Real Time Pattern Detection

Yacov Hel-Or

The Interdisciplinary Center
joint work with
Hagit Hel-Or
Haifa University

Pattern Detection

A given pattern is sought in an image.

- The pattern may appear at any location in the image.
- The pattern may be subject to any transformation (within a given transformation group).

Example

Face detection in images

Why is it Expensive?

The search in Spatial Domain

Searching for faces in a 1000×1000 image, is applied 1e6 times, for each pixel location.

A very expensive search problem

Why is it difficult? The Search in Transformation Domain

- A pattern under transformations draws a very complex manifold in "pattern space":

$\in \mathfrak{R}^{k \times k}$
- In a very high dimensional space.
- Non convex.
- Non regular (two similarly perceived patterns may be distant in pattern space).

A rotation manifold of a pattern drawn in "pattern-space" The manifold was projected into its three most significant components.

Suggested Approach

Reduce complexity of search using 2 complementary processes:

1. Reduce search in Transformation Domain.
2. Reduce search in Spatial Domain.

Both processes are based on a Rejection Scheme.

Efficient Search in the Transformation Domain

Transformation Manifold

A pattern P can be represented as a point in $\Re^{\mathfrak{k} k}$
$\mathrm{T}(\alpha) \mathrm{P}$ is a transformation $\mathrm{T}(\alpha)$ applied to pattern \mathbf{P}.
$\mathrm{T}(\alpha) \mathrm{P}$ for all α forms an orbit in $\mathfrak{R}^{k \times k}$

Fast Search in Group Orbit

- Assume $\mathrm{d}(\mathrm{Q}, \mathrm{P})$ is a distance metric.
- We would like to find

$$
\begin{aligned}
& \Delta(Q, P)=\min _{\alpha} d(Q, \\
& T(\alpha) P)
\end{aligned}
$$

Fast Search in Group Orbit (Cont.)

- In the general case $\Delta(\mathrm{Q}, \mathrm{P})$ is not a metric.

- Observation: if $d(Q, P)=d(T(\alpha) Q, T(\alpha) P)$
$\Delta(\mathrm{Q}, \mathrm{P})$ is a metric

Fast Search in Group Orbit (Cont.)

The metric property of $\Delta(\mathrm{Q}, \mathrm{P})$ implies triangular inequality on the distances.

Orbit Decomposition

- In practice $\mathrm{T}(\alpha)$ is sampled into $\mathrm{T}(\varepsilon \mathrm{i})=\mathrm{T}_{\varepsilon}(\mathrm{i}), \mathrm{i}=1,2, \ldots$
- We can divide $\mathrm{T}_{\varepsilon}(\mathrm{i}) \mathrm{P}$ into two sub-orbits:

$$
\mathrm{T}_{2 \varepsilon}(\mathrm{i}) \mathrm{P} \text { and } \mathrm{T}_{2 \varepsilon}(\mathrm{i}) \mathrm{P}^{\prime} \text { where } \mathrm{P}^{\prime}=\mathrm{T}_{\varepsilon}(1) \mathrm{P}
$$

Orbit Decomposition (Cont.)

Orbit Decomposition (Cont.)

Since $\Delta_{2 \varepsilon}$ is a metric and $\Delta_{2 \varepsilon}\left(\mathrm{P}, \mathrm{P}{ }^{\prime}\right)$ can be calculated in advance we may save calculations using the triangle inequality constraint.

Orbit Decomposition (Cont.)

- The sub-group subdivision can be applied recursively.

Fast Search - Example

-	-
File Edit Tools Window Help	

FIFIND THE FACE
File Edit Tools Window Help

- IFIND THE FACE	- $\square^{\text {a }}$ \|
File Edit Tools Window Help	

Fast Search in Group Orbit: Conclusions

- Observation 1: Orbit distance is a metric when the point distance is transformation invariant.
- Observation 2: Fast search in orbit distance space can be applied using recursive orbit decomposition.
- Distant patterns are rejected fast.
- Important: Can be applied to any metric distance d(Q,P).

Efficient Search in the Spatial Domain

The Euclidean Distance

Complexity (2D case)

	Average \# Operations per Pixel	Space	Integer Arithm.	Run Time for 1Kx1K Image $32 x 32$ pattern PIII, 1.8 Ghz
Naive	$+: 2 k^{2}$ $*:$$k^{2}$	n^{2}	Yes	5.14 seconds
Fourier	$+: 36 \log n$			
$*: 24 \log n$	n^{2}	No	4.3 seconds	

Norm Distance in Sub-space

- Representing an image window and the pattern as vectors in $R^{k x k}$.

$$
d_{E}(p, q)=\|p-q\|^{2}=>
$$

- If p and $\|_{\mid}^{2}$ were projected onto a kernel u, it follows from the Cauchy-Schwarz Inequality:

$$
d_{E}(p, q) \geq|u|^{-2} d_{E}\left(p^{\top} u, q^{\top} u\right)
$$

Distance Measure in Sub-space (Cont.)

- If q and p were projected onto a set of kernels $[U]$:

It can be shown that:

$$
d_{E}(p, q) \geq \sum_{k=1}^{r} \frac{1}{S_{k}^{2}} d_{E}\left(p^{T} u_{k}, q^{T} u_{k}\right)
$$

How can we Expedite the Distance Calculations?

Two necessary requirements:

1. Choose projecting kernels [U] having high probability to be parallel to the vector $p-q$.
2. Choose projecting kernels that are fast to apply.

Projecting Kernels: Walsh-Hadamard

Following the above requirement we use the kxk

Walsh-Hadamard kernels

- Each window in a natural image is closely spanned by the first few kernel vectors.
- Can be applied very fast in a recursive manner.

The Walsh-Hadamard Kernels:

Walsh-Hadamard v.s. Standard Basis:

The lower bound for distance value in \% v.s. number of Walsh-Hadamard projections,
Averaged over 100 pattern-image pairs of size 256x256 .

The lower bound for distance value in \% v.s. number of standard basis projections, Averaged over 100 pattern-image pairs of size 256×256.

The Walsh-Hadamard Tree (1D case)

The Walsh-Hadamard Tree - Example

Properties:

- Descending from a node to its child requires one addition operation per pixel (convolution).
- A projection of the entire image onto one kernel is performed in a top-down traversal.

A projection of a particular window in the image onto one kernel is performed in a bottom-up traversal.

- All operations are performed in integers.

Complexity (1D):

- Projecting all windows in the image onto a single kernel requires $\log k$ additions per pixel.
- Projecting all windows in the image onto $l<k$ kernels requires m additions per pixel, where m is the number of nodes preceding the l leaf.
- Projecting all windows in the image onto k kernels requires $2 k$ additions per pixel.
- Projecting a single window onto a single kernel requires k-1 additions.

Walsh-Hadamard Tree (2D):

- For the 2D case, the projection is performed in a similar manner where the tree depth is $2 \log k$

The complexity is calculated accordingly.

Construction tree for 2×2 basis

Pattern Matching algorithm

- Iteratively apply Walsh-Hadamard kernels to each window w_{i} in the image.
- At each iteration and for each w_{i} calculate a lowerbound $L b_{i}$ for $\left|p-w_{i}\right|^{2}$.
- If the lower-bound $L b_{i}$ is greater than a pre-defined threshold, reject the window w_{i} and ignore it in further projections.

Pattern Matching algorithm - Complexity

All windows are projected onto the first kernel :
2logk ops/pixel
Only a few windows are further projected using ~2k operations per active window :

$$
\varepsilon \text { ops/pixel }
$$

Total :
 $2 \log k+\varepsilon$ ops/pixel

Example:

Sought Pattern

Initial Image: 65536 candidates

After the $1^{\text {st }}$ projection: 563 candidates

After the $2^{\text {nd }}$ projection: 16 candidates

After the $3^{\text {rd }}$ projection: 1 candidate

Percentage of windows remaining following each projection, averaged over 100 pattern-image pairs.

Image size $=256 \times 256$, pattern size $=16 \times 16$.

Accumulated number of additions after each projection averaged over 100 pattern-image pairs. Image size $=256 \times 256$, pattern size $=16 \times 16$.

Average Number of operations per pixel: 8.0154

Example with Noise

Number of projections required to find all patterns, as a function of noise level. (Threshold is set to minimum).

Percentage of windows remaining following each projection, at various noise levels.

Image size $=256 \times 256$, pattern size $=16 \times 16$.

DC-invariant Pattern Matching

Detected patterns.

0

Five projections are required to find all 10 patterns (Threshold is set to minimum).

Complexity (2D case)

	Average \# Operations per Pixel	Space	Integer Arithm.	Run Time for 1Kx1K Image $32 x 32$ pattern PIII, 1.8 Ghz
Naive	$+: 2 k^{2}$ $*: k^{2}$	n^{2}	Yes	4.86 seconds
Fourier	$+: 36 \log n$ $*: 24 \log n$	n^{2}	No	3.5 seconds
New	$+: 2 \log k+\varepsilon$	$n^{2} \log k$	Yes	78 msec

Advantages:

- Walsh-Hadamard per window can be applied very fast.
- Projections are performed with additions/subtractions only (no multiplications).
- Integer operations (3 times faster for additions).
- Fast rejection of windows.
- Possible to perform pattern matching at video rate.
- Extensions:
- DC invariant pattern matching.
- Other norms.
- Multi size pattern matching.

Limitations:

- $2 \mathrm{n}^{2} \log \mathrm{k}$ memory size.
- Pattern size must be 2^{m}.
- Limited to normed distance metrics.

Conclusion

Pattern Detection using 2 complementary processes: 1. Reduce search in Transformation Domain.
2. Reduce search in Spatial Domain.

Processes are based on rejection schemes, and are restricted to a specific domain.

The two processes can be combined into a single, highly efficient, search process.
--- END ---

