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Abstract

Polynomial Texture Maps (PTM)[SIGGRAPH 2001] form an alternative method for
apprehending surface colour and albedo that extends a simple model of image formation
from the Lambertian variant of Photometric Stereo (PST) to more general reflectances.
Here we consider solving such a model in a robust version, not to date attempted for
PTM. But the main upshot of utilizing robust regression is in the identification of both
shadows and specularities automatically, without the need for any thresholds, in a tripar-
tite set of weights for pixels that are labelled as matte, shadow, or specularity. Original
images are captured using a hemispherical set of lights, and pixel values across the light-
ing directions are then labelled as inliers, or outliers of two types. A per-pixel robust
regression on luminance is carried out using Least Median of Squares, and automatically-
identified outlier pixels are labelled as shadows if they are darker than matte and corre-
spondingly, specular outliers are too bright. Inlier identification generates correct values
for chromaticity and for surface albedo and thus matte luminance and colour. Then a
robust version of PST, using only PTM inliers, improves estimates of normal vectors and
albedo recovered. With specular pixel values over the lights in hand we model specu-
larity using a radial basis function (RBF) regression, and non-specular pixel departures
from matte using a second RBF set. Then for a new lighting direction, we can readily
interpolate both specular content as well as shadows.

1 Introduction
A strength of Polynomial Texture Maps (PTM) [10], in comparison to a simple Lambertian
Photometric Stereo (PST) [20], is that a polynomial regression from lighting directions to
observed image values can better model real radiance, and thus apprehend intricate depen-
dencies due to self-shadowing and interreflections. In a typical setup, a camera is mounted
at the apex of a hemisphere of lights, and each light is then fired in turn, thus generating a
sequence of images. Usually, some 40 to 50 images are used, with the larger the number of
images the better.
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Thus PTM is a pixel-based method for modelling dependency of luminance (or RGB in a
different embodiment) on lighting with the objective being relightable images. At each pixel,
a 6-vector of coefficients is calculated using nonlinear least squares over the 2-vector of light-
ing direction x,y-projected components. Subsequently, re-rendering can take place, e.g. by
relighting images using a new lighting direction, by calculating surface normals and thence
generating artificial specular highlights, by re-mapping colour, by increasing directional sen-
sitivity to lighting direction in order to enhance contrast, by light source extrapolation, or by
artificially varying focus [10].

Here, we are interested in using PTM as a vehicle to carry out interpolation of specu-
larities and shadows. To the best of our knowledge robust methods have not to date been
applied to PTM, and we use these to be able to accomplish interpolation. As well as using
robust regression, this paper moreover shows how outliers can be classified as belonging to
two types: either specular highlights, or self- or cast-shadows. Knowledge of inlier pixel val-
ues means that recovered surface albedo and chromaticity is robust, in the sense of ignoring
outlier contributions and thus more accurately mapping surface reflectance and colour.

Here we alter the polynomial used, in PTM, so as to automatically generate regression
coefficients that are exactly correct in the case when inliers are indeed Lambertian. In that
case, surface normal and albedo falls out of the regression. In the case of non-Lambertian
surfaces this is still almost true; but knowledge of inlier labelling allows us to apply ordinary
PST just on inlier pixels, yielding what we found to be superior estimates of surface normal
and albedo.

Finally, knowledge of outlier labels means that we can independently model specularity
and shadow. Then for a new lighting direction, we can generate pixel values interpolating
known values of both; here we use a Radial Basis Function (RBF) interpolation model. In
this paper we carry out robust regression on the luminance values, not on R,G,B separately.
Since we generate the specularity ς in an interpolated image, separately from the remaining
contribution σ , we can then produce a full-colour interpolant image using the luminance
times matte chromaticity for the non-specular contribution, plus specular-luminance times
the chromaticity for the specular colour.

Results on re-creating the input images are shown to have excellent agreement with the
originals, over a variety of input sequences. For shadow and specularity interpolation —
generating images for non-observed lighting directions — the method is shown to indeed
generate sensible results. The main contributions in this paper are (1) application of robust
regression to PTM; (2) separate modelling and thus better capturing of shadows and specu-
larities; and (3) specular and shadow interpolation.

In §2, we discuss related work, and in §3 outline PTM, PTM as modified here, and
specular and shadow outliers. Section 4 shows how vector chromaticity and scalar albedo, as
well as normal-vector estimation, falls out of robust regression, and how these are improved
via PST. Interpolation of highlights and of non-matte, non-highlight contributions are set out
in §5 in an RBF framework, and §6 gives concluding remarks.

2 Related Work
PTM is formulated as a generalization of the simplest variant of PST [20], wherein no cal-
ibration object is used but instead a basic Lambertian model is assumed. PTM moves a
linear regression involving lighting directions into a nonlinear, polynomial model of lighting
dependence. In this paper, in fact we go back to a regression including a linear part corre-
sponding to all three components of light direction, since if the surface is indeed Lambertian
plus outliers due to highlighting and shadows, then a robust version of nonlinear regression
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will still pick up the correct, linear, Lambertian dependence exactly. Then this paper goes on
to model specular and non-specular outlier contributions.

Early efforts at specularity detection in PST [4, 6, 16] used four lights and excluded
values yielding significantly differing albedos; and [15] used a similar, 5-light approach.
In another 4-source method [21], ambient illumination is explicitly included, as is surface
integrability, and robust regression is employed in an iterative fashion to eliminate shadows.
However, all these methods depend on eliminating a small number of outlier values per pixel,
whereas the present paper can operate correctly even in the presence of up to half the number
of values per pixel, minus one, being outlier values, due to the high breakdown point of the
Least Median of Squares (LMS) robust regression used [14].

In [17] it was shown that the minimum number of lights for PST for the complete visible
surface of any convex object is six. Unlike [15], they argued that simply discarding high-
est or lowest intensity pixels may lead to information loss so they discard only pixels with
doubtful intensities. Since extra lights are better, [19] uses a spherical device to capture 156
images. Since the data is then highly overdetermined, they simply discard the lowest 50%
and the highest 5% to aid PST. Here, we avoid thresholds or arbitrarily discarding pixels by
relying on LMS outlier detection, which automatically generates outliers [13]. In [11], an
iterative scheme is devised for finding albedo and normal, which essentially uses the median
of each plus smoothness. In this paper, non-outliers are used with no need for iteration to
immediately generate both albedo and normal.

Recently, probabilistic models have been proposed to deal with outliers. The method
proposed by Chandarker et al. [5] poses shadow detection as an iterative Markov Random
Field (MRF) formulation, assigning each pixel a shadow label and assuming neighbouring
pixels likely have similar shadow labels.

In [18], 169 images of an object are captured and a probabilistic imaging model is intro-
duced, initialized by considering the 50% brightest intensities as inliers. Whereas the choice
of prior directly influences their method, here we do not need any prior information. In a
method using only three sources, [7] proposes a simple MRF formulation to identify shadow
regions. Since one constraint has been lost due to shadowing, they showed that integrability
over the two remaining constraints can still lead to surface geometry reconstruction in the
shadow region. In this paper, we can indeed find surface normals, but no surface reconstruc-
tion is used.

In a generalization of [4], [1, 2] propose a recursive algorithm which eliminates inten-
sities affected by shadows or highlights, based on a least squares error scheme. However,
that method can only cope with one highlight plus multiple shadows at a pixel, whereas our
algorithm can cope with multiple highlights and shadows.

Here, we extend (an altered version of) PTM [10] to explicitly deal with highlights and
shadows. PTM assumes that least squares will effectively be adequate in a polynomial re-
gression, for modelling a smooth dependence of images with a fixed viewpoint on lighting
direction. Rather than assuming a basically matte surface, with a polynomial capturing as-
pects of non-Lambertian reflectance, at each pixel we explicitly model specularities along
with non-specular values. Then apprehending these values in an RBF framework, we can
go on to interpolate between captured images and arrive at a much more realistic interpolant
that correctly displays both highlights and shadows.
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3 Image Formation and Polynomial Modelling

3.1 PTM Model
Suppose we have acquired n images of a scene, taken from I = 1..n different lighting direc-
tions aaa I . Fig. 1(a) shows what such a hemispherical lighting frame looks like.

(a)

(b) u=0.22,v=0.35 (c)→Interpolated← (d) u=-0.0,v=-1.0

(e) Weights for (b): red:
shade; green: sheen

(f) (g) (h)

Figure 1: (a): Hemispherical dome with multiple, identical lights. (Image due to Ali Alsam
of the National Gallery, London.) (b,d): Two inputs. (c): Interpolant for light between (b) and
(d). (e): Weights. (f): Recovered chromaticity for (c). (g): Matte from PTM L = ppp (aaa )ccc . (h):
Intrinsic, eq.(6).

Let each RGB image acquired be denoted ρρρ I . Suppose we make use of the luminance
images instead, LI = ∑

3
k=1 ρk. This reduction in dimensionality reduces the computational

burden of robust regression and, since we mean to separate out the specularity from the matte
component, we can re-insert colour later separately for matte colour and specular colour.

Then a PTM model consists of a nonlinear regression from lighting to luminance via a
vector of polynomial terms ppp , with ppp a function of lighting direction aaa , as follows:

ppp (aaa 1)
ppp (aaa 2)
...
ppp (aaa n)

 ccc =


L1

L2

...
Ln

 , or PPP ccc = LLL (1)

where ccc is a vector of regression coefficients. Each pixel has its own ccc , and the LLL vector is
the collection of all luminances at that pixel over the n images, for polynomials PPP for the
known lighting directions.

E.g., in the original PTM [10], ppp is a 6-component set ppp 0 of polynomial terms in {u,v},
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(a) u = 0.322,v =−0.378 (b) u = 0.322,v =−0.378 (c)→Interpolated← (d) u = −0.259,v =
−0.423

(e) (f) (g) (h)

Figure 2: (a): Weights. (b,d): Two of inputs. (c): Interpolant. (e): χχχ recovered. (f): ρρρ = L̂χχχ ,
L̂ = ppp (aaa )ccc . (g): Intrinsic, eq.(6). (h): Interpolated sheen ς .

the x− and y− projections of (known) lighting vector aaa , with aaa = {u,v,w}:

ppp 0(aaa ) = (u2,v2,uv,u,v,1) (2)

and coefficient vector ccc is a 6-vector. Thus eq. (1) means that at each pixel we have an
n×6 matrix PPP of polynomial terms in the lighting directions, times an unknown 6-vector ccc ,
equaling an observed n-vector LLL of luminance values at the current pixel.

Here, we start off by firstly replacing polynomial ppp 0 with the following:

ppp (aaa ) = (u,v,w,u2,uv,1) , where w =
√

1−u2− v2 (3)

The rationale is as follows: Suppose we indeed happen to have a Lambertian surface; since
we mean to use a robust regression to solve for ccc , then regardless of specularities or shadows
(assuming at least half plus one of the pixel values at an image location are non-outliers), the
regression will just generate the correct surface normal vector, multiplied by a surface albedo
times a lighting strength factor. The regression will place zeros in ccc for the higher order
terms. Nevertheless, it is useful to keep a polynomial description, to suit surfaces which are
not Lambertian. Note that if we were to use instead ppp = {u,v,w} the method would simply
reduce to PST. Here we regress making no assumption about a Lambertian character of the
surface, and can reconstruct pixel values without making any such assumption. The reason
for 6-D in (3) is simply to retain the same low dimensionality, rather than the 10-D possible
for quadratic combinations of {u,v,w,1}. (Also, 7-D, with a v2 term in (3), performed the
same in terms of accuracy.)

Within the PTM model then (but modified here as in eq. (3)), for any new lighting direc-
tion aaa ′ we can utilize the values of ccc derived from measured images to generate a new image
via L = max[ppp (aaa ′)ccc ,0].
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(a) (b)→Interpolated← (c)

(d) (e)→Interpolated← (f)

(g) (h)→Interpolated← (i)

Figure 3: Left, right: two of inputs. Center: Interpolant for mean of left and right lighting
directions.

3.2 Outlier Identification and Mapping to Highlight and Shadow
For a robust regression to replace (1), here we utilize the LMS [13], which generates outliers
“on a silver platter", without any intervention. So in this luminance-based variant, regression
is ccc = LMS (PPP ,LLL ) (4)

LMS proceeds by randomly selecting sets of 6 values from 1..n and inverting (1) for non-
singular sets; the number of sets to try is guaranteed to be much lower than nC6 while still
retaining the high breakdown point of LMS [14].

The output of LMS is the set of regression coefficients ccc , plus a set of n weights (labels)
www identifying inliers (w = 1) and outliers (w = 0), thereby excluding some lights at this pixel.
But we know here that outliers are generated because (1) L values are too high to suit the
model (1) — we take these to be specular contributions; or (2) luminance is too low (or the
model generates negative values), for a particular light — these are likely shadow locations.
Thus we arrive at a tripartite set of weights {w0,w+,w−} at each pixel, with w0 set for lights
generating inlier values, w+ for specularities, and w− for shadows. Fig. 1(e) shows weights
corresponding to input image Fig. 1(b), w0 as white, w+ as green, and w− as red.

Now we can go on to generate a matte version of the input set of images, or indeed an
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interpolated matte image, using the regression result ccc , as in Fig. 1(g). We are assured of do-
ing better than standard PTM since we have excluded distracting specularities and shadows
from consideration whilst generating coefficients ccc .

4 Colour, Albedo, and Normal
At this point, we already have an advantage of applying a robust method to the problem at
hand, viz. a more reliable calculation of coefficient ccc . But in fact we also have produced a
better grasp of colour, as well. Let us factor each RGB triple ρρρ into luminance L = R+G+B
times chromaticity χχχ . Luminance will be composed of a scalar albedo α times lighting
strength times shading factor s; since we have no way of disentangling lighting intensity
from surface reflectance, we shall simply lump both scalars into α . Thus,

ρρρ = sα χχχ , χχχ ≡ {R,G,B}/(R+G+B) (5)

An intrinsic image [3] (for this lighting strength), i.e. surface independent of shading, would
then be

ρρρ intrinsic = α χχχ (6)

I.e., this is what the surface would look like under this light, with shading removed.
Since we have weights w0 identifying pixels indeed corresponding to the PTM model,

the robust regression delivers a reliable estimate of chromaticity. For suppose that at this
pixel a set of all chromaticities χχχ is given by χk(i) = ρk(i)/L(i), k = 1..3, for the ith light,
i = 1..n (with, say n = 50 lights), then we can identify a good estimate for the chromaticity
independent of light direction via the median, over each channel k = 1..3, of w0 = 1 pixels:

χχχ = median
(
ρρρ (w0)/L(w0)

)
(7)

Fig. 1(f) shows how this recovered chromaticity appears: it is intrinsic colour, without mag-
nitude.

The regression involving (3) automatically generates an estimate of surface normal nnn and
albedo α , by considering the contribution to the first three terms of ppp (aaa ):

ñnn = {c1,c2,c3}; α = ‖ñnn‖, nnn = ñnn/α (8)

Fig. 1(h) shows what this Lambertian-based matte intrinsic image looks like: ρρρ = αχχχ ;
while Fig. 1(g) shows what the polynomial PTM-based image, ρρρ = Lχχχ , L = ppp (aaa )ccc , looks
like: this is what PTM relighting generates, with robust regression (4) slopes ccc here (i.e., 6-
vector slopes as in regression (1)). Since image (g) includes shading, its appearance is more
realistic, of course. But note that using robust slopes can generate black output, from slopes
that are near zero, since dark values may form a majority at some pixels.

Fig. 4 shows results over increasing percent Gaussian noise, for a synthetic sphere RGB
image, with pixel values generated for 50 lighting directions for a Lambertian surface, plus
Phong illumination [12] with roughness 1/20, plus noise. Here the solid lines show the results
for error in normal vector direction (blue) and albedo (red), from eq. (8). Unsurprisingly, if
there is indeed no noise, and the base reflectance is Lambertian, a robust regression ignores
the polynomial terms in the regression model and returns regression coefficients proportional
to the surface normal since the shading model is normal dotted into light direction, and
specularities and shadows do not distract the regression.

Now, suppose we use the robust PTM regression weights w0, in a robust version of PST
wherein we take

ñnn =
(
AAA (w0)

)+
LLL (w0); α = ‖ñnn‖, nnn = ñnn/α (9)
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(a)

(b) (c)

Figure 4: (a): Solid lines: Noise sensitivity for robust PTM estimate of surface normal and
albedo. Dot-dashed lines: robust PST – using weights w0 generated by robust PTM. Dashed
lines: standard PST. (b): Synthetic sphere with 10% noise. (c): Noise contribution (positive
values shown).

where AAA is the set of n× 3 lighting directions, and above we use the Moore-Penrose pseu-
doinverse. Then for estimates of α and nnn we in fact find lower-error estimates in Fig. 4,
shown as dot-dashed lines. This is because the extra polynomial terms in PTM will tend to
over-fit the correct underlying noise-free values, whereas (9) assumes a Lambertian model,
correctly in this synthetic case.

In comparison, standard PST, based on straightforward least squares including all pixel
values, has poorer estimates – dashed lines in Fig. 4 – because the effect of noise is swamped
by the main problem, inclusion of shadow and specular values.

For real images below we therefore apply the robust PST (9), with matte weights gener-
ated by PTM, as our estimator of albedo and normal. Fig. 1(h) displays an intrinsic image,
(6), using such values.

5 Specularities and Shadows

5.1 Modelling Specular and Shadow Pixels
The model (1) will not account completely for the luminance L, but only a basic matte
reflectance. Luminance will include highlight and shadow contributions that drive L higher
respectively lower than the matte luminance, which is given by L̂ = ppp (aaa )ccc . Since we have in
hand labels for specular w+ and shadow w− pixels (over lights i = 1..n at each x,y location),
we can model these extra contributions, with a view to being able to interpolate them later,
for new, unmeasured, lighting conditions.

Therefore at each pixel we first consider the extra value, on top of matte luminance L̂,
due to specularity. Let us call this highlight-driven value the “sheen", ς , defined as

ς (w+) = L(w+) − L̂(w+), ς (¬w+) = 0 , where (¬w+) = {w+ = 0} (10)

Then we can model the dependence of specularity on lighting direction using a set of
Radial Basis Function (RBF) coefficients. I.e., supposing that the sheen is given in terms of
3-vector light direction aaa as (cf. [9])

ς (aaa ) = α +βββ
T aaa +

n

∑
i=1

γiφ(‖aaa −aaa i‖),
n

∑
i=1

γi = 0, AAA T
γγγ = 000 (11)
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with nodes aaa i and Gaussian radial base functions φ , we solve for values {scalar α , 3-vector
βββ , n-vector γγγ }. For the Gaussian width we take the approximate average distance between
interpolation nodes [9]. Interpolation nodes are mapped exactly, but the interpolated function
might model the underlying dependency well or not, depending on the amount of smoothing
applied. Here we use no smoothing, but this may be re-considered in future.

Call the remaining non-matte contribution the “shade", denoted σ :

σ (¬w+) = L̂(¬w+) − L(¬w+), σ (w+) = 0 (12)

Again, we model this contribution using RBF, separately. The reason for including all non-
sheen pixels in the shade σ , and not just w−, is that then the two RBF interpolations, plus
matte, combine to exactly equal the input luminance images.

Thus we have a model that describes luminance L as

L(i) = L̂(i) + ς (i) − σ (i) (13)

over the i = 1..n lights, at a pixel. Again, note that the input luminance images themselves
are essentially exactly regenerated, using this model.

5.2 Interpolating Specularities and Shadows
For any new light aaa , we use the pre-calculated RBF coefficients to generate a sum of Gaus-
sians, for sheen ς and shade σ separately, and L̂ = ppp (aaa )ccc as the base contribution. Note that
L̂ may include some measure of shadow or specular contribution, since in fact we have used
a polynomial approximation, not simply a Lambertian one. E.g., Fig. 1(g) shows that base L̂
value, for an interpolated light, does include some specular content. Note that for locations
where a majority of the pixel values are very dark, LMS regression returns slopes that are
almost zero and hence the matte contribution is very dark. Least-squares based PTM might
return brighter matte values for these cases.

5.3 Adding Back Colour
Since we have utilized only the luminance, it would appear that we must repeat the regres-
sions used in order to generate full-colour, RGB output. However, we can obviate such a
requirement by instead recognizing that, since we have broken out the sheen ς separately, we
can in fact add back colour for the sheen separately. Thus if we have an estimate of interpo-
lated basic luminance L̂, and also the shade contribution σ to luminance, which we assume
has the same colour, we can generate RGB colour for these contributions to luminance by
simply multiplying luminance by the chromaticity 3-vector χχχ .

For the sheen contribution, so far we have the scalar luminance ς . We can also obtain
the specular chromaticity χχχ spec by identifying it with the chromaticity of the maximum-
luminance input value colour over all pixels — here using the neutral-interface model of
dielectrics, which states that specular colour equals light colour [8]. Then we generate an
x,y-dependent difference of chromaticity, ∆χχχ , equal to the chromaticity for a pixel from (7)
subtracted from χχχ spec. At pixels with specular contribution, we expect the matte chromatic-
ity to be replaced by that for a highlight, so we add the sheen ς times ∆χχχ to the interpolated
colour. As in Fig. 1(c), this works very well. Further results are shown in Figs. 2 (note the
shadow interpolation in Fig. 2(c)) and in Fig. 3. For the colour input images themselves,
PSNR values between the input and the thusly regenerated RGB images range from 27.54
to 50.43 with median value 35.61, justifying the suitability of this approach to colour. How-
ever, note that where robust regression generates near-zero slopes, the interpolated colour is
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basically that of the sheen, and is therefore greyish – these artefacts are one subject of future
work.

6 Conclusion
We have presented a method to interpolate both specularities and shadows, within the PTM
framework, by applying robust methods to separately model highlights, matte, and remain-
ing luminance information, and shown how to both recover chromaticity and also combine
colour information with luminance for an accurate RGB rendition under new lighting.

The nonparametric regression we use for modelling the sheen and the departure from
matte is the RBF framework, but this may not be the best or the most efficient approach, and
in future we will consider both the smoothing of RBF as well as other methods. For RBF, the
Gaussian base functions may not necessarily be the best choice, and several other common
functions could be used, such as a thin-plate model.

Overall, results for interpolating specularities and shadows are seen to be quite promis-
ing. In situations where shadows are completely black, as in Fig. 3(b), the method can pro-
duce streaks resulting from hard shadow regions. Nevertheless even for cases where pixels
are saturated, as in Fig. 3(d,f), the sheen model simply sees these as extra, bright information
and successfully models them in interpolants.

In future, we intend to apply the method developed to artworks, with a view to deter-
mining their 3D structure and surface properties so that they can be measured before and
after they are moved, e.g. by lending to other institutions. Appearance changes for famous
artworks under re-lighting are also of interest.
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