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ABSTRACT

Image Processing and Computer Vision applications often
require finding a particular pattern in a set of images. The
task involves finding appearances of a given pattern in an
image under various transformations and at various loca-
tions. This process is of very high time complexity since
a search must be implemented both in the transformation
domain and in the spatial domain. Contributing to this com-
plexity is the chosen distance metric that measures the sim-
ilarity between patterns. The Euclidean distance, for exam-
ple, may change drastically when a small transformation is
applied to the pattern. Applying a different metric distance
might be advantageous, though at the expense of loosing
the norm structure of the Euclidean space. In this work we
present a new method for fast search in the transformation
domain which can also be applied in metric spaces. The
method is based on recursive decomposition of the transfor-
mation domain, and a rejection scheme which enables the
process to quickly reject as irrelevant large percentages of
this decomposition.

1. INTRODUCTION

Pattern Matchingis the task of finding patterns in images.
This problem may appear in various forms. In the context of
this paper we consider the Pattern Matching problem where
a pattern may appear under different transformations (e.g.
object recognition, motion tracking etc). To demonstrate
the complexity of this problem, we represent a pattern as a
point in a high dimensionalpattern space(e.g. a10 × 10
pattern is represented by a point inR100). Consider a given
2D patternP of sizen = k × k and consider a set of trans-
formationsT (α) that may be applied toP , whereα is the
transformation parameter. Denote byT (α)P , the transfor-
mationT (α) applied to patternP . The patternP and the
transformed patternT (α)P are points in then-dimensional
pattern space. If the set of transformationsT (α) is a group
T (α)P for all α forms anorbit inRn. In general, the num-
ber of transformation parametersd is less thann, hence
the orbit forms ad-dimensional manifold inn-dimensional
space.
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We reformulate the generalized pattern matching prob-
lem as follows: letW be an image window of sizek×k = n
andT (α)P the orbit of patterns to be matched. In order
to evaluate the match between the image window and any
pattern in the orbit, the distance betweenW and the orbit
T (α)P must be calculated. Letd(P,Q) be a distance mea-
sure between any 2 points inRn, then theorbit distanceto
be evaluated is:

∆α(W,P ) = min
α
{d(W,T (α)P )} (1.1)

If the orbit distance is below a given threshold, the win-
dow is considered as matching the pattern, otherwise it is a
non-match.

Unfortunately, actually calculating the orbit distance is
complicated and expensive; In most cases, the orbit is highly
complex in the sense that two patterns that are close in the
transformation domain may be distant in pattern space. This
complex behavior of the orbit, is in addition to its being non-
convex and embedded in a high-dimensional space, making
the calculation of the orbit distance time consuming.

2. PREVIOUS APPROACHES

Several approaches were suggested to deal with such prob-
lems. In general, the complexity of search within a complex
manifold can be reduced if the manifold has a simpler struc-
ture or is of smaller dimension. There are several common
techniques implementing this strategy:
Orbit simplification : It is possible to nullify some of the
transformation parameters by making the problem invariant
to these parameters. Pre-processing the input data and rep-
resenting it in a canonical form, is a common strategy in this
approach [1]. Nullifying some of the transformation param-
eters, subsequently, reduces the dimensionality of the man-
ifold and thus simplifies the search problem. Another ap-
proach is to find a function defined over the pattern space,
that is constant over some transformation parameters and
thus invariant to these parameters [6, 13, 8, 5]. For exam-
ple, applying a dot product between a pattern and a kernel
is rotation invariant if the kernel is rotationally symmetric.
Dimensionality reduction: Another approach attempts to
reduce the dimensionality of the pattern space. A popular
example is the Wavelets (or DCT) representations where



the energy of natural patterns is concentrated in few co-
efficients, thus, reducing the dimensionality of the pattern
space [4, 9]. Another effective approach is to find a reduced
linear basis for the pattern manifold using principal com-
ponent analysis (PCA), and searching the manifold in this
reduced space [2, 12].
Fast search: The two previous approaches try to simplify
the geometry of the problem. A different strategy is to ap-
ply an exhaustive search in some of the transformation do-
mains. This may be possible only if a fast search technique
is available. For example, it is relatively simple to apply
an exhaustive-search in the translation and scale parameters
exploited the efficiency of the pyramidal representation and
the fast implementation of convolutions.

Although some the above methods try to reduce the orbit
complexity or its dimensionality, their performance is lim-
ited due to intrinsic complications such as using “normed”
spaces for representing 2D patterns. Typically, a pattern is
represented by a point in a linear space and the distance
between two different patterns is defined by the Euclidean
distance of their corresponding points.

This paper suggests a new technique that performs a fast
search within a pattern orbit. In addition to the fast perfor-
mance of this method, it can be applied in metric spaces as
well, opening the scope to a large variety of new metric dis-
tances that can be designed to simplify the orbit complexity
[3, 10, 11].

Figure 1 shows two examples of such orbits. A16× 16
image was used as a pattern. The 2D rotation transforma-
tion group was sampled at equal rotation angles and applied
to the pattern. Figure 1a shows the pattern orbit in Eu-
clidean space. For visualization, the orbit was projected
onto the 3 dominant directions (Eigen vectors associated
with the three largest Eigen values). The segments con-
nect between orbit points that are associated with consec-
utive sampled parameter values. It can be seen that the
orbit is highly irregular, thus a search within the orbit is
not easily simplified and sped up. Figure 1b shows the
pattern orbit in a metric space, using the following metric
distance:d(P,Q) = δ(P, Q) + δ(Q,P ) whereδ(P, Q) .=∑

x,y mini,j∈{−1,0,1}[P (x − i, y − j) − Q(x, y)]2. In this
case, the three dominant directions were calculated using
multidimensional scaling [7]. The simple and regular be-
havior of the metric orbit is self evident.

3. FAST SEARCH IN METRIC SPACE

As above, assumed(Q,S) is a distance metric defined be-
tween any 2 points inRn. This measure of similarity be-
tween two patterns may be of any form, linear or non-linear,
closed form or algorithmic. The only requirement is that
d(·, ·) is a metric. In order to determine whether an image
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Fig. 1. Examples of pattern manifolds (see text). a) Pattern
orbit in Euclidean space. b) the same orbit in a metric space.

window W is similar toT (α)P for any α, one must esti-
mate the orbit distance∆α(W,P ) as defined above (Equa-
tion 1.1). In the general case, an orbit distance∆α is not a
metric, as it does not satisfy the triangular inequality. How-
ever, for a large class of distancesd, the orbit distance∆α

is a metric:

Theorem 1 If the distance measured(Q,S) is transforma-
tion invariant, i.e.

d(Q, S) = d(T (α)Q,T (α)S)

then∆α(W,P ) is a metric.

(Proof is omitted due to space limitation.) Moreover, in such
a case whered(Q,S) is transformation invariant, it is easy
to show that the point-to-orbit distance is equivalent to the
orbit-to-orbit distance, namely:

min
α

d(Q,T (α)S) = min
α,β

d(T (β)Q,T (α)S)

which is an even stronger result, with respect to pattern
matching applications.

In this paper we restrict our approach to distances that
are transformation invariant. The metric property of the or-
bit distance is used to apply fast search within the pattern
orbit, by exploiting the triangular inequality.

3.1. The Orbit Tree

The transformation groupT (α) is a continuous group since
the parameter spaceα forms a continuous domain. In prac-
tice, however, the transformation group is approximated by
using a discrete group generated by uniformly sampling the
parameter spaceα. For simplicity, and w.l.o.g, assumeT (α)
is a one parameter continuous group, and let{T (εi)} be the
discrete group. Using the discrete group, an approximation
of ∆α(W,P ) is then given by

∆ε(W,P ) = min
i
{d(W,T (εi)P )}



∆ε(W,P ) can be calculated naively, by computing
d(W,T (εi)P ) for all i. However, since distance compu-
tation may be time-consuming, run time can be improved,
given that∆ε is a metric:

Consider, again, the orbitT (iε)P . It may be divided
into 2 sub-orbits:T (2εi)P andT (2εi)P ′ whereP ′ = T (ε)P .
The distance∆ε(W,P ) can then be rewritten:

∆T (ε)(W,P ) = min(∆2ε(W,P ),∆2ε(W,P ′)) (3.2)

However using the fact that∆2ε is a metric, the triangular
inequality gives:

|∆2ε(W,P )−∆2ε(P, P ′)| ≤ ∆2ε(W,P ′)

Note, that∆2ε(P, P ′) can be calculated in advance, prior to
the actual search. Thus, if the distance∆2ε(W,P ) is found
to be large and the distance∆2ε(P, P ′) is small, we may
deduce that∆2ε(W,P ′) is large as well without any actual
distance calculations.

In terms of pattern matching, this implies that|∆2ε(W,P )−
∆T2ε(P, P ′)| forms a lower bound on all possible values of
d(W,T (2εi)P ′). If this lower bound is greater than the pre-
defined threshold, these distance measures need not be com-
puted and the patterns associated with this subgroup may be
rejected from further computation. Thus, a speed up is ob-
tained by evaluating only half of the distance computations
and possibly rejecting 1/2 of the transformation parameters.

This process can be further applied recursively: in order
to compute∆2ε(W,P ), the orbit{T (2εi)P} can be divided
into 2 sub-sub-orbits:{T (4εi)P} and{T (4εi)P ′′} where
P ′′ = T (2ε)P . These orbits can be further sub divided and
the process repeated until an orbit is obtained containing a
single point. These subdivisions of the original orbit can
be described in a tree structure as shown in Figure 2 for
the case of a transformation groupT (εi) with 32 elements
(i = 0 . . . 31).

The Pattern Matching process traverses the tree bottom-
up, computing lower and upper bounds on the true distances
between image window and sub-orbits of transformed pat-
terns. Branches of the tree are pruned based on the com-
puted bounds. The pruned branches represent distance com-
putations which need not be computed.

An example of the matching process is shown in Fig-
ures 2. The pattern matching was applied to estimate the
distance between a20 × 20 image window and a20 × 20
pattern under any 2D rotation about the center by an angle
equal to a multiple of360/32 degrees. For practical pur-
poses, the distance metric between two images was chosen
as theL2 norm. The threshold was set to 100. Figure 2
shows a portion of the traversed orbit tree. Values on the
tree nodes are the computed lower and upper bounds. The
encircled value denotes a distance actually computed, all
other values were deduced by propagating the bounds along
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Fig. 2. Example of the pattern matching process using the
orbit tree (see text).

the tree branches.∆ε values represent the orbit-to-orbit dis-
tances between nodes at a given tree level. The number of
sub-orbits at each level is shown on the right. In this exam-
ple a single distance evaluation was required to determine
that the image window is not similar to the pattern under
any of the possible transformations. Note that the lower
bound values, although decreasing when ascending the tree,
are always above the threshold 100.

4. EXPERIMENTAL RESULTS

In order to evaluate the performance of the proposed algo-
rithm, the pattern matching scheme was used to search in a
large image for a pattern under any 2D rotation.

Figure 3a shows the original256×256 image. Figure 3b
shows a scaled version of the20× 20 pattern. The 2D rota-
tion group was sampled in 32 steps of equal rotation angle.
In the original image, several rotated patterns were planted
in various locations. All image windows were compared
with the pattern under any of the rotation transformations
using the proposed scheme. Figure 3c shows the state of the
process after a single distance computation per window. For
many of the windows this computation was enough to de-
termine the final outcome of pattern matching; black pixels
represent those windows for which the process terminated
with a negative result, red squares represent windows for
which the process terminated successfully (i.e. the pattern
was found in the window) and yellow pixels represent win-
dows that can not yet be classified on which the process
must continue. Figures 3c-f, show the state of the process
for every image window after 1, 2, 4 and 8 distance calcu-
lations. The percentage of windows that were rejected are



c. d.

f.e.

a.

b.

c. d.

f.e.

a.

b.

Fig. 3. Pattern Matching on a256 × 256 image. a) Image.
b) Scaled pattern c-f) State of the process after 1, 2, 4 and 8
distance calculations. The percentage of windows that were
rejected are 20%, 68%, 91% and 97% respectively.

20%, 68%, 91% and 97% respectively. The pattern appear-
ances in the image were found successfully after at most 6
distance calculations for every window.

Figure 4 plots the percentage of remaining windows for
which the process has not yet terminated, as a function of
the number of distance calculations performed. Both Fig-
ure 3 and Figure 4 show that a very large portion of image
windows require very few distance computations. For this
example, the average number of distance computations per
pixel is 2.868 (compare with 32 computation per pixel using
the naive approach).

5. CONCLUSION

A fast Pattern matching technique was presented, which can
be applied when the distance measure is transformation in-
variant. The technique uses recursive decomposition of the
pattern orbit, exploiting the fact that orbit distance is a met-
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Fig. 4. The percentage of remaining windows a function of
the number of distance calculations performed. The average
number of distance computations per pixel is 2.868.

ric. The suggested method can be applied in metric spaces
as well.

6. REFERENCES

[1] S. Amari,Feature spaces which admit and detect invariant
signal transformations, IJCPR (Kyoto), 1978, pp. 452–456.

[2] S. Baker, S. K. Nayar, and H. Murase,Parametric feature
detection, IJCV 27 (1998), 27–50.

[3] B. Girod, Whats wrong with mean-squared error?, Digital
Images and Human Vision (A.B. Watson, ed.), MIT press,
1993, pp. 207–220.

[4] Y. Hel-Or and H. Hel-Or,Real time pattern matching using
projection kernels, Tech. Report CS-2002-1, The Interdisci-
plinary Center, 2002.

[5] Y. Hel-Or and P. C. Teo,A common framework for steerabil-
ity, motion estimation, and invariant feature detection, Tech.
Report STAN-CS-TN-96-28, Stanford Univ., 1996.

[6] M. Hu, Pattern recognition by moment invariants, Proc. of
the IRE49 (1961), 1428.

[7] B. Kruskal and M. Wish,Multidimensional scaling, Sage Pi-
blications, 1978.

[8] J. Mundy and A. Zisserman,Geometric invariance in com-
puter vision, MIT Press, 1992.

[9] M. Oren, C. Papageorgiou, P. Sinha, E. Osuna, and T. Poggio,
Pedestrian detection using wavelet templates, Proc. CVPR
(Puerto Rico), 1997, pp. 16–20.

[10] R. Russel and P. Sinha,Perceptually-based comparison of
image similarity metrics, Tech. Report AI Memo 2001-14,
MIT A.I. Lab., 2001.

[11] S. Santini and R. Jain,Similarity measures, IEEE T-PAMI21
(1999), no. 9, 871–883.

[12] M. Turk and A. Pentland,Eigenfaces for recognition, Journal
of Neuroscience3 (1991), no. 1, 71–86.

[13] I. Weiss,Geometric invariants and object recognition, IJCV
10 (1993), no. 3, 207–231.


