
1

The Gray Code KernelsThe Gray Code KernelsThe Gray Code Kernels

Gil Ben-Artzi
Bar-Ilan University

Hagit Hel-Or
Haifa University

Yacov Hel-Or
IDC

MotivationMotivation

• Image filtering with a successive set of kernels is very common
in many applications:
– Pattern classification
– Pattern matching
– Texture analysis
– Image Denoising

In some applications applying a large set of filter kernels is
prohibited due to time limitation.

Example 1: Pattern detectionExample 1: Pattern detection
• Pattern Detection: Given a pattern subjected to some type of

deformations, detect occurrences of this pattern in an image.

• Detection should be:
– Accurate (small number of mis-detections/false-alarms).
– As fast as possible.

Pattern Detection as a Classification ProblemPattern Detection as a Classification Problem
Pattern detection requires a separation between two classes:

a. The Target class.
b. The Clutter class.

• • •

The detection complexity is
dominated by the feature extraction

z1

z2

{ } { }11321 −+→ℜ ,,,, nzzzC :L

z3 Classifier

z4

z5

Feature extraction

Feature SelectionFeature Selection

• In order to optimize classification complexity, the feature set
should be selected according to the following criteria:

1. Informative: high “separation” power
2. Fast to apply.

Example 2: Pattern MatchingExample 2: Pattern Matching

• A known pattern is sought in an image.
• The pattern may appear at any location in the image.
• A degenerated classification problem.

• • •

The Euclidean DistanceThe Euclidean Distance

• • •

() () ()[]∑
∈

−−−=
Nyx

E yxPvyuxIvud
,

2,,,

() () ()[]∑
∈

−−−−=
Ntyx

E tyxPwtvyuxItvud
,,

2,,,,,,

Complexity (2D case)Complexity (2D case)

Average #
Operations per

Pixel Space Integer
Arithm.

Run Time for
1Kx1K Image

32x32 pattern PIII,
1.8 Ghz

Yes 5.14 seconds

4.3 secondsNo

n2

n2

Naive
+: 2k2

*: k2

Fourier
+: 36 log n
*: 24 log n

Far from real-time performance

• Representing an image window and the pattern as
points in Rkxk:

Suggested Solution: Bound Distances using
Projection Kernels (Hel-Or2 03)

Suggested Solution: Bound Distances using
Projection Kernels (Hel-Or2 03)

dE(p,q)= ||p-q||2=|| - ||2

• If p and q were projected onto a kernel u, it follows
from the Cauchy-Schwarz Inequality:

dE(p,q) ≥ |u|-2 dE(pTu, qTu)

q

pu

Distance Measure in Sub-space (Cont.)Distance Measure in Sub-space (Cont.)

• If q and p were projected onto a set of kernels [U]:

u1

p

q
u2

() ()∑
=

≥
r

k
k

T
k

T
E

k
E uqupd

S
qpd

1
2 ,1,

How can we Expedite the Distance Calculations?How can we Expedite the Distance Calculations?

Two necessary requirements:

1. Choose informative projecting kernels [U]; having
high probability to be parallel to the vector p-q.

2. Choose projecting kernels that are fast to apply.

Natural Images

u1

Our GoalOur Goal

Design a set of filter kernels with the following properties:

– “Informative” in some sense.

– Efficient to apply successively to images.

– Consists of a large variety of kernels.

– Forms a basis, thus allowing approximating any set
of filter kernels.

• Previous work:
– Summed-area table / Franklin [1984]
– Boxlets/ Simard, et. Al. [1999]
– Integral image/ Viola & Jones [2001]

• Limitations:
– A limited variety of filter kernels.
– Approximation of large sets might be inefficient.
– Does not form a basis and thus inefficient to compose

other kernels.

Average / difference
kernels

Fast Filter KernelsFast Filter Kernels

Our work based uponOur work based upon

Real-Time projection kernels [Hel-Or2 03]

• A set of Walsh-Hadamard basis kernels.

• Each window in a natural image is closely
spanned by the first few kernel vectors.

• Can be applied very fast in a recursive manner.

The Walsh-Hadamard Kernels:The Walsh-Hadamard Kernels:

Walsh-Hadamard v.s. Standard Basis:Walsh-Hadamard v.s. Standard Basis:

The lower bound for distance value in %
v.s. number of standard basis projections,
Averaged over 100 pattern-image pairs of
size 256x256 .

The lower bound for distance value in %
v.s. number of Walsh-Hadamard
projections,
Averaged over 100 pattern-image pairs of
size 256x256 .

The Walsh-Hadamard Tree (1D case)The Walsh-Hadamard Tree (1D case)

+-+ -

- +

+

+ ++ -

+ + + ++ + - -+ - + - + - - +

+ - +- + - +-

+ - + - - + - ++ - + - + - + - + + + + + + + ++ + + + - - - -+ + - - + + - - + + - - - - + ++ - - + + - - ++ - - + - + + -

The Walsh-Hadamard Tree - ExampleThe Walsh-Hadamard Tree - Example

- +

+

+ - + +

+ - +-

+ + + ++ + - -+ - + - + - - +

15 6 10 8 8 5 10 1

16 13 15 11

31 31 24

9 -4 2 0 3 -5 9

11 -4 5 -5 12

3 0 5 1 27 -4 -1 5 6

21 16 18

39 32

Properties:Properties:

- +

+

+ - + +

+ - +-

+ + + ++ + - -+ - + - + - - +

• Descending from a node to its child requires one
addition operation per pixel.

• The depth of the tree is log k where k is the
kernel’s size.

• Successive application of WH kernels requires
between O(1) to O(log k) ops per kernel per pixel.

• Requires n log k memory size.

• Linear scanning of tree leaves.

Walsh-Hadamard Tree (2D):Walsh-Hadamard Tree (2D):

• For the 2D case, the projection is performed in a similar
manner where the tree depth is 2log k

• The complexity is calculated accordingly.

+

+ - + +

+ +
+ +

+ +
- -

+ -
+ -

+ -
- +

+ - + +

+
+

+
-

+
-

+
+

Construction tree for 2x2 basis

WH for Pattern MatchingWH for Pattern Matching

– Iteratively apply Walsh-Hadamard kernels to each
window wi in the image.

– At each iteration and for each wi calculate a lower-
bound Lbi for |p-wi|2 .

– If the lower-bound Lbi is greater than a pre-defined
threshold, reject the window wi and ignore it in
further projections.

Example:Example:

Sought PatternSought Pattern

Initial Image: 65536 candidatesInitial Image: 65536 candidates

After the 1st projection: 563 candidatesAfter the 1st projection: 563 candidates

After the 2nd projection: 16 candidatesAfter the 2nd projection: 16 candidates

After the 3rd projection: 1 candidateAfter the 3rd projection: 1 candidate

Percentage of windows remaining following each
projection,
averaged over 100 pattern-image pairs.

Image size = 256x256, pattern size = 16x16.

Example with NoiseExample with Noise
Original Noise Level = 40 Detected patterns.

Number of projections required to find all patterns, as a
function of noise level. (Threshold is set to minimum).

0 50 100 150 200 250
-5

0

5

10

15

20

25

30

35

Projection #

%
 W

in
do

w
s

R
em

ai
ni

ng

0 5 10 15

0

1

2

3

4

Percentage of windows remaining following each
projection,

at various noise levels.

Image size = 256x256, pattern size = 16x16.

DC-invariant Pattern MatchingDC-invariant Pattern Matching

Illumination
gradient addedOriginal Detected patterns.

Five projections are required to find all 10 patterns
(Threshold is set to minimum).

Complexity (2D case)Complexity (2D case)

Average #
Operations per

Pixel Space Integer
Arithm.

Run Time for
1Kx1K Image

32x32 pattern PIII,
1.8 Ghz

Yes 4.86 seconds

3.5 seconds

New +: 2 log k + ε n2 log k Yes 78 msec

No

n2

n2

Naive
+: 2k2

*: k2

Fourier
+: 36 log n
*: 24 log n

Advantages:Advantages:

– WH kernels can be applied very fast.
– Projections are performed with additions/subtractions

only (no multiplications).
– Integer operations (3 times faster for additions).
– Possible to perform pattern matching at video rate.
– Can be easily extended to higher dim.

LimitationsLimitations

– Limited set - only the Walsh-Hadamard kernels.
– Each kernel is applied in O(1)-O(d log k)
– Limited order of kernels.
– Limited to dyadic sized kernels.
– Requires maintaining d log k images in memory.

The Gray Code Kernels (GCK):The Gray Code Kernels (GCK):

• Allowing convolution of large set of kernels in O(1):
– Independent of the kernel size.
– Independent of the kernel dimension.
– Allows various computation orders of kernels.
– Various size of kernels other than 2^n.
– Requires maintaining 2 images in memory.

The Gray Code Kernels – Definitions (1D)The Gray Code Kernels – Definitions (1D)
Input

1. A seed vector .
2. A set of coefficients α1, α2 …αk ∈ {+1,-1}.

Output
A set of recursively built kernels :

sr

α1V0 α2V1 α3V2

v3

v2

v1

S
v0

GCK - Formal DefinitionsGCK - Formal Definitions

()

() () ()[]{ }
() () { } 1,1V..

V

V

1-k
s

1

11k
s

0
s

−+∈∈

=

=

−

−−

k
k

k
k

k

andvts

vv

s

α

α
v

vv

v

1 Dim GCK1 Dim GCK

[s -s]

[s s -s -s][s -s -s s] [s s s s][s -s s -s]

+-

+-+ -

[s]

[s s]

(2)
[s]V

(1)
[s]V

(0)
[s]V

• The initial seed s can be any vector.

• The set of kernels at level k is denoted V[s]
(k) .

• V[s]
(k) forms an orthogonal set of 2k kernels .

• When [s]=1, V[s]
(k) forms the WH kernels of size 2k.

Definition 1: The sequence [α1 α2… αk] that
uniquely defines a vector is called the
alpha-index of v.

)(k
sv V∈

[s -s]

[s s -s -s][s -s -s s] [s s s s][s -s s -s]

+-

+-+ -

[s]

[s s]

α-index: [-,+]α-index: [-,-] α -index: [+,-]α-index: [+,+]

Definition 2: Two vectors vi,vj ∈ are
called alpha-related if the hamming
distance of their alpha-index is one.

)(k
sV

[s -s]

[s s -s -s][s -s -s s] [s s s s][s -s s -s]

+-

+-+ -

[s]

[s s]

An ordered set of GCK that are
consecutively alpha-related are called a
Gray-Code Sequence (GCS)

alpha-related

GCS PropertiesGCS Properties

Let V+ and V- be two α-related vectors:

[…+……] V+ […-…...] V-

V+ and V- share a similar prefix vector of length ∆.

α1=(+,-,-) V-
α2=(+,-,+) V+

V- - [s s -s -s -s -s s s]

V+ - [s s -s -s s s -s -s]
α-related

Shared prefix, ∆=4|s|

GCS PropertiesGCS Properties

Define: Vp=V++V-

Vm=V+-V-

Main Result:

(Proof by induction)Vp(i-∆)= Vm(i)

ExampleExample

V- - [s s -s -s -s -s s s]

V+ - [s s -s -s s s -s -s]

Vp - [2s 2s -2s -2s 0 0 0 0]

Vm- [0 0 0 0 2s 2s -2s -2s]

GCS – Main ResultGCS – Main Result

Vp(i-∆)= Vm(i)

V+(i) = V+(i-∆)+V-(i)+V-(i-∆)

V-(i) = -V-(i-∆)+V+(i)-V+(i-∆)

Efficient convolution using GCSEfficient convolution using GCS

• If V+ and V- are α-related and S(i) is a given signal:

b+ = V+∗S
b- = V-∗S

b+(i) = b+(i-∆)+b-(i)+b-(i-∆)
b-(i) = -b-(i-∆)+b+(i)-b+(i-∆)

Given the convolution result of b-, the convolution
result of b+ can be computed using only 2 ops/pix
regardless the size of the kernels !

ExampleExample

Kernel v+

[+1 +1 -1 -1]

b+ by GCK

[+1 -1 -1 +1]

V-V+

∆=1

b+(i)= b+(i-1)+b-(i)+b-(i-1)

2 1 7 8 3 7 9 11 23 31

2 -11 3 7 -2 10 6

12 3 -5 5 10 18 -34

Signal S

b-

b+

-1 -1 +1 +1-1 -1 +1 +1-1 -1 +1 +1-1 -1 +1 +1

+

++

+

++

+

++

2 ops/pixel regardless of size & dimension of GCK

Generalization to higher dim. Generalization to higher dim.

• A set of 2D kernels can be generated using an outer
product of two 1D GCK

• This can be generalized to higher dimension.

() () ()jvivjivvvv 2121 =⇔×= ,

() { }2

2

1

1

21

21 2121
k
s

k
s

kk
ss VvVvvvV ∈∈×= ,,
,

Example of the set (2D WH) [][]
()22

11
,V

[s
 -s

 -s
 s

]
[s

 -s
 s

 -s
]

-
+

-
+

[s
 s]

[s
 -s

]

[s
 s

 s
 s

]
[s

 s
 -s

 -s
]

+
-

[s s -s -s] [s -s -s s][s s s s]

[s -s][s s]
+ -

-+

s

[s -s s -s]

+-

s

Definition α-index:
if α1=α-index(v1)
and α2=α-index(v2)

then
[α1 α2] = α-index(v1×v2)

ss

s s s -s

K1 levels:
operations
along 1st dim

K2 levels:
operations
along 2st dim

nD GCKnD GCK
Definition: Two vectors are
called alpha-related if the hamming distance
of their alpha-index is one.

()21

21

kk
ssji Vvv ,
,, ∈

An ordered set of 2D GCK that are
consecutively alpha-related form a
Gray-Code Sequence (GCS)

Every two consecutive 2D kernels that are α-
related can be computed using only 2 ops/pix
regardless of the size (and dim.) of the kernels !

Ordering the GCSOrdering the GCS

Conclusion: Applying successive convolutions with a
set of GCS kernels requires 2 ops/pixel/kernel.

• Questions:
– How many GCS are there?
– How should we choose the best GCS?

• Observation 1: The α-index of a 2D kernel
can be viewed as a vertex point in a k1+k2 dim
hypercube.

• Observation 2: The set is isomorphic to a k1+k2
dim hypercube graph whose edges connect α-related
vertices.

• Observation 3: A GCS is isomorphic to a Hamiltonian
path in the hypercube graph.

()21

21

kk
ssVv ,
,∈

()21

21

kk
ssV ,
,

000 001

100

010

101

111

011

110

000 001

100

010

101

111

011

110

• Conclusion 1: The number of possible GCS is identical
to the number of different Hamiltonian cycles in the
associated hypercube graph (2, 8, 96, 43008, ... [Gardner
86]) .

• Conclusion 2: Finding an optimal GCS is NP-Complete.

110 111

000 001

100

010

101

011

ExampleExample
We would like to convolve with the marked WH kernels:

Greedy : O(logk)
Sequency : O(1)-O(logk)

GCS : O(1)
kernel/pixel.Schemes

texture natural

te
xt

ur
e

na
tu

ra
lpa
tt

er
ns

images

Task: pattern matching using WH projection kernels
(Hel-Or et. Al. 2003).

Measure total number of operations with and without DC.

512 x 512 images

32 x 32 pattern

ExperimentsExperiments

0

50

100

150

200

N-N N-N T-T T-T T-N T-N N-T N-T
+DC -DC +DC -DC +DC -DC +DC -DC

Greedy
Sequency
GCK

Experiments

K

er
ne

ls

0
100
200

400

800

1200

N-N N-N T-T T-T T-N T-N N-T N-T
+DC -DC +DC -DC +DC -DC +DC -DC

Greedy
Sequency
GCK

Experiments

To
ta

l #
 o

ps
/p

ix
el

Experiments-summary

Total # of ops = (# kernels) * (# ops/kernels)
Lo

g(
#

 k
er

ne
ls

)

Equal total # of ops

Greedy

Sequency

GCK

Log(#ops/kernel)

ConclusionsConclusions

Advantages
• Highly efficient – 2 ops/pixel/kernel.
• Independent of the kernel size and dimension –

depends only on the number of kernels.
• Integer operations.
• Very large set of kernels, using flexible design.
• The order of kernels can be optimized to

include informative kernels (NP complete).
• Requires only 2|image| memory size.

Limitations
• Each kernel - computation depends on the previous

kernels in the sequence. For a single kernel this
framework is inefficient.

• The kernels cannot be computed using ANY order
that we choose.

• Efficient only when used on a group of image
windows (not on a single one).

THE END

	Experiments-summary

