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ABSTRACT 

Many problems in computer vision and pattern recognition 
involve groups of transformations. In particular, motion 
estimation, steerable filter design and invariant feature de- 
tection are often formulated with respect to a particular 
transformation group. Traditionally, these problems have 
been investigated independently. From a theoretical point 
of view, however, the issues they address are related. In this 
paper, we examine the relationships between these problems 
and propose a theoretical framework within which they can 
be discussed in concert. This framework is based on con- 
structing a natural representation of the image for a given 
transformation group. Within this framework, many exist- 
ing techniques of motion estimation, steerable filter design 
and invariant feature detection appear as special cases. Fur- 
thermore, several new results are direct consequences of this 
framework. 

1. INTRODUCTION 

In computer vision, the problems of steerability, motion es- 
timation and invariant feature detection have usually been 
investigated independently. One reason for this could be 
that the intended practical applications of each are vastly 
different. From a theoretical point of view, however, these 
three problems address similar core issues. In this paper, 
we examine these common issues and propose a theoretical 
framework within which they can be discussed in concert. 

In this framework, we are concern with images undergo- 
ing some transformation (translation, rotation, affine etc.). 
The main idea underlying this framework is to find an ef- 
ficient representation of an image with respect to a given 
group of transformations. The representation is efficient in 
the sense that it is simple (linear and finite), and that trans- 
formations in the group can both be identified and applied 
directly to the representation. The representation need not 
be complete, i.e. the image need not be reconstructible 
from the set of features. For example, consider the group of 
all rotations about a given point. A possible representation 
of an image which is efficient with respect to this group is 
the horizontal and vertical directional derivatives at that 
point. This representation is finite (two dimensional) and 
linear (since directional derivative is a linear operator). It 
is efficient with respect to rotations since any directional 
derivative can be calculated from the horizontal and verti- 
cal derivatives, i.e. the representation of a rotated image 
can  he reconst,riirt,ed from t,he renresent,at.ion of t,he nripi- 
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nal image. Note that this represetation is, of course, not 
complete. The original image cannot be reconstruted from 
its first derivatives. 

Such efficient representations are useful in motion es- 
timation. Because the transformation is detectable from 
the representation, one can estimate the motion of the im- 
age from this lower-dimensional representation instead of 
from the image directly. Practically, one first computes the 
outputs of a set of filters from the original and the trans- 
formed images, and then estimates the motion from these 
two sets of measurements. Likewise, functions which are 
invariant under image transformations can be defined di- 
rectly over the representation. Since the representation is 
finite-dimensional, methods for computing invariants with 
features like points can be employed. Furthermore, because 
the dimension of the new representation is finite, it is pos- 
sible to generate all independent image invariants with re- 
spect to the given transformation. 

Lie group theory has been used extensively in construct- 
ing geometric invariants [9, 121. The application of Lie the- 
ory to the design of steerable filters or to motion estimation 
has not, however, been as widespread. The framework pro- 
posed in this paper is based on several results from Lie 
theory, so the families of transformations treated are those 
that form Lie groups. This, however, is not too restrictive 
since many transformations of interest to computer vision 
are Lie groups. Examples include: image translation, rota- 
tion, scaling and affine transformation. These transforma- 
tions may either be global, i.e. acting over the entire image, 
or local, as in the computation of optical flow. 

Several others have also used Lie group theory in a sim- 
ilar context. Amari originally proposed the construction 
of such efficient representations for invariant feature detec- 
tion via feature normalization [I]. This work applies and 
extends his idea to the problems of steerability and mo- 
tion estimation, and suggests a framework encompassing all 
three problems. Furthermore, the treatment of invariance 
within this framework is more general than Amari’s feature 
normalization technique. Lenz also recognized the useful- 
ness of finite-dimensional function spaces that are closed 
under some transformation and applied the idea to sev- 
eral computer vision applications including pattern detec- 
tion [6]. Recently, Michaelis and Sommer [7] also suggested 
a method for deriving steerable filters using a Lie group 
t.henret,ic annrna rh .  
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Group I Operator 
2-translation 
2-scaling 
Rotation g , ( r ) f = f ( x c o s r + y s i n r ,  

g t r  ( r )  f = f (z  + r,  y) 
g s ,  (.) f = f(eT'z, w )  

Generator Equivariant Function Space 

Lt, = & 
L,, =2g 
L , = - X & + + ~  = Q {?bP(r)etk'} 

{$,,(y)zpe""} for 0 5 p 5 m. 
($"(y)za(ln z)"} for 0 5 p 5 m. 

Table 1: Several examples of one parameter groups, their generators, and associated equivariant function spaces. 
are arbitrary functions, a E C and k E Z. In the rotation and uniform scaling examples, (.,e) are the polar 

coordinates of the image. 

Uniform scaling 

2. BACKGROUND ON LIE GROUPS 

-z sin T + y cos T )  

g s ( r )  f = f(e'z, e'y) L ,  = z& + y& = r &  I {$,(O)r"(lnr)P) for o 5 p 5 m. 

Lie groups are often encountered as families of trans- 
formations acting on a function [ 2 ] .  In this paper, we con- 
sider, primarily, the families of transformation groups act- 
ing on real-valued, two-dimensional functions. We assume 
that these functions are non-zero only within a bounded re- 
gion and denote them by f ( z , y )  : R2 H R. We describe 
each family of transformations by operators {g(r)} where 
r = (TI,. .. , r h )  E Rk are parameters of the transforma- 
tion. For example, consider the family of one-dimensional 
translations of a function in the z-direction: 

where r denotes the amount of translation. In words, the 
operator g t z  ( r )  acts on the original function f ( x ,  y) to yield 
a new translated function f (2 ,  j j )  = f ( z  - r,  y). 

A family of transformations {g(r )}  parameterized by 
r1 , .. . , r k  over some predefined range is a Lie group if (1) it 
satisfies the group conditions of closure under composition, 
associativity, inverse and the existence of an identity, and 
(2) the maps for inverse and composition are smooth. 

Lie groups are rich in structure and many properties of 
the group can be discerned by studying the properties of 
infinitesimal actions of the group. The infinitesimal actions 
of a k-parameter group are a set of differential operators 
{ L ,  I i = 1 . .  . k } ,  called the generators of the group, corre- 
sponding to derivatives of the transformation at the identity 
with respect to each parameter r, in turn; Le., 

The k generators provide a basis for the k-dimensional tan- 
gent space B = {T& + . . .  + rkLklr E R'}. There is a 
correspondence between a k-parameter Lie group and its 
k-dimensional tangent space in the form of the exponential 
map:' 

The notation eraLz represents the series expansion erLz = 
I + r,L, + $r: L: f .  . ., which is an infinite sum of differen- 
tial operators [a]. The exponential map generates a group 

' This is only true for group elements whose Taylor expansions 
converge, and for elements within the connected component con- 
taining the identity. In this paper, we consider only such trans- 
fnrmatinn zrniins fnr which cnnverrence hnlrls 

g ( r )  j(x, y) = e7IL1 . . . erkLk f ( z ,  y). (1)  

similar to the original group up to a change of parameter- 
ization. Examples of common one-parameter groups and 
their generators are given in Table 1. 

3. EQUIVARIANT BASIS FUNCTIONS 

In this section, we identify the functions that are steerable 
under different transformation groups. Before describing 
these functions, we formalize the notion of steerability with 
a definition. 

Defini t ion 1 (Steerabi l i ty)  ; A function f ( z , y )  : R2 ++ 
R i s  steerable under a k-parameter Lie transformation 
group G if any transformation g(r) E G off  can be writ- 
ten as a linear combination of Q fixed, finite set of basis 
functions {$,(z, y)}: 

g(r) f ( z , y )  = C N i ( T )  4 i ( . , Y )  = a T ( T ) @ ( w )  

i = l  
The functions ai are known as the steering functions of f 
associated with the basis { d i }  and depend solely on the 
transform parameters. Without loss of generality, we as- 
sume that n is the minimum number of basis functions re- 
quired and these basis functions are linearly independent. 
Clearly, the set of basis functions required to steer a given 
function is not unique; any (non-singular) linear transfor- 
mation of the set of basis functions could also be used. 

If a function f is steerable with a set of basis functions 
a, then each of the basis functions 4i are themselves steer- 
able with the same basis functions. This is true since each 
basis function can be rewritten as a linear combination of 
transformed replicas of f (chosen to be linearly indepen- 
dent). Thus, transforming a basis function is equivalent 
to linearly combining the set of transformed replicas of f, 
which are themselves steerable. 

Since steerability of the given function f implies steer- 
ability of its basis functions 4; as well, it is more natural 
to express steerability in terms of a function space, i.e. in 
terms of the space spanned by the basis functions (4,). 
Defini t ion 2 (Equivar ian t  Function Space)  I 
An n-dim. function space F =span{4ll.. . , dn} is equiv-  
a r i a n t  under a k-parameter Lie transformation group G if 
every r$i is steerable with respect to the basis {dl , .. . , &}, 
Le., there is a matrix function A(r) ,  called the interpola- 
tion matrix , such that: 
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From the definition it follows that an equivariant func- 
tion space is a function space that is closed under the asso- 
ciated transformation group. More generally, any function 
f E 3, such that f = c,d, = cT@ is steerable by steering 
the basis of 7: 

g(r)f = cTA(r)@.  

As a result, any function f is steerable under a k-parameter 
transformation group if and only if it belongs to some func- 
tion space that is also equivariant under the same transfor- 
mation group. 

3 0  = span{cos 6, sin 6) under the one-parameter group of 
rotations: gr(T)f(6) = f ( 6  - T). It is easy to verify the 
following two identities: 

For example, consider the function space 

cos(6 - T) 
sin(@- T) = - s in rcos6+cos r s in8 .  

= cos r cos 6 + sin T sin 8, 

Thus, rotated versions of any basis function in 3 9  can al- 
ways be expressed as linear combinations of the basis func- 
tions. Hence, any f E IF0 is steerable under the rotation 
group. 

4. C O N S T R U C T I O N  O F  E Q U I V A R I A N T  
S P A C E S  

In the previous section, equivariant function spaces were 
defined to be closed under the associated transformation 
group. Because we are dealing with Lie transformation 
groups, the closure of a function space under g(r)  can be 
reformulated, more simply, in terms of the group generators 
{ L I ,  . . . , L k } .  This approach is based on the seminal work 
of S. Amari [l] who originally proposed it in the context of 
invariant feature detection in pattern recognition. 

Theorem 1 (In terpola t ion  Equa t ion )  : 
The function space 3 = s p a n { g l l , . ~ . , ~ , }  is equivari- 

ant under the transformation group G if and only if IF is 
closed under the action of each generator L ,  of G. That is, 
g(T)@ = A ( T ) @  if and only if there is a set o f n  x n matrices 
{ B I ,  . . . , Bk} such that: 

L i @ = B i @  f o r a l l  i = 1 ,  . . . ,  E 

In  particular, the interpolation matrix can be written as fol- 
lows: 

A ( T )  = erhBk ...er1B1 such that g(T)(a = A(r)@ 

Proof 1 : The proof of this theorem can be found in [ 5 ] .  
f3 

Theorem 1 provides a recipe for verifying whether a 
space spanned by a set of functions {41} is equivariant, and 
if it is, derives the interpolation matrix A(r ) .  Several ex- 
amples of the equivariant function spaces for one parameter 
transformation groups are listed in Table 1. Examples of 
equivariant function spaces for multi-parameter transfor- 
mat,ions r a n  he fniind in 151 

5 .  COMMON F R A M E W O R K  

The importance of steerable functions stems from the prop- 
erty of superposition of linear systems. Hence, any lin- 
ear operation C { * }  applied to a transformed version of an 
equivariant basis set can be expressed as a linear combina- 
tion of the operation applied separately to the original basis 
functions. Thus: 

C{g(r)@} = C { A ( r ) @ }  = A ( r ) C { @ } .  (2) 

This property can be exploited in different problems in com- 
puter vision, namely: steerable filter design, motion estima- 
tion, and invariant feature detection. 

5.1. Steerable Filters 

Steerability of filter kernels is a property associated with a 
filter when the outputs of transformed replicas of its ker- 
nel, can be interpolated exactly from a fixed set of basis 
filter outputs. Formally, a filter is steerable if (g(r)f, 3) = 
E, a , ( r )  ( b , ,  s )  where f is the kernel of the filter and { b , }  
are some basis filters. 

In Freeman and Adelson [3], for example, the authors 
described a method of computing the output of a rotated 
filter from a linear combination of the outputs of specially 
chosen basis filters. Other authors have also put forward 
techniques for designing steerable filters [4, 3, 13, 111. 

Because convolution is a linear operation, it is easy to 
see that each kernel f belonging to an equivariant function 
space s.t. f = cT@ is steerable via the interpolation equa- 
tion: (g(r)f, 3) = cTA(r )  (@, 3). Thus, steerability can be 
viewed as a forward problem within the framework as de- 
fined in Equation 2. From a set of measured outputs C { @ }  
(the outputs of the basis filters), we compute C{g(r)@} for 
each transformation g ( r )  using C{g(T)@} = A ( T ) C { @ } .  

5.2.  Mot ion  Es t ima t ion  

Motion estimation, on the other hand, is an inverse problem 
within the framework. Since a transformation of the image 
can be carried out by inversely transforming the motion es- 
timation filters, this problem can be considered in terms of 
the filters. Typically, the same set of motion estimation fil- 
ters are applied to the original and the transformed images. 
From the outputs of these filter, we would like to determine 
the parameters T of the transformation g(r) .  Within the 
framework of Equation 2 ,  from two sets of filter outputs 
corresponding to L{@}  and C{g(T)@}, our goal is to com- 
pute g(r) .  Thus, it is clear that equivariant basis functions 
are ideal motion estimation filters. 

i = 1 , ... 9n 
is chosen to find the E-parameter transformation between 
two images. The first step in the motion estimation process 
is to apply these functions to the two images obtaining two 
sets of measured features: 

Assume that an equivariant basis set gl , ,  

0 = ( @ , s )  ; 6 = ( @ , q ( r ) s )  . 

Since the functions are equivariant and an inner-product is 
a linear operation, the measured outputs are related by the 
interpolation equation: 

(3) i, = pBl'1pB2'2 . . . p B k r k n  = A ( i - 1 0  

v-339 



The motion parameters of the associated images is obtained 
by solving for r in this system. In general, this system of 
equations is non-linear; thus, gradient descent minimization 
is required. Assume that we have an initial guess ro of 
the motion parameters. Expanding A(r)  about the initial 
guess and substituting the linear terms of this expansion 
into Equation 3 yields a linear system: 

6 = A'o + [ B ~ A ' o ,  B~A'o ,  . . .  , BkA'o](r - T ' ) ~  

where A' = A(r'). Defining: 

a = (6 - A'o) ; b = [BI A'o, B2Aoo,. . . , BkAOo] , 
the solution for 7 in the least-squares sense gives: 

r = ro + (bTb)-'bTa . (4) 

This process is repeated with the current solution serving 
as the new guess until convergence. The convergence of this 
process to the correct solution, however, is not guaranteed 
as it depends on the accuracy of the initial guess. 

5.3. Invariant Feature Detec t ion  

An invariant feature or pattern detector indicates the pres- 
ence (or absence) of a particular pattern in an image regard- 
less of how the image has been transformed. For example, 
an edge detector should be able to detect the presence of 
an edge independent of the orientation of the edge in the 
image. The straightforward approach to this problem is to 
directly determine filter kernels that  are invariant to the 
given transformation and then use their outputs to identify 
the pattern. Alternatively, the problem can be approached 
in two stages: (I) construct a large enough equivariant func- 
tion space F to  best characterize the pattern, and (2)  de- 
termine invariants within this finite (and possibly small) 
dimensional space. 

Since the function space is equivariant, the outputs of 
applying these functions as filters to transformed images 
satisfy the relation in Equation 3. This equation is a para- 
metric description of a k-dimensional manifold in R" ( n  
is the number of basis functions and k is the number of 
transformation parameters). Two sets of outputs, com- 
puted from a pair of images related by a transformation in 
the group, lie on the same !+dimensional manifold. Hence, 
functions that are constant over each manifold are invariant 
under the transformation; i.e., h ( o )  = h ( 6 )  = h(A(r)o)  for 
b, o on the same manifold. 

In general, determining functions which are invariant 
over arbitrary families of manifolds is difficult. However, 
the manifolds in equivariant feature spaces are far from ar- 
bitrary. This is because the matrix A(r)  is actually a k- 
dimensional matrix group, 1.e. a group whose elements are 
matrices and whose composition and inverse operators are 
matrix multiplication and inverse respectively. As a result, 
we can employ a theorem from Lie theory which states that 
a function is invariant under a transformation group if and 
only if applying any infinitesimal generator of the group to 
it results in zero identically [lo]. In our case, this implies 
that a function h ( o )  = h(eTkBk ... er lB1  0) is invariant un- 
der g(r) if and only if 

T , .  h(A\ = 8. A .  V h  = (%ti\ 

where V h  = (e,. . . , E)* and 1 5 i 5 k.  A good review 
on how to solve such a system of PDE's can be found in [8]. 

6 .  C O N C L U S I O N S  

We have presented a common theoretical framework for 
steerable filter design, motion estimation and invariant fea- 
ture detection based on the theory of Lie groups. Within 
the framework, the notion of steerability is extended to ar- 
bitrary transformation groups and motion estimation was 
discussed as the dual to the steerability problem. The com- 
mon framework facilitates the transfer of results between 
the different problems more readily. The treatment of mo- 
tion estimation and invariant feature detection within a 
common framework may facilitate a novel integrations of 
the two. 
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