,) basis are
statistically independent.

o Therefore it is possible to represent the p.d.f. as a product of marginals:

P(lx’cl,x’CZ,x):P(lx )P(Cl,x)P(CZ,x)

 Similarly for (7, C,, G,,)
P(ly’cl,y’CZ,y):P(ly)P(cl,y)P(CZ,y)

« Assuming x-derivatives and y-derivatives are stat. independent, we
estimate the prior of color images in the CC subspaces:

P(R, G, B) ~ P(lx ,C1 1 Co )P(ly /C1 1y Co )




* First Approximation — A Joint Gaussian

Pley,(x,7)) o expi-a®cZ, (x,y)}
Pley, (x,y)) o expl-a®cZ, (x,v))
P(L,(x, y))oc expl B212(x, )]

e The p.d.f. For a=1/5 and =1/120

A joint Histogram of r, v.s. g,

Parametric Estimation Actual Histogram



e Let h(x,y) be the image in the new basis:

h(x,y)=Tf(x,y)

» Using the joint Gaussian model:

Py (h(x,y))= %exp?az\\vcl(x,yl\z — Ve, (e - B I )

where



« Note: The Joint Gaussian model is convenient when applying it to inverse
problems, however the marginals are Super-Gaussians:

< 10° marginal histogram of | values
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o Better Approximation — A Joint Laplacian

P(clx (x, y))oc exp{— ac (x, y)(}
P(czx(x, y))oc eXp{— a‘cz’x (x,y)(}
P(1,(x. 7)) expt- Bl (x. )

e The p.d.f. For a=1/5 and (=1/80

A joint Histogram of r, v.s. g,

Parametric Estimation Actual Histogram



e Let h(x,y) be the image in the new basis:

h(x,y)=Tf(x,y)

« Using the joint Laplacian model:

Py (h(x,y))= éexp{—aHWz (xy)|-a|Ve, (xy)|-B|VI(x2)|)



Inverse Problem: Image Demosaicing

 The CCD sensor in a digital camera

acquires a single color component for
each pixel.

e Problem: How to interpolate the
missing components?

HEEE
HEEE
HEEE




Inverse Problem: Image Demosaicing

o Degradation Model:

m(x,y)=s(x,y) f(x,y)

— f(x,y) the original image in the RGB basis
— m(X,y) the mosaic image
— 5(X,y) a sampling mask

S
1 if color w i led
s(x,y)=| s(x,p)| where Sw(x,y):{ if color W is sample
S

0] otherwise



Using MAP estimator, the optimal solution satisfies:
F\(x, y)=argmax, P, (h) st m(x,y)=s-Th(x, y)

prior term data term

Joint Gaussian case: Minimization is applied using POCS:
— Minimizing the prior term:

min Y alVe, (x, y) +a|Ve, (x, p ) + BIVIG v )
X,y

[x,y) =1'(x,y)- B2V (xy) =1'(xy) * (6-5V?)
CiHl(x’y):Cit(x’y)_azvzcz‘t(x’y) :Cit(x’y)* (5—0(2V2)

— Projecting temporary results onto the constraint:

m(x,y)=s-T"h(x, y)



Freq. Profile of the kernel applied to
the Luminance channels.

Freq. Profile of the kernel applied to
the Chrominance channels.




The Demosaicing Algorithm (Gaussian Model)

Initial interpolation:
Bilinear

| |
f(RGB)—h(LC,C,) -
1 ]

Strongly Smooth C, and C, Reset original values from m

Slightly Smooth L ——) h(LC,C,) — f(RGB)




PEEE

 Since each iteration applies a linear operation, the entire algorithm
can be implemented using a single linear operation.

« A similar algorithm can be produced using only the characteristics
of the HVS where minimizing P, (Vh(x,y)) can be interpreted as a
perceptual penalty.

* Modeling P,,(h) using a joint Laplacian p.d.f. yields an adaptive
filtering which preserves edges (TV norm for Laplacian
distribution).

min Za‘Vcl(x, y){ — a‘ch (x, y){ + ,B‘Vl(x, y){

, Ve, (xy)
‘Vlt(x,y)‘

» VI (x.y)
‘Vlt(x,y)‘

I (xy) =1"(xy)-B peit(xy)=c(xy)-a
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Initial Solution



Final Solution



Demosaicing Results using adaptive filtering

Optimal Linear Demosaicing Adaptive CC Demosaicing



Conclusions

* Modeling the prior of natural color images is important.

* Modeling the prior in the Canonical Correlation directions is useful in
some applications (e.g. demosaicing).

e The statistical properties of color images in the CC directions conforms
with the characteristics of the HVS.

Future Work:
— Noise removal using Soft / Hard thersholding in the CC basis

»
»

\ 4

CC luminance CC chrominance



Red CC Green CC

Green CC







Example: x and y are 20D random vectors where:
X(2i)-X(2i-1)=y(2i)-y(2i-1)

15t CC vector of x 15t CC vector of y

The CC values The DC of the CC vectors
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