Fast Pattern Detection using Orbit Decomposition

Yacov Hel-Or The Interdisciplinary Center On Sabbatical at HP Labs

joint work with

Hagit Hel-Or

Haifa University

On Sabbatical at Stanford U.

Pattern Detection

A given pattern is sought in an image.

- The pattern may appear at any location in the image.
- The pattern may be subject to any transformation (within a given transformation group).

Face detection in images

Why is it Expensive? The search in Spatial Domain

Searching for faces in a 1000x1000 image, is applied 1e6 times, for each pixel location.

A very expensive search problem

Why is it difficult? The Search in Transformation Domain

- A pattern under transformations draws a very complex manifold in "pattern space":

 P ∈ ℜ^{kxk}
 - In a very high dimensional space.
 - Non convex.
 - Non regular (two similarly perceived patterns may be distant in pattern space).

A rotation manifold of a pattern drawn in "pattern-space" The manifold was projected into its three most significant components. Efficient Search in the Transformation Domain

Transformation Manifold

A pattern P can be represented as a point in \Re^{kxk}

 $T(\alpha)P$ is a transformation $T(\alpha)$ applied to pattern P.

 $T(\alpha)P$ for all α forms an orbit in \Re^{kxk}

Fast Search in Group Orbit

- Assume d(Q,P) is a distance metric.
- We would like to find

 $\Delta(Q,P)=\min_{\alpha} d(Q, T(\alpha)P)$

Fast Search in Group Orbit (Cont.)

• In the general case $\Delta(Q, P)$ is not a metric.

• Observation: if $d(Q,P) = d(T(\alpha)Q, T(\alpha)P)$

- $\Delta(Q,P)$ is a **metric**
- Point-to-Orbit dist. = Orbit-to-Orbit dist.

Fast Search in Group Orbit (Cont.)

The metric property of $\Delta(Q,P)$ implies triangular inequality on the distances.

Orbit Decomposition

- In practice $T(\alpha)$ is sampled into $T(\epsilon i)=T_{\epsilon}(i)$, i=1,2,...
- We can divide $T_{\varepsilon}(i)P$ into two sub-orbits:

 $T_{2\epsilon}(i)P$ and $T_{2\epsilon}(i)P'$ where $P' = T_{\epsilon}(1)P$

Orbit Decomposition (Cont.)

Orbit Decomposition (Cont.)

Since $\Delta_{2\epsilon}$ is a metric and $\Delta_{2\epsilon}(\mathbf{P},\mathbf{P}')$ can be calculated in advance we may save calculations using the triangle inequality constraint.

The Orbit Tree

• The sub-group subdivision can be applied recursively.

Orbit Tree

FIND THE FACE		
Strate Burgers		
CHARTER AND AND THE		
	start	
	next	
A PERMAN		
	result (shown in <- pict.)	
	unclss pix. 0 %	
	clutter pix. 100 %	
	dist calcs	

Rejection Rate

Average number of distance computations per pixel is 2.868

Fast Search in Group Orbit: Conclusions

- <u>Observation 1</u>: Orbit distance is a metric when the point distance is transformation invariant.
- <u>Observation 2</u>: Fast search in orbit distance space can be applied using recursive orbit decomposition.
- Distant patterns are rejected fast.
- **Important**: Can be applied to metric spaces (Non Euclidean).

