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Figure 1. Bottom: Synthetic sponge material with varying reflectance function per textel. 
Top: Synthetic sponge without reflectance functions (conventional texture map). 

 
 
 Abstract 
We extend the machinery of existing texture synthesis methods to handle texture images where each pixel contains not only RGB values, but 
reflectance functions. Like conventional texture synthesis methods, we can use photographs of surface textures as examples to base synthesis 
from. However multiple photographs of the same surface are used to characterize the surface across lighting variation, and synthesis is based 
on these source images. Our approach performs synthesis directly in the space of reflectance functions and does not require any intermediate 
3D reconstruction of the target surface. The resulting synthetic reflectance textures can be rendered in real-time with continuous control of 
lighting direction. 

 

1. Introduction  
The characterization of real world textures and surfaces is an 
important aspect of enabling photorealistic rendering. Early 
methods [Perlin 85, Peachy 85] relied on the ingenuity of the 
programmer to develop procedural models that approximate the 
appearance of real world materials. Unfortunately, the procedural 
representation did not lend itself to the automatic characterization 
of surface textures from photographs. This ability is especially 
useful when synthesis of new instantiations of textures can be 
performed from such a characterization. Powerful texture synthesis 
methods were developed in the late 80’s and 90’s that are able to 
synthesize new texture samples from photographic examples. 
Discussion of these methods can be found in section 2.2. These 
methods have practical ramifications for 3D computer graphics 
since they can simplify the texture mapping process in several 
ways. First, larger patches of a texture can be produced, yielding 
more source material for the texture mapping process. Second, 
textures may be synthesized with periodic boundary conditions, 
producing textures that can be seamlessly tiled, with the high image 
quality of photographs.  
 
Although powerful, these texture synthesis methods have 
limitations that we address in this paper. Since the example 
photographs used as input to the texture synthesis algorithms are 
captured under specific lighting conditions, the synthesized textures 

have these same lighting conditions ‘baked in’. Although the 
results will be convincing when those lighting conditions match the 
lighting conditions that the texture patch finds itself on the 3D 
object, in general this will not be the case. In fact, when a single 
texture map is wrapped around even a simple 3D object, opposite 
sides of the object experience completely reversed lighting 
directions in the local coordinate system of the texture map. Due to 
spatial variation in the surface mesostructure and microgeometry, 
the modifications in surface appearance due to these changes in 
local illumination are poorly approximated by attenuating the 
surface intensity due to the 3D object geometry. Figure 1 
demonstrates this behavior, when rendering results using a light-
dependent texture model are compared to the rendering of the same 
texture modeled without lighting dependency. 
 
Image-based re-lighting methods [Debevec 00, Malzbender 01, 
Ashikhmin 02, Debevec 02] provide a solution to this quandary. In 
this approach, multiple photographs of a surface, person or object 
are taken under varying lighting conditions and static pose, and a 
reflectance model characterizing the surface appearance under 
changing lighting conditions is constructed. With enough resolution 
spatially and in lighting direction, very realistic renderings of the 
original can be produced under arbitrary lighting conditions.  
 
 In this paper we demonstrate how the image-based representation 
of polynomial texture maps (PTMs) [Malzbender 01] can be 
directly leveraged for the purposes of synthesizing textures that 
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have real-time continuous lighting control. These synthetic textures 
can be produced having the practical advantages of tileability and 
photorealism that texture synthesis methods provide, combined 
with the lighting control of image-based reflectance functions. The 
machinery that we develop in this paper to directly compare pixels 
of reflectance functions, instead of pixels of color values, can also 
be leveraged to extend any texture synthesis method comparing 
color values.  

2. Surface Reflectance Characterization 
The reflectance properties of a homogeneous opaque material can 
be exhaustively specified by its Bidirectional Reflectance 
Distribution Function (BRDF), introduced in [Nicodemus 77]. The 
BRDF measures the ratio of radiance  L exiting a surface at 
direction (φe, θe), to the incidence irradiance I striking the surface 
in a differential solid angle from direction (φi, θi): 
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Note that the BRDF also depends on illumination wavelength 
λ, which is often integrated over r,g,b sensitivity functions.  
 
Although BRDF functions adequately characterize homogeneous 
smooth materials, they fail to specify 2D texture characteristics due 
to the texture’s spatial variations. The introduction of spatial 
variation to the BRDF is required to adequately model complex 
textures for many computer graphics applications. The 
Bidirectional Texture Function, BTF, introduced in [Dana 99a],  
provides such a framework: 
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where the spatial variation is indexed by (u,v). The BTF can 
efficiently specify 3D texture surfaces, whose characteristics arise 
from spatial variations of both albedo and surface normal. Thus, the 
BTF function can implicitly characterize appearance effects such as 
shading, shadows, self occlusions, inter-reflections, mutual 
shadowing, etc. However, storage requirements for either the BTF 
or the BRDF can be prohibitive for real-time computer graphics 
applications, due to the high dimensionality (6 and 5 respectively) 
of both representations.  
 
In this paper we restrict ourselves to a less general, but more 
tractable representation we called the Unidirectional Texture 
Function, or UTF. Unlike the two previous reflectance 
representations discussed, the UTF includes a dependence on only 
one direction, namely that of the incident light:  
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One attraction of the UTF is that it is extremely easy to collect for a 
real world material. It requires only a stationary digital camera and 
a movable light source, and specifically does not require any 
camera calibration and geometric reasoning as one needs for 
acquiring a BTF. By sacrificing any dependence on view direction, 
we loose the ability to capture view dependent phenomena such as 
specular highlights and self-occlusions. However, since surface 
normals are easily calculated from a UTF representation (which is 
the angle giving the maximal UTF value) [Debevec 00] 
[Malzbender 01], specular highlights can be reintroduced into the 
UTF rendering process.  
 

3. Previous BTF/UTF Texture Synthesis 
There has been extensive work in the area of 2D texture synthesis 
[e.g. Efros 99,Heeger 95,Efros 01,Wei 00,Portilla 00,Debonet 97]. 
However, the synthesis of reflectance textures from examples is 
conceptually different from the 2D texture synthesis. A collection 
of images of a particular surface acquired under various lighting 
conditions cannot be treated as an independent collection of 2D 
textures. There are strong correlations between the sampled images, 
as all of them are instances of a unique underlying physical surface.  
These correlations have to be maintained while synthesizing a 
novel reflectance texture.  
 
Relative to the volume of previous work in the area of 2D texture 
synthesis, there are only a handful of papers relevant to the 
synthesis of reflectance textures. The work of Leung and Malik 
[Leung 01]  as well as Dana and Nayar [Dana 99b],  deal with the 
synthesis of new images of an existing 3D texture viewed under 
novel viewing/lighting directions. However, synthesis of a totally 
new BTF is a more challenging problem. Note, that the synthesized 
and the example textures have 4D reflectance functions assigned to 
each pixel. Working explicitly with this data is computationally 
prohibited.  Thus, some sort of dimensionality reduction prior to 
synthesis must be applied. 
 
[Liu 01] uses a texture’s height-field along with an albedo map as 
an intermediate representation for BTF. This representation is 
reconstructed from the texture examples, using shape-from-shading 
techniques. Then, a synthesis scheme is applied directly to the 
height-field, using non-parametric sampling [Efros 99], resulting in 
a representation of a novel texture from which the BTF can be 
derived.  [Leung 01] suggests using the 3D texton map as a basis 
for generating a novel 3D texture.  This approach is similar in spirit 
to [Liu 01] where a texton map is used as an intermediate compact 
representation. The texture’s BTF can be derived from this 
representation similarly to the height-field map.  [Tong 02] also 
uses the texton map representation as a basis for synthesis directly 
on a 3D object. However, the volume of data associated with a full 
BTF required small input images (642 – 1282), limiting the range of 
textures that could be accommodated.  
 
Although all previously suggested methods use an intermediate 
compact representation for BTF, none can perform texture 
rendering or relighting in real time. This difficulty arises due to the 
inefficiency of the chosen intermediate texture representations for 
rendering. This paper suggests a new technique for reflectance 
function texture synthesis, which enabling real-time lighting and 
viewing control.  Our texture representation is that of a UTF 
modeled with polynomial texture maps (PTM) [Malzbender 01]. 
By sacrificing the view dependence of a BTF we gain a compact 
texture representation well matched to the rendering process, but 
also directly employed for synthesis. The PTMs, produced by our 
synthesis method can be then used in place of conventional texture 
maps and applied to 3D objects, providing interactive and realistic 
control of lighting effects, such as shading, self shadowing, 
interreflections, and surface scattering. 
 

4. Non Parametric Texture Synthesis  
Viewing a texture image as a realization of a homogenous 
Markovian process implies that the color distributions of a texture 
block W are completely characterized by its causal neighborhood 
Nw, and that this characterization is spatially invariant (Figure 2). 
Therefore, the conditional probability ( WNWP )  completely 
determines the texture characteristics. Likewise, the probability that 
a given image is a realization of the texture process is given by: 
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 where W1,W2,… are the blocks composing the image.  
 
In this paper we build on a collection of techniques, which are 
referred to as non-parametric texture synthesis. In these methods, 
the Markovian process parameters are not estimated but rather the 
process is emulated by sampling directly from the example texture. 
Hence, a realization of the conditional probability ( )WNWP  is 
achieved by randomly choosing a block from amongst all blocks Wi 
in the texture example satisfying: 
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where δ is a predefined threshold, as shown in Figure 2. The 
various non-parametric synthesis techniques differ mainly in the 
definitions of a block and its causal neighborhood.  In the original 
work of [Efros 99] pixels are generated one at time in a raster scan, 
by searching in the source texture image for pixels whose 
neighborhoods are similar to that of the pixel being synthesized. 
This search is done in an exhaustive manner, yielding a slow run 
time. The method has been accelerated in the work of [Wei 00]. 
However, both of these approaches are somewhat unreliable, due to 
the feedback introduced by using recently synthesized pixels as 
neighborhoods for subsequent pixel synthesis. This problem in 
mitigated in [Efros 01] and [Liang 01] in which entire blocks of 
texture are copied from the source images into the working texture, 
again based on the similarity of their neighborhoods. Overlapping 
block regions are either alpha blended or optimal boundary cuts are 
calculated between each neighboring blocks, so that block stitching 
looks smooth. This method is called “block-based” texture 
synthesis, and although simple, it is surprisingly effective. 
 

5. Reflectance Texture Synthesis 
This paper extends the block-based method from working on 
images containing color values, to ‘images’ of reflectance 
functions. We view a UTF image as a texture of functions rather 
than a texture of values. Thus, a UTF image is regarded as a 
realization of a Markovian process in the spatial domain. However, 
the stochastic process is performed over functions rather than over 
values. According to this view, a function index ψ=Ψ{g(φ,θ)} is 
assigned to each pixel reflectance function g(φ,θ), and the function 
index, ψ, is regarded as a random variable, over which a stochastic 
process is defined.  
 
A Markovian process over functions implies that the distribution of 
functions attached to a texture block W is characterized by the 
conditional probability: 
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where and Ψ are the indices of the function arrays 
attached to the block W and its neighborhood N

{ }WΨ { WN
W respectively. The 

conditional distribution above characterizes a UTF process, which 
can be imitated using non-parametric synthesis similarly to the 
synthesis of conventional textures. The only difference is that we 
have to perform the neighborhood comparisons on function indices, 
and that copied blocks are composed of an array of function 
indices. Two questions remain open. First, how can we obtain a 
continuous representation of reflectance functions  from a finite set 
of texture images, each at a specific lighting condition? Second, 
how can we attach an index for each possible reflectance function 

such that probability function can be easily calculated for each 
function index?  Both of these questions can be resolved using the 
polynomial texture maps. 
 
In the following section a brief description of the PTM texture 
representation is given. A sequent section will describe how we use 
this representation for 3D texture synthesis.  
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Figure 2. Copying blocks with similar causal neighborhoods 
 
5.1 PTMs 
Polynomial texture maps [Malzbender 01] provide a compact 
representation for reflectance functions. In this approach, a real-
world surface is photographed multiple times with a fixed digital 

camera under varying illuminations directions ( ){ }N
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projection of a unit vector whose direction is ( )φθ ,  onto the (u,v) 
plane. The PTM representation of a texture patch describes, 
independently for each pixel (u,v), the luminance variation, L, as a 
function of (lu,lv). The luminance is modeled by biquadradic 
polynomial function in lu,lv: 
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where the parameters (a0..a5) are chosen to best fit the acquired 
image values, thus minimizing:  
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Color values for each pixel are recovered from this luminance 
model and unscaled color values (Rn(u,v),Gn(u,v),Bn(u,v)) : 
 

           R(u,v)  = L(lu,lv,u,v)Rn(u,v); 

          G(u,v) = L(lu,lv,u,v)Gn(u,v);                                (9) 

              B(u,v)  = L(lu,lv,u,v)Bn(u,v); 
 
Once the coefficients (a0..a5,Rn,Gn,Bn) are estimated for each pixel, 
renderings of the surface for arbitrary lighting direction can be 
computed in real time using either pure software, or programmable 
graphics hardware acceleration, to map them onto 3D surfaces in a 
manner similar to conventional texture mapping. The biquadratic 
polynomial as the interpolation function is not mandatory and other 
bases are possible as well. Note, however, that the PTM basis 
functions are closely related to the low degree spherical harmonics, 
which are optimally spanning Lamberian surfaces illuminated 
under various directions [Ramamoorthi 02, Basri 03]. 
 
5.2 Reflectance Texture Synthesis using PTM  
Going back to block-based 3D texture synthesis, PTM coefficients 
can be efficiently used as the reflectance function indices over 
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which texture synthesis is applied. Thus, a similar block-based 
synthesis scheme can be applied directly to the 9 dimensional 
vector field (a0..a5,Rn,Gn,Bn). However, care must be taken: In the 
2D texture synthesis, the conditional probability P(W|NW) is 
achieved by sampling similar blocks in the source texture, where 
similarity is defined based on the values in the causal 
neighborhoods (Equation 6). This scheme cannot be automatically 
applied to function indices in the reflectance texture case. The 
transformation from function space to index space does not 
necessarily preserve function distances, namely:  
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for any given two functions g1,g2. This implies also that function 
pdf’s are not preserved, and in our case: P(W)≠P(ψ{W}). Therefore, 
instead of using the original coefficients of the PTM, we linearly 
transform the coefficients so that an orthogonal basis is used. Since 
orthogonal transformation is distance preserving, distance between 
two functions can be measured directly in the index vectors, and 
consequently, function probability and its corresponding index 
probability can be used indistinguishably.   
 
In our implementation we have used the 2D Legendre polynomial  
basis, which is orthogonal over [-1, 1]2.  The 6 basis functions used 

in the standard PTM (eq. 8),  were 
transformed  into the orthonormal basis B’ :   
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If a=[a0..a5] are the original PTM coefficients, the new basis 
coefficients, b=[b0..b5],  are easily calculated by applying a matrix 
multiplication b=Ma, where M is a 6x6 matrix: 
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Using the new coefficients, each pixel (u,v) has an associated index 
which is constructed by the 9 dimensional vector 
ψ{L(u,v)}=[b0..b5,Rn,Gn,Bn]u,v. This representation is used as 
described in [Efros 01]: a realization of the conditional probability 

( WNWP )  is achieved by randomly choosing a block from 
amongst all blocks Wi in the texture example  satisfying: 
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Edge handling between synthesized blocks is performed also in the 
orthogonal representations.  In our case, the coefficients in the 
common boundaries were alpha blended. Since PTM functions are 
represented in an orthonormal space, coefficient blending is 
equivalent to blending the reflectance functions with similar 
weights. In a similar manner optimal cut along the common 
boundaries should be performed in the orthonormal basis as pixel 
comparisons are meaningful. At the final stage of the synthesis, an 
inverse transformation is performed to the standard PTM 
representation.  

6. Search Strategy 
The main burden of block based texture synthesis is the search 
required for each generated block in the synthesized PTM. For each 
such block, a full search is performed in the source PTM, i.e. the 
distance must be computed between the block neighborhood and 
each of the n×n neighborhoods of the source PTM image. Naively 
applying this search is time consuming. Several approaches have 
been suggested to expedite this search. Among them, multiscale 
search [Liang 01], tree structure vector quantization [Wei 00], and 
k-coherence search [Tong 02]. All these approaches improve run 
time by orders of magnitude at the expense of approximating the 
search results. A rejection scheme, proposed in [Hel-Or 02], can 
dramatically improve run time, without sacrificing the resulting 
accuracy. In this approach, highly dissimilar block neighborhoods 
in the example PTM are rejected quickly. 
 
Each PTM block neighborhood, represented in the orthogonal 
form, is unfolded and represented as a 1D vector.  Thus, if a block 
neighborhood is composed of p pixels, its associated 1D vector is a 
9p dimensional vector, because each pixel includes 9 PTM 
coefficients. Using this notation, the error distance between two 
block neighborhoods Nw1 and Nw2  is defined as:   
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where k=9p. However, it is possible to reject a neighborhood 
before evaluating all k=9p sums if the error distance already 
exceeds a threshold δ. This threshold can be set ahead of time or 
can simply be the actual error distance to the best neighborhood 
evaluated so far. Equation 11 is still valid when NW1 and NW2 are 
represented in a different orthogonal basis, . Thus, 
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for any k ≤ 9p. If we choose a basis that concentrates vector energy 
in the first few entries, we can achieve a tight lower bound with 
very few calculations.  Such a representation can be calculated by 
applying the Singular Value Decomposition on the entire 
neighborhood ensemble, or by using a basis set which is known to 
have energy compactness for natural images, such as the DCT 
basis, the Harr Wavelets or the Walsh Hadamard which can be 
computed very efficiently [Hel-Or 02].  
 
Using this lower bound (eq. 12), a very fast search scheme can be 
applied as follows: First, each neighborhood vector in the example 
PTM is projected onto the first basis-vector U1, resulting in an n×n 
array of scalar values. Given a new block neighborhood, Nw, from 
the synthesized image, we project Nw onto U1, and calculate a lower 
bound on the neighborhood distance for each neighborhood in the 
example PTM using eq. 12. Note, that this lower bound is achieved 
by applying a single subtraction and a single multiplication per 
example neighborhood. Each neighborhood, whose lower bound is 
above the threshold δ, is rejected and discarded in further 
calculations. Typically, 90% of the neighborhoods are rejected after 
the first projection. For the resulting neighborhoods we continue 
with the second basis-vector U2, increasing the lower bound, and 
rejecting additional neighborhoods. This process continues with 
consecutive basis-vectors. After very few projections (~3), only a 
few candidates remain, for which the actual distances are 
calculated. A typical run time for synthesis of a 512x512 patch 
composed of 30x30 blocks is approximately 3-5 minutes using this 
approach, compared to 30-60 minutes for the brute force search. 

7. Results 
Figures 3-5 show results of reflectance texture synthesis from 
photographic examples collected under 50 light directions. Figure 3 
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shows a single source photograph along with synthesis results 
under varying lighting. Figures 4 and 5 demonstrate various 
synthesized reflectance textures applied to 3D objects, also under a 
number of lighting directions. Figure 1 shows the difference 
between reflectance texture mapping, and the conventional texture 
mapping. These objects can all be illuminated and viewed in real-
time as shown in the associated video. 

8. Conclusion 
We have presented a texture synthesis method that results in the 
construction of images of reflectance functions instead of simply 
color values. This synthesis is performed directly using the 
representation of polynomial texture maps, thus the resulting  
texture maps can be rendered in real time on modern graphics 
hardware with parametric control over lighting direction. At the 
heart of our approach is the ability to compare pixels of reflectance 
functions directly in place of comparing pixel RGB values. This 
same approach allows any texture synthesis method that compares 
pixel colors to be extended in the analogous manner to support the 
synthesis of reflectance function textures. 
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Figure 3. Left: Section of original source image under one lighting condition. Right: Synthetic texture under varying lighting directions.  
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Figure 4. Synthesized texture (oatmeal) under varying lighting directions. 



 

 

 

 

 
 
Figure 5. Synthesized sponge, popcorn kernels, cheerios and black-eyed peas texture mapped under varying lighting directions. 
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