## The Canonical Correlations of Color Images and their use in Inverse Problems

## Yacov Hel-Or

School of Computer Science
The Interdisciplinaty Center

## The Image Prior

- A color image is typically represented by three bands:

$$
f(x, y)=[R(x, y) G(x, y) B(x, y)]^{\mathrm{T}}
$$

- Independent of the representation, a prior statistical distribution over natural images is required in many applications:



## Does the HVS use an Image prior?



## Image Prior and Inverse Problems

- An Inverse problem of color images aims at reconstructing an image $\boldsymbol{f}(x, y)$ from its degraded version $\boldsymbol{m}(x, y)$ :

$$
\boldsymbol{m}(x, y)=D[\boldsymbol{f}(x, y)]
$$

## Degradation Model

- The degradation operation is non-invertible or ill-posed!
- Examples:
- Image demosaicing.
- Image Scaling.
- Image Sharpening.
- Image Denoising.
- A possible solution using the Maximum a Posteriori (MAP) estimator:

$$
\hat{f}=\arg _{\max }^{f} P_{F \mid M}(f \mid m)
$$

- Using Bayes conditional rule:

$$
\begin{aligned}
\hat{f} & =\arg \max _{f} P_{M \mid F}(m \mid f) P_{F}(f) \\
& =\arg \max _{f} \underbrace{\log P_{M \mid F}(m \mid f)}_{\begin{array}{c}
\text { Degradation } \\
\text { Model } \\
\text { (data term) }
\end{array}}+\underbrace{\log P_{F}(f)}_{\begin{array}{c}
\text { Image Prior } \\
\text { Model } \\
\text { (prior term) }
\end{array}}
\end{aligned}
$$



- If the degradation model is noise free, the "data term" has a ridge distribution and becomes a constraint:

- The "data term" $P_{M F}$ is derived from the degradation process and is (relatively) easy to model (Gaussian Noise, noise free).
- The "prior term" $P_{F}$ defines a prior over natural color images:
- Defined over a huge dim. space (3E6 for 1Kx1K color image)
- Known to be non Gaussian.
- Very complicated to model.
- Crucial for any reconstruction method.


## Main Goal:

Modeling a (useful) prior distribution of natural color images

# "All statistical models are wrong, but only some are useful" 

Quoted from: Statistics of Images .. by Mark. L. Green.

## Towards Useful Priors: <br> Dimensionality Reduction

- Due to the dimensionality of $P_{f}$, modeling the entire joint distribution is impractical.
- In order to build a useful model we must reduce the dimensionality of the problem.
- Common approaches for image modeling use 2 types of reductions:
- Reduction in the Spatial domain.
- Projection onto informative subspaces.


## Reduction in the Spatial Domain

- A reasonable assumption: A natural image can be viewed as a realization of a Markov Random Filed:

1. A large enough neighborhood of an image pixel completely characterizes its p.d.f.:

$$
P\left(q \mid N_{q}\right)=P(q \mid p, p \neq q)
$$

2. This p.d.f. is similar for all pixels (the homogeneity property of images).

- We have to model only the distribution of local contexts:

$$
\mathrm{P}\left(\mathrm{q}, \mathrm{~N}_{\mathrm{q}}\right)
$$



## Projection onto Informative Subspaces

- Further reduction can be achieved by modeling only marginal distributions over subspaces of the context space.
- Subspaces should be chosen such that "informative" information will not be lost.
- A crucial problem: what are "informative" subspaces?



## Informative Subspaces

- Informative subspaces are task driven.
- If our task is to predict $\mathbf{y}$ form $x$ (and visa versa) we should choose subspaces in which the two variables are most correlated.


## The Canonical Correlation Analysis (CCA)

finds such subspaces.

## The Canonical Correlation Analysis (CCA)

- Assume two multidimensional random variables: $\mathbf{x}$ and $\mathbf{y}$.
- We are looking for two projection vectors $\mathrm{w}_{\mathrm{x}}$ and $\mathrm{w}_{\mathrm{y}}$ such that the correlation between $x^{\prime}=\mathbf{x}^{T} \mathbf{w}_{x}$ and $y^{\prime}=\mathbf{y}^{T} \mathbf{w}_{y}$ is maximized:

$$
\rho\left(w_{x}, w_{y}\right)=\frac{E\left\{x^{\prime} y^{\prime}\right\}}{E\left\{x^{\prime 2}\right\} E\left\{y^{\prime 2}\right\}}
$$

## Simple Example



$$
\begin{aligned}
& x^{\prime}=(1,-1) x \\
& y^{\prime}=(2,1) y
\end{aligned}
$$

Canonical Correlations

## The Canonical Correlation Analysis (CCA) Hoteling 1936

- The solution for $\mathrm{w}_{\mathrm{x}}$ and $\mathrm{w}_{\mathrm{y}}$ satisfies the eigenvalue equations:

$$
\begin{aligned}
& C_{y y}^{-1} C_{y x} C_{-1}^{-1} C_{x y} w_{y}=\rho^{2} w_{y} \\
& C_{x y}^{-1} C_{x y} C_{y}^{-1} C_{y x} w_{x}=\rho^{2} w_{x}
\end{aligned}
$$

where:

$$
C_{x x}=\frac{1}{n} \sum_{i} \mathbf{x}_{i} \mathbf{x}_{i}{ }^{t} \quad C_{y y}=\frac{1}{n} \sum_{i} \mathbf{y}_{i} \mathbf{y}_{i}{ }^{\prime} \quad C_{x y}=\frac{1}{n} \sum_{i} \mathbf{x}_{i} \mathbf{y}_{i}{ }^{t}
$$

- The CCA characteristics:
$-\mathrm{w}_{\mathrm{x}, 1}$ and $\mathrm{w}_{\mathrm{y}, 1}$ corresponding to the greatest eigenvalue $\rho_{1}{ }^{2}$ define the directions with the maximal correlation $\rho_{1}$.
- The subsequent 2 eigenvectors are the second best directions, and so forth.
- The set of eigenvectors are the CC basis vectors.
- The corresponding eigenvalues are the Canonical Correlations.
- The CCA basis vectors also decorrelate off-diagonal terms, i.e. $C_{x x} C_{y y}$ and $C_{x y}$ are diagonal in the new basis
- If $x$ and $y$ are Gaussians CCA maximizes also their mutual information.


## CCA V.S. PCA

|  | CCA | PCA |
| :---: | :---: | :---: |
| Variables | distinct entities | augmented |
| Mutual Correlations | Maximizes | Minimizes |
| Affine Trans. | independent | dependent |
| Consideration | between classes | between and within <br> classes |

## Simple Example <br> $$
\mathrm{y}=1-\mathrm{x}_{2}+\mathrm{n}
$$

Due to the
within correlations of $x$, PCA fails to provide useful information.


## Previous Example


$\mathrm{x}=\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right)$

$\mathbf{y}=\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)$

$$
x_{1}-x_{2}=2 y_{1}+y_{2}
$$



Canonical Correlations


Principal Components

## The CC of Color Images

- In the following we consider natural color image.
- All values are presented in $\log (\mathrm{RGB})$ space:

$$
f(x, y)=\log \left(\begin{array}{l}
R(x, y) \\
G(x, y) \\
B(x, y)
\end{array}\right)
$$



## A Special Case of Marginal: Pure Spectral

- The following joint histograms show the marginal p.d.f. of the image in the pure spectral domain:

$$
P(r, g, b) \propto \#(R(x, y)=r, G(x, y)=g, B(x, y)=b)
$$




A joint Histogram of g v.s. b




- Observations:
- The spectral components are correlated.
- There are diagonal line structures in the histograms.
- The histogram shapes are not stable over different images.
- Question: Do we loose information if we model the image prior over the pure spectral domain?


## The CCA of $1 \times 2$ neighborhoods

- Applying the CCA over (R,G,B) where each variable is a $1 \times 2$ neighborhood gives the following results:

- The CC basis is composed of x-derivatives
- Similar results for each color pair.


## The CCA of 2 x 1 neighborhoods

- Applying the CCA over (R,G,B) where each variable is a $2 x 1$ neighborhood gives the following results:

- The CC basis is composed of $y$-derivatives
- Similar results for each color pair.
- The following joint histograms show the marginal p.d.f. along the first CCA direction, for 1x2 neighborhoods:

$$
\begin{aligned}
& P\left(R^{\prime}, G^{\prime}, B^{\prime}\right) \propto \\
& \quad \propto H\left(R^{T}(x, y) w_{R}, G^{T}(x, y) w_{G}, B^{T}(x, y) w_{B}\right)
\end{aligned}
$$



A joint Histogram of $r_{x}$ v.s. $g_{x}$


A joint Histogram of $g_{x}$ v.s. $b_{x}$


A joint Histogram of $r_{x}$ v.s. $b_{x}$



## The CCA of $2 \times 2$ neighborhoods

- Applying the CCA over (R,G,B) where each variable is a $2 x 2$ neighborhood gives the following results:


The 4 CC vectors of the Red plane


The 4 CC vectors of the Green plane



The 4 CC values for the CC vectors


The sum of components of CC vectors

## The CCA of $5 \times 5$ neighborhoods

- Applying the CCA over ( $\mathrm{R}, \mathrm{G}, \mathrm{B}$ ) where each variable is a $5 \times 5$ neighborhood gives the following results:


Red Plane


Green Plane

## The 25 CC vectors



The 25 CC values for the CC vectors


The 25 DC values for the CC vectors

- Observations:
- The histogram shapes are highly stable over different images.
- CC directions in 1x2 and 2x1 neighborhoods are the x -derivative and y -derivatives.
- For kxk neighborhoods:
$>$ In all but one direction the DC value is zero.
$>$ In all $\mathrm{DC}=0$ directions the CC values are almost identical.
> Any linear combination of CC vectors with identical CC values, is a legitimate CC vector.


## Comparison with PCA 1 ${ }^{\text {st }}$ PC



Projected Red v.s.

Projected Green


Projected Red v.s.

Projected Blue

## Comparison with PCA $1^{\text {st }}$ PC

| Subspace | Correlation | Entropy | Mutual Inf. | Cond. Ent. |
| :---: | :---: | :---: | :---: | :---: |
| Pure Spectral | 0.91 | 8.60 | 1.75 | 6.84 |
| PCA $2 \times 1$ | 0.94 | 8.19 | 1.78 | 6.40 |
| PCA $1 \times 2$ | 0.94 | 8.24 | 1.76 | 6.48 |
| PCA $3 \times 3$ | 0.94 | 8.13 | 1.86 | 6.26 |
| CCA $2 \times 1$ | 0.99 | 5.03 | 1.65 | 3.38 |
| CCA $1 \times 2$ | 0.98 | 5.04 | 1.50 | 3.54 |
| CCA $2 \times 2$ | 0.99 | 4.64 | 1.72 | 2.92 |
| CCA $3 \times 3$ | 0.99 | 4.53 | 1.68 | 2.84 |

Table 1: Statistical values for various projected subspaces. All values were calculated for the Red and Green bands, and were averaged over 20 different natural images. The statistical values are (left to right): a. The correlation between Red and Green values: $\operatorname{Corr}(\mathbf{R}, \mathrm{G})$. b. The differential entropy $H(R, G)$. c. The mutual information $I(R, G)=H(R, G)-H(R)-H(G)$. d. Two sided conditional entropy $H(R \mid G)+H(G \mid R)=H(R, G)-I(R, G)$.

## Color Image Representation

- From now on we consider $x$ and $y$ derivatives as the CC directions (high pass filters).
- We define a new color basis $\left(\mathrm{l}, \mathrm{c}_{1}, \mathrm{C}_{2}\right)$ :

$$
\left(\begin{array}{l}
l \\
c_{1} \\
c_{2}
\end{array}\right)=T\left(\begin{array}{l}
R \\
G \\
B
\end{array}\right) \quad \text { where } T=n\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & -1 & 0 \\
1 & 1 & -2
\end{array}\right) \quad \begin{aligned}
& l \text {-luminance } \\
& C_{1}-\text { red/green } \\
& C_{2}-\text { blue/yellow }
\end{aligned}
$$



- Since spatial derivative is commutative we have that $\left(\mathrm{l}_{x}, \mathrm{c}_{1 x}, \mathrm{C}_{2 x}\right)$ is a rotated version of $\left(\mathrm{R}_{\mathrm{x}}, \mathrm{G}_{\mathrm{x}}, \mathrm{B}_{\mathrm{x}}\right)$ :

$$
T\left(\begin{array}{l}
R_{x} \\
G_{x} \\
B_{x}
\end{array}\right)=T \frac{\partial}{\partial x}\left(\begin{array}{l}
R \\
G \\
B
\end{array}\right)=\frac{\partial}{\partial x} T\left(\begin{array}{l}
R \\
G \\
B
\end{array}\right)=\frac{\partial}{\partial x}\left(\begin{array}{l}
l \\
c_{1} \\
c_{2}
\end{array}\right)=\left(\begin{array}{l}
l_{x} \\
c_{1 x} \\
c_{2 x}
\end{array}\right)
$$

- In the new coordinate system:
- It is improbable to have high derivative values in the chrominance components.
- It is probable to have high derivative values in the luminance component.



High derivatives


Low derivatives


Low derivatives

Claim: The HVS’ high spatial sensitivity in the Luminance domain and low spatial sensitivity in the Chrominance domains is an outcome of the statistical properties of color images!


## Parametric Prior for Color Images

- Useful Observation: The marginals in the ( $l_{\mathrm{x}}, C_{1, \mathrm{x}}, C_{2, \mathrm{x}}$ ) basis are statistically independent.
- Therefore it is possible to represent the p.d.f. as a product of marginals:

$$
P\left(l_{x}, c_{1, x}, c_{2, x}\right)=P\left(l_{x}\right) P\left(c_{1, x}\right) P\left(c_{2, x}\right)
$$

- Similarly for $\left(l_{\mathrm{y}}, C_{1, \mathrm{y}}, C_{2, \mathrm{y}}\right)$ :

$$
P\left(l_{y}, c_{1, y}, c_{2, y}\right)=P\left(l_{y}\right) P\left(c_{1, y}\right) P\left(c_{2, y}\right)
$$

- Assuming x-derivatives and y-derivatives are stat. independent, we estimate the prior of color images in the CC subspaces:

$$
P(R, G, B) \approx P\left(l_{x}, c_{1, x}, c_{2, x}\right) P\left(l_{y}, c_{1, y}, c_{2, y}\right)
$$

- First Approximation - A Joint Gaussian

$$
\begin{aligned}
& P\left(c_{1_{x}}(x, y)\right) \propto \exp \left\{-\alpha^{2} c_{1, x}^{2}(x, y)\right\} \\
& P\left(c_{2 x}(x, y)\right) \propto \exp \left\{-\alpha^{2} c_{2, x}^{2}(x, y)\right\} \\
& P\left(l_{x}(x, y)\right) \propto \exp \left\{-\beta^{2} l_{x}^{2}(x, y)\right\}
\end{aligned}
$$

- The p.d.f. For $\alpha=1 / 5$ and $\beta=1 / 120$


Parametric Estimation


Actual Histogram

- Let $\boldsymbol{h}(x, y)$ be the image in the new basis:

$$
\mathbf{h}(x, y)=T \mathbf{f}(x, y)
$$

- Using the joint Gaussian model:

$$
P_{H}(\mathbf{h}(x, y))=\frac{1}{K} \exp \left\{-\alpha^{2}\left\|\nabla c_{1}(x, y)\right\|^{2}-\alpha^{2}\left\|\nabla c_{2}(x, y)\right\|^{2}-\beta^{2}\|\nabla l(x, y)\|^{2}\right\}
$$

where

$$
\nabla=\left(\begin{array}{ll}
\frac{\partial}{\partial x} & \frac{\partial}{\partial y}
\end{array}\right)^{T}
$$

- Note: The Joint Gaussian model is convenient when applying it to inverse problems, however the marginals are Super-Gaussians:



- Better Approximation - A Joint Laplacian

$$
\begin{aligned}
& P\left(c_{1 x}(x, y)\right) \propto \exp \left\{-\alpha\left|c_{1, x}(x, y)\right|\right\} \\
& P\left(c_{2 x}(x, y)\right) \propto \exp \left\{-\alpha\left|c_{2, x}(x, y)\right|\right\} \\
& \left.P\left(l_{x}(x, y)\right) \propto \exp \left\{-\beta \mid l_{x}(x, y)\right\}\right\}
\end{aligned}
$$

- The p.d.f. For $\alpha=1 / 5$ and $\beta=1 / 80$


Parametric Estimation

A joint Histogram of $r_{x}$ v.s. $g_{x}$


- Let $\boldsymbol{h}(x, y)$ be the image in the new basis:

$$
\mathbf{h}(x, y)=T \mathbf{f}(x, y)
$$

- Using the joint Laplacian model:

$$
\mathrm{P}_{\mathrm{H}}(\mathrm{~h}(\mathrm{x}, \mathrm{y}))=\frac{1}{K} \exp \left\{-\alpha\left\|\nabla c_{1}(x, y)\right\|-\alpha\left\|\nabla c_{2}(x, y)\right\|-\beta\|\nabla l(x, y)\|\right\}
$$

## Inverse Problem: Image Demosaicing

- The CCD sensor in a digital camera acquires a single color component for each pixel.
- Problem: How to interpolate the missing components?



## Inverse Problem: Image Demosaicing

- Degradation Model:

$$
m(x, y)=\mathbf{s}(x, y) \cdot \mathbf{f}(x, y)
$$

$-f(x, y)$ the original image in the RGB basis

- $m(\mathrm{x}, \mathrm{y})$ the mosaic image
- s(x,y) a sampling mask

$$
\mathbf{s}(x, y)=\left(\begin{array}{l}
s^{R}(x, y) \\
s^{G}(x, y) \\
s^{B}(x, y)
\end{array}\right) \quad \text { where } \quad s^{w}(x, y)=\left\{\begin{array}{cc}
1 & \text { if color } \mathbf{w} \text { is sampled } \\
0 & \text { otherwise }
\end{array}\right.
$$

- Using MAP estimator, the optimal solution satisfies:
$\hat{\mathbf{h}}(x, y)=\arg \max _{h} P_{H}(\mathbf{h})$ s.t. $m(x, y)=\mathbf{s} \cdot T^{-1} \mathbf{h}(x, y)$


## prior term

data term

- Joint Gaussian case: Minimization is applied using POCS:
- Minimizing the prior term:
$\min \sum_{x, y} \alpha\left\|\nabla c_{1}(x, y)\right\|^{2}+\alpha\left\|\nabla c_{2}(x, y)\right\|^{2}+\beta\|\nabla l(x, y)\|^{2}$

$$
\begin{aligned}
& l^{t+1}(x, y)=l^{t}(x, y)-\beta^{2} \nabla^{2} l^{t}(x, y)=l^{t}(x, y) *\left(\delta-\beta^{2} \nabla^{2}\right) \\
& c_{i}^{t+1}(x, y)=c_{i}^{t}(x, y)-\alpha^{2} \nabla^{2} c_{i}^{t}(x, y)=c_{i}^{t}(x, y) *\left(\delta-\alpha^{2} \nabla^{2}\right)
\end{aligned}
$$

- Projecting temporary results onto the constraint:

$$
m(x, y)=\mathbf{s} \cdot T^{-1} \mathbf{h}(x, y)
$$



Freq. Profile of the kernel applied to the Luminance channels.


## The Demosaicing Algorithm (Gaussian Model)



## Remarks

- Since each iteration applies a linear operation, the entire algorithm can be implemented using a single linear operation.
- A similar algorithm can be produced using only the characteristics of the HVS where minimizing $P_{H}(\nabla \mathbf{h}(x, y))$ can be interpreted as a perceptual penalty.
- Modeling $\mathrm{P}_{\mathrm{H}}(\mathrm{h})$ using a joint Laplacian p.d.f. yields an adaptive filtering which preserves edges (TV norm for Laplacian distribution).

$$
\min \sum_{x, y} \alpha\left|\nabla c_{1}(x, y)\right|+\alpha\left|\nabla c_{2}(x, y)\right|+\beta|\nabla l(x, y)|
$$

$$
I^{t+1}(x, y)=I^{t}(x, y)-\beta^{2} \frac{\nabla^{2} I^{t}(x, y)}{|\nabla|^{t}(x, y) \mid} ; c_{i}^{t+1}(x, y)=c_{i}^{t}(x, y)-\alpha^{2} \frac{\nabla^{2} c_{i}^{t}(x, y)}{|\nabla|^{\prime}(x, y) \mid}
$$



Initial Solution


Initial Solution


Final Solution


Initial Solution


Final Solution

## Demosaicing Results using adaptive filtering



Optimal Linear Demosaicing


Adaptive CC Demosaicing

## Conclusions

- Modeling the prior of natural color images is important.
- Modeling the prior in the Canonical Correlation directions is useful in some applications (e.g. demosaicing).
- The statistical properties of color images in the CC directions conforms with the characteristics of the HVS.
- Future Work:
- Noise removal using Soft / Hard thersholding in the CC basis


CC luminance


CC chrominance



Example: $x$ and $y$ are 20D random vectors where:

$$
x(2 i)-x(2 i-1)=y(2 i)-y(2 i-1)
$$


$1^{\text {st }} \mathrm{CC}$ vector of x

$1^{\text {st }} \mathrm{CC}$ vector of y


The DC of the CC vectors

