## The Gray Code Kernels

Gil Ben-Artzi Hagit Hel-Or Yacov Hel-Or Bar-Ilan University Haifa University IDC

## Motivation

- Image filtering with a successive set of kernels is very common in many applications:
- Pattern classification
- Pattern matching
- Texture analysis
- Image Denoising


In some applications applying a large set of filter kernels is prohibited due to time limitation.

## Example 1: Pattern detection

- Pattern Detection: Given a pattern subjected to some type of deformations, detect occurrences of this pattern in an image.
- Detection should be:
- Accurate (small number of mis-detections/false-alarms).
- As fast as possible.



## Pattern Detection as a Classification Problem

Pattern detection requires a separation between two classes:
a. The Theget crasstion complexity is dominated dass. the feature extraction


Feature extraction

## Feature Selection

- In order to optimize classification complexity, the feature set should be selected according to the following criteria:

1. Informative: high "separation" power
2. Fast to apply.

## Example 2: Pattern Matching

- A known pattern is sought in an image.
- The pattern may appear at any location in the image.
- A degenerated classification problem.



## The Euclidean Distance



## Complexity (2D case)

|  | Average \# Operations per Pixel | Space | Integer Arithm. | Run Time for 1Kx1K Image 32x32 pattern PIII, 1.8 Ghz |
| :---: | :---: | :---: | :---: | :---: |
| Naive | $\begin{aligned} & +: 2 k^{2} \\ & \text { *: } k^{2} \end{aligned}$ | $n^{2}$ | Yes | 5.14 seconds |
| Fourier | $\begin{aligned} & \text { +: } 36 \log n \\ & \text { *: } 24 \log n \end{aligned}$ | $n^{2}$ | No | 4.3 seconds |

## Far from real-time performance

## Suggested Solution: Bound Distances using

 Projection Kernels ( $\mathrm{Hel}_{\mathrm{H}}-\mathrm{O}^{2} \mathbf{0} 0$ )- Representing an image window and the pattern as points in $R^{k x k}$ :

$$
d_{E}(p, q)=\|p-q\|^{2}=\|-\Delta\|^{2}
$$

- If $p$ and $q$ were projected onto a kernel $u$, it follows from the Cauchy-Schwarz Inequality:

$$
d_{E}(p, q) \geq|u|^{-2} d_{E}\left(p^{\top} u, q^{\top} u\right)
$$



## Distance Measure in Sub-space (Cont.)

- If $q$ and $p$ were projected onto a set of kernels [U]:


$$
d_{E}(p, q) \geq \sum_{k=1}^{r} \frac{1}{s_{k}^{2}} d_{E}\left(p^{T} u_{k}, q^{T} u_{k}\right)
$$

How can we Expedite the Distance Calculations?

Two necessary requirements:

1. Choose informative projecting kernels [U]; having high probability to be parallel to the vector $p-q$.
2. Choose projecting kernels that are fast to apply.


## Our Goal

Design a set of filter kernels with the following properties:

- "Informative" in some sense.
- Efficient to apply successively to images.
- Consists of a large variety of kernels.
- Forms a basis, thus allowing approximating any set of filter kernels.


## Fast Filter Kernels

- Previous work:
- Summed-area table / Franklin [1984]
- Boxlets/ Simard, et. Al. [1999]
- Integral image/ Viola \& Jones [2001]

Average / difference kernels

- Limitations:
- A limited variety of filter kernels.
- Approximation of large sets might be inefficient.
- Does not form a basis and thus inefficient to compose other kernels.


## Our work based upon

## Real-Time projection kernels [Hel-Or² 03]

- A set of Walsh-Hadamard basis kernels.
- Each window in a natural image is closely spanned by the first few kernel vectors.
- Can be applied very fast in a recursive manner.


## The Walsh-Hadamard Kernels:



## Walsh-Hadamard v.s. Standard Basis:




The lower bound for distance value in \% v.s. number of Walsh-Hadamard projections,
Averaged over 100 pattern-image pairs of size 256x256

## The Walsh-Hadamard Tree (1D case)



## The Walsh-Hadamard Tree - Example



$$
\begin{array}{|l|l|l|l|l|l|l|l|}
\hline 7 & -4 & -1 & 5 & 6 \\
\hline
\end{array}
$$

## Properties:

- Descending from a node to its child requires one addition operation per pixel.
- The depth of the tree is $\log k$ where $k$ is the kernel's size.
- Successive application of WH kernels requires between $\mathrm{O}(1)$ to $\mathrm{O}(\log \mathrm{k})$ ops per kernel per pixel.
- Requires $n \log k$ memory size.
- Linear scanning of tree leaves.



## Walsh-Hadamard Tree (2D):

- For the 2D case, the projection is performed in a similar manner where the tree depth is $2 \log k$
- The complexity is calculated accordingly.



## Construction tree for $2 \times 2$ basis

## WH for Pattern Matching

- Iteratively apply Walsh-Hadamard kernels to each window $w_{i}$ in the image.
- At each iteration and for each $w_{i}$ calculate a lowerbound $L b_{i}$ for $\left|p-w_{i}\right|^{2}$.
- If the lower-bound $L b_{i}$ is greater than a pre-defined threshold, reject the window $w_{i}$ and ignore it in further projections.


## Example:



Sought Pattern

Initial Image: 65536 candidates


After the $1^{\text {st }}$ projection: 563 candidates


After the $2^{\text {nd }}$ projection: 16 candidates


## After the $3^{\text {rd }}$ projection: 1 candidate



Percentage of windows remaining following each projection, averaged over 100 pattern-image pairs.

Image size $=256 \times 256$, pattern size $=16 \times 16$.

## Example with Noise




Number of projections required to find all patterns, as a function of noise level. (Threshold is set to minimum).


Percentage of windows remaining following each projection, at various noise levels.

Image size $=256 \times 256$, pattern size $=16 \times 16$.

## DC-invariant Pattern Matching



Detected patterns.


## 0

## 

Five projections are required to find all 10 patterns (Threshold is set to minimum).

## Complexity (2D case)

|  | Average \# <br> Operations per <br> Pixel | Space | Run Time for <br> Integer <br> Arithm. | 1Kx1K Image <br> $32 \times 32$ pattern PIII, <br> 1.8 Ghz |
| :--- | :--- | :---: | :---: | :---: |
| Naive | $+: 2 k^{2}$ <br> $*: k^{2}$ | $n^{2}$ | Yes | 4.86 seconds |
| Fourier | $+: 36 \log n$ <br> $*: 24 \log n$ | $n^{2}$ | No | 3.5 seconds |
| New | $+: 2 \log k+\varepsilon$ | $n^{2} \log k$ | Yes | 78 msec |

## Advantages:

- WH kernels can be applied very fast.
- Projections are performed with additions/subtractions only (no multiplications).
- Integer operations (3 times faster for additions).
- Possible to perform pattern matching at video rate.
- Can be easily extended to higher dim.


## Limitations

- Limited set - only the Walsh-Hadamard kernels.
- Each kernel is applied in $\mathrm{O}(1)-\mathrm{O}(\mathrm{d} \log \mathrm{k})$
- Limited order of kernels.
- Limited to dyadic sized kernels.
- Requires maintaining $\mathrm{d} \log \mathrm{k}$ images in memory.


## The Gray Code Kernels (GCK):

- Allowing convolution of large set of kernels in O(1):
- Independent of the kernel size.
- Independent of the kernel dimension.
- Allows various computation orders of kernels.
- Various size of kernels other than $2 \wedge n$.
- Requires maintaining 2 images in memory.


## The Gray Code Kernels - Definitions (1D)

## Input

1. A seed vector $\vec{s}$.
2. A set of coefficients $\alpha_{1}, \alpha_{2} \ldots \alpha_{k} \in\{+1,-1\}$.

Output
A set of recursively built kernels :

$\mathrm{V}_{3}$

## GCK - Formal Definitions

$$
\begin{aligned}
\mathrm{V}_{\mathrm{s}}^{(0)}= & \stackrel{\rightharpoonup}{s} \\
\mathrm{~V}_{\mathrm{s}}^{(\mathrm{k})}= & \left\{\left[\overline{\mathrm{v}}^{(k-1)} \alpha_{k} \overline{\mathrm{v}}^{(k-1)}\right]\right\} \\
& \text { s.t. } \vec{v}^{(k-1)} \in \mathrm{V}_{\mathrm{s}}^{(k-1)} \text { and } \alpha_{k} \in\{+1,-1\}
\end{aligned}
$$

## 1 Dim GCK



- The set of kernels at level k is denoted $\mathrm{V}_{[\mathrm{s}]}{ }^{(\mathrm{k})}$.
- The initial seed s can be any vector.
- $\mathrm{V}_{[s]}{ }^{(\mathrm{k})}$ forms an orthogonal set of $2^{\mathrm{k}}$ kernels .
- When $[\mathrm{s}]=1, \mathrm{~V}_{[\mathrm{s}]}{ }^{(\mathrm{k})}$ forms the WH kernels of size $2^{\mathrm{k}}$.

Definition 1: The sequence $\left[\alpha_{1} \alpha_{2 . . .} \alpha_{k}\right.$ ] that uniquely defines a vector $v \in \mathrm{~V}_{s}^{(k)}$ is called the alpha-index of $v$.
$\alpha=$ Index $[=,+]$
Q- inidedex: [ $4+$-] $]$


Definition 2: Two vectors $\mathrm{v}_{\mathrm{i}}, \mathrm{V}_{\mathrm{j}} \in \mathrm{V}_{\mathrm{s}}^{(k)} \quad$ are called alpha-related if the hamming distance of their alpha-index is one.

An ordered set of GCK that are consecutively alpha-related are called a Gray-Code Sequence (GCS)


## GCS Properties

Let $V$ and V be two $\alpha$-related vectors: and $\vee_{-}$share a similar prefix vector of length $\Delta$.

$$
\begin{aligned}
& \begin{array}{l}
\alpha_{1}=(+,-,-) \longrightarrow V_{-} \\
\alpha_{2}=(+,-,+) \longrightarrow V_{+}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Shared prefix, } \Delta=4|\mathrm{~s}|
\end{aligned}
$$

## GCS Properties

## Define:

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{p}}=\mathrm{V}_{+}+\mathrm{V}_{-} \\
& \mathrm{V}_{\mathrm{m}}=\mathrm{V}_{+}-\mathrm{V}_{-}
\end{aligned}
$$

Main Result:

$$
V_{p}(i-\Delta)=V_{m}(i)
$$

(Proof by induction)

Example

$$
\begin{aligned}
& V_{+}-\left[\begin{array}{llllllll}
S & S & -s & -s & S & S & -s & -s
\end{array}\right] \\
& V_{-}-\left[\begin{array}{llllllll}
S & S & -S & -s & -s & -s & S & S
\end{array}\right]
\end{aligned}
$$

$$
V_{p}-\left[\begin{array}{llllllll}
2 s & 2 s & -2 s & -2 s & 0 & 0 & 0 & 0
\end{array}\right]
$$

$$
V_{m}{ }^{-}\left[\begin{array}{llllllll}
0 & 0 & 0 & 0 & 2 s & 2 s & -2 s & -2 s
\end{array}\right]
$$

## GCS - Main Result

$$
\mathrm{V}_{\mathrm{p}}(\mathrm{i}-\Delta)=\mathrm{V}_{\mathrm{m}}(\mathrm{i})
$$

$$
\mathrm{V}_{+}(\mathrm{i})=\mathrm{V}_{+}(\mathrm{i}-\Delta)+\mathrm{V}_{-}(\mathrm{i})+\mathrm{V}_{-}(\mathrm{i}-\Delta)
$$

$$
V_{-}(i)=-V_{-}(i-\Delta)+V_{+}(i)-V_{+}(i-\Delta)
$$

## Efficient convolution using GCS

- If $\mathrm{V}_{+}$and $\mathrm{V}_{-}$are $\alpha$-related and $\mathrm{S}(\mathrm{i})$ is a given signal:

$$
\begin{aligned}
& \mathrm{b}_{+}=\mathrm{V}_{+} * S \\
& \mathrm{~b}_{-}=\mathrm{V}_{-} * S
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{b}_{+}(\mathrm{i}) & =\mathrm{b}_{+}(\mathrm{i}-\Delta)+\mathrm{b}_{-}(\mathrm{i})+\mathrm{b}_{-}(\mathrm{i}-\Delta) \\
\mathrm{b}_{-}(\mathrm{i}) & =-\mathrm{b}_{-}(\mathrm{i}-\Delta)+\mathrm{b}_{+}(\mathrm{i})-\mathrm{b}_{+}(\mathrm{i}-\Delta)
\end{aligned}
$$

Given the convolution result of $\mathrm{b}_{-}$, the convolution result of $\mathrm{b}_{+}$can be computed using only $2 \mathrm{ops} /$ pix regardless the size of the kernels !

## Example

$$
[+\overbrace{1+1-1}^{\mathrm{V}_{+}}-1] \quad[\overbrace{+1-1-1}^{\mathrm{V}_{-}} \mathrm{V}_{-1}] \quad \Delta=1
$$

$$
b_{+}(i)=b_{+}(i-1)+b_{-}(i)+b_{-}(i-1)
$$

| Signal S | 2 | 1 | 1 |  |  | 7 | 9 | 11 | 23 | 31 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $b_{+}$by GCK | $\mathbf{- 1}$ | $-\mathbf{- 1}$ | $\mathbf{- 1}$ | $-\mathbf{- 1}$ | $\mathbf{+ 1}$ | $\mathbf{+ 1}$ | +1 |  |  |  |
| $\mathrm{~b}_{-}$ | $\mathbf{2}$ | -11 |  | + | -2 | 10 | 6 |  |  |  |
| $\mathrm{~b}_{+}$ | 12 |  |  | 5 | 10 | 18 | -34 |  |  |  |

2 ops/pixel regardless of size \& dimension of GCK

## Generalization to higher dim.

- A set of 2D kernels can be generated using an outer product of two 1D GCK

$$
\begin{gathered}
V_{s_{1}, s_{2}}^{\left(k_{1}\right)}=\left\{v_{1} \times v_{2} \mid v_{1} \in V_{s_{1}}^{k_{1}}, v_{2} \in V_{s_{2}}^{k_{2}}\right\} \\
v=v_{1} \times v_{2} \Leftrightarrow v(i, j)=v_{1}(i) v_{2}(j)
\end{gathered}
$$

- This can be generalized to higher dimension.

Example of the set $\mathrm{V}_{[1][1]}^{(2,2)}$ (2D WH)


## Definition $\alpha$-index:



## nD GCK

Definition: Two vectors $\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}} \in \mathrm{V}_{\mathrm{s}_{1}, s_{2}}^{\left(k_{1}, k_{2}\right)} \quad$ are called alpha-related if the hamming distance of their alpha-index is one.

An ordered set of 2D GCK that are
consecutively alpha-related form a
Gray-Code Sequence (GCS)

Every two consecutive 2D kernels that are $\alpha$ related can be computed using only $2 \mathrm{ops} / \mathrm{pix}$ regardless of the size (and dim.) of the kernels !

## Ordering the GCS

Conclusion: Applying successive convolutions with a set of GCS kernels requires $2 \mathrm{ops} /$ pixel/kernel.

- Questions:
- How many GCS are there?
- How should we choose the best GCS?
- Observation 1: The $\alpha$-index of a 2D kernel $v \in V_{S_{1}, s_{2}}^{\left(k_{1}, k_{2}\right)}$ can be viewed as a vertex point in $\mathrm{a} \mathrm{k}_{1}+\mathrm{k}_{2} \operatorname{dim}$ hypercube.
- Observation 2: The set $V_{s_{1}, s_{2}}^{\left(k_{1}, k_{2}\right)}$ is isomorphic to a $k_{1}+k_{2}$ dim hypercube graph whose edges connect $\alpha$-related vertices.
- Observation 3: A GCS is isomorphic to a Hamiltonian path in the hypercube graph.

- Conclusion 1: The number of possible GCS is identical to the number of different Hamiltonian cycles in the associated hypercube graph (2, 8, 96, 43008, ... [Gardner 86] ).
- Conclusion 2: Finding an optimal GCS is NP-Complete.



## Example

We would like to convolve with the marked WH kernels:


## Experiments

-Task: pattern matching using WH projection kernels ( Hel-Or et. Al. 2003).
-Measure total number of operations with and without DC.




## Experiments-summary

## Total \# of ops = (\# kernels) * (\# ops/kernels)



## Conclusions

## Advantages

- Highly efficient - 2 ops/pixel/kernel.
- Independent of the kernel size and dimension depends only on the number of kernels.
- Integer operations.
- Very large set of kernels, using flexible design.
- The order of kernels can be optimized to include informative kernels (NP complete).
- Requires only 2|image| memory size.


## Limitations

- Each kernel - computation depends on the previous kernels in the sequence. For a single kernel this framework is inefficient.
- The kernels cannot be computed using ANY order that we choose.
- Efficient only when used on a group of image windows (not on a single one).


