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Abstract
We propose a fast pattern matching scheme termed

Matching by Tone Mapping (MTM) which allows matching
under non-linear tone mappings. We show that, when tone
mapping is approximated by a piecewise constant function,
a fast computational scheme is possible requiring computa-
tional time similar to the fast implementation of Normalized
Cross Correlation (NCC). In fact, the MTM measure can be
viewed as a generalization of the NCC for non-linear map-
pings and actually reduces to NCC when mappings are re-
stricted to be linear. The MTM is shown to be invariant to
non-linear tone mappings, and is empirically shown to be
highly discriminative and robust to noise.

1. Introduction
Template or pattern matching is a basic and fundamen-

tal image operation. In its simple form a given pattern is
sought in an image, typically by scanning the image and
evaluating a similarity measure between the pattern and ev-
ery image window. Fast and reliable pattern matching is
a basic building block in a vast range of applications, such
as: image denoising, image re-targeting and summarization,
image editing, super-resolution, object tracking and object
recognition, just to name a few (e.g. [3, 16, 9, 1]).

In most cases, however, the input image is acquired in
an uncontrolled environment, thus, the sought pattern may
vary in tone-levels due to changes in illumination condi-
tions, camera photometric parameters, viewing positions,
different modalities, etc. [11]. Commonly, these changes
can be modeled locally by a non-linear tone mapping - a
functional mapping between the gray-levels of the sought
pattern and those of the image pattern. In this paper we deal
with pattern matching where gray-levels may be subject to
some unknown, possibly non-linear, tone mapping.

Many distance measures for pattern matching have been
suggested in the literature and the interested reader is re-
ferred to [4, 2] for excellent reviews. By far, the most com-
mon measure is the Euclidean distance. Assume the pattern
p and the candidate window w are both vectors inRm, (e.g.
by raster scanning the pixels). The Euclidean distance be-

tween p and w is denoted: dE(p,q) = ‖p−w‖2. Search-
ing for the pattern over the entire image is performed by
scanning the image and determining the minimal dE value.
This search can be applied very fast using efficient convo-
lution operations [5]. Nevertheless, although very common,
the Euclidean distance assumes no tone mapping or, equiv-
alently, that the tone mapping between p and w is the iden-
tity mapping. Clearly, the Euclidean distance is inadequate
when the image undergoes tone deformations as demon-
strated in Figure 1.

To overcome gray tone mapping effects in images, the
normalized cross correlation (NCC) distance is often used
[2]. Consider the pattern p and the candidate window w as
random variables with samples pi and wi, i = 1..m, respec-
tively. The NCC is then defined as:

ρ(p,w) = E

[(
p− E[p]√

var(p)

)(
w − E[w]√

var(w)

)]
where for any vectors x ∈ Rm, E[x] and var(x) denote
the sample mean and variance. Due to the substraction of
the mean and normalization by the st.d. in both p and w,
the NCC distance is invariant to linear tone mappings (Fig-
ure 1). The NCC distance can be applied very efficiently
requiring little more than a single convolution on the input
image [10]. However, such a distance will fail to detect pat-
terns in cases where non-linear tone mappings have been
applied (Figure 1 bottom row)1.

Finally, when non-linear mapping is considered, the Mu-
tual Information (MI) is commonly used, initially proposed
for image registration [18]. MI measures the statistical de-
pendency between two variables. Clearly, the statistical de-
pendency is strong when gray-levels of one image result
from a functional mapping of the gray-levels of the other
image. Thus, MI can account for non-linear mappings (both
monotonic and non-monotonic as in Figure 1).

In the context of pattern matching, MI measures the loss
of entropy in the pattern p given a candidate window w:

MI(p,w) = H(w)−H(w|p) = H(w)+H(p)−H(w,p)

1NCC often performs well even under monotonic non-linear mappings
as these can often be assumed to be locally linear.
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Figure 1. Pattern Matching under tone mapping. Euclidean, NCC, MI and MTM distance measures were used to evaluate distances between
a pattern and all image windows for different tone mappings. To simplify visualization results are shown as the minimum distance value
between pattern and image windows along image columns. Distance values have been normalized to the range [0, 1] for easier comparison.
Lower values indicate greater similarity of the window to the pattern. The dashed line marks the column of the correct match. Rows (top
to bottom): Linear, Monotonic and Non-Monotonic tone mappings. Columns (left to right): Tone mapping function, followed by plots for
Euclidean, NCC, MI (using bins of 20 tone-values) and MTM (using bins of 20 tone-values) distances.

where H is the differential entropy.

Although MI is an effective distance measure that can
account for non-linear mappings, it is hindered by compu-
tational issues in the context of pattern matching. First, it is
computationally expensive as it requires the construction of
the joint histogram (pattern vs. window) for each window
to be matched. Although fast methods for evaluating his-
tograms on running windows have been suggested [12, 19],
fast methods for local joint histograms are yet a challenge.
Additionally, entropy as well as MI is very sensitive to the
the size of histogram bins used to estimate the joint den-
sity, especially when sparse value samples are given (small
pattern size). Using kernel density estimation methods [17]
rather than discrete histograms is, again, computationally
expensive when dealing with joint probability, not to men-
tion its sensitivity to the kernel width.

In this paper we propose a very fast pattern matching
scheme based on a distance measure expressed as a min-
imization problem over all possible tone mappings, thus,
we term the resulting measure Matching by Tone Mapping
(MTM). From its definition, the MTM is invariant to non-
linear tone mappings and can be viewed as a generalization
of the NCC for non-linear mappings and actually reduces
to NCC when mappings are restricted to be linear [14]. In
fact, for the general case, it can be shown that the MTM
measure coincides with the statistical measure known as
the correlation-ratio [6]. This measure was previously sug-
gested as an image similarity measure in [13, 15]. We em-
pirically show that the MTM is highly discriminative and
robust to noise with comparable performance capability to
that of the well performing Mutual Information. Thus, the

MTM allows a pattern matching scheme on par with NCC
in terms of computation time but with performance capabil-
ity equivalent to that of the Mutual Information scheme.

2. Matching by Tone Mapping
In the proposed pattern matching scheme, we wish to

evaluate the minimum distance between a pattern and a can-
didate window under all possible tone mappings. Since tone
mapping is not necessarily a bijective mapping, two alter-
natives may be considered: i) tone mapping applied to the
pattern, transforming it to be as similar as possible to the
candidate window, and ii) tone mapping applied to the win-
dow, transforming it to be as similar as possible to the pat-
tern. For each case we find the minimum normed distance
over all possible tone mappings.

Let p ∈ Rm be a pattern and w ∈ Rm a candidate
window to be compared. Denote by M : R → R a tone
mapping function. Thus, M(p) represents the tone map-
ping applied independently to each entry in p. For the case
of tone mapping applied to the pattern, the MTM distance
is defined as follows:

D(p,w) = min
M

{
‖ M(p)−w ‖2

m var(w)

}
(1)

Similarly, if the mapping is applied to the window rather
than the pattern, we define:

D(w,p) = min
M

{
‖ M(w)− p ‖2

m var(p)

}
(2)

The numerator in both cases is simply the norm distance af-
ter compensating for the tone mapping. The denominator



is a normalization factor enforcing the distance to be scale
invariant. Thus D(p,w) = D(p, αw) for any scalar α.
Additionally, it penalizes incorrect matching of p to smooth
windows when using the constant mappingM(p) = c. Due
to the tone mapping compensation, the MTM measure re-
flects the inherent structural difference between the pattern
p and the window w.

Searching for the pattern in the entire input image re-
quires calculating the optimal tone mapping for each pos-
sible window in the image. Although seemingly a com-
putationally expensive process, we show in the following
sections that in fact this distance can be calculated very ef-
ficiently requiring an order of a single convolution with the
input image!

In the next section we introduce the Slice Transform [8].
This transform enables the representation of tone mappings
in a linear form allowing a closed form solution for the de-
fined MTM distance.

2.1. The Slice Transform (SLT)

The Slice Transform (SLT) was first introduced in [8] in
the context of Image Denoising. In this paper we exploit the
SLT to represent a mapping function using a linear sum of
basis functions. Consider an image segment represented as
a column vector x = [x1, · · · , xm]T with values in the half
open interval [a, b). The interval is divided into k bins with
boundary values q1 · · · qk+1 such that:

a = q1 < q2 < . . . < qk+1 = b

Any value v ∈ [a, b) is naturally associated with a single
bin π(v) ∈ {1 · · · k}:

π(v) = i if v ∈ [qi, qi+1)

Given the bins defined by {qi}, the vector x can be de-
composed into a collection of binary slices: Slice xi =
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Figure 2. Top: the SLT matrix for a 5-pixel vector having 3 gray
values. Bottom: a piecewise constant mapping and its representa-
tion using the SLT matrix.

[xi1, · · · , xim] is an indicator function over the vector x rep-
resenting the entries of x associated with the i-th bin.

xij =

{
1 if π(xj) = i
0 otherwise (3)

The vector x can then be approximated as a linear combi-
nation of slice images:

x ≈
k∑
i=1

αix
i (4)

where the weights {αi}ki=1 are the values assigned for each
bin (e.g αi = qi or αi = (qi + qi+1)/2). The approxi-
mation is in fact a quantization of the values of x into the
bins represented by {αi}. The greater the number of bins
the better the approximation of the original image. Specif-
ically, if x values are discrete and all values are in {αi}ki=1

then x =
∑k
i=1 αix

i.
Collecting the slices xi in columns, we define the SLT ma-
trix of x:

S(x) = [x1,x2, · · · ,xk] (5)

Then Equation 4 can be rewritten in matrix form:

x ≈ S(x)α (6)

where we define α = [α1, α2, · · · , αk]T . Note, that since
the slices are mutually disjoint, the columns of S(x) are
mutually orthogonal, satisfying:

xi · xj = |xi| δi,j (7)

where ′·′ is the vectorial inner product, |x| counts the non-
zero enteries in x and δi,j is the Kronecker’s delta. The SLT
matrix enables the representation of any piece-wise constant
mapping of x. In fact, substituting the vector α in Equa-
tion 6 with a different vector β, we obtain

y = S(x)β (8)

Image y is a piecewise constant tone mapping of x s.t. all
pixels of x with values in the j-th bin are mapped to βj .
Thus, the columns of S(x) form an orthogonal basis span-
ning the space of all images that can be produced by apply-
ing a piecewise constant tone mapping on x. Figure 2 illus-
trates an SLT matrix and a piecewise mapping of a 5-pixel
signal with 3 gray-level values. Figure 3 shows an exam-
ple of linearly combining image slices to form the original
(quantized) image and to form a tone mapped version.

In the context of this paper, we use the SLT for tone map-
ping approximation. A mapping applied to pattern p is ap-
proximated by a piecewise constant mapping:

M(p) ≈ S(p)β
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Figure 3. Linear Combination of image slices. The SLT transform was applied to an image using 5 bins defined by α =
[0, 51, 102, 153, 204, 256]. Top: Reconstructing the original images using α values as weights in the linear combination. Bottom: Using
weights other than α produces a tone mapped version of the original image. Slice images are shown inverted (1=black, 0=white).

Consequently, the distance measures as defined in Equa-
tions 1-2 can be rewritten using the SLT:

D(p,w) = min
β

‖ S(p)β −w ‖2

m var(w)
(9)

or alternatively

D(w,p) = min
β

‖ S(w)β − p ‖2

m var(p)
(10)

where S(p) and S(w) are the SLT matrices as defined in
Equation 5. In the sections below we elaborate on the two
possible alternative distances defined above. We show that
solving for D for each image window can be applied in a
very efficient computation scheme. In fact, computing D
for the entire image requires on the order of a single image
convolution.

2.2. MTM Distance Measure using SLT

The SLT scheme allows a closed form solution for the
minimizations defined in Equations 1 and 2. To introduce
the matching process, we first consider the case where a
pattern p is to be matched against a candidate window w.
Thus, the distance measure used is that given in Equation 9.
To simplify notation, we henceforth denote the SLT matrix
S(p) as S. The solution for β that minimizes Equation 9 is
given by:

β̂ = argmin
β
‖Sβ −w‖2 = S† w

where S† = (ST S)−1 ST is the Moore-Penrose pseudo-
inverse. Substituting into Equation 9 we obtain:

D(p,w) =
‖ Sβ̂ −w‖2

m var(w)
=
‖S(STS)−1STw −w‖2

m var(w)

Due to the orthogonality of S, we have that STS = G is
a diagonal matrix with the histogram of p along its diago-
nal: G(i, i) = |pi| where pi is the pattern slice associated

with the i-th bin as defined in Equation 3. Expanding the
numerator it is easy to verify that:

‖S(STS)−1STw −w‖2 = ‖w‖2 − ‖G−1/2STw‖2

Since S =
[
p1,p2, · · · ,pk

]
and exploiting the diagonality

of G, the above expression can be re-written using a sum of
inner-products:

‖w‖2 − ‖G−1/2STw‖2 = ‖w‖2 −
∑
j

1

|pj |
(pj ·w)2

As a result, the overall MTM distance D(p,w) reads:

D(p,w) =
1

m var(w)

‖w‖2 −∑
j

1

|pj |
(pj ·w)2


(11)

When matching is applied by mapping w towards p, we
use Equation 10 and exchange the role of w and p to obtain
a symmetric expression:

D(w,p) =
1

m var(p)

‖p‖2 −∑
j

1

|wj |
(wj · p)2


(12)

The expression in brackets in Eq. 11 can be shown to be
related to the conditional variance E(var(w|p)). When di-
viding by var(w) the expression coincides with the defini-
tion of the correlation ratio [6]. The same is applicable to
Equation 12.

2.3. Calculating MTM Distance Over an Image

Equations 11 and 12 provide a method for computing the
structural difference between p and w using two comple-
mentary distances. For pattern matching, this computation
must be performed on each candidate window of a given in-
put image. Naively applying the above expressions to each
image window is highly time consuming and impractical.



In the following we show that, in fact, computing D(p,w)
or D(w,p) over an entire image can be calculated very ef-
ficiently. We first describe the pattern-to-window mapping
case, and then detail the window-to-pattern case.

Let F be a 2D image with n pixels in which the pattern p
with m pixels is sought. Denote by wr the r-th window of
F, r ∈ {1, · · · , n}. Consider the pattern-to-window (P2W)
scheme where the distance given in Equation 11 is used.
For each window wr ∈ F two terms must be calculated,
namely the numerator and the denominator of Equation 11:

d1(r) = ‖wr‖2−
∑
j

1

|pj |
(pj ·wr)

2 and d2(r) = m var(wr)

Note, that var(wr) = E
[
w2
r

]
− E2 [wr], thus

d2(r) = m var(wr) = 1 · (wr �wr)− (1 ·wr)
2/m

where 1 is an m-vector of 1’s (box filter), x · y is the inner
product, and x�y is the elementwise multiplication of vec-
tors x and y. Algorithm 1 gives the pseudo-code for calcu-
lating the P2W MTM distance between pattern p and each
window in F . Code can be found in [7]. In the pseudo-code
’∗’ denotes image convolution2, � and � denote elemen-
twise multiplication and division, respectively. We denote
by upper-case letters arrays of size similar to that of the im-
age F , and by lower-case letters scalar variables. Vectors
are denoted by bold lower-case letters.

Algorithm 1 MTM - Pattern-to-Window
{Input: pattern p, image F .}
{Output: image D of MTM distances.}
W1 := 1 ∗ F {window’s sum}
W2 := 1 ∗ (F � F ) {window’s sum of squares}
D2 :=W2 − (W1 �W1)/m {calc d2 (denominator)}
Generate {pj}, for j = 1..k
D1 := 0 {will accumulate the numerator}
for j := 1 to k do
nj = 1 · pj , {calc |pj |}
T := flip(pj) ∗ F {convolve image with slice j}
T := (T � T )/nj
D1 := D1 + T

end for
D := (W2 −D1)�D2

return D

Prior to the loop, two convolutions with a box filter are cal-
culated, each of which can be applied efficiently (with a
separable 1D box filter) requiring a total of 4 additions per
pixel. Within the loop there are k convolutions with the pat-
tern slices {pj}kj=1. Since each slice pj is sparse, convolv-
ing it with an image requires only |pj | additions per pixel

2In fact, correlations rather than convolutions are required, thus, a
flipped kernel is used when needed.

using a sparse convolution scheme [20]. Additionally, since
all pattern slices are mutually disjoint the number of addi-
tions sum up to a total of m additions per pixel. All other
operations sum to O(k) operations per pixel, thus, the algo-
rithm requires a total of O(mn + kn) operations which is
comparable in complexity to a single convolution! Memory
requirement is also economized. Distance value for each
image window is accumulated in place, thus the required
memory is on the order of the image size.

Consider now the window-to-pattern (W2P) scheme us-
ing the distance given in Equation 12. For each window
wr ∈ F , the expressions to be calculated are:

d1(r) = ‖p‖2 −
∑
j

1

|wj
r|
(wj

r · p)2 and d2 = m var(p)

d2 and the first term of d1 are constant for all windows and
are calculated only once. The second term in d1 differs for
each window. Algorithm 2 gives the pseudo-code for calcu-
lating the W2P distance over the entire image. In this algo-
rithm F j denotes the j-th image slice, i.e. F j(x, y) = 1 iff
π(F (x, y)) = j. Since each F j is a sparse image, convo-
lution can be applied efficiently in this case as well. Since
{F j} are mutually disjoint, the operations required for the
k sparse convolutions sum to O(mn) operations. As in the
P2W case, the entire algorithm requires O(mn+ kn) oper-
ations, which is on the order of a single image convolution.
Memory requirement is also economical and is on an order
order of the image size.

Algorithm 2 MTM - Window-to-Pattern
{Input: pattern p, image F .}
{Output: image D of MTM distances.}
p1 := 1 · p {pattern’s sum}
p2 := 1 · (p� p) {pattern’s sum of squares}
d2 := p2 − p21/m {computation of d2 (denominator)}
Generate {F j}, for j = 1..k
D1 := 0 {will accumulate the numerator}
for j := 1 to k do
Nj := 1 ∗ F j {calc |Fj |}
T := flip(p) ∗ F j {convolve image slice with p}
T := (T � T )�Nj
D1 := D1 + T

end for
D := (p2 −D1)/d2
return D

3. Results
The MTM was tested in the context of pattern matching.

Performance was compared with the Euclidean distance,
Normalized Cross Correlation (NCC), and Mutual Informa-
tion (MI). In this section we show that even under extreme
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Figure 4. Pattern detection performance vs. extremity of the tone mapping for monotonic mapping (a) and non-monotonic mapping (b).

0 10 20 30
0

20

40

60

80

100

Pattern Size

%
 C

or
re

ct
 M

at
ch

 

 

Euclid
NCC
MI
MTM

0 20 40 60 80
0

20

40

60

80

100

Bin Size

S
uc

ce
ss

 r
at

e 
(%

)

 

 

MI (8x8 pattern)
MTM (8x8 pattern)
MI (16x16 pattern)
MTM (16x16 pattern)
MI (32x32 pattern)
MTM (32x32 pattern)

0 10 20 30 40 50 60 70
0

1

2

3

4

5

6

7

Pattern Size

R
un

 T
im

e 
(s

ec
)

 

 

Euclid
NCC
MI 20
MI 40
MTM 20
MTM 40

Figure 5. Left: Pattern detection performance as a function of pattern size. Middle: Performance comparison of MI and MTM as a function
of bin size. Right: Algorithm run time for pattern matching under various schemes (and different bin sizes) for different pattern sizes.

tone mappings and under heavy noise conditions, the MTM
approach successfully and efficiently detects the sought pat-
terns, performing significantly better than the compared
methods with run times on par with the fast NCC.

Pattern matching was applied on a large set of ran-
domly selected image-pattern pairs under various condi-
tions. The image set consisted of 100 natural images se-
lected and downloaded from Flickr. The image set was se-
lected to include urban, nature, people, and indoor scenes.
For each input image, a pattern of a given size was se-
lected at a random location. To prevent smooth or “non-
interesting” patterns, these were selected from among pat-
terns with saliency above a specific threshold. Saliency was
measured at each pixel as the direct sum of the structure ten-
sor’s eigen-values (a 2x2 matrix of partial derivatives) cal-
culated for a small window about the pixel location. Given
an image and a selected pattern, a random tone mapping
was applied to the image (with possible additive noise) and
the original selected pattern was then sought in the mapped
image. Distances were calculated for all possible locations
in the mapped image, and the window associated with the
minimal distance was considered the matched window. If
the matched window was detected at the correct position
the match is considered a correct detection.

Figure 4 displays the detection rate as a function of the
extremity of the tone mapping applied to the image for the
4 distance measures. Extremity of tone mapping was mea-

sured as the mean squared distances between the original
range of values ( [0..255]) and the mapped tone values. Re-
sults are shown separately for monotonic mappings (Fig-
ure 4a) and for non-monotonic mappings (Figure 4b). Each
data point represents the detection rate (in percentages) over
2000 randomly selected image-pattern pairs. Images were
of size 200 × 200 and patterns of size 20 × 20. Tone map-
pings were generated by randomly selecting six new tone
values serving as the mapping values for six equally spaced
source tone values (in the range [0..255]). The tone mapping
was defined as a piecewise linear function passing through
the selected values. For monotonic mappings the randomly
selected tone values were sorted in increasing order prior
to the construction of the tone mapping. Additive Gaus-
sian noise with s.t.d. of 15 gray-values was added to each
mapped image before pattern matching was performed.

We note an important caveat with respect to the map-
pings and their extremity measure: in the case of mono-
tonic mappings, the monotonicity constrains the extreme
mappings and typically produces deeply convex or concave
mappings which imply loss of spatial details in certain im-
age regions. This in turn increases the difficulty of correctly
detecting a given pattern. Non-monotonic mappings on the
other hand, produce false contours but typically maintain
the image structure (preserve original edges though possi-
bly increasing or decreasing their contrast). Thus, as will
be seen, performance under monotonic mappings is often
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degraded compared to non-monotonic mappings.
Figure 4 shows that performance using the Euclidean

distance degrades very fast with mapping extremity. The
NCC is expected to fail in both monotonic and non-
monotonic mappings, however in the monotonic case, map-
ping is smooth and can often be approximated locally as
linear. Thus, NCC performs relatively well under mono-
tonic mappings compared to the non-monotonic mappings.
The MTM and MI results are shown for bin size of 20 gray
tones. It can be seen that the MTM performs very well and
on par with the MI approach. Both, MTM and MI per-
form better under non-monotonic mappings compared with
monotonic mappings due to the caveat described above.

We examined the robustness of the mentioned distance
measures to additive noise and their performance under dif-
ferent pattern sizes. Figure 5-left shows the detection rate
for various pattern sizes under a specific non-linear map-
ping. All images were contaminated with Gaussian noise
with s.t.d. of 15. A set of 2000 pattern-image pairs were
randomly selected using the procedure described above.
Both the MTM and MI methods used bin size of 20. It can
be seen that for small patterns (under 10× 10 pixels) detec-
tion rates are very low in all methods. This behavior stems
from the fact that histogram bins of small sized patterns are
sparsely populated if at all. This may produce an under-
determined minimization or an over-fitting phenomena. For
this reason, techniques using a low number of free parame-
ters are preferable and outperform other methods, as long as
they can model accurately all possible tone mappings (e.g.
NCC for monotonic or linear mappings).

4. MTM v.s. MI
It can be shown that the MTM and MI approaches are

similar in spirit. While MI maximizes the entropy reduc-
tion in w given p, MTM maximizes the variance reduc-
tion in w given p. The entropy and variance are two differ-
ent measures of uncertainty. While variance is a quantita-
tive measure preferring a compact distribution of samples,
the entropy is a qualitative measure disregarding bin rear-
rangements. The use of variance rather than entropy is ad-

vantageous when a small number of samples are available.
This is demonstrated in Figure 5-middle where detection
rates are displayed for different pattern and bin sizes. Com-
pared to MTM, MI shows larger sensitivity to bin size with
a decrease in performance for smaller bin sizes. Results
are shown for different pattern sizes (8×8, 16×16 and 32
×32). Each data point results from 200 randomly selected
image-pattern pairs. For every image-pattern pair, a random
monotonic mapping was generated, within extremity range
of 40-60, and added Gaussian noise (std = 20).

A major, significant, advantage of MTM over MI is its
computational efficiency. Figure 5 displays run times of pat-
tern matching using different schemes under varying pattern
sizes. For MI and MTM, run times are shown for different
bin sizes as well. Run times shown are the average over 10
runs. Since MI requires the computation of the joint his-
togram for every image window pair, it is computationally
more expensive than MTM and other approaches. Further-
more, run time for MI increases with number of bins. On
the other hand, run time of the MTM scheme is of the order
equivalent to a single image convolution (Section 2.3) and
thus on par with the NCC and Euclidean approaches. Bin
size has very little effect on the run time of MTM.

Although MTM demonstrates superior performance with
respect to run time and stability under sparse samples, it
relies on functional dependency between p and w. When
this assumption is violated, e.g. in multi-modal images (be-
tween which functional mapping does not necessarily ex-
ist), MI often outperforms MTM, although at the expense
of longer running time.

To compare the capabilities of the MTM and MI in multi
modality scenarios we evaluated the performance of pattern
matching and image alignment between image pairs origi-
nating from different modalities, including: visual - SAR,
visual - InfraRed, CT - MRI and CT - PET. Examples from
the tested set are shown in Figure 6. These images display
tone changes between their counterparts which are one-to-
many, thus, cannot be regarded as a mapping function.

Figure 7 displays the detection rates of pattern matching
between multi-modal images for various pattern sizes. The
recorded performance is an average over five multi-modal
image pairs where 100 (randomly selected) pattern-window
cases were tested for each pair. It is demonstrated that MI
outperforms MTM and NGC for almost all pattern sizes.
While NGC severely fails in almost all pattern sizes, MTM
presents reasonable performance although inferior to MI.

With respect to multi-modal image registration, both MI
and MTM present comparable accuracies since the matched
areas are extremely large. To demonstrate this, we evaluated
the distance between an image and its modality counterpart
under different translation parameters. The demonstrated
performance is similar for other transformation parameters.
Figure 8 displays distance maps between the visible and IR



image pair shown in Figure 6-middle. Distance maps for
NGC, MTM and MI are shown (left to right). The mini-
mum distance in the MI and MTM maps correspond to the
correct translation with a deep and global minima. It can be
seen that MTM and MI are comparable in their accuracy of
alignment whereas NGC largely fails. Similar performance
is observed for other image modalities as well.

Note that, searching for the correct transformation pa-
rameter in multi-modal alignment using MTM, can be im-
plemented very efficiently: image slices need to be com-
puted only once for the reference image of the pair, while
transformed image requires only resampling and pointwise
multiplication with the image slices. In contrast, searching
for the transformation parameters using MI, requires com-
putation of the joint histogram of the image pairs for each
candidate parameter - a time consuming process.
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Figure 7. Detection rates of pattern matching between multi-
modal images for various pattern sizes.

Figure 8. Distance maps between the visible and IR image pair
shown in Figure 6-middle. The distance maps are for NGC (left),
MTM (middle) and MI (right).

5. Conclusion

In this paper, a fast pattern matching scheme called
Matching by Tone Mapping (MTM) was introduced. The
distance measure used is expressed as a minimization prob-
lem over all possible tone mappings. Thus by definition, the
MTM is invariant to non-linear tone mappings (both mono-
tonic and non-monotonic). Furthermore, the MTM is shown
to be a generalization of the NCC for non-linear mappings
and actually reduces to NCC when mappings are restricted
to be linear [14]. An efficient computation of the MTM
is proposed requiring computation time similar to the fast
implementation of Normalized Cross Correlation (NCC).
The MTM is shown to be highly discriminative and robust
to noise with performance capability equivalent to that of

the Mutual Information scheme and requiring significantly
lower computational time.
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