
THE IMPULSE RESPONSES OF BLOCK SHIFT-INVARIANT SYSTEMS
AND THEIR USE FOR DEMOSAICING ALGORITHMS

Yacov Hel-Or

School of Computer Science
The interdisciplinary Center, Herzliya, Israel

ABSTRACT

Shift-invariant linear algorithms can be described completely
by the algorithm’s response to an impulse input. The so
called impulse response can be used as filter kernels when
the algorithm is equivalently implemented using convolu-
tion. This, however, is not true when the system is block-
shift invariant, i.e. when invariance is only at repetitive lo-
cations. This paper describes a generalization of the im-
pulse response for block shift-invariant systems. The pro-
posed technique, takes any computer program which imple-
ments a linear block-shift-invariant algorithm, and produces
its equivalent filter kernels. These kernels can then be ap-
plied efficiently by using convolution.

This scheme can assist in finding the filter kernels of
linear operations applied directly to mosaic images acquired
by digital cameras. For example, using this approach any al-
gorithmic description for the demosaicing problem, which
is linear and block shift-invariant, can be translated into ac-
tual filter kernels that can be applied efficiently.

1. INTRODUCTION

A color image is typically represented by three bands each
of which is a matrix of values representing the responses of
an array of photo-sensors to the viewed scene. The three
bands are often referred to as red (R), green (G), and blue
(B) according to their spectral sensitivity. Thus, three num-
bers are given at each matrix location composing a pixel
value. Most CCD cameras, however, provide only a single
value for each pixel due to their inability to position three
photo-sensors at the same location. In these cases, the cap-
tured image is composed of a mosaic of color values which
is the partially sampled color image. The Bayer color filter
array (CFA), given in Figure 1-left, is an example of a CCD
array with a typical photo-sensor arrangement.

The demosicing problem deals with the reconstruction
of a color image I from a partial sampling D = S(I) of
its pixel values. Here, S represents the sampling opera-
tor applied to the image I . This reconstruction problem is,

This work has been conducted at HP Labs- Israel.

XX

ZZZ

YYY
b1

b2

Fig. 1. Left: Typical arrangement of photo-sensors in CCD
arrays. Right: A signal domain is tiled by a collection of
similarly shaped blocks. Two positions with similar impulse
response are far apart by integer shifts of b1 and b2.

of course, an under-determined system since the solution
space includes infinite many images satisfying D. Several
approaches were introduced to solve the demosaicing prob-
lem (see e.g. [1, 2, 3, 4, 5]). These methods assume some
prior knowledge about the probability of the input images
P (I). The solution is then chosen such that it maximizes
the a posteriori probability P (I|D).

Regardless of the probability model chosen to describe
the input space, some solutions are implemented using a
finite set of linear operations (e.g.[5, 4]). These operations
are implemented using an iterative or closed form scheme.
An Example of such an algorithms might be:

1. Interpolate each missing data using a bilinear interpo-
lation of same color neighboring values.

2. Transform RGB values to chrominance/luminance val-
ues, using e.g. the RGB to YIQ linear transformation.

3. Spatially smooth the chrominance bands (bands I and
Q) using Gaussian filtering.

4. Transform back from YIQ to RGB representation us-
ing a linear transformation.

5. Reset sampled values to their original values.

6. Iterate again from step 2 several times.

7. Sharpen the result using linear unsharp masking.

The algorithm described above indeed gives very good
results after few iterations (typically 3-5 iterations). This
algorithm is well understood, and it is efficiently described
in an algorithmic manner [5]. Moreover, since each step of
this algorithm is a linear operation, the entire demosaicing
process is linear. However, the algorithm cannot be imple-
mented using a single filtering with a filter kernel since it is
not shift-invariant in the classical manner. For example, the
algorithm response to an impulse input at location X in Fig-
ure 1-left, is not identical to its response to an impulse input
at location Z. Nevertheless, the above algorithm is shift-
invariant if the shifted steps are of even numbers. Hence,
the algorithm has identical responses to impulse inputs at
locations X and Y . We call such an algorithm a block-shift
invariant (BSI).

This paper shows that BSI algorithms can be imple-
mented efficiently using a fixed number filter kernels. More-
over, a technique is suggested here to extract automatically
such kernels given a BSI algorithm. The suggested ap-
proach is general, and can be applicable for any such algo-
rithm. The proposed procedure does not require any elabo-
rated knowledge or description of the algorithm. The algo-
rithm can be regarded as a black box where the input and
the associated outputs are available. There are only two re-
quirements that must be satisfied:

1. The algorithm process must be linear, i.e., if A{s}
represents the results of applying the algorithm A to
the input signal s then:

A{s1+s2} = A{s1}+A{s2} and A{λs} = λA{s}

2. The algorithm is block-shift-invariant. For 1D sig-
nals, a block-shift-invariant system with a block shift
b satisfies:

A{s(x− bn)}(y) = A{s(x)}(y − bn)

where n is an integer number. Similarly, a block-
shift-invariant system for signals in k-D satisfies:

A{s(x−Bn)}(y) = A{s(x)}(y −Bn) (1)

where x and y are k-D vectors, B is a k × k matrix
whose columns define basic block shifts (Figure 1-
right), and n is a k-D vector of integers.

The Bayer pattern described above has a repetitive pat-
tern of 2 × 2 blocks (Figure 1-left). Thus, the demosaic-
ing algorithm described above is shift-invariant, only if the
shifts are integer numbers of blocks, i.e. Equation 1 is satis-
fied whereB is a diagonal 2×2 matrix with 2 in its diagonal.

1.1. Determining Block-Shift-Invariant Kernels

In principle, a shift-invariant linear process can be imple-
mented using an appropriate linear filter, i.e. a convolution

with a filter kernel. In the case of a block-shift invariant
linear system, as in the case of the proposed demosaicing
process, a linear filtering system can be used as well, how-
ever the filtering is based on a set of filter kernels rather
than a single one, each of which is associated with a par-
ticular location in the block. Thus, in the Bayer pattern de-
picted in Figure 1, 12 kernels are defined; for 3 different
colors and 4 different locations. In this section a technique
is described for automatically determining the appropriate
set of kernels. For clarity, the classical shift-invariant case
is first described, and then extended to describe the block-
shift-invariant case.

To simplify notations, throughout the paper, index vari-
ables will be written as scalar variables, although they can
represent k-D vectors, if the signal domain is k-dimensional.

1.2. Shift-Invariant Case

The appropriate kernel for a given shift-invariant linear al-
gorithm can be extracted by applying the algorithm to an
impulse input as in Figure 2a . This is known as the impulse
response of the algorithm. Due to shift-invariance of the al-
gorithm, the response for any shifted impulse is the impulse
response shifted by the the same amount (Figure 2b). To
compute the kernel values, a single output pixel position is
considered (Figure 2c). At that particular pixel location, the
collection of impulse responses is determined for all possi-
ble impulse inputs (Figure 2d).

Formally speaking, let δ(x − p) be an impulse input,
positioned at location p, and the algorithm response for such
an input be Rp(y), i.e.

A {δ(x− p)} (y) = Rp(y)

Due to the shift-invariance of the algorithm we have:

Rp(p+ y) = Rq(q + y)
.
= R̂(y) ∀ p, q

Similarly, the algorithm response to any shifted delta func-
tion δ(x− k) is:

A{δ(x− k)}(y) = Rk((y − k) + k) = R̂(y − k)

Using this property, the algorithm output sout(y) for a given
signal input sin(x) can be calculated:

sout(y) = A {sin(x)}(y) = (2)

= A

{

∑

k

sin(y − k)δ(x− (y − k))

}

(y) =

=
∑

k

sin(y − k)A {δ(x− (y − k))} (y) =

=
∑

k

sin(y − k)R̂(k)

a.
12
1

6
1

3
1 6

1

4
1

b.

12
1

6
1

3
1

6
1

4
1

c. d. 1/6 1/4 1/3 1/6 1/121/6 1/4 1/3 1/6 1/12

input

output

input

output

input

output

Fig. 2. Finding the appropriate filer kernel for a shift-
invariant linear system (see text).

input

12
1

6
1

3
1 6

1

4
1

a.

b.

d. 1/6 1/5 1/3 1/4 1/12

input

output

12
1

4
1

3
1

6
1

5
1

c.
output

input

output

20
1

4
1

5
2 10

1

5
1

input

output

20
1

6
1

5
2

10
1

4
1

input

output

1/10 1/4 2/5 1/6 1/20

Fig. 3. Finding the appropriate filter kernels for a block-
shift-invariant linear system (see text).

where the third equality is due to the linearity of the algo-
rithm. This result implies that the impulse response of a
shift-invariant linear algorithm completely characterizes the
algorithm; i.e. the output of the algorithm for any input sig-
nal can be determined. This can be viewed as a kernel con-
volution where the convolution kernel is R̂(y). The question
explored in the following section, is whether this property
is valid also for block-shift-invariant algorithm, and if so,
what are the kernels that should be used in such systems.

1.3. Block-Shift-Invariant Case

In a block-shift-invariant linear system, the entire signal do-
main is tiled by a collection of similar block shapes (e.g.
see Figure 1-right). A canonical block consists of N in-
dexed grid positions p1 · · · pN . Define the function g(p)
that maps a general grid position p to its position index,
i.e. g(p) ∈ {1, · · · , N}. In Figure 1-right, for example,
g(p) = g(p+mb1+nb2) for any integers m and n. Apply-
ing the algorithm to an impulse input at position p, results

in the output response:

A{δ(x− p)}(y) = Rp(y)

However, due to the block-shift invariance of the algorithm:

Rp(y + p) = Rq(y + q)
.
= R̂g(p)(y) iff g(p) = g(q)

Therefore, we have a set of N different impulse responses:
R̂i(y), i = 1 · · ·N , where

R̂i(y)
.
= Rpi

(y + pi)

Given this set of N impulse responses, the algorithm output
to any shifted impulse can be constructed:

A{δ(x− k)}(y) = R̂g(k)(y − k)

Similar to the classical shift-invariant system, the algorithm
output sout(y) for a given signal input sin(x) can be calcu-
lated from the set of R̂i(y):

sout(y) = A {sin(x)}(y) =

= A

{

∑

k

sin(y − k)δ(x− (y − k))

}

(y) =

=
∑

k

sin(y − k)A {δ(x− (y − k))} (y) =

=
∑

k

sin(y − k)R̂g(y−k)(k)

The last equation states that, similar to the classical shift-
invariant systems, the set of impulse-responses of the block-
shift-invariant algorithm R̂i(k) entirely characterizes the al-
gorithm, i.e. the output of the algorithm for any given in-
put signal can be calculated. However, due to block-shift-
invariance, the algorithm output is calculated similarly only
for those positions y having the same position index g(y).
Therefore, there are N different convolution kernels Hi(k),
i = 1..N , where:

Hg(y)(k)
.
= R̂g(y−k)(k)

To calculate the algorithm output at position y, the kernel
Hg(y)(k) is applied in the following manner:

sout(y) =
∑

k

sin(y − k)Hg(y)(k)

As explained above, the number of kernels required is
equal to the size of a block. Figure 3 shows a 1D exam-
ple where the block size is two. In this case, 2 filters are
required to implement the linear system. The filters can be
found by applying the algorithm to two impulse inputs as
in Figure 3a. To compute the filter kernel values at a sin-
gle output pixel position, the collection of system outputs
at that pixel location is determined for all possible impulse
inputs (Figures 3b and 3c).

2 4 6 8

2

4

6

8

2 4 6 8

2

4

6

8

2 4 6 8

2

4

6

8

2 4 6 8

2

4

6

8

2 4 6 8

2

4

6

8

2 4 6 8

2

4

6

8

2 4 6 8

2

4

6

8

2 4 6 8

2

4

6

8

2 4 6 8

2

4

6

8

2 4 6 8

2

4

6

8

2 4 6 8

2

4

6

8

2 4 6 8

2

4

6

8

Fig. 4. Kernels calculated for a bilinear interpolation algo-
rithm. Each row displays 4 kernels for block positions (left
to right) (1, 1), (1, 2), (2, 1), and (2, 2). Rows (top to bot-
tom) are for the Red, Green, and Blue images. For better
visualization, gray values were normalized for each kernel.

1.4. Block Shift-invariant Kernels for Demosaicing

As described above, the suggested Demosaicing algorithm
in Section 1 is a BSI linear system applied on a 2D Bayer
Pattern which is 2 × 2 repetitive. The input is a single 2D
array of sensor inputs. The output of the process consists
of three 2D arrays representing the Red, Green and Blue
contents of a color image. Thus, in practice, the Demosaic-
ing process can be viewed as 3 independent BSI linear sys-
tems (receiving the same input and producing the R, G or B
arrays). Following the discussion above, the Demosaicing
process can be implemented using 12 filters (3 filters for the
R, G and B outputs for each of the 2× 2 block positions.

2. DEMONSTRATED RESULTS

In order to demonstrate the proposed technique, two demo-
saicing algorithms were considered. The first algorithm, is
the trivial bilinear interpolation for the Bayer pattern. The
12 kernels that were generated by the proposed technique,
are shown in Figure 4. In the figure each row has 4 kernels,
for block positions (1, 1), (1, 2), (2, 1), and (2, 2), from left
to right. The rows show the kernels for the Red, Green,
and Blue images, from top to bottom. Note, that one of
the kernels in each column is the delta kernel. This corre-
sponds to the associated color sample at this block position.
The second algorithm considered, is that given in Section
1. The kernels that were generated for this algorithm are
shown in Figure 5, in the same order. These kernels were
applied to mosaiced images. Due to inferior visibility qual-
ity of printed reproductions demosaicing examples applying
the above kernels are available online in:
http://www.faculty.idc.ac.il/toky/Pub/bsiRes/results.htm.

2 4 6 8

2

4

6

8

2 4 6 8

2

4

6

8

2 4 6 8

2

4

6

8

2 4 6 8

2

4

6

8

2 4 6 8

2

4

6

8

2 4 6 8

2

4

6

8

2 4 6 8

2

4

6

8

2 4 6 8

2

4

6

8

2 4 6 8

2

4

6

8

2 4 6 8

2

4

6

8

2 4 6 8

2

4

6

8

2 4 6 8

2

4

6

8

Fig. 5. The kernels that were calculated for the demosaicing
algorithm proposed in Section 1. The kernels are ordered as
in Figure 4

3. CONCLUSIONS

A technique for generating the appropriate kernels for block-
shift-invariant algorithms was proposed. These kernels can
be calculated without specific knowledge about the algo-
rithm, i.e the algorithm can be regarded as a black-box.
The advantage of the proposed technique is that the ker-
nel derivation is automatic and does not require complicated
mathematical derivations. A hardware device that can apply
convolution kernels to an image, can be adjusted efficiently
to perform any proposed BSI linear algorithm.

Acknowledgements
The author would like to thank Renato Keshet for his assis-
tance in writing this paper and for helpful discussions.

4. REFERENCES

[1] R. Kimmel, “Demosaicing: Image reconstruction from
color CCD samples,” in EVVC (1), 1998, pp. 610–622.

[2] D. R. Cok, “Reconstruction of CCD images using tem-
plate matching,” in Proc. IS&T’s, 1994.

[3] Y. Hel-Or and D. Keren, “Demosaicing of color images
using steerable wavelets,” Tech. Rep. HPL-97-104, HP
Labs, August 1997.

[4] D. Taubman, “Generalized wiener reconstruction of
images from colour sensor data using a scale invariant
prior,” in ICIP, 2000.

[5] Y. Hel-Or, “The canonical correlations of color images
and their use for demosaicing,” Tech. Rep. HPL-2003-
164R1, HP Labs, Feb 2004.

