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Pattern DetectionPattern Detection
A given pattern is sought in an  image. 
• The pattern may appear at any location in the image.
• The pattern may be subject to any transformation

(within a given transformation group).

• • •



ExampleExample

Face detection in images



Why is it Expensive? 
The search in Spatial Domain
Why is it Expensive? 
The search in Spatial Domain

Searching for faces in a 
1000x1000 image, is 
applied 1e6 times, for each 
pixel location.

A very expensive search problem



Why is it difficult? 
The Search in Transformation Domain
Why is it difficult? 
The Search in Transformation Domain

• A pattern under transformations draws a very complex manifold 
in “pattern space”:

– In a very high dimensional space. 

– Non convex.

– Non regular (two similarly perceived patterns may be distant in pattern 
space).
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rotation of 2D signal projected into its 3 highest eigen-vectors
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Suggested ApproachSuggested Approach
Reduce complexity of search using 2 complementary
processes:
1. Reduce search in Transformation Domain.
2. Reduce search in Spatial Domain.

Both processes are based on a Rejection Scheme.



Efficient Search in the 
Transformation Domain
Efficient Search in the 

Transformation Domain



Transformation ManifoldTransformation Manifold

A pattern P can be represented as a point in ℜkxk

T(α)P is a transformation T(α) applied to pattern P.

T(α)P for all α forms an orbit in ℜkxk

T(α)P

T(α0)
P

T(α2)
P

T(α1)
P

P



Fast Search in Group OrbitFast Search in Group Orbit
• Assume  d(Q,P) is a distance metric.

• We would like to find

∆(Q,P)=minα d(Q, 
T(α)P)
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Fast Search in Group Orbit (Cont.)Fast Search in Group Orbit (Cont.)
• In the general case ∆(Q,P) is not a metric.
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• Observation:   if  d(Q,P)= d(T(α)Q, T(α)P) 

∆(Q,P) is a metric



Fast Search in Group Orbit (Cont.)Fast Search in Group Orbit (Cont.)

The metric property of ∆(Q,P) implies triangular inequality on 
the distances.
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Orbit DecompositionOrbit Decomposition
• In practice  T(α) is sampled into T (εi)=Tε(i) ,  i=1,2,…

• We can divide Tε(i)P into two sub-orbits:
T2ε(i)P  and T2ε(i)P’ where P’= Tε(1) P

P∆ε(Q,P)
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Orbit Decomposition (Cont.)Orbit Decomposition (Cont.)
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Orbit Decomposition (Cont.)Orbit Decomposition (Cont.)

T2ε(i)P T2ε(i)P’

Q

∆2ε(Q,P) ∆2ε(Q,P’)

P

P’∆2ε (P,P’)

Since  ∆2ε is a metric  and  ∆2ε(P,P’) can be calculated in advance
we may save calculations using the triangle inequality constraint.



Orbit Decomposition (Cont.)Orbit Decomposition (Cont.)
• The sub-group subdivision can be applied recursively. 



Fast Search - ExampleFast Search - Example

















Fast Search in Group Orbit: ConclusionsFast Search in Group Orbit: Conclusions

• Observation 1: Orbit distance is a metric when the point distance 
is transformation invariant.

• Observation 2: Fast search in orbit distance space can be applied 
using recursive orbit decomposition.

• Distant patterns are rejected fast.

• Important: Can be applied to any metric distance d(Q,P).



Efficient Search in the 
Spatial Domain

Efficient Search in the 
Spatial Domain

• • •



The Euclidean DistanceThe Euclidean Distance

• • •
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Complexity (2D case)Complexity (2D case)

Average # 
Operations per 

Pixel
Space Integer 

Arithm.

Run Time for 
1Kx1K Image
32x32 pattern 
PIII, 1.8 Ghz

Yes 5.14 seconds

4.3 secondsNo

n2

n2

Naive
+:  2k2

*:   k2

Fourier
+:  36 log n

*:  24 log n



Norm Distance in Sub-spaceNorm Distance in Sub-space

• Representing an image window and the pattern as 
vectors in Rkxk:

dE(p,q)= ||p-q||2=||      -
||2

dE(p,q) ≥ |u|-2 dE(pTu, qTu)

• If p and q were projected onto a kernel u, it follows     
from the Cauchy-Schwarz Inequality:

q

pu



Distance Measure in Sub-space  (Cont.)Distance Measure in Sub-space  (Cont.)

• If q and p were projected onto a set of kernels  [U]:
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It can be shown that:



How can we Expedite the Distance Calculations?How can we Expedite the Distance Calculations?

Two necessary requirements:
1. Choose projecting kernels [U] having  high 

probability to be parallel to the vector  p-q.
2. Choose projecting kernels that are fast to apply.

Natural Images

u1



Projecting Kernels: Walsh-HadamardProjecting Kernels: Walsh-Hadamard

Following the above requirement we use the kxk  

Walsh-Hadamard kernels

• Each window in a natural image is closely 
spanned by the first few kernel vectors.

• Can be applied very fast in a recursive manner.



The Walsh-Hadamard  Kernels:The Walsh-Hadamard  Kernels:



Walsh-Hadamard v.s. Standard Basis:Walsh-Hadamard v.s. Standard Basis:

The lower bound for distance value in %
v.s. number of standard basis projections,
Averaged over 100 pattern-image pairs of 
size 256x256 .

The lower bound for distance value in %
v.s. number of Walsh-Hadamard 
projections,
Averaged over 100 pattern-image pairs of 
size 256x256 .



The  Walsh-Hadamard Tree (1D case)The  Walsh-Hadamard Tree (1D case)
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The  Walsh-Hadamard Tree - ExampleThe  Walsh-Hadamard Tree - Example
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Properties:Properties:

• Descending from a node to its child requires one addition 
operation per pixel (convolution).

• A projection of the entire image onto one kernel is performed in
a top-down traversal.
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• A projection of a particular window in the image onto one kernel
is performed in a bottom-up traversal.

• All operations are performed in 
integers.



Complexity (1D):Complexity (1D):

• Projecting all windows in the image onto a single kernel 
requires log k additions per pixel.

• Projecting all windows in the image onto l<k kernels requires 
m additions per pixel, where m is the number of nodes 
preceding the l leaf.

• Projecting all windows in the image onto k kernels requires 2k
additions per pixel.

• Projecting a single window onto a single

kernel requires k-1 additions.
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Walsh-Hadamard Tree  (2D):Walsh-Hadamard Tree  (2D):

• For the 2D case, the projection is performed in a 
similar manner where the tree depth is 2log k

• The complexity is calculated accordingly.
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Pattern Matching algorithmPattern Matching algorithm

– Iteratively apply Walsh-Hadamard kernels to each 
window wi in the image.

– At each iteration and for each wi  calculate a lower-
bound Lbi for |p-wi|2 .

– If the lower-bound Lbi is greater than a pre-defined 
threshold, reject the window wi and ignore it in 
further projections.



Pattern Matching algorithm - ComplexityPattern Matching algorithm - Complexity

All windows are projected onto the first kernel :

2logk ops/pixel

Only a few windows are further projected  using ~2k 
operations per active window : 

ε ops/pixel

Total :       2logk + ε ops/pixel



Example:Example:

Sought  PatternSought  Pattern

Initial Image: 65536 candidatesInitial Image: 65536 candidates



After the 1st projection: 563 candidatesAfter the 1st projection: 563 candidates



After the 2nd projection: 16 candidatesAfter the 2nd projection: 16 candidates



After the 3rd projection: 1 candidateAfter the 3rd projection: 1 candidate



Percentage of windows remaining following each 
projection,
averaged over 100 pattern-image pairs. 

Image size = 256x256, pattern size = 16x16.



Accumulated number of additions after each projection
averaged over 100 pattern-image pairs.
Image size = 256x256, pattern size = 16x16.

Average Number of operations per pixel:  8.0154



Example with NoiseExample with Noise
Original Noise Level = 40 Detected patterns.

Number of projections required to find all patterns, as a 
function of noise level. (Threshold is set to minimum).
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DC-invariant Pattern MatchingDC-invariant Pattern Matching

Illumination 
gradient addedOriginal Detected patterns.

Five projections are required to find all 10 patterns 
(Threshold is set to minimum).



Complexity (2D case)Complexity (2D case)

Average # 
Operations per 

Pixel
Space Integer 

Arithm.

Run Time for 
1Kx1K Image
32x32 pattern 
PIII, 1.8 Ghz

Yes 4.86 seconds

3.5 seconds

New +:  2 log k + ε n2 log k Yes 78  msec

No

n2

n2

Naive
+:  2k2

*:   k2

Fourier
+:  36 log n

*:  24 log n



Advantages:Advantages:

• Walsh-Hadamard per window can be applied very fast.
• Projections are performed with additions/subtractions 

only (no multiplications).
• Integer operations (3 times faster for additions).
• Fast rejection of windows.
• Possible to perform pattern matching at video rate. 
• Extensions: 

– DC invariant pattern matching. 
– Other norms.
– Multi size pattern matching.



Limitations:Limitations:

• 2n2 log k  memory size.
• Pattern size must be 2m .

• Limited to normed distance metrics.



ConclusionConclusion

Pattern Detection using 2 complementary processes:
1. Reduce search in Transformation Domain.
2. Reduce search in Spatial Domain.

Processes are based on rejection schemes, and are 
restricted to a specific domain.

The two processes can be combined into a single, highly 
efficient, search process.

--- END ---


