The Gray Code Kernels

Gil Ben-ArtziHagit Hel-OrYacov Hel-OrBar-Ilan UniversityHaifa UniversityIDC

Motivation

- Image filtering with a successive set of kernels is very common in many applications:
 - Pattern classification
 - Pattern matching
 - Texture analysis
 - Image Denoising

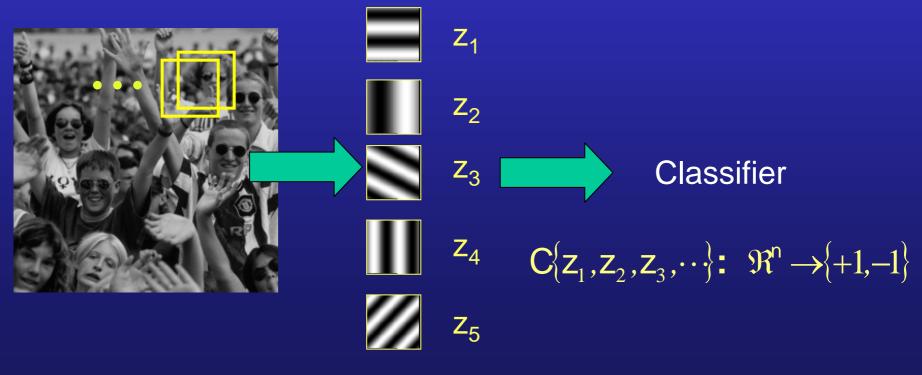
In some applications applying a large set of filter kernels is prohibited due to time limitation.

Example 1: Pattern detection

- **Pattern Detection**: Given a pattern subjected to some type of deformations, detect occurrences of this pattern in an image.
- Detection should be:
 - Accurate (small number of mis-detections/false-alarms).
 - As fast as possible.

Pattern Detection as a Classification Problem

Pattern detection requires a separation between two classes: a. The The detection complexity is dominated by the feature extraction



Feature extraction

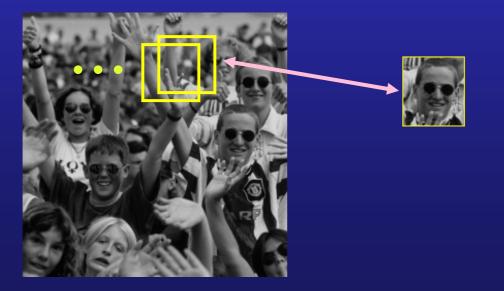
Feature Selection

• In order to optimize classification complexity, the feature set should be selected according to the following criteria:

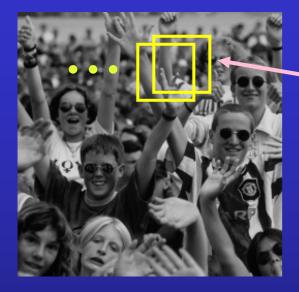
Informative: high "separation" power
 Fast to apply.

Example 2: Pattern Matching

- A known pattern is sought in an image.
- The pattern may appear at any location in the image.
- A degenerated classification problem.



The Euclidean Distance



 $d_E(u,v,t) = \sum [I(x-u, y-v, t-w) - P(x, y,t)]^2$ $x, y, t \in N$

Complexity (2D case)

	Average # Operations per Pixel	Space	Integer Arithm.	Run Time for 1Kx1K Image 32x32 pattern PIII, 1.8 Ghz
Naive	+: $2k^2$ *: k^2	n^2	Yes	5.14 seconds
Fourier	+: 36 log n *: 24 log n	n^2	No	4.3 seconds

Far from real-time performance

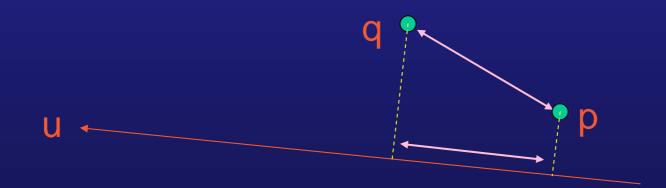
Suggested Solution: Bound Distances using Projection Kernels (Hel-Or² 03)

• Representing an image window and the pattern as points in *R*^{kxk}:

$$d_{E}(p,q) = ||p-q||^{2} = ||$$

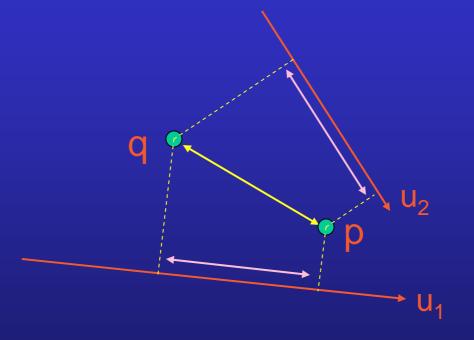
• If *p* and *q* were projected onto a kernel *u*, it follows from the Cauchy-Schwarz Inequality:

 $d_{\mathsf{E}}(\mathsf{p},\mathsf{q}) \geq |\mathsf{u}|^{-2} d_{\mathsf{E}}(\mathsf{p}^{\mathsf{T}}\mathsf{u}, \, \mathsf{q}^{\mathsf{T}}\mathsf{u})$



Distance Measure in Sub-space (Cont.)

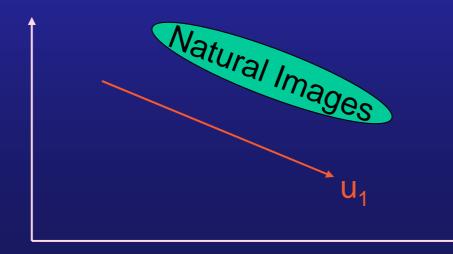
• If q and p were projected onto a set of kernels [U]:



 $d_E(p,q) \ge \sum_{k=1}^{r} \frac{1}{S_k^2} d_E(p^T u_k, q^T u_k)$

Two necessary requirements:

- 1. Choose informative projecting kernels [U]; having high probability to be parallel to the vector p-q.
- 2. Choose projecting kernels that are **fast** to apply.



Design a set of filter kernels with the following properties:

- "Informative" in some sense.
- Efficient to apply successively to images.
- Consists of a large variety of kernels.
- Forms a basis, thus allowing approximating <u>any</u> set of filter kernels.

Fast Filter Kernels

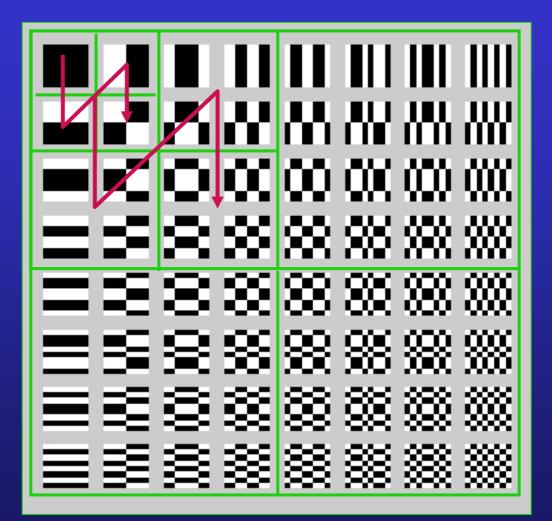
- Previous work:
 - Summed-area table / Franklin [1984]
 - Boxlets/ Simard, et. Al. [1999]
 - Integral image/ Viola & Jones [2001]
- Limitations:
 - A limited variety of filter kernels.
 - Approximation of large sets might be inefficient.
 - Does not form a basis and thus inefficient to compose other kernels.

Average / difference kernels

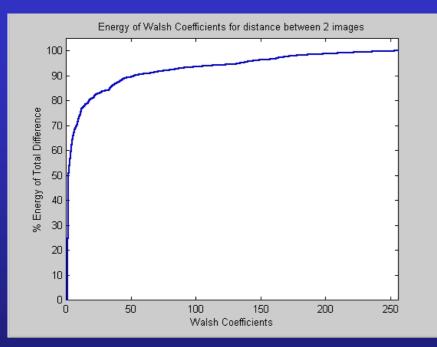
Real-Time projection kernels [Hel-Or²03]

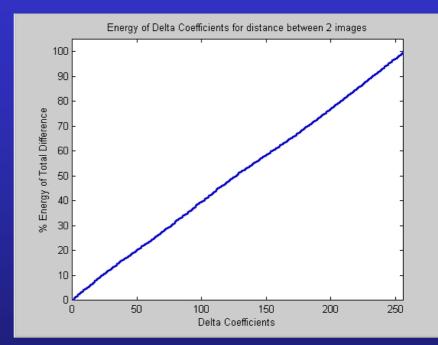
- A set of Walsh-Hadamard basis kernels.
- Each window in a natural image is closely spanned by the first few kernel vectors.
- Can be applied very fast in a recursive manner.

The Walsh-Hadamard Kernels:



Walsh-Hadamard v.s. Standard Basis:



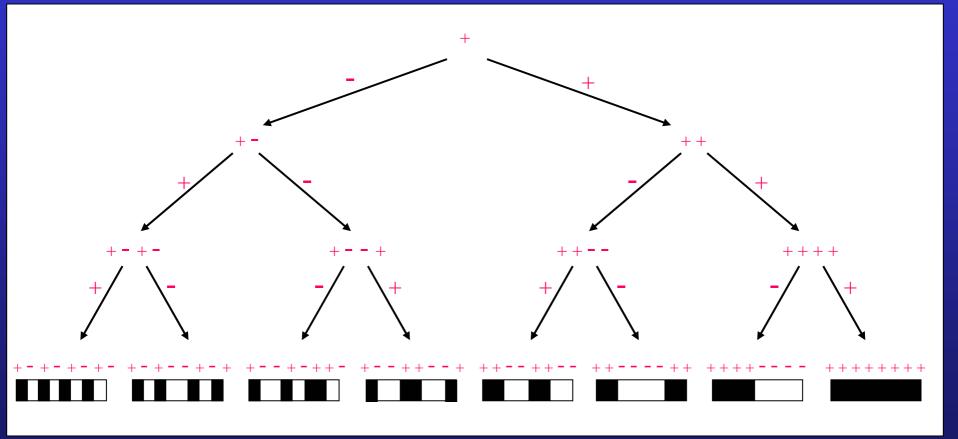


The lower bound for distance value in % v.s. number of Walsh-Hadamard projections, Averaged over 100 pattern-image pairs of

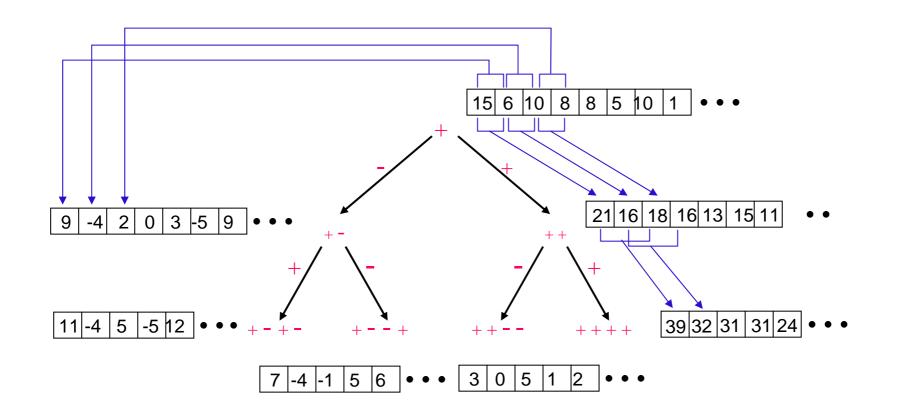
size 256x256.

The lower bound for distance value in % v.s. number of standard basis projections, Averaged over 100 pattern-image pairs of size 256x256.

The Walsh-Hadamard Tree (1D case)

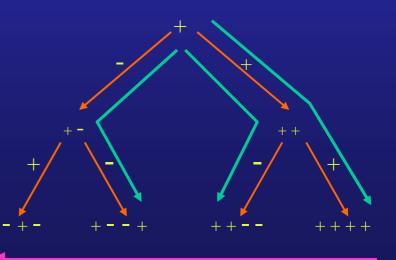


The Walsh-Hadamard Tree - Example



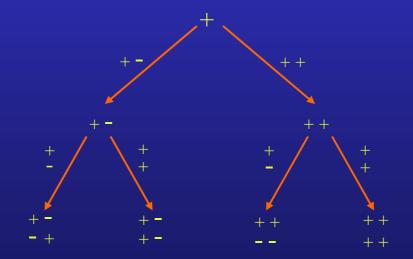
Properties:

- Descending from a node to its child requires one addition operation per pixel.
- The depth of the tree is *log k* where k is the kernel's size.
- Successive application of WH kernels requires between O(1) to O(log k) ops per kernel per pixel.
- Requires *n log k* memory size.
- Linear scanning of tree leaves.



Walsh-Hadamard Tree (2D):

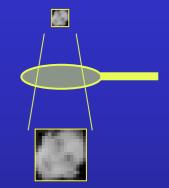
- For the 2D case, the projection is performed in a similar manner where the tree depth is *2log k*
- The complexity is calculated accordingly.



Construction tree for 2x2 basis

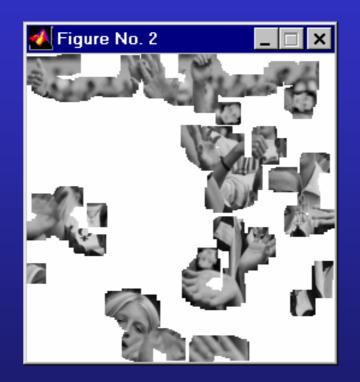
WH for Pattern Matching

- Iteratively apply Walsh-Hadamard kernels to each window w_i in the image.
- At each iteration and for each w_i calculate a lowerbound Lb_i for $|p-w_i|^2$.
- If the lower-bound Lb_i is greater than a pre-defined threshold, reject the window w_i and ignore it in further projections.

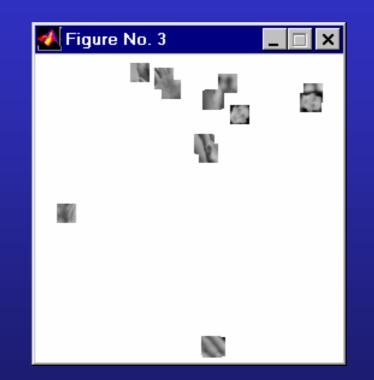


Sought Pattern

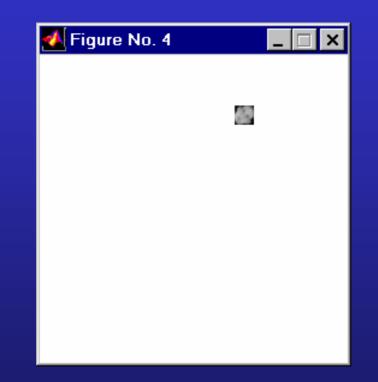
Initial Image: 65536 candidates



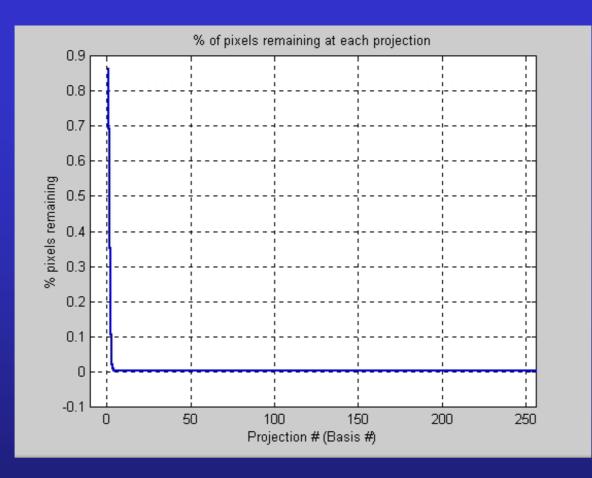
After the 1st projection: 563 candidates



After the 2nd projection: 16 candidates



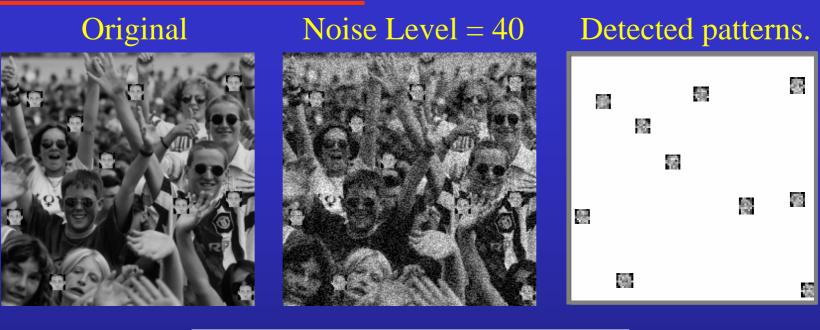
After the 3rd projection: 1 candidate

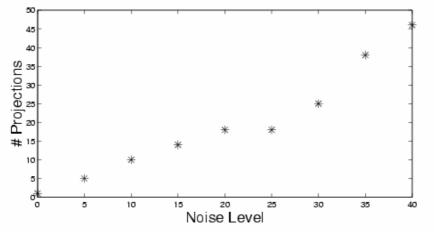


Percentage of windows remaining following each projection, averaged over 100 pattern-image pairs.

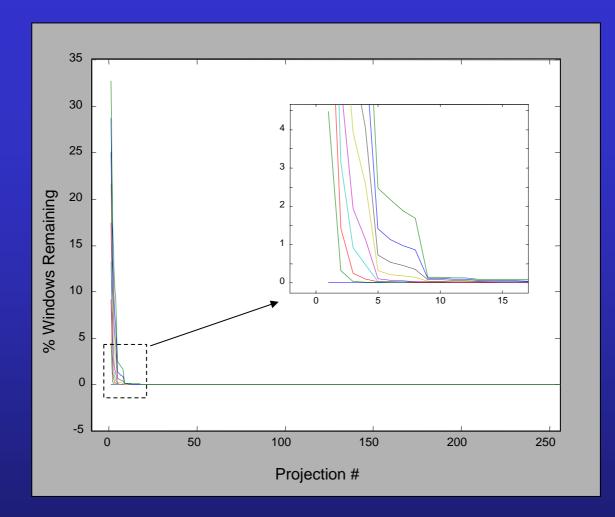
Image size = 256x256, pattern size = 16x16.

Example with Noise





Number of projections required to find all patterns, as a function of noise level. (Threshold is set to minimum).



Percentage of windows remaining following each projection, at various noise levels.

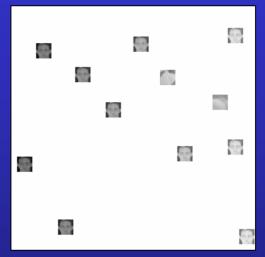
Image size = 256x256, pattern size = 16x16.

DC-invariant Pattern Matching

Original

Illumination gradient added

Detected patterns.



Five projections are required to find all 10 patterns (Threshold is set to minimum).

	Average # Operations per Pixel	Space	Integer Arithm.	Run Time for 1Kx1K Image 32x32 pattern PIII, 1.8 Ghz
Naive	+: $2k^2$ *: k^2	n^2	Yes	4.86 seconds
Fourier	+: 36 log n *: 24 log n	n^2	No	3.5 seconds
New	+: $2 \log k + \varepsilon$	n² log k	Yes	78 msec

- WH kernels can be applied very fast.
- Projections are performed with additions/subtractions only (no multiplications).
- Integer operations (3 times faster for additions).
- Possible to perform pattern matching at video rate.
- Can be easily extended to higher dim.

Limitations

- Limited set only the Walsh-Hadamard kernels.
- Each kernel is applied in O(1)- $O(d \log k)$
- Limited order of kernels.
- Limited to dyadic sized kernels.
- Requires maintaining d log k images in memory.

The Gray Code Kernels (GCK):

- Allowing convolution of large set of kernels in O(1):
 - Independent of the kernel size.
 - Independent of the kernel dimension.
 - Allows various computation orders of kernels.
 - Various size of kernels other than 2ⁿ.
 - Requires maintaining 2 images in memory.

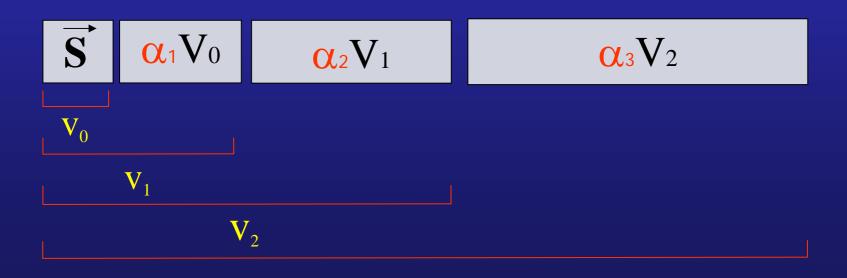
The Gray Code Kernels – Definitions (1D)

<u>Input</u>

- 1. A seed vector \vec{s} .
- 2. A set of coefficients $\alpha_1, \alpha_2 \dots \alpha_k \in \{+1, -1\}$.

<u>Output</u>

A set of recursively built kernels :

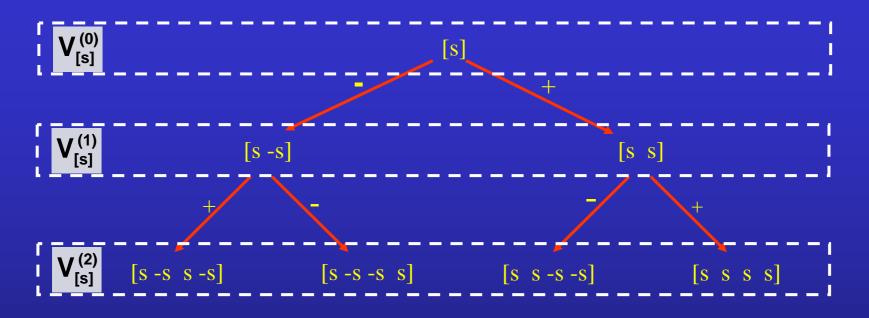


 V_3

GCK - Formal Definitions

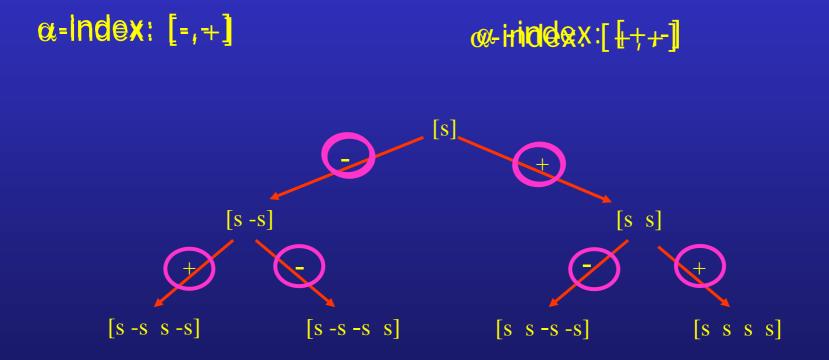
$$\begin{aligned} \mathbf{V}_{s}^{(0)} &= \vec{s} \\ \mathbf{V}_{s}^{(k)} &= \left\{ \begin{bmatrix} \vec{v}^{(k-1)} & \alpha_{k} \vec{v}^{(k-1)} \end{bmatrix} \right\} \\ s.t. \quad \vec{v}^{(k-1)} \in \mathbf{V}_{s}^{(k-1)} \quad and \quad \alpha_{k} \in \{+1, -1\} \end{aligned}$$

1 Dim GCK



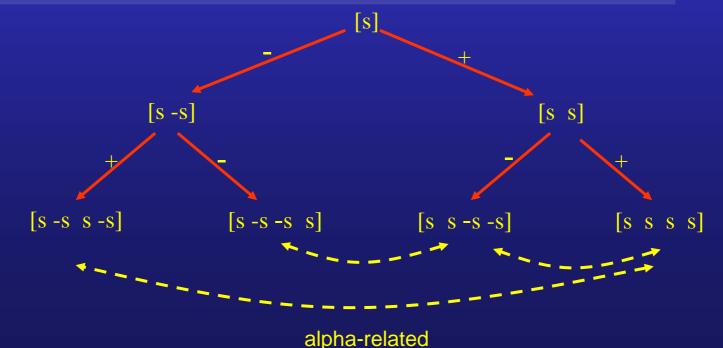
- The set of kernels at level k is denoted $V_{[s]}^{(k)}$.
- The initial seed s can be any vector.
- $V_{[s]}^{(k)}$ forms an orthogonal set of 2^k kernels .
- When [s]=1, $V_{[s]}^{(k)}$ forms the WH kernels of size 2^k .

<u>Definition 1</u>: The sequence $[\alpha_1 \alpha_{2...} \alpha_k]$ that uniquely defines a vector $v \in V_s^{(k)}$ is called the **alpha-index** of *v*.



<u>Definition 2</u>: Two vectors $v_i, v_j \in V_s^{(k)}$ are called **alpha-related** if the hamming distance of their alpha-index is one.

An ordered set of GCK that are consecutively alpha-related are called a **Gray-Code Sequence (GCS)**



GCS Properties

Let V₁ and V be two α -related vectors: V₁ and V₂ share a similar prefix vector of length Δ . [...+....] \longrightarrow V₁ [...-....] \longrightarrow V₂

$$\alpha_1 = (+, -, -) \implies V_-$$

$$\alpha_2 = (+, -, +) \implies V_+$$

GCS Properties

Define:

$$V_p = V_+ + V_-$$

 $V_m = V_+ - V_-$

Main Result:

$$V_p(i-\Delta) = V_m(i)$$

(Proof by induction)

V₊ - [s s -s -s s s -s -s] V₋ - [s s -s -s -s -s s s]

 V_p - [2s 2s -2s -2s 0 0 0 0] V_m - [0 0 0 0 0 2s 2s -2s -2s]

GCS – Main Result

$$V_{p}(i-\Delta) = V_{m}(i)$$

$$V_{+}(i) = V_{+}(i-\Delta) + V_{-}(i) + V_{-}(i-\Delta)$$

$$V_{-}(i) = -V_{-}(i-\Delta) + V_{+}(i) - V_{+}(i-\Delta)$$

Efficient convolution using GCS

• If V_{\perp} and V_{\perp} are α -related and S(i) is a given signal:

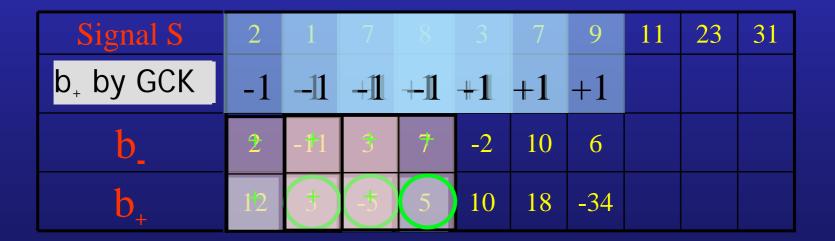
$$b_{+} = V_{+} * S$$
$$b_{-} = V_{-} * S$$

$$b_{+}(i) = b_{+}(i-\Delta)+b_{-}(i)+b_{-}(i-\Delta)$$
$$b_{-}(i) = -b_{-}(i-\Delta)+b_{+}(i)-b_{+}(i-\Delta)$$

Given the convolution result of $b_{,}$ the convolution result of b_{+} can be computed using only 2 ops/pix regardless the size of the kernels !

$\underbrace{V_{+}}_{[+1+1-1-1]} \underbrace{V_{-}}_{[+1-1-1+1]} \Delta = 1$

$$b_{+}(i) = b_{+}(i-1) + b_{-}(i) + b_{-}(i-1)$$



2 ops/pixel regardless of size & dimension of GCK

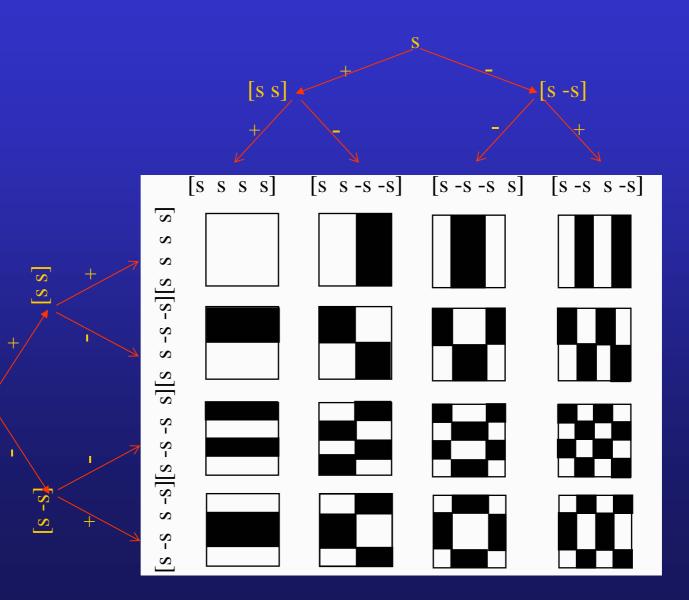
Generalization to higher dim.

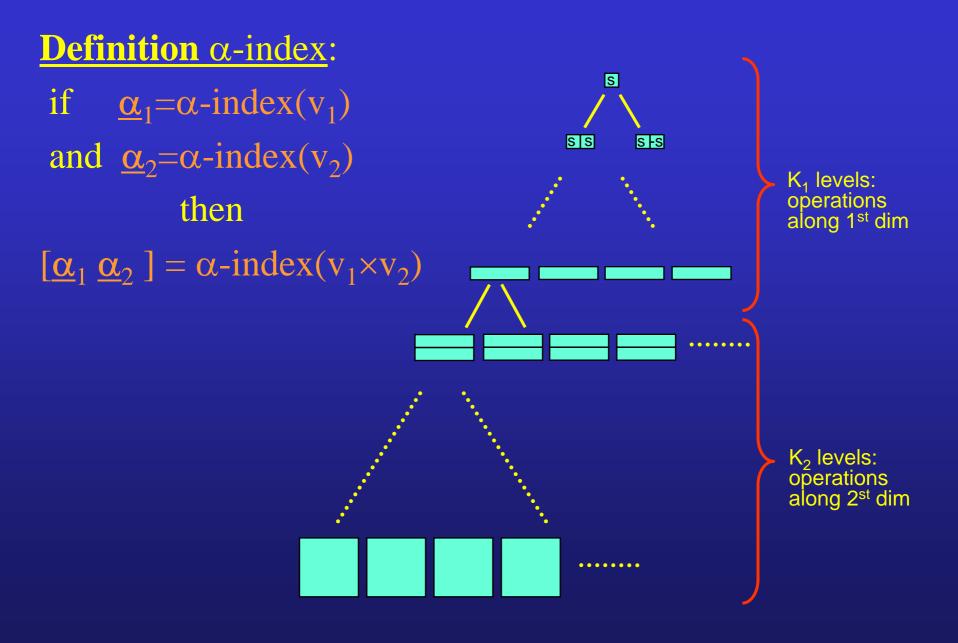
• A set of 2D kernels can be generated using an outer product of two 1D GCK

$$V_{\mathbf{s}_{1},\mathbf{s}_{2}}^{(\mathbf{k}_{1},\mathbf{k}_{2})} = \left\{ \mathbf{v}_{1} \times \mathbf{v}_{2} \middle| \mathbf{v}_{1} \in V_{\mathbf{s}_{1}}^{\mathbf{k}_{1}}, \mathbf{v}_{2} \in V_{\mathbf{s}_{2}}^{\mathbf{k}_{2}} \right\}$$
$$\mathbf{v} = \mathbf{v}_{1} \times \mathbf{v}_{2} \iff \mathbf{v}(\mathbf{i},\mathbf{j}) = \mathbf{v}_{1}(\mathbf{i})\mathbf{v}_{2}(\mathbf{j})$$

• This can be generalized to higher dimension.

Example of the set $V_{[1][1]}^{(2,2)}$ (2D WH)





nD GCK

<u>Definition</u>: Two vectors $V_i, V_j \in V_{s_1,s_2}^{(k_1,k_2)}$ are called **alpha-related** if the hamming distance of their alpha-index is one.

An ordered set of 2D GCK that are consecutively alpha-related form a **Gray-Code Sequence (GCS)**

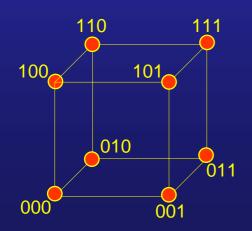
Every two consecutive 2D kernels that are α -related can be computed using only **2 ops/pix** regardless of the size (and dim.) of the kernels !

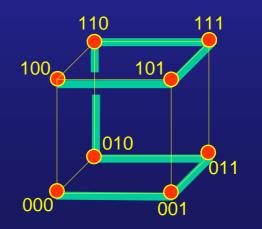
Ordering the GCS

<u>Conclusion</u>: Applying successive convolutions with a set of GCS kernels requires 2 ops/pixel/kernel.

- Questions:
 - How many GCS are there?
 - How should we choose the best GCS?

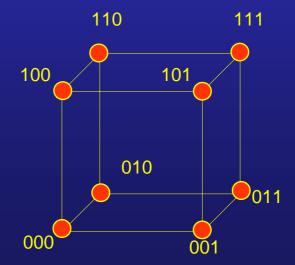
- <u>Observation 1</u>: The α -index of a 2D kernel $v \in V_{s_1,s_2}^{(k_1,k_2)}$ can be viewed as a vertex point in a k_1+k_2 dim hypercube.
- <u>Observation 2</u>: The set $V_{s_1,s_2}^{(k_1,k_2)}$ is isomorphic to a k_1+k_2 dim hypercube graph whose edges connect α -related vertices.
- <u>Observation 3</u>: A GCS is isomorphic to a Hamiltonian path in the hypercube graph.



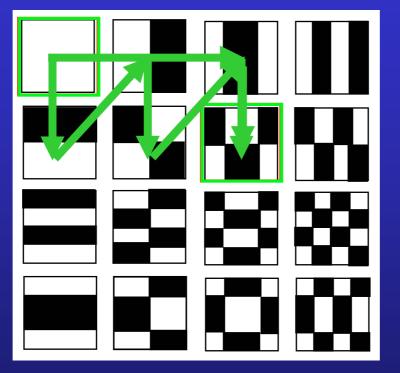


<u>Conclusion 1</u>: The number of possible GCS is identical to the number of different Hamiltonian cycles in the associated hypercube graph (2, 8, 96, 43008, ... [Gardner 86]).

• <u>Conclusion 2</u>: Finding an optimal GCS is NP-Complete.



We would like to convolve with the marked WH kernels:



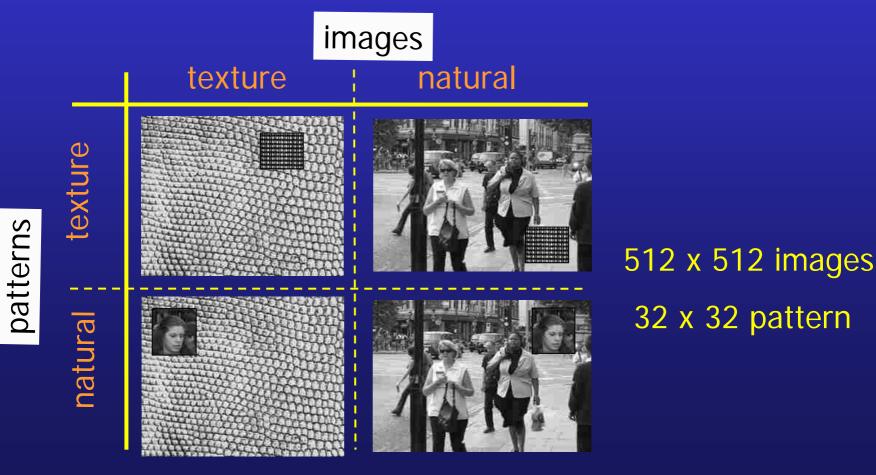
<u>Schemes</u>

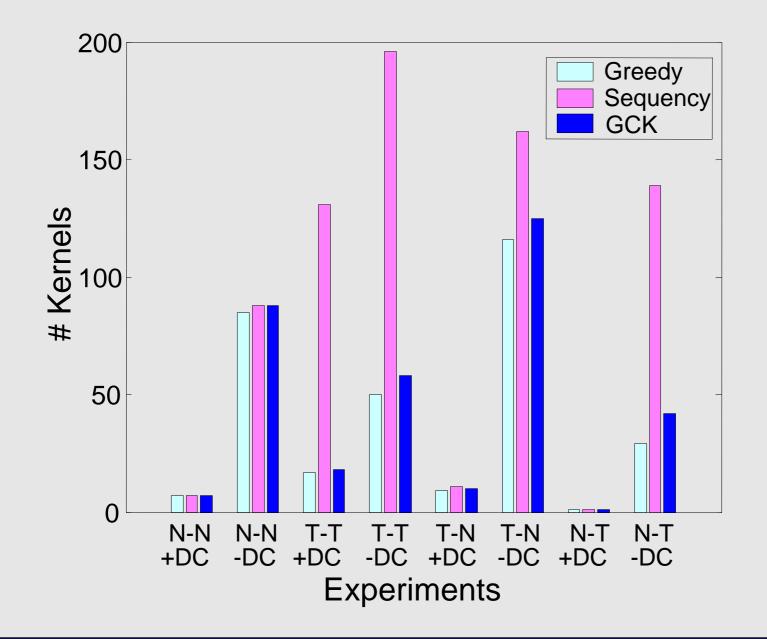
Greedy Sequency GCS : O(logk) : O(1)-O(logk) : O(1) kernel/pixel.

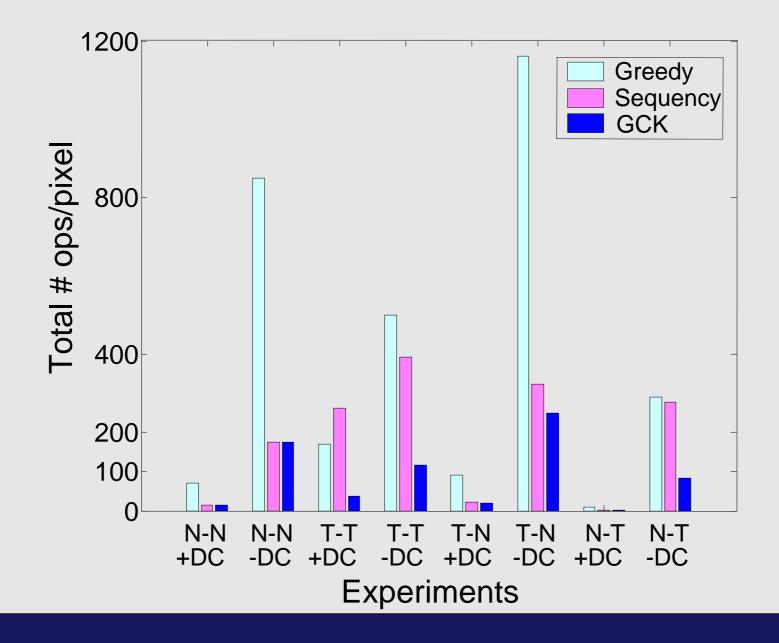
Experiments

 Task: pattern matching using WH projection kernels (*Hel-Or et. Al. 2003*).

-Measure total number of operations with and without DC.

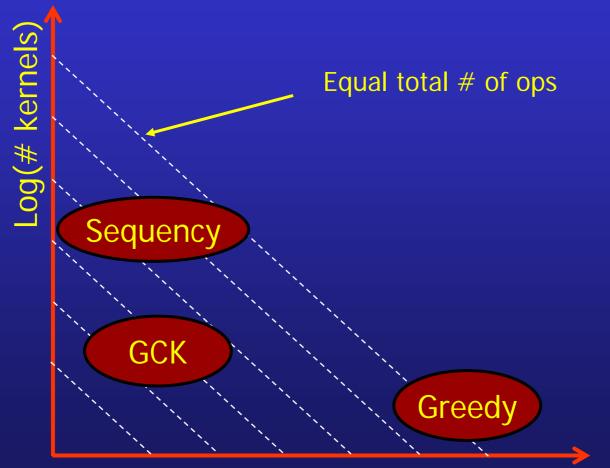






Experiments-summary

Total # of ops = (# kernels) * (# ops/kernels)



Log(#ops/kernel)

Conclusions

Advantages

- Highly efficient 2 ops/pixel/kernel.
- Independent of the kernel size and dimension depends only on the number of kernels.
- Integer operations.
- Very large set of kernels, using flexible design.
- The order of kernels can be optimized to include informative kernels (NP complete).
- Requires only 2|image| memory size.

Limitations

- Each kernel computation depends on the previous kernels in the sequence. For a single kernel this framework is inefficient.
- The kernels cannot be computed using ANY order that we choose.
- Efficient only when used on a group of image windows (not on a single one).

