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Abstract

Gradient based approaches for motion estimation �Optical�Flow� estimate the motion of an image sequence
based on local changes in the image intensities� In order to best evaluate local changes in the intensities�
speci�c �lters are applied to the image sequence� These �lters are typically composed of spatio�temporal deriva�
tives� The design of these �lters plays an important role in the estimation accuracy� This paper proposes a
method for the design of these �lters in an optimal manner� Unlike previous approaches that design optimal
derivative �lters in some sense� the proposed technique de�nes the optimality directly with respect to the motion
estimation goal� The suggested approach takes into account prior knowledge on the motion distribution� the
image characteristics� and the allocated �lter length� Simulations demonstrate the advantage of the new design
approach�

� Introduction
Estimating motion between two images plays a vital role in many applications and has drawn a lot of attention

during the last two decades� There are many ways to approach this problem and indeed many algorithms have
been proposed for this task� e�g� ��� �� ��� In Barron et� al� ��� a comparative survey of many motion estimation
techniques is given� One family of such algorithms which was found to perform well is the family of gradient�based
methods� originally proposed by Horn and Schunck ����

The gradient�based methods emerge from the assumption that the intensity value of a physical point in a scene
does not change along the image sequence� Denoting the intensity values of the image sequence by the function
I�x� y� t	� where �x� y	 is the spatial position and t is the temporal axis� the brightness constancy assumption
along the image stream yields ���
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De�ning �ux� uy	 � �dx
dt
� dy
dt
	� as the spatial velocity of each spatio�temporal point in the image sequence� we obtain

Ixu
x � Iyu

y � It �  � ��	

Here Ix� Iy and It denote the spatial and temporal derivatives� This Brightness Constancy Equation �BCE	� relates
the spatial and temporal gradients of an image sequence to the motion vector �ux� uy	 at each location �x� y� t	�
Since the above equation forms a single constraint over the two component motion vector� more constrains are
required to uniquely recover the motion �eld� For this purpose� an assumption of smoothness �spatial ��� �� and�or
temporal ��� ��	 is typically imposed�

One issue that is critical to the implementation of the above BCE is that image derivatives are computed
based on sampled information� It is commonly agreed ��� ��� that approximating the spatio�temporal derivatives
by �nite di�erences produces error in the above equation and subsequently in the estimated motion� One of the
major conclusions of Barron ��� is that �the method of numerical di�erentiation is very important � di�erences
between �rst order pixel di�erencing and higher order central di�erences are very noticeable� �

In most implementations spatio�temporal smoothing is applied to the image sequence prior to motion estimating
��� ��� Since �nite gradients are more accurate at low frequencies ���� pre�smoothing attenuates spatial and
temporal aliasing e�ects� and improves the overall accuracy of gradient estimation�



Pre�smoothing and gradient operations are both Linear and Spatio�Temporal Invariant �LSTI	� Therefore� it is
possible to combine them into a single �ltering operation� In the most general case� the BCE can be implemented
in the following way


Ixu
x � Iyu

y � It � ��	

� fF� � Igu
x � fF� � Igu

y � fF� � Ig � 

where F� F� and F� are spatio�temporal digital �lters of some sort� and fA � Bg denotes discrete convolution
operation between two ��D signals�

Several attempts to de�ne or design these �lters� together or separately� have been reported in the literature
��� ���� All these methods treat the above question as a problem of optimally designing gradient operators�
overlooking the fact that these gradients are to be used for motion estimation� The question addressed in this
paper is that of designing these �lters such that they are optimal with respect to the motion estimation goal�

Since ��D separable �lters are easier to implement� it is commonly demanded that F�� F� and F� are separable
��� �� ���� We adopt this line of reasoning in this paper as well�

� Existing Motion Estimation Filters
The numerical analysis literature contains many methods for approximating gradient �lters ���� Most of the

papers describing optical �ow estimation using the BCE apply simple gradient �lters such as �

�
���� � �� �e�g� ���	�

In many papers the choice of these �lters is not even mentioned�
In their original paper ���� Horn and Schunck proposed an approximation of the gradient �lter with no pre�

smoothing� The gradients were obtained by averaging the �rst di�erences over a cube of � � � � � pixels in
the image sequence� These gradients refer to a center point of the cube �which means that the estimated �ow
corresponds to points between pixels	� No motivation or justi�cation for this choice of gradient estimation is
given� According to Barron et� al� ���� these gradient �lters are said to be a �relatively crude form of numerical
di�erentiation and can be the source of considerable error�� Barron et� al� propose ��� the application of a
� � � � � spatio�temporal pre�smoother� constructed using a sampled Gaussian �lter with ��� variance at each
axis� This variance was found empirically to give the best results� The gradient �lter proposed by Barron is the
��tap central�di�erence �lter �

��
���� �� ���� ��� which is the result of a design procedure described in ���� In this

scheme the goal is to obtain a near�accurate gradient transfer function D ��	 � j� where the �lter coe�cients
fd �k	gLk�� are designed to meet this requirement as closely as possible�

The derived �D gradient �lter is used to produce � types of derivatives �x�derivative� y�derivative� and t�
derivative	 in a separable manner
 a ��D ��� �� �� pre�smoothing kernel is �rst applied to the image sequence�
Then� each axis is di�erentiated separately applying the obtained derivative �lter�

Figure � �upper graph	 depicts the power spectrum of the gradient �lter� j �D��	j � jD��	S��	j� compared to
an analytic di�erentiation of the smoothing �lter� jj�S��	j� The pre�smoother is taken to be a sampled Gaussian
�lter with a variance of ���� and the gradient �lter is the ��taps central�di�erence �lter as suggested by Barron et�
al� It is demonstrated that the error between these two responses is very small for low frequencies but increases
as the frequency tends to ���

In ���� Simoncelli proposed that the pre�smoother and the derivative �lters should be well�matched� that is�
the �lter �d�x	 should be the �rst derivative of the �lter s�x	� For digital �lters� this requirement is stated with
respect to some choice of interpolant�

If we denote a smoothing and a derivating ��D �lter pair in the frequency domain by S��	 and �D��	 respectively�
then the error �j� S ��	� �D ��	� can be minimized in a more accurate manner� For example� high frequencies which
are not treated correctly by �D��	 can be attenuated by the pre�smoother S��	 in order to minimize the above
approximation error� Figure � �lower graph	 shows the frequency response of the gradient �lter� �D��	� compared
to an analytic gradient of the smoother �lter� j� � S��	� This time the error between these two is negligible�

��� Existing Approaches � Is It Really The Best We Can Do�

The existing methods for designing �lters� to be used in optical �ow estimation� aim at obtaining �lters which
are as similar as possible to derivatives� However� all existing methods over�look the �nal goal of these �lters�
namely� the estimation of optical �ow� In this paper we �rst propose a technique to derive a set of �lters which
are optimal speci�cally with respect to this goal� These �lters are designed to give the best estimation results in
term of accuracy� where their derivative characteristics are not a demand but a by�product� In our scheme we
adopt useful design requirements from existing methods and add a few more
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Figure �
 The derivative �lters in the frequency domain as proposed by Barron �upper graph� and Simoncelli �lower
graph�� The solid line depicts the proposed �lter and the dashed line depicts the analytic �lter� Note that in the lower
graph the analytic �lter actually coincides with the proposed �lter�

�� First� and most important� minimization should be performed with respect to an energy function related to
motion estimation error�

�� The motion characteristics should be considered� For example� assume that a�priori knowledge assures that
the motion vector components are in the range of ���� ��� This knowledge should somehow in�uence the
designed �lters� No existing method considers this criterion�

�� The design procedure should consider the number of taps allocated� and exploit them in the best possible
manner�

�� The design should relate to an interpolated version of the discrete image sequence in order to refer to the
continuous grid�

�� The design procedure should consider the characteristics of typical images� or better yet� the speci�c given
image sequence�

�� If possible� the design should yield separable �lters which are easier to implement�

While the �rst two requirements are novel to the proposed technique� the rest of these requirement are also
considered by Simoncelli�s method ����� In the next section we present our approach which takes into consideration
all the above requirements�

� The Proposed Approach� ��D Case
In this section we �rst develop the general case of transformation between two �D signals I��x	 and I��x	�

The extension to �D images I�x� y	 is straightforward� In the general case� the transformation between these
two signals can be of any transformation group T �a	� where a is a parameter vector de�ning the amount of
transformation� i�e� I��x	 � I��T �a	x	� In the simplest case� one signal is translated with respect to the other

T �a	x � x� a� where a is the amount of translation between the signals� In a di�erent case� T �a	x � eax� and I�
is a scaled version of I�� Note� that where a � � T �a	 is the identity operator and T �	x � x� More complicated
transformations can be multi�parameter groups� for example
 T �a	x � ea�x�a�� which is a composition of scaling
�by a�	 and translation �by a�	� In all these cases� our goal is to estimate the transformation parameters a�

Assuming a is small� the �rst order Taylor expansion of I� around a � � yields


I��x	 � I��T �a	x	 � I��x	 �
�I�
�x

�x	

�
�x

�a
� a

�
��	

where the dot de�nes an inner product� and the derivative with respect to a is �x
�a

�
h
�x
�a�

� �x
�a�

� � � �
i
which is

performed around a � � The term I��x	 in the right�hand side is due to the fact that I��T �	x	 � I��x	�



For example� in a motion model of pure translation� T �a	x � x� a� and Equation � becomes I��x	 � I��x	 �
a�I�
�x

� In the case of scaling� T �a	x � eax� and we get I��x	 � I��x	�ax�I�
�x

� In a multi�parameter transformation
we get more terms in the expansion�

Note� that Equation � is de�ned over the continuous domain� In practice� however� we obtain a sampled
version of the continuous signal� I��xk	 and I��xk	� where k � � � � �LI � Using an interpolating function b�x	 we
can approximate the continuous signals �I��x	 and �I��x	 by


�I��x	 �

LIX
k��

I��xk	b�x� xk	 � b�x	 � I��xk	 ��	

�I��x	 �

LIX
k��

I��k	b�x� xk	 � b�x	 � I��xk	

The choice of b�x	 can be� for example� the sinc function or a more �gentle� function such as the Gaussian�
Substituting the continuous approximation into Equation � we get


b�x	 � I��xk	 � b�x	 � I��xk	 �
�b�x	

�x
� I��xk	

�x

�a
� a

The above equation involves three �lters� one �lter is applied to I� �the �lter b�x		� and two �lters to I� �the
pair b�x	 and �b�x	��x	� Two of these three �lters are identical� and the third is a pure derivative of the former�
We relaxed this choice and permit three �might be di�erent	 �lters to estimate the optical �ow� In this manner�
the optimal �lters are designed with maximal �exibility� In this general form� we are looking for three �lters
m�x	� h�x	� and g�x	� such that


m�x	 � I��xk	 � h�x	 � I��xk	 � g�x	 � I��xk	
�x

�a
� a ��	

According to the above assumptionm�x	�I��xk	 � m�x	�I��T �a	xk	� This in turn� means that applying the �lter
m�x	 to the transformed signal I� can be performed equivalently by �rst applying the �inverse	 transformation
to the �lter� and then convolving with the original signal I�� that is
 m�x	 � I��T �a	xk	 � m�T���a	x	 � I��xk	 �
m�x	 � I��xk	� where T

���a	 is the inverse transformation of T �a	� For a proof of this step� the reader is referred
to ���� Now� we can eliminate reference to I�� and rewrite equation �


�
m
�
T���a	x

�
� h�x	� g�x	

�x

�a
� a

�
� I��xk	 �

� ��x� a	 � 

The optimality of the �lters is designed with respect to this equation� The �lters� m� g� and h� are optimal if
they minimize the expected value of ���x� a	� where the expectation is performed over all actual x and a


��m�h� g	 �

Z
x

Z
a

���x� a	dxda ��	

Note that if we have a prior knowledge about the distribution of the motion vectors �for example� knowing that
smaller values are more probable	� we can add a weighting function� w�a	� into the internal integration� requiring
smaller errors for the more probable motion vectors�

Unlike the minimization problem which computes derivative �lters� the signal I� is included in the minimization�
This allows one to design optimal �lters over a collection of signals or more practically� over signals bearing certain
properties� for example� a decaying power spectrum with a certain exponential decay constant �such as in natural
images	� Alternatively� we can remove the dependence over the choice of signals by computing the error only with
respect to the �lter term
 km�T���a	x	 � h�x	 � g�x	�x

�a
� ak�

In the next section we elaborate the derivation of optimal �lters for a translational motion model� Other
transformation groups can be handled in a similar manner and will be not presented here�



��� Optimal Filters for �D Translation

In the translational motion model we assume that I��x	 � I��x�a	 where a is the amount of translation� Note
that this model assumes a translated motion only locally �in the range of the �lter support	� The global motion
does not have to be a pure translation� However� this approximation is valid only for smooth motion �elds� In
this case� T���a	x � x� a and Equation � becomes


��x� a	 � �m �x� a	� h�x	 � ag�x		 � I��xk	

In the above equation� the function m�x	� shifted by a� is approximated by h�x	 � ag�x	� This resembles the
concept of �Shiftable Filters� as de�ned in ��� ��� where a transformed version of a function is expressed as a
linear sum of a set of basis functions�

Assuming that a is bounded within the range jaj � D� the optimal �lters are those that minimize the error
term


��m�h� g	 �

Z
x

Z D

a��D

��x� a	�dxda ��	

Using Parseval�s theorem� the design goal can be re�formulated in the frequency domain


��m�h� g	 �

Z
�

Z
a

�� ���x� a	�
�
d�da � ��	

�

Z
�

Z
a

jI���	j
�
���ej�aM��	�H��	�G��	a

���� d�da
where ���f�k	� stands for the Discrete Fourier Transform �DFT	 of f�k	� The terms M��	� H��	� G��	� and
I���	 are the DFT of m� h� g� and I�� respectively� The integration of � is performed from �� to � and the
integration of a from �D to D� In the above energy functional� the �lters are speci�ed as continuous functions�
in practice� the optimal set of digital �lters satisfying this equation is sought instead� e�g� m�k	� h�k	 and g�k	 for
k � �L � � �L� As a result� some suitable interpolant� b�x	� is assumed� where


�m�x	 �
LX

k��L

m�k	b�x� k	

and similarly for �h�x	 and �g�x	� If we take the sinc function as our interpolant� we obtain


M��	 �
LX

k��L

m�k	expf�jk�g

and similarly for the other �lters�
Arranging all the unknowns of the �lters in a vectorial form


x � �m��L	 � � �m�L	� h��L	 � � � h�L	� g��L	 � � � g�L	�T

it is possible to rewrite ��m�h� g	 in a bilinear form

��m�h� g	 � x
T
Rx �

where the matrix R is a ��L��	� ��L��	 positive de�nite matrix� which depends on the interpolating function
b�x	� the maximal motion D� and the spectral characteristics of the image I��k	� For more information about the
content of this matrix the interested reader is referred to ��� � The optimal �lters x are calculated solving the
following minimization problem


x � arg min
kxk��

��m�h� g	

Minimization over kxk � � is introduced to avoid the trivial solution x � � The solution of the above problem
is the eigenvector of the matrix R corresponding to the smallest eigenvalue� and can be obtained using the SVD
decomposition ����



Simoncelli m filter Simoncelli h filter Simoncelli g filter

optimal m filter for D=0.1 optimal h filter for D=0.1 optimal g filter for D=0.1

optimal m filter for D=2 optimal h filter for D=2 optimal g filter for D=2

optimal m filter for D=4 optimal h filter for D=4 optimal g filter for D=4

Figure �
 Simoncelli�s �lters �top row	 and the optimal �lters for D � �� �second row	� � �third row	 and � pixels
�last raw	� The �lters m� h� and g� are plotted in the left� middle� and right column� respectively�

� Relationship to Derivative Filters
Two important features distinguish the proposed method from other methods of designing optimal derivative

�lters� First� by allowing the �lter m to di�er from the �lter h �that is� the pre�smoothing �lters applied to the
two images may be di�erent	� the estimated motion when there is no motion could be small but non�zero �since
m � h �� 	� However� this relaxation results in a reduction in error for the large non�zero translations� and
the �lters are optimal in a least�squares sense� Second� and more important� the characteristics of the expected
motion can be explicitly speci�ed� Thus� the motion estimation �lters can be designed to be optimal with respect
to a particular class of motion� The traditional derivative �lters are actually a special case of those designed by
our approach� It can be shown that when D 	 � i�e� when the expected motion tends to zero� our approach
yields the optimal derivative �lters as suggested by Simoncelli ����� For more details the reader is referred to ����

� Results
In this section we present several examples that demonstrate the ability of the proposed optimal �lters to

give better motion estimation performance� Figure � shows the three �lters ���taps	 m� h and g obtained for
� di�erent values of D �the maximum expected motion vector	
 D � ��� � and � pixels� In all these cases�
the �lters were obtained with jI���	j � � �which means that no frequency weight is involved	� For comparison�
Simoncelli�s ��taps derivative �lters �m � h	 are given as well� All these graphs plot interpolated versions of the
discrete �lters �using Sinc interpolations	� As expected� when D is very small we get m � h� Another property
that can be seen from these graphs is the better exploitation of the �lters support� As D increases� the obtained
�lters become wider �for the same number of taps	� This seems intuitive since� with high speeds� aliasing will
occur at all but the lowest spatial frequencies� so smoothing should be applied in a more drastic manner�

Recall that the proposed �lters are the ones which minimize the error �m�x� a	� h�x	 � g�x	a	
�
� averaged

over all x and all a in the range ��D�D�� Figure � shows a graph of this error as a function of a for three sets
of �lters
 Barron�s ��taps �lters� Simoncelli�s ��taps �lters� and our optimal ��taps �lters for D � �� As can be
seen� Simoncelli�s and Barron�s �lters have zero error for a � � whereas the optimal �lters give non�zero error�
This comes from the fact that in the optimal case m �� h� Beyond that� notice that the overall error is much
smaller with the optimal �lters �because of moderate errors for large values of a	� The average errors �the value
of the integral	 for Barron� Simoncelli and the optimal �lters are ����� ����� and ���� respectively� This also
suggests that Simoncelli�s �lters are comparable to Barron �lters�

We also tested the performance of the proposed �lters on real images� We compared the results of applying
the proposed �lters with the results of applying Barron�s �lters� We have not simulated the performance of the
Simoncelli�s �lters� since� based on the ��D results� we expect the performance of these �lters to be similar to
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 The error ���x� a	 as a function of a for Barron �solid line 	� Simoncelli�s �dotted line	 and the optimal
�lters �dashed line	�

Barron�s�
In �D signals �images	 subject to �D translation� Equation � becomes


m�D � I��xk� yj	 � �h�D � axg�D � ayf�D	 � I��xk � yj	

We derived these �lters using �D optimal �lters� in a separable manner


m�D � m�x	 �m�y	 � h�D � h�x	 � h�y	

g�D � g�x	 � h�y	 � f�D � h�x	 � g�y	

where m� g� and h� were derived as above�
Barron�s �lters were taken to be ���taps pre�smoothing and � taps gradient �lter� In order to apply an objective

comparison� we used ���� ��� taps optimal �lters� These �lters were designed as ��D ���taps �lters with D � ��
We tested the results on three images that were taken� together with the true optical �ow from Barron�s

WEB�site� and are called Translating Tree� Diverging Tree and Yosemite� respectively�
In our simulations we estimated the motion using Lucas and Kanade�s ��� algorithm with a neighborhood of

��� �� pixels� weighted uniformly �adequate for smooth motion �ow	�
Figures � and � summarize the obtained results for the three sequences� Per each sequence we have computed

the average angular error ��� for varying density values� We have also supplied the Mean Squared Error between
the true and the estimated �ow for varying density values�

From the above results it can be seen that the optimal �lters yields� for almost all cases� better estimation
results than those given by Barron�s �lters� This is certainly true for the �rst and the second sequences� The
results are comparable for the Yosemite sequence� This can be explained by looking at the motion �eld histogram
per each axis� It turns out that the majority of the pixels have very small motion vectors� for which Barron�s
�lters are nearly optimal� In order to better understand this behavior� we computed the estimation errors for a
�� � pixels block� taken from the lower left part of the image� This region corresponds to very high �in the
norm sense	 motion vectors� Figure � shows that for this part of the image� the optimal �lters are much better
suited� In any case� note that by using the correct prior for the motion probability in the design procedure� the
optimal �lters results can obtain better performance�

� Conclusions
In this paper we proposed a new design procedure for the �lters which are required in gradient based motion

estimation algorithms� The proposed design procedure generates a set of optimal �lters � minimizing a penalty
which was shown to be related to the motion estimation error� The design procedure can take into account the
image spectrum� the transformation prior� and the available number of taps�

In the context of the proposed optimal �lters� there are several issues that can be further considered
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 We could use the Taylor expansion with higher derivative terms� The alternative BCE in this case would
be� for example


m�x� a	 � h�x	 � g�x	 � a� f�x	 � a�

This o� course complicates the underlying estimation algorithms� but with potentially much smaller esti�
mation errors� The methodology presented here can be the basis for the design of higher number of �lters�
in the same manner�


 Instead of the Taylor expansion� we can use di�erent expansions such as the Fourier series� With this
expansion we obtain the phase based motion estimation algorithms� The alternative BCE in this case
would be� for example


m�x� a	 � h�x	 � g�x	 � sin�a	 � f�x	 � cos�a	

The di�erent expansion can be advantageous in cases where it spans the motion �eld more precisely� In the
case of Fourier expansion� it is also possible to exploit the shift invariant property in cases where recognition
is required rather than estimation of the motion parameters�
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