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MotivationMotivation

• Image filtering with a successive set of kernels is very common 
in many applications:
– Pattern classification
– Pattern matching
– Texture analysis
– Image Denoising

In some applications applying a large set of filter kernels is 
prohibited due to time limitation.



Example 1: Pattern detectionExample 1: Pattern detection
• Pattern Detection: Given a pattern subjected to some type of 

deformations, detect occurrences of this pattern in an image.

• Detection should be:
– Accurate (small number of mis-detections/false-alarms).
– As fast as possible.



Pattern Detection as a Classification ProblemPattern Detection as a Classification Problem
Pattern detection requires a separation between two classes: 

a. The Target class.
b. The Clutter class.

• • •

The detection  complexity is 
dominated by the feature extraction
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Feature SelectionFeature Selection

• In order to optimize classification complexity, the feature set 
should be selected according to the following criteria:

1. Informative: high “separation” power 
2. Fast to apply.



Example 2: Pattern MatchingExample 2: Pattern Matching

• A known pattern is sought in an image.
• The pattern may appear at any location in the image.
• A degenerated classification problem.

• • •



The Euclidean DistanceThe Euclidean Distance

• • •
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Complexity (2D case)Complexity (2D case)

Average # 
Operations per 

Pixel Space Integer 
Arithm.

Run Time for 
1Kx1K Image

32x32 pattern PIII, 
1.8 Ghz

Yes 5.14 seconds

4.3 secondsNo

n2

n2

Naive
+:  2k2

*:   k2

Fourier
+:  36 log n
*:  24 log n

Far from real-time performance



• Representing an image window and the pattern as 
points in Rkxk:

Suggested Solution: Bound Distances using 
Projection Kernels (Hel-Or2 03)

Suggested Solution: Bound Distances using 
Projection Kernels (Hel-Or2 03)

dE(p,q)= ||p-q||2=||      - ||2

• If p and q were projected onto a kernel u, it follows     
from the Cauchy-Schwarz Inequality:

dE(p,q) ≥ |u|-2 dE(pTu, qTu)

q

pu



Distance Measure in Sub-space  (Cont.)Distance Measure in Sub-space  (Cont.)

• If q and p were projected onto a set of kernels  [U]:

u1

p

q
u2

( ) ( )∑
=

≥
r

k
k

T
k

T
E

k
E uqupd

S
qpd

1
2 ,1,



How can we Expedite the Distance Calculations?How can we Expedite the Distance Calculations?

Two necessary requirements:

1. Choose informative projecting kernels [U];  having  
high probability to be parallel to the vector  p-q.

2. Choose projecting kernels that are fast to apply.

Natural Images

u1



Our GoalOur Goal

Design a set of filter kernels with the following properties: 

– “Informative” in some sense.

– Efficient to apply successively to images. 

– Consists of a large variety of kernels.

– Forms a basis, thus allowing approximating any set 
of filter kernels.



• Previous work:
– Summed-area table / Franklin [1984]
– Boxlets/ Simard, et. Al. [1999]
– Integral image/ Viola & Jones [2001]

• Limitations:
– A limited variety of filter kernels.
– Approximation of large sets might be inefficient.
– Does not form a basis and thus inefficient to compose 

other kernels.

Average / difference 
kernels

Fast Filter KernelsFast Filter Kernels



Our work based uponOur work based upon

Real-Time projection kernels [Hel-Or2 03]

• A set of Walsh-Hadamard basis kernels.

• Each window in a natural image is closely 
spanned by the first few kernel vectors.

• Can be applied very fast in a recursive manner.



The Walsh-Hadamard  Kernels:The Walsh-Hadamard  Kernels:



Walsh-Hadamard v.s. Standard Basis:Walsh-Hadamard v.s. Standard Basis:

The lower bound for distance value in %
v.s. number of standard basis projections,
Averaged over 100 pattern-image pairs of 
size 256x256 .

The lower bound for distance value in %
v.s. number of Walsh-Hadamard 
projections,
Averaged over 100 pattern-image pairs of 
size 256x256 .



The  Walsh-Hadamard Tree (1D case)The  Walsh-Hadamard Tree (1D case)

+-+ -

- +

+

+ ++ -

+ + + ++ + - -+ - + - + - - +

+ - +- + - +-

+ - + - - + - ++ - + - + - + - + + + + + + + ++ + + + - - - -+ + - - + + - - + + - - - - + ++ - - + + - - ++ - - + - + + -



The  Walsh-Hadamard Tree - ExampleThe  Walsh-Hadamard Tree - Example
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Properties:Properties:
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• Descending from a node to its child requires one 
addition operation per pixel.  

• The depth of the tree is log k where k is the 
kernel’s size.

• Successive application of WH kernels requires 
between O(1) to O(log k) ops per kernel per pixel.

• Requires n log k memory size.

• Linear scanning of tree leaves.



Walsh-Hadamard Tree  (2D):Walsh-Hadamard Tree  (2D):

• For the 2D case, the projection is performed in a similar 
manner where the tree depth is 2log k

• The complexity is calculated accordingly.
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WH for Pattern MatchingWH for Pattern Matching

– Iteratively apply Walsh-Hadamard kernels to each 
window wi in the image.

– At each iteration and for each wi  calculate a lower-
bound Lbi for |p-wi|2 .

– If the lower-bound Lbi is greater than a pre-defined 
threshold, reject the window wi and ignore it in 
further projections.



Example:Example:

Sought  PatternSought  Pattern

Initial Image: 65536 candidatesInitial Image: 65536 candidates



After the 1st projection: 563 candidatesAfter the 1st projection: 563 candidates



After the 2nd projection: 16 candidatesAfter the 2nd projection: 16 candidates



After the 3rd projection: 1 candidateAfter the 3rd projection: 1 candidate



Percentage of windows remaining following each 
projection,
averaged over 100 pattern-image pairs. 

Image size = 256x256, pattern size = 16x16.



Example with NoiseExample with Noise
Original Noise Level = 40 Detected patterns.

Number of projections required to find all patterns, as a 
function of noise level. (Threshold is set to minimum).
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DC-invariant Pattern MatchingDC-invariant Pattern Matching

Illumination 
gradient addedOriginal Detected patterns.

Five projections are required to find all 10 patterns 
(Threshold is set to minimum).



Complexity (2D case)Complexity (2D case)

Average # 
Operations per 

Pixel Space Integer 
Arithm.

Run Time for 
1Kx1K Image

32x32 pattern PIII, 
1.8 Ghz

Yes 4.86 seconds

3.5 seconds

New +:  2 log k + ε n2 log k Yes 78  msec

No

n2

n2

Naive
+:  2k2

*:   k2

Fourier
+:  36 log n
*:  24 log n



Advantages:Advantages:

– WH kernels can be applied very fast.
– Projections are performed with additions/subtractions 

only (no multiplications).
– Integer operations (3 times faster for additions).
– Possible to perform pattern matching at video rate. 
– Can be easily extended to higher dim.



LimitationsLimitations

– Limited set - only the Walsh-Hadamard kernels.
– Each kernel is applied in O(1)-O(d log k) 
– Limited order of kernels.
– Limited to dyadic sized kernels.
– Requires maintaining d log k images in memory.



The Gray Code Kernels (GCK):The Gray Code Kernels (GCK):

• Allowing convolution of large set of kernels in O(1):
– Independent of the kernel size.
– Independent of the kernel dimension.
– Allows various computation orders of kernels.
– Various size of kernels other than 2^n.
– Requires maintaining 2 images in memory.



The Gray Code Kernels – Definitions (1D)The Gray Code Kernels – Definitions (1D)
Input

1. A seed vector    .
2. A set of coefficients  α1, α2 …αk ∈ {+1,-1}.

Output
A set of recursively built kernels :

sr

α1V0 α2V1 α3V2

v3

v2

v1

S
v0



GCK - Formal DefinitionsGCK - Formal Definitions

( )

( ) ( ) ( )[ ]{ }
( ) ( ) { }   1,1V..

V

V

1-k
s

1

11k
s

0
s

−+∈∈

=

=

−

−−

k
k

k
k

k

andvts

vv

s

α

α
v

vv

v



1 Dim GCK1 Dim GCK

[s -s]

[s  s -s -s][s -s -s  s] [s  s  s  s][s -s  s -s]

+-

+-+ -

[s]

[s  s]

(2)
[s]V

(1)
[s]V

(0)
[s]V

• The initial seed s can be any vector.

• The set of kernels at level k is denoted V[s]
(k) .    

• V[s]
(k) forms an orthogonal set of 2k kernels .    

• When [s]=1,  V[s]
(k) forms the WH kernels of size 2k.    



Definition 1: The sequence [α1 α2… αk ] that 
uniquely defines a vector                is called the 
alpha-index of v.

)(k
sv V∈

[s -s]

[s s -s -s][s -s -s s] [s  s  s  s][s -s  s -s]

+-

+-+ -

[s]

[s  s]

α-index: [-,+]α-index: [-,- ] α -index: [+,-]α-index: [+,+]



Definition 2: Two vectors vi,vj ∈ are 
called alpha-related if the hamming 
distance of their alpha-index is one.

)(k
sV

[s -s]

[s s -s -s][s -s -s s] [s  s  s  s][s -s  s -s]

+-

+-+ -

[s]

[s  s]

An ordered set of GCK that are 
consecutively alpha-related are called a 
Gray-Code Sequence (GCS)

alpha-related



GCS PropertiesGCS Properties

Let V+ and V- be two  α-related vectors:

[…+……] V+                     […-…...] V-

V+ and V- share a similar prefix vector of length  ∆.

α1=(+,-,-)           V-
α2=(+,-,+)          V+

V- - [ s  s -s  -s -s -s  s  s]

V+ - [ s  s -s  -s  s  s -s -s]
α-related

Shared prefix, ∆=4|s|



GCS PropertiesGCS Properties

Define:            Vp=V++V-

Vm=V+-V-

Main Result:

(Proof by induction)Vp(i-∆)= Vm(i)



ExampleExample

V- - [ s    s   -s    -s -s -s s    s]

V+ - [ s    s   -s    -s s    s   -s   -s]

Vp - [2s   2s  -2s  -2s 0    0   0   0]

Vm- [0     0     0     0 2s  2s -2s  -2s]



GCS – Main ResultGCS – Main Result

Vp(i-∆)= Vm(i)

V+(i) = V+(i-∆)+V-(i)+V-(i-∆)

V-(i) = -V-(i-∆)+V+(i)-V+(i-∆)



Efficient convolution using GCSEfficient convolution using GCS

• If V+ and V- are α-related and S(i) is a given signal:

b+ = V+∗S
b- = V-∗S

b+(i) = b+(i-∆)+b-(i)+b-(i-∆)
b-(i) = -b-(i-∆)+b+(i)-b+(i-∆)

Given the convolution result of b-, the convolution 
result of b+ can be computed using only 2 ops/pix
regardless the size of the kernels !



ExampleExample

Kernel v+

[+1 +1 -1 -1]

b+ by GCK

[+1 -1 -1 +1]

V-V+

∆=1

b+(i)= b+(i-1)+b-(i)+b-(i-1)

2 1 7 8 3 7 9 11 23 31

2 -11 3 7 -2 10 6

12 3 -5 5 10 18 -34

Signal S

b-

b+

-1  -1 +1 +1-1  -1 +1  +1-1  -1 +1  +1-1  -1 +1  +1

+

++

+

++

+

++

2 ops/pixel regardless of size & dimension of GCK



Generalization to higher dim. Generalization to higher dim. 

• A set of  2D kernels can be generated using an outer 
product of two 1D GCK

• This can be generalized to higher dimension.
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Example  of the set            (2D WH)  [ ][ ]
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Definition α-index:  
if     α1=α-index(v1)
and  α2=α-index(v2)

then
[α1 α2 ] = α-index(v1×v2)

ss

s  s s -s

K1 levels:
operations 
along 1st dim

K2 levels:
operations 
along 2st dim



nD GCKnD GCK
Definition:    Two vectors are 
called alpha-related if the hamming distance 
of their alpha-index is one.
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An ordered set of 2D GCK that are 
consecutively alpha-related form a        
Gray-Code Sequence (GCS)

Every two consecutive 2D kernels that are α-
related can be computed using only  2 ops/pix
regardless of the size (and dim.) of the kernels !



Ordering the GCSOrdering the GCS

Conclusion: Applying  successive convolutions with a 
set of GCS kernels requires 2 ops/pixel/kernel.

• Questions:
– How many GCS are there?
– How should we choose the best GCS?



• Observation 1:  The α-index of a 2D kernel               
can be viewed as a vertex point in a  k1+k2 dim 
hypercube.

• Observation 2:  The set              is isomorphic to a k1+k2
dim hypercube graph whose edges connect α-related 
vertices.

• Observation 3: A GCS is isomorphic to a Hamiltonian 
path in the hypercube graph.
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• Conclusion 1: The number of possible GCS is identical 
to the number of different Hamiltonian cycles in the 
associated hypercube graph (2, 8, 96, 43008, ... [Gardner 
86] ) .

• Conclusion 2: Finding an optimal GCS is NP-Complete.
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ExampleExample
We would like to convolve with the marked WH kernels:

Greedy              : O(logk)
Sequency : O(1)-O(logk)

GCS                  : O(1)
kernel/pixel.Schemes
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Task: pattern matching using WH projection kernels 
(Hel-Or et. Al. 2003).

Measure total number of operations with and without DC.

512 x 512 images

32 x 32 pattern

ExperimentsExperiments
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Experiments-summary

Total # of ops = (# kernels) * (# ops/kernels)
Lo

g(
#

 k
er

ne
ls

)

Equal total # of ops

Greedy

Sequency

GCK

Log(#ops/kernel)



ConclusionsConclusions

Advantages
• Highly efficient – 2 ops/pixel/kernel.
• Independent of the kernel size and dimension –

depends only on the number of kernels.
• Integer operations.
• Very large set of kernels, using flexible design.
• The order of kernels can be optimized to 

include informative kernels (NP complete).
• Requires only 2|image| memory size.



Limitations
• Each kernel - computation depends on the previous 

kernels in the sequence. For a single kernel this 
framework is inefficient.

• The kernels cannot be computed using ANY order 
that we choose.

• Efficient only when used on a group of image 
windows (not on a single one).

THE  END
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