Real Time Pattern Detection

Yacov Hel-Or The Interdisciplinary Center joint work with Hagit Hel-Or Haifa University

Pattern Detection

A given pattern is sought in an image.

- The pattern may appear at any location in the image.
- The pattern may be subject to any transformation (within a given transformation group).

Face detection in images

Why is it Expensive? The search in Spatial Domain

Searching for faces in a 1000x1000 image, is applied 1e6 times, for each pixel location.

A very expensive search problem

Why is it difficult? The Search in Transformation Domain

- A pattern under transformations draws a very complex manifold in "pattern space":
 - In a very high dimensional space.
 - Non convex.
 - Non regular (two similarly perceived patterns may be distant in pattern space).

 $\in \Re^{kxk}$

A rotation manifold of a pattern drawn in "pattern-space" The manifold was projected into its three most significant components.

Suggested Approach

Reduce complexity of search using 2 complementary processes:

- 1. Reduce search in Transformation Domain.
- 2. Reduce search in Spatial Domain.

Both processes are based on a Rejection Scheme.

Efficient Search in the Transformation Domain

Transformation Manifold

A pattern P can be represented as a point in \Re^{kxk}

 $T(\alpha)P$ is a transformation $T(\alpha)$ applied to pattern P.

 $T(\alpha)P$ for all α forms an orbit in \Re^{kxk}

Fast Search in Group Orbit

- Assume d(Q,P) is a distance metric.
- We would like to find

 $\Delta(Q,P)=min_{\alpha} d(Q, T(\alpha)P)$

Fast Search in Group Orbit (Cont.)

• In the general case $\Delta(Q, P)$ is not a metric.

• Observation: if $d(Q,P) = d(T(\alpha)Q, T(\alpha)P)$

 $\Delta(Q,P)$ is a **metric**

Fast Search in Group Orbit (Cont.)

The metric property of $\Delta(Q,P)$ implies triangular inequality on the distances.

Orbit Decomposition

- In practice $T(\alpha)$ is sampled into $T(\epsilon i)=T_{\epsilon}(i)$, i=1,2,...
- We can divide $T_{\varepsilon}(i)P$ into two sub-orbits:

 $T_{2\epsilon}(i)P$ and $T_{2\epsilon}(i)P'$ where $P' = T_{\epsilon}(1)P$

Orbit Decomposition (Cont.)

Orbit Decomposition (Cont.)

Since $\Delta_{2\epsilon}$ is a metric and $\Delta_{2\epsilon}(\mathbf{P},\mathbf{P}')$ can be calculated in advance we may save calculations using the triangle inequality constraint.

Orbit Decomposition (Cont.)

• The sub-group subdivision can be applied recursively.

Fast Search - Example

FIND THE FACE		
Strate Burgers		
CHARTER AND AND THE		
	start	
	next	
A PERMAN		
	result (shown in <- pict.)	
	unclss pix. 0 %	
	clutter pix. 100 %	
	dist calcs	

Fast Search in Group Orbit: Conclusions

- <u>Observation 1</u>: Orbit distance is a metric when the point distance is transformation invariant.
- <u>Observation 2</u>: Fast search in orbit distance space can be applied using recursive orbit decomposition.
- Distant patterns are rejected fast.
- **Important**: Can be applied to any metric distance d(Q,P).

Efficient Search in the Spatial Domain

The Euclidean Distance

 $d_E(u,v,t) = \sum [I(x-u, y-v, t-w) - P(x, y, t)]^2$ $x, y, t \in N$

Complexity (2D case)

	Average # Operations per Pixel	Space	Integer Arithm.	Run Time for 1Kx1K Image 32x32 pattern PIII, 1.8 Ghz
Naive	+: $2k^2$ *: k^2	n^2	Yes	5.14 seconds
Fourier	+: 36 log n *: 24 log n	<i>n</i> ²	No	4.3 seconds

Norm Distance in Sub-space

• Representing an image window and the pattern as vectors in *R*^{*kxk*}:

$$d_{E}(p,q) = ||p-q||^{2} =$$

If p and q were projected onto a kernel u, it follows from the Cauchy-Schwarz Inequality:

 $d_{E}(p,q) \ge |u|^{-2} d_{E}(p^{T}u, q^{T}u)$

Distance Measure in Sub-space (Cont.)

• If q and p were projected onto a set of kernels [U]:

It can be shown that:

$$d_E(p,q) \ge \sum_{k=1}^r \frac{1}{S_k^2} d_E(p^T u_k, q^T u_k)$$

Two necessary requirements:

- 1. Choose projecting kernels [U] having high probability to be parallel to the vector *p*-*q*.
- 2. Choose projecting kernels that are fast to apply.

Projecting Kernels: Walsh-Hadamard

Following the above requirement we use the kxk

Walsh-Hadamard kernels

- Each window in a natural image is closely spanned by the first few kernel vectors.
- Can be applied very fast in a recursive manner.

The Walsh-Hadamard Kernels:

Walsh-Hadamard v.s. Standard Basis:

The lower bound for distance value in % v.s. number of Walsh-Hadamard projections, Averaged over 100 pattern-image pairs of size 256x256. The lower bound for distance value in % v.s. number of standard basis projections, Averaged over 100 pattern-image pairs of size 256x256.

The Walsh-Hadamard Tree (1D case)

The Walsh-Hadamard Tree - Example

Properties:

- Descending from a node to its child requires one addition operation per pixel (convolution).
- A projection of the entire image onto one kernel is performed in a top-down traversal.
- A projection of a particular window in the image onto one kernel is performed in a bottom-up traversal.
- All operations are performed in integers.

Complexity (1D):

- Projecting <u>all</u> windows in the image onto a single kernel requires *log k* additions per pixel.
- Projecting <u>all</u> windows in the image onto *l*<*k* kernels requires
 m additions per pixel, where *m* is the number of nodes
 preceding the *l* leaf.
- Projecting <u>all</u> windows in the image onto k kernels requires 2k additions per pixel.
- Projecting a <u>single</u> window onto a single kernel requires k-1 additions.

Walsh-Hadamard Tree (2D):

- For the 2D case, the projection is performed in a similar manner where the tree depth is *2log k*
- The complexity is calculated accordingly.

Construction tree for 2x2 basis

Pattern Matching algorithm

- Iteratively apply Walsh-Hadamard kernels to each window w_i in the image.
- At each iteration and for each w_i calculate a lowerbound Lb_i for $|p-w_i|^2$.
- If the lower-bound Lb_i is greater than a pre-defined threshold, reject the window w_i and ignore it in further projections.

Pattern Matching algorithm - Complexity

All windows are projected onto the first kernel : 2logk ops/pixel

Only a few windows are further projected using ~2k operations per active window :

 $\varepsilon \operatorname{ops/pixel}$

Total:

 $2logk + \varepsilon ops/pixel$

Sought Pattern

Initial Image: 65536 candidates

After the 1st projection: 563 candidates

After the 2nd projection: 16 candidates

After the 3rd projection: 1 candidate

Percentage of windows remaining following each projection, averaged over 100 pattern-image pairs.

Image size = 256x256, pattern size = 16x16.

Accumulated number of additions after each projection averaged over 100 pattern-image pairs. Image size = 256x256, pattern size = 16x16.

Average Number of operations per pixel: 8.0154

Example with Noise

Number of projections required to find all patterns, as a function of noise level. (Threshold is set to minimum).

Percentage of windows remaining following each projection, at various noise levels.

Image size = 256x256, pattern size = 16x16.

DC-invariant Pattern Matching

Original

Illumination gradient added

Detected patterns.

Five projections are required to find all 10 patterns (Threshold is set to minimum).

	Average # Operations per Pixel	Space	Integer Arithm.	Run Time for 1Kx1K Image 32x32 pattern PIII, 1.8 Ghz
Naive	+: $2k^2$ *: k^2	n^2	Yes	4.86 seconds
Fourier	+: 36 log n *: 24 log n	n^2	No	3.5 seconds
New	+: $2 \log k + \varepsilon$	n² log k	Yes	78 msec

Advantages:

- Walsh-Hadamard per window can be applied very fast.
- Projections are performed with additions/subtractions only (no multiplications).
- Integer operations (3 times faster for additions).
- Fast rejection of windows.
- Possible to perform pattern matching at video rate.
- Extensions:
 - DC invariant pattern matching.
 - Other norms.
 - Multi size pattern matching.

Limitations:

- 2n² log k memory size.
- Pattern size must be 2^m.
- Limited to normed distance metrics.

Pattern Detection using 2 complementary processes:

- 1. Reduce search in Transformation Domain.
- 2. Reduce search in Spatial Domain.

Processes are based on rejection schemes, and are restricted to a specific domain.

The two processes can be combined into a single, highly efficient, search process.