The Canonical Correlations of Color Images and their use in Inverse Problems

Yacov Hel-Or
School of Computer Science
The Interdisciplinaty Center
The Image Prior

- A color image is typically represented by three bands:

\[ f(x,y) = [ R(x,y) \ G(x,y) \ B(x,y) ]^T \]

- Independent of the representation, a prior statistical distribution over natural images is required in many applications:
Does the HVS use an Image prior?
An **Inverse problem** of color images aims at reconstructing an image $f(x,y)$ from its degraded version $m(x,y)$:

$$m(x,y) = D[f(x,y)]$$

The degradation operation is non-invertible or ill-posed!

Examples:
- Image demosaicing.
- Image Scaling.
- Image Sharpening.
- Image Denoising.
• A possible solution using the *Maximum a Posteriori* (MAP) estimator:

\[
\hat{f} = \arg \max_f P_{F|M}(f \mid m)
\]

• Using Bayes conditional rule:

\[
\hat{f} = \arg \max_f P_{M|F}(m \mid f)P_F(f)
\]

\[
= \arg \max_f \log P_{M|F}(m \mid f) + \log P_F(f)
\]

Degradation Model (data term)  Image Prior Model (prior term)
Data Term

Prior Term

\[ f(x,y) \]

\[ f_{PF} \]

\[ P_F(f) \]

\[ P_{M|F}(m \mid f) \]
• If the degradation model is noise free, the “data term” has a ridge distribution and becomes a constraint:
• The “data term” $P_{M|F}$ is derived from the degradation process and is (relatively) easy to model (Gaussian Noise, noise free).

• The “prior term” $P_F$ defines a prior over natural color images:
  – Defined over a huge dim. space (3E6 for 1Kx1K color image)
  – Known to be non Gaussian.
  – Very complicated to model.
  – Crucial for any reconstruction method.

Main Goal:
Modeling a (useful) prior distribution of natural color images
“All statistical models are wrong, but only some are useful”

Quoted from: *Statistics of Images* .. by Mark. L. Green.
Towards Useful Priors: Dimensionality Reduction

• Due to the dimensionality of $P_f$, modeling the entire joint distribution is impractical.

• In order to build a useful model we must reduce the dimensionality of the problem.

• Common approaches for image modeling use 2 types of reductions:
  – Reduction in the Spatial domain.
  – Projection onto informative subspaces.
Reduction in the Spatial Domain

- A reasonable assumption: A natural image can be viewed as a realization of a *Markov Random Field*:
  1. A large enough neighborhood of an image pixel completely characterizes its p.d.f.:

\[ P(q \mid N_q) = P(q \mid p, p \neq q) \]

  2. This p.d.f. is similar for all pixels (the homogeneity property of images).

- We have to model only the distribution of local contexts:

\[ P(q, N_q) \]
Projection onto Informative Subspaces

- Further reduction can be achieved by modeling only marginal distributions over subspaces of the context space.
- Subspaces should be chosen such that “informative” information will not be lost.
- A crucial problem: what are “informative” subspaces?
Informative Subspaces

- Informative subspaces are task driven.
- If our task is to predict $y$ form $x$ (and visa versa) we should choose subspaces in which the two variables are most correlated.

*The Canonical Correlation Analysis (CCA)*

finds such subspaces.
The Canonical Correlation Analysis (CCA)

- Assume two multidimensional random variables: $x$ and $y$.
- We are looking for two projection vectors $w_x$ and $w_y$ such that the correlation between $x' = x^T w_x$ and $y' = y^T w_y$ is maximized:

$$\rho(w_x, w_y) = \frac{E \{x'y'\}}{\sqrt{E \{x'^2\}E \{y'^2\}}}$$
Simple Example

\[ x_1 - x_2 = 2y_1 + y_2 \]

\[ x = (x_1, x_2) \quad \text{and} \quad y = (y_1, y_2) \]

Canonical Correlations

\[ x' = (1, -1) \quad x \]
\[ y' = (2, 1) \quad y \]
The Canonical Correlation Analysis (CCA) Hoteling 1936

- The solution for $w_x$ and $w_y$ satisfies the eigenvalue equations:

\[
C_{yy}^{-1}C_{yx}C_{xx}^{-1}C_{xy}w_y = \rho^2 w_y \\
C_{xx}^{-1}C_{xy}C_{yy}^{-1}C_{yx}w_x = \rho^2 w_x
\]

where:

\[
C_{xx} = \frac{1}{n} \sum_{i} x_i x_i^t \\
C_{yy} = \frac{1}{n} \sum_{i} y_i y_i^t \\
C_{xy} = \frac{1}{n} \sum_{i} x_i y_i^t
\]
• The CCA characteristics:
  
  – \( w_{x,1} \) and \( w_{y,1} \) corresponding to the greatest eigenvalue \( \rho_1 \) define the directions with the maximal correlation \( \rho_1 \).
  
  – The subsequent 2 eigenvectors are the second best directions, and so forth.
  
  – The set of eigenvectors are the \textit{CC basis vectors}.
  
  – The corresponding eigenvalues are the \textit{Canonical Correlations}.
  
  – The CCA basis vectors also decorrelate off-diagonal terms, i.e. \( C_{xx} \), \( C_{yy} \) and \( C_{xy} \) are diagonal in the new basis.
  
  – If \( x \) and \( y \) are Gaussians CCA maximizes also their mutual information.
### CCA V.S. PCA

<table>
<thead>
<tr>
<th></th>
<th>CCA</th>
<th>PCA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variables</td>
<td>distinct entities</td>
<td>augmented</td>
</tr>
<tr>
<td>Mutual Correlations</td>
<td>Maximizes</td>
<td>Minimizes</td>
</tr>
<tr>
<td>Affine Trans.</td>
<td>independent</td>
<td>dependent</td>
</tr>
<tr>
<td>Consideration</td>
<td><em>between</em> classes</td>
<td><em>between</em> and <em>within</em> classes</td>
</tr>
</tbody>
</table>
Simple Example

\[ y = 1 - x_2 + n \]

Due to the *within* correlations of \( x \), PCA fails to provide useful information.
Previous Example

$$\mathbf{x} = (x_1, x_2)$$  $$\mathbf{y} = (y_1, y_2)$$

$$x_1 - x_2 = 2y_1 + y_2$$

Canonical Correlations  Principal Components
The CC of Color Images

• In the following we consider natural color image.

• All values are presented in log(RGB) space:

\[
f(x, y) = \log \begin{pmatrix} R(x, y) \\ G(x, y) \\ B(x, y) \end{pmatrix}
\]
A Special Case of Marginal: Pure Spectral

- The following joint histograms show the marginal p.d.f. of the image in the pure spectral domain:

\[
P(r, g, b) \propto \#(R(x, y) = r, G(x, y) = g, B(x, y) = b)
\]
A joint Histogram of r v.s. g
A joint Histogram of r v.s. b

Red

Blue

50
100
150
200
250

50
100
150
200
250
• Observations:
  – The spectral components are correlated.
  – There are diagonal line structures in the histograms.
  – The histogram shapes are not stable over different images.

• Question: Do we loose information if we model the image prior over the pure spectral domain?
The CCA of 1x2 neighborhoods

- Applying the CCA over (R,G,B) where each variable is a 1x2 neighborhood gives the following results:

- The CC basis is composed of x-derivatives
- Similar results for each color pair.
The CCA of 2x1 neighborhoods

- Applying the CCA over (R,G,B) where each variable is a 2x1 neighborhood gives the following results:

  - The CC basis is composed of y-derivatives
  - Similar results for each color pair.
The following joint histograms show the marginal p.d.f. along the first CCA direction, for 1x2 neighborhoods:

\[ P(R', G', B') \propto \]

\[ \propto H(R^T(x, y)w_R, G^T(x, y)w_G, B^T(x, y)w_B) \]
A joint Histogram of $r_x$ v.s. $g_x$
A joint Histogram of $g_x$ v.s. $b_x$
A joint Histogram of $r_x$ v.s. $b_x$
The CCA of 2x2 neighborhoods

- Applying the CCA over (R,G,B) where each variable is a 2x2 neighborhood gives the following results:

The 4 CC vectors of the Red plane

The 4 CC vectors of the Green plane
The 4 CC values for the CC vectors
The sum of components of CC vectors
The CCA of 5x5 neighborhoods

- Applying the CCA over (R,G,B) where each variable is a 5x5 neighborhood gives the following results:

The 25 CC vectors
The 25 CC values for the CC vectors

The 25 DC values for the CC vectors
• Observations:
  – The histogram shapes are highly stable over different images.
  – CC directions in 1x2 and 2x1 neighborhoods are the x-derivative and y-derivatives.
  – For kxk neighborhoods:
    - In all but one direction the DC value is zero.
    - In all DC=0 directions the CC values are almost identical.
    - Any linear combination of CC vectors with identical CC values, is a legitimate CC vector.
Comparison with PCA 1\textsuperscript{st} PC

Projected Red
v.s.
Projected Green

Projected Red
v.s.
Projected Blue
## Comparison with PCA 1st PC

<table>
<thead>
<tr>
<th>Subspace</th>
<th>Correlation</th>
<th>Entropy</th>
<th>Mutual Inf</th>
<th>Cond. Ent.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pure Spectral</td>
<td>0.91</td>
<td>8.60</td>
<td>1.75</td>
<td>6.84</td>
</tr>
<tr>
<td>PCA 2 × 1</td>
<td>0.94</td>
<td>8.19</td>
<td>1.78</td>
<td>6.40</td>
</tr>
<tr>
<td>PCA 1 × 2</td>
<td>0.94</td>
<td>8.24</td>
<td>1.76</td>
<td>6.48</td>
</tr>
<tr>
<td>PCA 3 × 3</td>
<td>0.94</td>
<td>8.13</td>
<td>1.86</td>
<td>6.26</td>
</tr>
<tr>
<td>CCA 2 × 1</td>
<td>0.99</td>
<td>5.03</td>
<td>1.65</td>
<td>3.38</td>
</tr>
<tr>
<td>CCA 1 × 2</td>
<td>0.98</td>
<td>5.04</td>
<td>1.50</td>
<td>3.54</td>
</tr>
<tr>
<td>CCA 2 × 2</td>
<td>0.99</td>
<td>4.64</td>
<td>1.72</td>
<td>2.92</td>
</tr>
<tr>
<td>CCA 3 × 3</td>
<td>0.99</td>
<td>4.53</td>
<td>1.68</td>
<td>2.84</td>
</tr>
</tbody>
</table>

Table 1: Statistical values for various projected subspaces. All values were calculated for the Red and Green bands, and were averaged over 20 different natural images. The statistical values are (left to right): a. The correlation between Red and Green values: $\text{Corr}(R, G)$. b. The differential entropy $H(R, G)$. c. The mutual information $I(R, G) = H(R, G) - H(R) - H(G)$. d. Two sided conditional entropy $H(R|G) + H(G|R) = H(R, G) - I(R, G)$. 
Color Image Representation

- From now on we consider $x$ and $y$ derivatives as the CC directions (high pass filters).
- We define a new color basis $(l,c_1,c_2)$:

$$
\begin{align*}
(l) &= T(R) \\
(c_1) &= T(G) \\
(c_2) &= T(B)
\end{align*}
$$

where

$$
T = \begin{pmatrix} 1 & 1 & 1 \\
1 & -1 & 0 \\
1 & 1 & -2 \end{pmatrix}
$$

- $l$ – luminance
- $C_1$ – red/green
- $C_2$ – blue/yellow
• Since spatial derivative is commutative we have that \((l_x, c_{1x}, c_{2x})\) is a rotated version of \((R_x, G_x, B_x)\):

\[
T \begin{pmatrix} R_x \\ G_x \\ B_x \end{pmatrix} = T \begin{pmatrix} \frac{\partial R}{\partial x} \\ \frac{\partial G}{\partial x} \\ \frac{\partial B}{\partial x} \end{pmatrix} = \begin{pmatrix} l_x \\ c_1 \\ c_2 \end{pmatrix}
\]

• In the new coordinate system:
  – It is improbable to have high derivative values in the chrominance components.
  – It is probable to have high derivative values in the luminance component.

![A joint Histogram of r_x v.s. g_x](image)
Claim: The HVS’ high spatial sensitivity in the Luminance domain and low spatial sensitivity in the Chrominance domains is an outcome of the statistical properties of color images!
Parametric Prior for Color Images

- Useful Observation: The marginals in the \((l_x, C_{1,x}, C_{2,x})\) basis are statistically independent.
- Therefore it is possible to represent the p.d.f. as a product of marginals:

\[
P(l_x, c_{1,x}, c_{2,x}) = P(l_x) P(c_{1,x}) P(c_{2,x})
\]

- Similarly for \((l_y, C_{1,y}, C_{2,y})\):

\[
P(l_y, c_{1,y}, c_{2,y}) = P(l_y) P(c_{1,y}) P(c_{2,y})
\]

- Assuming x-derivatives and y-derivatives are stat. independent, we estimate the prior of color images in the CC subspaces:

\[
P(R, G, B) \approx P(l_x, c_{1,x}, c_{2,x}) P(l_y, c_{1,y}, c_{2,y})
\]
• First Approximation – A Joint Gaussian

\[ P(c_{1,x}(x, y)) \propto \exp\left\{ -\alpha^2 c_{1,x}^2(x, y) \right\} \]
\[ P(c_{2,x}(x, y)) \propto \exp\left\{ -\alpha^2 c_{2,x}^2(x, y) \right\} \]
\[ P(l_x(x, y)) \propto \exp\left\{ -\beta^2 l_x^2(x, y) \right\} \]

• The p.d.f. For \( \alpha=1/5 \) and \( \beta=1/120 \)

Parametric Estimation  
Actual Histogram
• Let \( h(x,y) \) be the image in the new basis:

\[
h(x, y) = T f(x, y)
\]

• Using the joint Gaussian model:

\[
P_H(h(x,y)) = \frac{1}{K} \exp \left\{ -\alpha^2 \| \nabla c_1(x,y) \|^2 - \alpha^2 \| \nabla c_2(x,y) \|^2 - \beta^2 \| \nabla l(x,y) \|^2 \right\}
\]

where

\[
\nabla = \begin{pmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial y} \end{pmatrix}^T
\]
• **Note:** The Joint Gaussian model is convenient when applying it to inverse problems, however the marginals are Super-Gaussians:
• Better Approximation – A Joint Laplacian

\[
P(c_{1x}(x,y)) \propto \exp\left\{-\alpha |c_{1x}(x,y)|\right\}
\]

\[
P(c_{2x}(x,y)) \propto \exp\left\{-\alpha |c_{2x}(x,y)|\right\}
\]

\[
P(l_x(x,y)) \propto \exp\left\{-\beta |l_x(x,y)|\right\}
\]

• The p.d.f. For \(\alpha=1/5\) and \(\beta=1/80\)

Parametric Estimation  
Actual Histogram
• Let \( h(x,y) \) be the image in the new basis:

\[
h(x, y) = T f(x, y)
\]

• Using the joint Laplacian model:

\[
P_H(h(x, y)) = \frac{1}{K} \exp \left\{ -\alpha \| \nabla c_1(x, y) \| - \alpha \| \nabla c_2(x, y) \| - \beta \| \nabla l(x, y) \| \right\}
\]
Inverse Problem: Image Demosaicing

• The CCD sensor in a digital camera acquires a single color component for each pixel.
• Problem: How to interpolate the missing components?
Inverse Problem: Image Demosaicing

- Degradation Model:

\[ m(x, y) = s(x, y) \cdot f(x, y) \]

- \( f(x, y) \) the original image in the RGB basis
- \( m(x, y) \) the mosaic image
- \( s(x, y) \) a sampling mask

\[ s(x, y) = \begin{pmatrix} s^R(x, y) \\ s^G(x, y) \\ s^B(x, y) \end{pmatrix} \quad \text{where} \quad s^w(x, y) = \begin{cases} 1 & \text{if color } w \text{ is sampled} \\ 0 & \text{otherwise} \end{cases} \]
• Using MAP estimator, the optimal solution satisfies:

\[ \hat{h}(x, y) = \arg \max_h P_H(h) \quad s.t. \quad m(x, y) = s \cdot T^{-1}h(x, y) \]

- **Joint Gaussian case:** Minimization is applied using POCS:
  - Minimizing the prior term:

\[
\min \sum_{x,y} \alpha \|\nabla c_1(x, y)\|^2 + \alpha \|\nabla c_2(x, y)\|^2 + \beta \|\nabla l(x, y)\|^2
\]

\[
l'^+_{i}(x, y) = l'(x, y) - \beta^2 \nabla^2 l'(x, y) = l'(x, y) * (\delta - \beta^2 \nabla^2)
\]

\[
c'^+_{i}(x, y) = c'_i(x, y) - \alpha^2 \nabla^2 c'_i(x, y) = c'_i(x, y) * (\delta - \alpha^2 \nabla^2)
\]

  - Projecting temporary results onto the constraint:

\[
m(x, y) = s \cdot T^{-1}h(x, y)
\]
Freq. Profile of the kernel applied to the Luminance channels.

Freq. Profile of the kernel applied to the Chrominance channels.
The Demosaicing Algorithm (Gaussian Model)

Input: m

Initial interpolation: Bilinear

f(RGB) → h(LC₁C₂)

Strongly Smooth C₁ and C₂

Slightly Smooth L

Reset original values from m

h(LC₁C₂) → f(RGB)

Output: f
Remarks

- Since each iteration applies a linear operation, the entire algorithm can be implemented using a single linear operation.
- A similar algorithm can be produced using only the characteristics of the HVS where minimizing $P_H(\nabla h(x, y))$ can be interpreted as a perceptual penalty.
- Modeling $P_H(h)$ using a joint Laplacian p.d.f. yields an adaptive filtering which preserves edges (TV norm for Laplacian distribution).

$$\min \sum_{x,y} \alpha |\nabla c_1(x, y)| + \alpha |\nabla c_2(x, y)| + \beta |\nabla l(x, y)|$$

$$l^{t+1}(x, y) = l^t(x, y) - \beta^2 \frac{\nabla^2 l^t(x, y)}{|\nabla l^t(x, y)|} \quad ; \quad c_i^{t+1}(x, y) = c_i^t(x, y) - \alpha^2 \frac{\nabla^2 c_i^t(x, y)}{|\nabla l^t(x, y)|}$$
Initial Solution
Initial Solution
Final Solution
Initial Solution
Final Solution
Demosaicing Results using adaptive filtering

Optimal Linear Demosaicing

Adaptive CC Demosaicing
Conclusions

• Modeling the prior of natural color images is important.
• Modeling the prior in the Canonical Correlation directions is useful in some applications (e.g. demosaicing).
• The statistical properties of color images in the CC directions conforms with the characteristics of the HVS.

• Future Work:
  – Noise removal using Soft / Hard thersholding in the CC basis

![Graphs showing CC luminance and CC chrominance](image-url)
Example: \( x \) and \( y \) are 20D random vectors where:

\[ x(2i) - x(2i-1) = y(2i) - y(2i-1) \]