
Synthesis of Reflectance Function Textures from Examples

Yacov Hel-Or 1,2 Tom Malzbender 1 Dan Gelb 1

1 Hewlett-Packard Laboratories, 1501 Page Mill Road, Palo Alto, CA., U.S.A.
2 On sabbatical from the Interdisciplinary Center, School of Computer Science, Kanfey Nesharim St., Herzliya, Israel.

Figure 1. Bottom: Synthetic sponge material with varying reflectance function per textel.
Top: Synthetic sponge without reflectance functions (conventional texture map).

 Abstract
We extend the machinery of existing texture synthesis methods to handle texture images where each pixel contains not only RGB values, but
reflectance functions. Like conventional texture synthesis methods, we can use photographs of surface textures as examples to base synthesis
from. However multiple photographs of the same surface are used to characterize the surface across lighting variation, and synthesis is based
on these source images. Our approach performs synthesis directly in the space of reflectance functions and does not require any intermediate
3D reconstruction of the target surface. The resulting synthetic reflectance textures can be rendered in real-time with continuous control of
lighting direction.

1. Introduction
The characterization of real world textures and surfaces is an
important aspect of enabling photorealistic rendering. Early
methods [Perlin 85, Peachy 85] relied on the ingenuity of the
programmer to develop procedural models that approximate the
appearance of real world materials. Unfortunately, the procedural
representation did not lend itself to the automatic characterization
of surface textures from photographs. This ability is especially
useful when synthesis of new instantiations of textures can be
performed from such a characterization. Powerful texture synthesis
methods were developed in the late 80’s and 90’s that are able to
synthesize new texture samples from photographic examples.
Discussion of these methods can be found in section 2.2. These
methods have practical ramifications for 3D computer graphics
since they can simplify the texture mapping process in several
ways. First, larger patches of a texture can be produced, yielding
more source material for the texture mapping process. Second,
textures may be synthesized with periodic boundary conditions,
producing textures that can be seamlessly tiled, with the high image
quality of photographs.

Although powerful, these texture synthesis methods have
limitations that we address in this paper. Since the example
photographs used as input to the texture synthesis algorithms are
captured under specific lighting conditions, the synthesized textures

have these same lighting conditions ‘baked in’. Although the
results will be convincing when those lighting conditions match the
lighting conditions that the texture patch finds itself on the 3D
object, in general this will not be the case. In fact, when a single
texture map is wrapped around even a simple 3D object, opposite
sides of the object experience completely reversed lighting
directions in the local coordinate system of the texture map. Due to
spatial variation in the surface mesostructure and microgeometry,
the modifications in surface appearance due to these changes in
local illumination are poorly approximated by attenuating the
surface intensity due to the 3D object geometry. Figure 1
demonstrates this behavior, when rendering results using a light-
dependent texture model are compared to the rendering of the same
texture modeled without lighting dependency.

Image-based re-lighting methods [Debevec 00, Malzbender 01,
Ashikhmin 02, Debevec 02] provide a solution to this quandary. In
this approach, multiple photographs of a surface, person or object
are taken under varying lighting conditions and static pose, and a
reflectance model characterizing the surface appearance under
changing lighting conditions is constructed. With enough resolution
spatially and in lighting direction, very realistic renderings of the
original can be produced under arbitrary lighting conditions.

 In this paper we demonstrate how the image-based representation
of polynomial texture maps (PTMs) [Malzbender 01] can be
directly leveraged for the purposes of synthesizing textures that

 1

have real-time continuous lighting control. These synthetic textures
can be produced having the practical advantages of tileability and
photorealism that texture synthesis methods provide, combined
with the lighting control of image-based reflectance functions. The
machinery that we develop in this paper to directly compare pixels
of reflectance functions, instead of pixels of color values, can also
be leveraged to extend any texture synthesis method comparing
color values.

2. Surface Reflectance Characterization
The reflectance properties of a homogeneous opaque material can
be exhaustively specified by its Bidirectional Reflectance
Distribution Function (BRDF), introduced in [Nicodemus 77]. The
BRDF measures the ratio of radiance L exiting a surface at
direction (φe, θe), to the incidence irradiance I striking the surface
in a differential solid angle from direction (φi, θi):

() ()
()ii

ee
eeii dI

dLBRDF θφ
θφλθφθφ ,

,,,,, = (1)

Note that the BRDF also depends on illumination wavelength
λ, which is often integrated over r,g,b sensitivity functions.

Although BRDF functions adequately characterize homogeneous
smooth materials, they fail to specify 2D texture characteristics due
to the texture’s spatial variations. The introduction of spatial
variation to the BRDF is required to adequately model complex
textures for many computer graphics applications. The
Bidirectional Texture Function, BTF, introduced in [Dana 99a],
provides such a framework:

,u,v),(BTF eeiir,g,b θφθφ , , (3)

where the spatial variation is indexed by (u,v). The BTF can
efficiently specify 3D texture surfaces, whose characteristics arise
from spatial variations of both albedo and surface normal. Thus, the
BTF function can implicitly characterize appearance effects such as
shading, shadows, self occlusions, inter-reflections, mutual
shadowing, etc. However, storage requirements for either the BTF
or the BRDF can be prohibitive for real-time computer graphics
applications, due to the high dimensionality (6 and 5 respectively)
of both representations.

In this paper we restrict ourselves to a less general, but more
tractable representation we called the Unidirectional Texture
Function, or UTF. Unlike the two previous reflectance
representations discussed, the UTF includes a dependence on only
one direction, namely that of the incident light:

,u,v)(UTFr,g,b θφ , (4)

One attraction of the UTF is that it is extremely easy to collect for a
real world material. It requires only a stationary digital camera and
a movable light source, and specifically does not require any
camera calibration and geometric reasoning as one needs for
acquiring a BTF. By sacrificing any dependence on view direction,
we loose the ability to capture view dependent phenomena such as
specular highlights and self-occlusions. However, since surface
normals are easily calculated from a UTF representation (which is
the angle giving the maximal UTF value) [Debevec 00]
[Malzbender 01], specular highlights can be reintroduced into the
UTF rendering process.

3. Previous BTF/UTF Texture Synthesis
There has been extensive work in the area of 2D texture synthesis
[e.g. Efros 99,Heeger 95,Efros 01,Wei 00,Portilla 00,Debonet 97].
However, the synthesis of reflectance textures from examples is
conceptually different from the 2D texture synthesis. A collection
of images of a particular surface acquired under various lighting
conditions cannot be treated as an independent collection of 2D
textures. There are strong correlations between the sampled images,
as all of them are instances of a unique underlying physical surface.
These correlations have to be maintained while synthesizing a
novel reflectance texture.

Relative to the volume of previous work in the area of 2D texture
synthesis, there are only a handful of papers relevant to the
synthesis of reflectance textures. The work of Leung and Malik
[Leung 01] as well as Dana and Nayar [Dana 99b], deal with the
synthesis of new images of an existing 3D texture viewed under
novel viewing/lighting directions. However, synthesis of a totally
new BTF is a more challenging problem. Note, that the synthesized
and the example textures have 4D reflectance functions assigned to
each pixel. Working explicitly with this data is computationally
prohibited. Thus, some sort of dimensionality reduction prior to
synthesis must be applied.

[Liu 01] uses a texture’s height-field along with an albedo map as
an intermediate representation for BTF. This representation is
reconstructed from the texture examples, using shape-from-shading
techniques. Then, a synthesis scheme is applied directly to the
height-field, using non-parametric sampling [Efros 99], resulting in
a representation of a novel texture from which the BTF can be
derived. [Leung 01] suggests using the 3D texton map as a basis
for generating a novel 3D texture. This approach is similar in spirit
to [Liu 01] where a texton map is used as an intermediate compact
representation. The texture’s BTF can be derived from this
representation similarly to the height-field map. [Tong 02] also
uses the texton map representation as a basis for synthesis directly
on a 3D object. However, the volume of data associated with a full
BTF required small input images (642 – 1282), limiting the range of
textures that could be accommodated.

Although all previously suggested methods use an intermediate
compact representation for BTF, none can perform texture
rendering or relighting in real time. This difficulty arises due to the
inefficiency of the chosen intermediate texture representations for
rendering. This paper suggests a new technique for reflectance
function texture synthesis, which enabling real-time lighting and
viewing control. Our texture representation is that of a UTF
modeled with polynomial texture maps (PTM) [Malzbender 01].
By sacrificing the view dependence of a BTF we gain a compact
texture representation well matched to the rendering process, but
also directly employed for synthesis. The PTMs, produced by our
synthesis method can be then used in place of conventional texture
maps and applied to 3D objects, providing interactive and realistic
control of lighting effects, such as shading, self shadowing,
interreflections, and surface scattering.

4. Non Parametric Texture Synthesis
Viewing a texture image as a realization of a homogenous
Markovian process implies that the color distributions of a texture
block W are completely characterized by its causal neighborhood
Nw, and that this characterization is spatially invariant (Figure 2).
Therefore, the conditional probability (WNWP) completely
determines the texture characteristics. Likewise, the probability that
a given image is a realization of the texture process is given by:

 2

() ()
iWi

i

NWPWWP |,, 21 ∏=L (5)

 where W1,W2,… are the blocks composing the image.

In this paper we build on a collection of techniques, which are
referred to as non-parametric texture synthesis. In these methods,
the Markovian process parameters are not estimated but rather the
process is emulated by sampling directly from the example texture.
Hence, a realization of the conditional probability ()WNWP is
achieved by randomly choosing a block from amongst all blocks Wi
in the texture example satisfying:

() () δ<−∑
vu

WW vuNvuN
i

,
2

,, (6)

where δ is a predefined threshold, as shown in Figure 2. The
various non-parametric synthesis techniques differ mainly in the
definitions of a block and its causal neighborhood. In the original
work of [Efros 99] pixels are generated one at time in a raster scan,
by searching in the source texture image for pixels whose
neighborhoods are similar to that of the pixel being synthesized.
This search is done in an exhaustive manner, yielding a slow run
time. The method has been accelerated in the work of [Wei 00].
However, both of these approaches are somewhat unreliable, due to
the feedback introduced by using recently synthesized pixels as
neighborhoods for subsequent pixel synthesis. This problem in
mitigated in [Efros 01] and [Liang 01] in which entire blocks of
texture are copied from the source images into the working texture,
again based on the similarity of their neighborhoods. Overlapping
block regions are either alpha blended or optimal boundary cuts are
calculated between each neighboring blocks, so that block stitching
looks smooth. This method is called “block-based” texture
synthesis, and although simple, it is surprisingly effective.

5. Reflectance Texture Synthesis
This paper extends the block-based method from working on
images containing color values, to ‘images’ of reflectance
functions. We view a UTF image as a texture of functions rather
than a texture of values. Thus, a UTF image is regarded as a
realization of a Markovian process in the spatial domain. However,
the stochastic process is performed over functions rather than over
values. According to this view, a function index ψ=Ψ{g(φ,θ)} is
assigned to each pixel reflectance function g(φ,θ), and the function
index, ψ, is regarded as a random variable, over which a stochastic
process is defined.

A Markovian process over functions implies that the distribution of
functions attached to a texture block W is characterized by the
conditional probability:

{ } { }(WNWP ΨΨ |)

}

 (7)

where and Ψ are the indices of the function arrays
attached to the block W and its neighborhood N

{ }WΨ { WN
W respectively. The

conditional distribution above characterizes a UTF process, which
can be imitated using non-parametric synthesis similarly to the
synthesis of conventional textures. The only difference is that we
have to perform the neighborhood comparisons on function indices,
and that copied blocks are composed of an array of function
indices. Two questions remain open. First, how can we obtain a
continuous representation of reflectance functions from a finite set
of texture images, each at a specific lighting condition? Second,
how can we attach an index for each possible reflectance function

such that probability function can be easily calculated for each
function index? Both of these questions can be resolved using the
polynomial texture maps.

In the following section a brief description of the PTM texture
representation is given. A sequent section will describe how we use
this representation for 3D texture synthesis.

W

W1 W2

NNww

Figure 2. Copying blocks with similar causal neighborhoods

5.1 PTMs
Polynomial texture maps [Malzbender 01] provide a compact
representation for reflectance functions. In this approach, a real-
world surface is photographed multiple times with a fixed digital

camera under varying illuminations directions (){ }N
i

i
v

i
u ll 1, =

providing N images: (){ }N
i

i vuL 1, = . Let (lu,lv) denotes the

projection of a unit vector whose direction is ()φθ , onto the (u,v)
plane. The PTM representation of a texture patch describes,
independently for each pixel (u,v), the luminance variation, L, as a
function of (lu,lv). The luminance is modeled by biquadradic
polynomial function in lu,lv:

(u,v)a(u,v)la(u,v)lal(u,v)la
(u,v)la(u,v)la),lL(u,v;l

vuvu

vuvu

5432

2
1

2
0

+++
++=

 (8)

where the parameters (a0..a5) are chosen to best fit the acquired
image values, thus minimizing:

∑ −
i

ii
v

i
u (u,v)L),lL(u,v;l

2

Color values for each pixel are recovered from this luminance
model and unscaled color values (Rn(u,v),Gn(u,v),Bn(u,v)) :

 R(u,v) = L(lu,lv,u,v)Rn(u,v);

 G(u,v) = L(lu,lv,u,v)Gn(u,v); (9)

 B(u,v) = L(lu,lv,u,v)Bn(u,v);

Once the coefficients (a0..a5,Rn,Gn,Bn) are estimated for each pixel,
renderings of the surface for arbitrary lighting direction can be
computed in real time using either pure software, or programmable
graphics hardware acceleration, to map them onto 3D surfaces in a
manner similar to conventional texture mapping. The biquadratic
polynomial as the interpolation function is not mandatory and other
bases are possible as well. Note, however, that the PTM basis
functions are closely related to the low degree spherical harmonics,
which are optimally spanning Lamberian surfaces illuminated
under various directions [Ramamoorthi 02, Basri 03].

5.2 Reflectance Texture Synthesis using PTM
Going back to block-based 3D texture synthesis, PTM coefficients
can be efficiently used as the reflectance function indices over

 3

which texture synthesis is applied. Thus, a similar block-based
synthesis scheme can be applied directly to the 9 dimensional
vector field (a0..a5,Rn,Gn,Bn). However, care must be taken: In the
2D texture synthesis, the conditional probability P(W|NW) is
achieved by sampling similar blocks in the source texture, where
similarity is defined based on the values in the causal
neighborhoods (Equation 6). This scheme cannot be automatically
applied to function indices in the reflectance texture case. The
transformation from function space to index space does not
necessarily preserve function distances, namely:

() () { } { }
221221 ,, ggdldlllgllg vuvuvu ψψ −≠−∫∫

for any given two functions g1,g2. This implies also that function
pdf’s are not preserved, and in our case: P(W)≠P(ψ{W}). Therefore,
instead of using the original coefficients of the PTM, we linearly
transform the coefficients so that an orthogonal basis is used. Since
orthogonal transformation is distance preserving, distance between
two functions can be measured directly in the index vectors, and
consequently, function probability and its corresponding index
probability can be used indistinguishably.

In our implementation we have used the 2D Legendre polynomial
basis, which is orthogonal over [-1, 1]2. The 6 basis functions used

in the standard PTM (eq. 8), were
transformed into the orthonormal basis B’ :

}1,,,,,{ 22
vuvuvu llllllB =

−−=
12
452

4
45

,
12
452

4
45

,
2
3

,
2
3

,
2
3

,
2
1

' vlulvlulvlulB

If a=[a0..a5] are the original PTM coefficients, the new basis
coefficients, b=[b0..b5], are easily calculated by applying a matrix
multiplication b=Ma, where M is a 6x6 matrix:

−
−

=

12/450004/450
12/4500004/45

0002/300
02/30000
002/3000
2/100000

M

Using the new coefficients, each pixel (u,v) has an associated index
which is constructed by the 9 dimensional vector
ψ{L(u,v)}=[b0..b5,Rn,Gn,Bn]u,v. This representation is used as
described in [Efros 01]: a realization of the conditional probability

(WNWP) is achieved by randomly choosing a block from
amongst all blocks Wi in the texture example satisfying:

(){ } (){ } δψψ <−∑
vu

WW vuNvuN
i

,
2

,, (10)

Edge handling between synthesized blocks is performed also in the
orthogonal representations. In our case, the coefficients in the
common boundaries were alpha blended. Since PTM functions are
represented in an orthonormal space, coefficient blending is
equivalent to blending the reflectance functions with similar
weights. In a similar manner optimal cut along the common
boundaries should be performed in the orthonormal basis as pixel
comparisons are meaningful. At the final stage of the synthesis, an
inverse transformation is performed to the standard PTM
representation.

6. Search Strategy
The main burden of block based texture synthesis is the search
required for each generated block in the synthesized PTM. For each
such block, a full search is performed in the source PTM, i.e. the
distance must be computed between the block neighborhood and
each of the n×n neighborhoods of the source PTM image. Naively
applying this search is time consuming. Several approaches have
been suggested to expedite this search. Among them, multiscale
search [Liang 01], tree structure vector quantization [Wei 00], and
k-coherence search [Tong 02]. All these approaches improve run
time by orders of magnitude at the expense of approximating the
search results. A rejection scheme, proposed in [Hel-Or 02], can
dramatically improve run time, without sacrificing the resulting
accuracy. In this approach, highly dissimilar block neighborhoods
in the example PTM are rejected quickly.

Each PTM block neighborhood, represented in the orthogonal
form, is unfolded and represented as a 1D vector. Thus, if a block
neighborhood is composed of p pixels, its associated 1D vector is a
9p dimensional vector, because each pixel includes 9 PTM
coefficients. Using this notation, the error distance between two
block neighborhoods Nw1 and Nw2 is defined as:

() () ()[]∑
=

−=−=
k

i
WWWWWW iNiNNNNNd

1

2
21

2
2121, (11)

where k=9p. However, it is possible to reject a neighborhood
before evaluating all k=9p sums if the error distance already
exceeds a threshold δ. This threshold can be set ahead of time or
can simply be the actual error distance to the best neighborhood
evaluated so far. Equation 11 is still valid when NW1 and NW2 are
represented in a different orthogonal basis, . Thus,

21
ˆ,ˆ

WW NN

() ()[∑
=

−≥
k

i
WWww iNiNNNd

1

2
2121

ˆˆ, ()] (12)

for any k ≤ 9p. If we choose a basis that concentrates vector energy
in the first few entries, we can achieve a tight lower bound with
very few calculations. Such a representation can be calculated by
applying the Singular Value Decomposition on the entire
neighborhood ensemble, or by using a basis set which is known to
have energy compactness for natural images, such as the DCT
basis, the Harr Wavelets or the Walsh Hadamard which can be
computed very efficiently [Hel-Or 02].

Using this lower bound (eq. 12), a very fast search scheme can be
applied as follows: First, each neighborhood vector in the example
PTM is projected onto the first basis-vector U1, resulting in an n×n
array of scalar values. Given a new block neighborhood, Nw, from
the synthesized image, we project Nw onto U1, and calculate a lower
bound on the neighborhood distance for each neighborhood in the
example PTM using eq. 12. Note, that this lower bound is achieved
by applying a single subtraction and a single multiplication per
example neighborhood. Each neighborhood, whose lower bound is
above the threshold δ, is rejected and discarded in further
calculations. Typically, 90% of the neighborhoods are rejected after
the first projection. For the resulting neighborhoods we continue
with the second basis-vector U2, increasing the lower bound, and
rejecting additional neighborhoods. This process continues with
consecutive basis-vectors. After very few projections (~3), only a
few candidates remain, for which the actual distances are
calculated. A typical run time for synthesis of a 512x512 patch
composed of 30x30 blocks is approximately 3-5 minutes using this
approach, compared to 30-60 minutes for the brute force search.

7. Results
Figures 3-5 show results of reflectance texture synthesis from
photographic examples collected under 50 light directions. Figure 3

 4

shows a single source photograph along with synthesis results
under varying lighting. Figures 4 and 5 demonstrate various
synthesized reflectance textures applied to 3D objects, also under a
number of lighting directions. Figure 1 shows the difference
between reflectance texture mapping, and the conventional texture
mapping. These objects can all be illuminated and viewed in real-
time as shown in the associated video.

8. Conclusion
We have presented a texture synthesis method that results in the
construction of images of reflectance functions instead of simply
color values. This synthesis is performed directly using the
representation of polynomial texture maps, thus the resulting
texture maps can be rendered in real time on modern graphics
hardware with parametric control over lighting direction. At the
heart of our approach is the ability to compare pixels of reflectance
functions directly in place of comparing pixel RGB values. This
same approach allows any texture synthesis method that compares
pixel colors to be extended in the analogous manner to support the
synthesis of reflectance function textures.

References
[Ashikhmin 02] Ashikhmin, M., Shirley, P. “Steerable Illumination
Textures”, ACM Trans. on Graphics, Vol. 21, No. 1, Jan. 2002, pp. 1-19.
[Basri 03] Basri, R., Jacobs, D., “Lambertian Reflectence and Linear
Subspaces”, IEEE T-PAMI, Vol. 25, No. 2, Feb. 2003.
[Dana 99a] Dana, K., Ginneken, B., Nayar, S., Koenderink, J.,
“Reflectance and Texture of Real-World Surfaces”, ACM Transactions on
Graphics, Vol 18, No. 1, January 1999, pp. 1-34.
[Dana 99b] Dana, K., Nayar, S., “3D Textured Surface Modeling”,
WIAGMOR Workshop, IEEE Conference on Computer Vision and Pattern
Recognition, 1999.
[Debonet 97] Debonet, J., “Multiresolution Sampling Procedure for
Analysis and Synthesis of Texture Images”, SIGGRAPH ‘97, pp. 361-368.
[Debevec 00] Debevec, P., Hawkins, T., Tchou, C., Duiker, H., Sarokin,
W., Sagar, M., “Acquiring the Reflectance Field of a Human Face”,
SIGGRAPH 2000, pp. 145-156.
[Debevec 02] Debevec, P., Wenger, A., Tchou, C., Gardner, A., Waese, J.,
Hawkins, T., “A Lighting Reproduction Approach to Live-Action
Compositing”, SIGGRAPH 2002, pp. 547-557.

[Dong 02] Dong, J., Chantler, M., “Capture and Synthesis of 3D Surface
Texture”, Texture 2002, Second International Workshop on Texture
Analysis and Synthesis, June 1, 2002
[Efros 99] Efros, A., Leung, T., “Texture Synthesis by Non-parametric
Sampling”, IEEE International Conference on Computer Vision, Corfu,
Greece, Sept. 1999, pp. 1033-1038.
[Efros 01] Efros, A., Freeman, W., “Image Quilting for Texture Synthesis
and Transfer”, SIGGRAPH 2001, pp. 341-346.
 [Heeger 95] Heeger, D., Bergen, J., “Pyramid-based texture
Analysis/Synthesis”, SIGGRAPH ‘95, pp. 229-238, 1995.
[Hel-Or 02] Hel-Or Y., Hel-Or H., “Real Time Pattern Matching using
Projection Kernels”, The Interdisciplinary Center Tech. Report, CS-2002-1.
 [Leung 01] Leung, T., Malik J., “Represention and Recognizing the Visual
Appearance of Materials using Three-dimensional Textons”, International
Journal of Computer Vision, 43(1):29-44, 2001.
[Liang 01] Liang, L., Lieu, C., Xu, Y., Guo, B., Shum, H., “Real-Time
Texture Synthesis by Patch Based Sampling”, ACM Transactions on
Graphics, Vol. 20, No. 3, July 2001, pp. 127-150.
[Liu 01] Liu, X., Yu, Y., Shum, H., “Synthesizing Bidirectional Texture
Functions for Real-World Surfaces”, SIGGRAPH 2001, pp. 97-106.
[Nicodemus 77] Nicodemus, F.E., Richmond, J.C., Hsai, J.J., “Geometrical
Considerations and Nomenclature for Reflectance”, U.S. Dept. of
Commerce, National Bureau of Standards, October 1977.
 [Malzbender 01] Malzbender, T., Gelb, D., Wolters, H., “Polynomial
Texture Maps”, SIGGRAPH 2001, pp. 519-528, August, 2001.
 [Portilla 00] Portilla, J., Simoncelli, E., “A Parametric Texture Model
Based on Joint Statistics of Complex Wavelet Coefficients”, International
Journal of Computer Vision, 40(1):49-71, December 2000.
[Ramamoorthi 02] Ramamoorthi, R., “Analytic PCA Construction for
Theoretical Analysis of Lighting Variability in Images of a Lambertian
Object”, IEEE T-PAMI, vol. 24, No. 10, October 2002.
[Tong 02] Tong, X., Zhang, J., Liu, L., Wang, X., Guo, B.l, Shum, H.,
“Synthesis of Bidirectional Texture Functions on Arbitrary Surfaces”,
SIGGRAPH 2002, pp. 665-672.
 [Wei 00] Wei, L., Levoy, M., “Fast Texture Synthesis Using Tree-
Structured Vector Quantization”, SIGGRAPH 2000, pp. 479-488, 2000.
[Zalesny 01] Zalesny, A., Van Gool, L., “Multiview Texture Models”,
IEEE Conference on Computer Vision and Pattern Recognition 2001, pp.
615-622, Dec. 2001.

Figure 3. Left: Section of original source image under one lighting condition. Right: Synthetic texture under varying lighting directions.

 5
Figure 4. Synthesized texture (oatmeal) under varying lighting directions.

Figure 5. Synthesized sponge, popcorn kernels, cheerios and black-eyed peas texture mapped under varying lighting directions.

 6

	Synthesis of Reflectance Function Textures from Examples
	
	
	Abstract

	Introduction
	Surface Reflectance Characterization
	Previous BTF/UTF Texture Synthesis
	Non Parametric Texture Synthesis
	Reflectance Texture Synthesis
	PTMs
	Reflectance Texture Synthesis using PTM

	Search Strategy
	Results
	Conclusion
	
	References

