Fast Pattern Detection using Orbit Decomposition

Yacov Hel-Or

The Interdisciplinary Center
On Sabbatical at HP Labs
joint work with
Hagit Hel-Or
Haifa University
On Sabbatical at Stanford U.

Pattern Detection

A given pattern is sought in an image.

- The pattern may appear at any location in the image.
- The pattern may be subject to any transformation (within a given transformation group).

Example

Face detection in images

Why is it Expensive?

The search in Spatial Domain

Searching for faces in a 1000×1000 image, is applied 1e6 times, for each pixel location.

A very expensive search problem

Why is it difficult? The Search in Transformation Domain

- A pattern under transformations draws a very complex manifold in "pattern space":

- In a very high dimensional space.
- Non convex.
- Non regular (two similarly perceived patterns may be distant in pattern space).

A rotation manifold of a pattern drawn in "pattern-space" The manifold was projected into its three most significant components.

Efficient Search in the Transformation Domain

Transformation Manifold

A pattern P can be represented as a point in $\Re^{\mathfrak{k} k}$
$\mathrm{T}(\alpha) \mathrm{P}$ is a transformation $\mathrm{T}(\alpha)$ applied to pattern \mathbf{P}.
$\mathrm{T}(\alpha) \mathrm{P}$ for all α forms an orbit in $\mathfrak{R}^{k \times k}$

Fast Search in Group Orbit

- Assume $\mathrm{d}(\mathrm{Q}, \mathrm{P})$ is a distance metric.
- We would like to find

$$
\Delta(\mathrm{Q}, \mathrm{P})=\min _{\alpha} \mathrm{d}(\mathrm{Q}, \mathrm{~T}(\alpha) \mathrm{P})
$$

Fast Search in Group Orbit (Cont.)

- In the general case $\Delta(\mathrm{Q}, \mathrm{P})$ is not a metric.

- Observation: if $d(Q, P)=d(T(\alpha) Q, T(\alpha) P)$
- $\Delta(\mathrm{Q}, \mathrm{P})$ is a metric
- Point-to-Orbit dist. = Orbit-to-Orbit dist.

Fast Search in Group Orbit (Cont.)

The metric property of $\Delta(\mathrm{Q}, \mathrm{P})$ implies triangular inequality on the distances.

Orbit Decomposition

- In practice $\mathrm{T}(\alpha)$ is sampled into $\mathrm{T}(\varepsilon \mathrm{i})=\mathrm{T}_{\varepsilon}(\mathrm{i}), \mathrm{i}=1,2, \ldots$
- We can divide $\mathrm{T}_{\varepsilon}(\mathrm{i}) \mathrm{P}$ into two sub-orbits:

$$
\mathrm{T}_{2 \varepsilon}(\mathrm{i}) \mathrm{P} \text { and } \mathrm{T}_{2 \varepsilon}(\mathrm{i}) \mathrm{P}^{\prime} \text { where } \mathrm{P}^{\prime}=\mathrm{T}_{\varepsilon}(1) \mathrm{P}
$$

Orbit Decomposition (Cont.)

Orbit Decomposition (Cont.)

Since $\Delta_{2 \varepsilon}$ is a metric and $\Delta_{2 \varepsilon}\left(\mathrm{P}, \mathrm{P}{ }^{\prime}\right)$ can be calculated in advance we may save calculations using the triangle inequality constraint.

The Orbit Tree

- The sub-group subdivision can be applied recursively.

Orbit Tree

-	-
File Edit Tools Window Help	

FIFIND THE FACE
File Edit Tools Window Help

- IFIND THE FACE	- $\square^{\text {a }}$ \|
File Edit Tools Window Help	

Rejection Rate

Average number of distance computations per pixel is 2.868

Fast Search in Group Orbit: Conclusions

- Observation 1: Orbit distance is a metric when the point distance is transformation invariant.
- Observation 2: Fast search in orbit distance space can be applied using recursive orbit decomposition.
- Distant patterns are rejected fast.
- Important: Can be applied to metric spaces (Non Euclidean).

