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Abstract

A new cascade basis reduction method of computing the optimal

least	squares set of basis functions to steer a given function locally

is presented� The method combines the Lie group	theoretic and the

singular value decomposition approaches such that their respective

strengths complement each other� Since the Lie group	theoretic ap	

proach is used� the sets of basis and steering functions computed can

be expressed in analytic form� Because the singular value decompo	

sition method is used� these sets of basis and steering functions are

optimal in the least	squares sense� Most importantly� the computa	

tional complexity in designing the basis functions for transformation
groups with large numbers of parameters is signi
cantly reduced� The

e�ciency of the cascade basis reduction method is demonstrated by

designing a set of basis functions to steer a Gabor function under the

four	parameter linear transformation group�

Keywords� Steerable Filters � Low	level Vision� Feature detec	

tion�



� Introduction

A function is called steerable if transformed versions of the function can be
expressed as linear combinations of a �xed set of basis functions� For ex�
ample� translated versions of a sinusoid can always be expressed as linear
combinations of a sinusoid and a cosinusoid of the same frequency� That is�
sin�x � �x� � cos��x� sin�x� � sin��x� cos�x� where the basis functions are
sin�x� and cos�x�� and the weighting functions are cos��x� and sin��x� respec�
tively� Likewise� rotated versions of the �rst derivative of a two�dimensional
Gaussian can always be expressed as linear combinations of the �rst deriva�
tives of the Gaussian along the x and y axes�

Steerable functions are used in numerous applications� the most popular
being adaptive �ltering �	� 
�� 
�� 
� ��� One example of adaptive �ltering
in image processing involves computing the response of a given �lter about
any orientation� A brute force implementation would require convolving a
di�erent rotated �lter with the image for each orientation� If the kernel of
the �lter is steerable� however� then any rotated version of the �lter can
be expressed as a linear combination of a �xed set of basis �lters� Since
convolution is a linear operation� the response of the rotated �lter is simply
a linear combination of the responses of the basis �lters� which needs to
be computed only once� The ability to e�ciently compute the response of
a �lter about any orientation is useful� For example� this technique could
be applied to edge detection to �nd the orientation yielding the maximum
response� The response pro�le of the �lter with respect to orientation could
also be used to identify image features like corners �
���

Steerable functions have also been used in computer vision for motion
estimation ��� 
�� 
�� �� 
� 
��� One simple way of estimating the motion
between two image frames is to compute the response of a �lter in each of
the frames� The change in �lter response between the two frames measures
the amount of motion in the image� The change in �lter response as a
result of motion in the image can also be accounted for by a motion of the
�lter between frames �with the image remaining stationary�� For example�
leftward motion of an image produces the same change in �lter response as
rightward motion of the �lter� Thus� motion in an image can be computed
by determining the motion of the �lter that accounts for the change in �lter
response� If the �lter in question is steerable� this task can be performed
e�ciently by examining the responses of its corresponding basis �lters�






Several applications of steerable functions can also be found in computer
graphics� Texture mapping is a method where a surface property �e�g� color�
of a model is described using an image� To avoid aliasing� the image texture
is �ltered before being sampled� the shape and size of the �lter is view�
dependent and shift�variant� If the �lter is steerable with respect to the
di�erent shapes and sizes possible� then the responses of these �lters can be
e�ciently computed from the pre�computed responses of a set of basis �lters�
One method of designing these basis �lters for a Gaussian �lter is presented
in ��� Recently� steerable functions have also been used to e�ciently re�
render a synthetic scene undergoing illumination changes� In �
	�� the authors
describe a method which e�ciently re�renders a scene that is illuminated by
skylight at di�erent times of the day�

One of the main problems in designing steerable functions is determining
a set of basis functions that is most suited to steer a given function under
a family of transformations� Existing solutions to this problem fall into two
categories� �a� Lie group�theoretic approaches� and �b� techniques involving
the singular value decomposition� The latter category of techniques� orig�
inally proposed by Perona �
�� computes the optimal �in a least�squares
sense� set of basis functions to steer a given function under an arbitrary
�compact� transformation� In practice� the technique involves computing
the singular value decomposition �SVD� of a certain matrix that is made up
of transformed replicas of the given function� As a result of this decompo�
sition� the optimal set of n basis functions are then the �rst n left singular
vectors corresponding to the n largest singular values� Although e�cient
methods for computing the SVD of a matrix exist� the computational com�
plexity of this scheme increases exponentially with the number of transform
parameters� Hence� using this method even for groups of moderate number
of parameters� like the four�parameter group of linear image transformations�
is infeasible�

With Lie group�theoretic methods ��� 

�� the function to be steered is
�rst approximated by a linear combination of a set of basis functions �called
equivariant functions� that are known to be steerable under the same trans�
formation group� The given function is then steered by steering these basis
functions� Although Lie group�theoretic methods are restricted to Lie trans�
formation groups� such a limitation is not too severe as Lie transformation
groups include common image transformations such as translation� rotation
and non�uniform scaling� The main shortcoming of these group�theoretic ap�

	



proaches� however� is that the steerability property is enforced globally � that
is� the function is designed to be steered by any transformation in the group�
For non�compact groups �like translation and scaling�� these basis functions
have in�nite support� If the function to be steered has compact�support�
then a large number of them are needed to approximate it accurately�

In practice� however� it is reasonable to assume that only transformations
over a limited range of parameters can be expected� In this paper� we present
a new method of computing the optimal least�squares set of basis functions
to steer a given function within a limited range of transform parameters� The
method combines the Lie group�theoretic and the singular value decompo�
sition approaches in such a way that their respective strengths complement
each other� The hybrid method comprises two steps� First� the Lie group�
theoretic approach is used to compute the basis functions to steer the given
function locally� i�e�� within a compact range of transform parameters� Since
these basis functions �equivariant functions� are already known to be steer�
able under the given transformation group� the computational complexity
of this step is independent of the number of transform parameters� In the
second step� the singular value decomposition technique is used to determine
the optimal least�squares set of basis functions and thereby reduce the cur�
rent number of basis functions� The computational complexity of this second
stage is shown to be only dependent on the number of basis functions used
in the �rst stage� This number is often much smaller than the number of
samples required to densely sample the range of transform parameters� Since
the original group�theoretic basis functions �and their steering functions� are
available in analytic form� the least�squares optimal set of basis functions
�and their steering functions� can also be derived in analytic form�

� Global Steerability

In this section� we identify the function spaces that are globally steerable
under di�erent transformation groups� The mathematical machinery of the
Lie group�theoretic approach is omitted in this exposition as it is not of
central importance� The interested reader is referred to Hel�Or and Teo ��� for
a derivation of these function spaces� Before describing these function spaces�
we formalize the notion of steerability in a global sense with a de�nition�

In the following� we adopt an operator notation for a group of transfor�





mations G such that T �g�f refers to the transformation of a function f by a
particular deformation g � G� In practice� the group G takes on some param�
eterization� For example� the group of x�translations can be parameterized
by � � Ttx���f�x� y� � f�x� �� y��

De�nition � �Global Steerability� � A function f � Rm �� R is glob�
ally steerable under a k�parameter Lie transformation group G if any trans�

formation T �g� of f by any element g � G can be written as a linear combi�

nation of a �xed� �nite set of basis functions fi � R
m �� R�

T �g� f �
nX
i��

�i�g� fi� �
�

The functions �i are known as the steering functions and depend solely on
the transform parameters� We will further assume that n is the minimum
number of basis functions required and these basis functions are linearly
independent� Clearly� the set of basis functions required to steer a given
function is not unique� any �non�singular� linear transformation of the set of
basis functions could also be used� It is important to note that� in practice�
this relationship holds only approximately�

If a function f is globally steerable with a set of basis functions ffig�
then each one of the basis functions fi is itself globally steerable with the
same basis functions� This is true since each basis function can be rewritten
as a linear combination of transformed replicas of f �chosen to be linearly
independent�� Thus� transforming a basis function is equivalent to linearly
combining the set of transformed replicas of f � which are globally steerable�
We will see� in the next section� that this is not true in the case of local
steerability�

Since global steerability of the given function f implies global steerability
of its basis functions fi as well� it is more natural to express global steerability
in terms of the function space spanned by the basis functions fi�

De�nition � �Equivariant Function Space� � An n�dimensional func�

tion space F � spanff�� � � � � fng is equivariant under a k�parameter Lie

transformation group G if every f � F is globally steerable under G using

the basis ff�� � � � � fng�

�



Transformation Group Equivariant
Function Space

Ttx��� f�x� y� � f�x� �� y� fh�y�xpe�xg
Tsx��� f�x� y� � f�e��x� y� fh�y�x��logx�pg
Tpx��� f�x� y� � f�x��
 � �x�� y� fh�y�x�pe��xg
Tr��� f�x� y� � fh�r�e��g
f�x cos � � y sin �� x sin � � y cos ��
Ts��� f�x� y� � f�e��x� e��y� fh���r��log r�pg

Table 
� Several examples of one�parameter transformation groups and their
equivariant function spaces� The parameter p is an integer from � � p �
k while the parameter � is any complex number� The function h is any
arbitrary function� The variables r� � refer to polar coordinates�

This means that transformed replicas of any function belonging to an
equivariant function space are themselves members of the function space�
Putting it yet another way� an equivariant function space is a function space
that is closed under the transformation group ���� Table 
 lists the equivariant
function spaces under di�erent one�parameter �k � 
� transformation groups�
Equivariant function spaces for multi�parameter groups can be constructed
by combining the equivariant spaces of several of these one�parameter groups�
Further details can be found in ���� Since the equivariant function spaces for
many of the commonly encountered multi�parameter transformation groups
have been identi�ed in ���� one can simply look them up in the paper�

Steering any function f � F � can be achieved by �rst composing f by a
linear sum of basis functions from F �

f �
nX
i��

cifi � BFc

where BF � �f�� � � � � fn� forming the basis of F � then steering the basis F �

T �g� f �
nX
i��

ci

�
�

nX
j��

�i�j�g�fj

�
A � BFA�g�c �	�

where the steering functions were collected together into a matrix� A�g� �
��i�j�g���

�



As a result� any function f is globally steerable under a k�parameter
transformation group if and only if it belongs to some function space that
is also equivariant under the same transformation group� Thus� steering an
arbitrary function f amounts to being able to represent f in an appropriate
equivariant function space� For example� an equivariant function space under
	D rotation is the space spanned by fh�r�ei�j�g �in polar coordinates� where
�j is a set of arbitrary constants� usually integers� This function space is
dense in L�� Therefore� any function could be steered in rotation by �rst
representing it in this function space�

� Local Steerability

In this section� we introduce the concept of local steerability to allow func�
tions to be steered under compact subsets of the family of transformations�
We also show that a compactly�supported function can be steered locally
with a set of equivariant basis functions by approximating it with these basis
functions over an appropriate compact domain�

De�nition � �Local Steerability� � A function f � Rm �� R is locally
steerable under a k�parameter Lie transformation group G if any transfor�

mation T �g� of f by any element g � G� � G can be written as a linear

combination of a �xed� �nite set of basis functions fi � R
m �� R�

T �g� f �
nX
i��

�i�g� fi ��

We will also assume that the region over which g � G� is compact in some
parameterization� Also� this subset G� need not be a subgroup of G� If G�

were a subgroup of G� then the function f would simply be globally steerable
under the new subgroup� As with the de�nition of global steerability� we will�
in practice� also consider the case where the local steerability property holds
only in approximation�

If a function f is locally steerable with a set of basis functions fi� then
arbitrary linear combinations of fi �or even the basis functions themselves�
are not necessarily locally steerable� Unlike the situation with global steer�
ability� the function f is only steerable within a local range of parameter

�



space� thus� each basis function fi is only locally steerable within a di�er�
ent� possibly smaller� range of parameter space� Hence� the property of local
steerability cannot be associated with function spaces but has to be discussed
with respect to the particular function�

��� Approximating Local Steerability�

A compactly supported function is a function that is non�zero only over
some compact region of its domain� and zero everywhere else� A non�
compact transformation group refers to a group whose parameter space is
non�compact� For example� the group of translations is non�compact since
its parameter space is R while the group of rotations whose parameter space
is S� is compact� For compactly�supported functions� there are no �nite�
dimensional function spaces that can be used to globally steer these functions
under a non�compact transformation group� The simple example of steering
a �single�period� raised cosine� under translation is illustrative of this point�
in order to steer a raised cosine under all possible translations� an in�nite
number of raised cosines are needed�

Fortunately� if only local steerability is desired� then a �nite number of
functions might be su�cient to steer a compactly�supported function� The
function to be steered is �rst approximated using an appropriate equivariant
function space� This approximation is then steered by steering the basis
functions spanning the space� Since only local steerability is desired� the
domain over which the function is approximated need only be a subset of
its actual domain� the size of this subset depends on the range of parameter
space over which local steerability is expected�

Intuitively� we need to approximate the function over a large enough
subset of its domain so that all transformed replicas of it will also be ade�
quately approximated� For example� consider the problem of steering a one�
dimensional raised cosine under translation� The raised cosine is compactly�
supported over the interval ��
� 
�� The range of translations over which
it is to be steered is ��
� 
�� Thus� the union of the support of all possible
translated raised cosines is ��	� 	�� We refer to this interval as the integration
region as this would be the ��xed� interval of integration for a corresponding
steerable �lter� Clearly� the original raised cosine needs to be well approx�

�The de�nition of a raised cosine adopted in this paper is �cos��x� � �����

�
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Figure 
� The support of the raised cosine is within the interval ��
� 
�� If
the function is to be steered in translation over the range ��
� 
�� then the
integration region corresponding to a steerable �lter would be ��	� 	�� The
interval over which the raised cosine needs to be approximated� i�e� the
approximation region is ��� ��

imated over this interval ��	� 	�� Unfortunately� approximating it over this
interval is not enough� When the raised cosine is translated to the left by
�
� for example� the interval �	� � �the right tail� of the original raised co�
sine�s domain enters the integration interval� If the original raised cosine is
poorly approximated in this region� then the interval �
� 	� of this translated
raised cosine will be poorly approximated as well� The same holds when
the raised cosine is translated to the right by 
� Hence� the original raised
cosine needs to be well approximated over the interval ��� �� We refer to
this interval as the approximation region� The integration region is a subset
of the approximation region� the compact support of the original function
is� in turn� a subset of the integration region� Fig� 
 illustrates the approx�
imation and integration regions for a one�dimensional raised cosine steered
under translation�

The integration and approximation regions can be de�ned mathemati�
cally� We assume that the transformations are smooth and locality of steer�
ability implies steerability within a compact region of parameter space� Let
Rf be the compact support of the original function outside of which it is
zero� The integration region is therefore�

Rint �
�
g�G�

T �g� Rf

where the union is taken over the compact region of parameter space� The

�



application of the group operator to the regionRf produces the corresponding
region of the transformed function� The approximation region is de�ned in
terms of the inverse of the group operator�

Rapprox �
�
g�G�

T �g��� Rint

where T �g��� T �g� � I for all g � G�

� Cascade Basis Reduction

The number of equivariant basis functions required to approximate the steer�
able function over the approximation region is not least�squares optimal�
While these basis functions span the space of all transformations of the orig�
inal function� not all possible linear combinations of these basis functions
give rise to transformed replicas of the original function� In fact� very few
will� that is� only those belonging to a k�dimensional manifold within that
function space� where k is the number of parameters required to describe the
transformation� In this section� we describe a method which �nds an ordered
set of functions such that the �rst n elements of this set span the optimal
least�squares function space that best contains this manifold and thus can
be used to steer f �

��� Singular Value Decomposition

Perona �
� showed that this problem could be solved numerically by comput�
ing the singular value decomposition �SVD� of a particular matrix F whose
column vectors are transformed replicas of a discretely sampled version of
the function f � Thus� each column in F corresponds to a speci�c sample of
the parameter space over which the function is to be steered and each row
in F corresponds to a speci�c sample of the function�s domain� The SVD
decomposes the matrix F into a product of three matrices�

F �

�
����

���
T �g��f

���

� � �

���
T �gsp�f

���

�
���	 � UF SF VF

T � UF WF

�



where sp indexes over samples of the parameter space� UF
T
UF � I� VF

T
V �

I� and SF is a diagonal matrix of non�negative singular values� in decreasing
order of magnitude� It can be shown that the �rst n columns ofUF represents
the optimal least�squares set of basis functions �of size n� needed to steer
f � The �rst n rows of the matrix WF tabulate the weights of the linear
combination needed to steer f �

The SVD of matrix F could also be computed by �rst computing the
eigenvalues and eigenvectors of F � �

� F
T
F � Denoting the eigenvalues and

eigenvectors of F � by SF � and VF � respectively� the SVD of F is� SF �

SF �

�

� � VF � VF�� and UF � FVFS
�
F where S�F is the pseudo�inverse of

SF � Assuming that sd and sp samples of the domain and parameter space
respectively are taken �i�e� F is a sd � sp matrix�� if sp � sd� then it is
computationally more e�cient to compute the SVD of F in this manner as
the size of F T

F is smaller than the size of F � Conversely� if sd � sp� then
a similar method using FF T could be derived� Thus� the computational
complexity of computing the SVD of F is upper�bounded by the smaller
of the row and column dimensions of F � For one or two�parameter groups�
sd often exceeds sp and sp is also manageably small� As a result� the SVD
of F could be computed from the eigenvalues and eigenvectors of F T

F �
Unfortunately� sp increases exponentially with the number of parameters�
For example� with a four parameter group and a discretization of only ten
samples per dimension� the number of columns would be 
��� Computing the
eigenvalues and eigenvectors of a square matrix this size is computationally
infeasible�

��� Basis Reduction

Alternatively� the matrix F could be written as a product of a sd�m matrix
B and an m� sp matrixH such that columns of B are a set of m appropri�
ately chosen� discretely sampled� basis functions �not necessarily orthogonal�
and the columns of H contain the weights needed to reconstruct each col�
umn T �gi�f in F � Typically� if appropriate basis functions are chosen� then
m � sd and m � sp� Thus� although the dimensionality of matrix F �sd�sp�
is quite large� its rank is only m which is much smaller than sd and sp� When
the matrix F can be decomposed into the product of B andH� the SVD of
F can be computed economically by a sequence of two singular value decom�
positions� each of which involves computing the eigenvalues and eigenvectors
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of a square matrix whose size is equal to m� From the decomposition of F �
we have

F � BH

�a�
� �UBSBVB

T �H
� UBH

�

�b�
� UB �UH�SH�VH�

T �
� �UBUH�� SH� VH�

T

� UF SF VF
T �

Thus� the SVD of F is such that UF � UBUH�� SF � SH� and VF �
VH�� Two singular value decompositions need to be computed� one at �a�
involvingB and a second at �b� involvingH �� These decompositions could be
obtained by computing the eigenvalues and eigenvectors of BT

B and HHT

respectively� Each of these matrix products are square matrices of size m�
If the basis functions are orthonormal� then BT

B � I� Thus� UF � BUH �
SF � SH and VF � VH � That is� only the SVD ofH needs to be computed�
Alternatively� if the steering functions are orthonormal� then HHT � I and
only the SVD of B needs to be computed�

��� Basis Reduction using Equivariant Function Spaces

In the previous section� we saw that the optimal least�squares set of n basis
functions to steer a function f under any k�parameter transformation group
could be e�ciently computed if an appropriate set of basis functions B were
available� These basis functions have to be chosen so that they span the
column space of F � i�e�� these basis functions must be su�cient to locally
steer the function f within the local parameter space of the k�parameter
group�

In Section � we saw how equivariant functions could be used to steer a
function f under a limited range of transformations� Essentially� the function
f is approximated with linear combinations of the globally steerable equiv�
ariant functions Bglob �within some appropriate domain of approximation��
Steering the function f then amounts to steering the equivariant functions
�similar to Equation 	��

T �g� f � BglobA�g� c ���







where c is a vector of weights that approximate f with Bglob� i�e� f �
Bglobc� The matrix A�g� is the matrix of steering functions used to steer
each equivariant function� Thus� these equivariant functions are suitable
candidates for the basis functions of B such that B � Bglob and H �
��A�g�� c� � � � �A�gs� c��� The columns of H correspond to a discrete sam�
pling of a local range of the parameter space� Likewise� the rows of B cor�
respond to a discrete sampling of the domain of the globally steerable basis
functions� The SVD of B and H �and thus of F � are then computed from
the eigenvalues and eigenvectors of BT

B and HHT respectively�

��� Analytic Form of Basis and Steering Functions

Since the globally steerable basis functions and their corresponding steering
functions are in analytic form� the new basis and steering functions computed
from the SVD of F can also be described in analytic form� To obtain an
analytic description of the new basis functions� we simply write them in
terms of the globally steerable functions in the columns of B� Observe that
B � UBSBVB

T and UF � UBUH�� Thus� UF � B�VBS
�
BUH��� However�

each column of B is simply a sampled version of a basis function� Therefore�
the vector of the new basis functions �described analytically� is�

uF �x� y� � �VBS
�
BUH��T b�x� y� ���

where b�x� y� is the vector of original basis functions �described analytically��
Likewise� to obtain an analytic description of the new steering functions
WF � SFVF

T � we simply write them in terms of the original steering func�
tions in the columns ofH� SinceH � � SBVB

T
H� H � � UH�SH�VH�

T � and
SFVF

T � SH�VH�

T � we have WF � SFVF
T � �UH�

T
SBVB

T �H� Again�
each column of the matrixH is simply a sampled version of the steering func�
tion� Therefore� the vector of new steering functions �described analytically�
is�

wF �g� � �UH�

T
SBVB

T � h�g� ���

where h�g� is the vector of original steering functions �described analytically��
i�e�� h�g� � A�g� c� Denoting � � UH�SBVB

T � we can write the overall
analytic steering equation as

T �g� f�x� y� � �b�x� y�T��� �� A�g� c�� ���
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Figure 	� �a Reconstructions of translated replicas of the original function using
�� basis functions� �b Basis functions corresponding to the three largest singular
values computed using the cascade basis reduction method�

This equation is essentially the same as Equation �� To compute the optimal
least squares set of n basis functions� only the �rst n columns of UH� in �
�and correspondingly� in ��� are retained� the rest are set to zero�

� Results

��� Comparison with Conventional SVD

In this experiment� a one�dimensional Gaussian function �exp���x��x��

��
�� � �

��
� was steered in translation over the parameter range ���� � 	x � ����
The domain of the function was discretized using 
	� evenly�spaced samples
from ��
� 
�� The parameter range was also discretized using 
	� evenly�
spaced samples� Thus� using the conventional SVD method� the singular
value decomposition of a 
	�� 
	� matrix was computed�

For the cascade basis reduction method� the sinusoids �and co�sinusoids�
with integer frequencies over the domain ��
� 
� were used as the equivari�
ant functions �see Table 
�� A total of 	
 were required to approximate the
Gaussian over this interval �one DC component� and 
� pairs of sinusoids
and co�sinusoids of increasing integral frequencies�� The SVD of the matrix
F was then computed via two consecutive SVD�s� each of which involve only
a 	
 � 	
 matrix� In both methods� we selected the optimal 
� basis func�
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Figure � Graph �a plots the analytic basis function with the largest singular
value� The asterisks represent the corresponding discretely sampled basis function
computed using the conventional SVD method� Graph �b plots the analytic
steering function of the basis function with the largest singular value� The asterisks
represent the corresponding discretely sampled steering function computed using
the conventional SVD method�

tions and used them to steer the Gaussian� Figure 	 �a� shows examples of
translated replicas of the original function computed by steering the basis
functions obtained using the cascade basis reduction method� The results
using the conventional SVD method are virtually identical� Figure 	 �b�
shows the �rst three basis functions obtained using the cascade basis reduc�
tion method� Again� the results are virtually identical to those obtained
using the conventional SVD technique� Figures  �a� and �b� plot the ana�
lytically derived �rst basis and steering functions� The asterisks denote the
numerically computed basis and steering functions obtained using the con�
ventional SVD technique� The analytically derived functions obtained using
the cascade basis reduction method interpolate the numerically computed
sample points very well� The analytic basis and steering functions are linear
combinations of the original 	
 basis and steering functions�
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��� Steering a Gabor Function under General Linear

Transformation

In this experiment� a two�dimensional odd�phase Gabor function
�sin�x��x� exp����x��x�

� � �y��y�
���	�� �x � �y � ��	� was steered over a

range of linear transformations �combinations of rotations� independent scal�
ings along each axis� and skew�transformations�� The domain was sampled
uniformly over ��
� 
�� ��
� 
� with ��� �� samples� The linear transforma�
tion was parameterized in a unique way�

A � R���� Sx�sx� Sy�sy� R����

where R�����R���� are rotation matrices and Sx�Sy represent pure scaling
in the x� and y� directions respectively� Thus� we are disallowing re�ections�
The validity of this parameterization can be understood in terms of the sin�
gular value decomposition of A� The range of parameter space over which
the Gabor function was steered was� ��� �� � ��� 		� and sx� sy � �
� ����
The Legendre polynomials over the interval ��
� 
�� ��
� 
� were used as the
equivariant basis functions to approximate the Gabor function� A total of
	
 Legendre polynomials were used �see ��� for a catalog of equivariant func�
tion spaces for di�erent multi�parameter transformations�� This set included
all products of one�dimensional Legendre polynomials whose total degree was
less than or equal to 	�� i�e��

S
��d��� P

d
x�y where P d

x�y
�
� fP dx

x P dy
y jdx � dy �

d� dx 
 �� dy 
 �g�
The results of using the cascade basis reduction method to compute the

basis functions are shown in Figures � and �� Figure � plots the singular
values of the singular value decomposition in decreasing order of magnitude�
The singular values decrease rather rapidly such that a total of 

 basis
functions were found to be su�cient to steer the odd�phase Gabor function�
Figure � �a� shows the �rst ten of these eleven basis functions� Figure � �b�
shows replicas of the Gabor function steered to various linear transforma�
tions� A total of 		� ��� samples of the parameter space were used in this
experiment� Since the domain was sampled with �� � �� � ���� samples�
applying the conventional method would have required computing the SVD
of a ����� ���� matrix� The cascade basis reduction method� however� re�
quired the calculation of the SVD of two 	
 � 	
 matrices� Figure �
shows similar results for steering an even�phase Gabor under the same range
of linear transformations�
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Figure �� Graph �a plots the magnitude of the singular values for each singular
vector� Each singular vector corresponds to a single basis function� A total of
��� singular vectors were present but only the largest �� of them are plotted�
Graph �b plots the cumulative sum of the squared magnitudes of the singular
values� The squared magnitudes of the singular values have been normalized so
that their sum equals one�

� Conclusion

We have presented a new method of computing the optimal least�squares
set of basis functions to steer any given function under any Lie transfor�
mation group� The method combines the Lie group�theoretic and singular
value decomposition approaches in such a way that their respective strengths
complement each other� In particular� the computational complexity of the
singular value decomposition technique in designing basis functions for trans�
formation groups with large numbers of parameters is signi�cantly reduced�
This is achieved by �rst designing the basis functions using the Lie group�
theoretic approach and then reducing this set of basis functions� It was shown
that the computational complexity of the new method is equivalent to that
of performing two singular value decompositions on square matrices of sizes
equal to the number of basis functions� Since the basis and steering functions
derived using the Lie group�theoretic approach are in analytic form� we have
also shown that the optimal least�squares set of basis functions and steering
functions can be expressed in analytic form as linear combinations of these
original basis and steering functions�
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�a�

�i� �ii� �iii� �iv� �v�
�b�

Figure �� �a Ten out of the eleven basis functions ������ total squared norm
computed to steer the odd	phase Gabor under any local linear transformation�
The basis functions are arranged in descending order of the magnitudes of their
singular values from left to right and from top to bottom� �b Image �i shows a
reconstruction of the original function� Image �ii shows a reconstruction of the
function rotated by �� degrees� Image �iii shows a reconstruction of the function
scaled along the x	axis� Image �iv shows a reconstruction of the function scaled
along the y	axis� Image �v shows a reconstruction of the function skewed along
the x	axis and uniformly scaled� All of these functions were reconstructed using
�� basis functions�
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�a�

�i� �ii� �iii� �iv� �v�
�b�

Figure �� �a Eight basis functions ������ total squared norm computed to steer
the even	phase Gabor under any local linear transformation� The basis functions
are arranged in descending order of the magnitudes of their singular values from left
to right and from top to bottom� �b Images �i through �v show reconstructions
of the original function under various linear transformations� See the caption of
Figure � for further description�
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