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ABSTRACT
We present RENÉ — a novel encoding scheme for short
ranges on Ternary content addressable memory (TCAM),
which, unlike previous solutions, does not impose row ex-
pansion, and uses bits proportionally to the maximal range
length. We provide theoretical analysis to show that our
encoding is the closest to the lower bound of number of
bits used. In addition, we show several applications of our
technique in the field of packet classification, and also, how
the same technique could be used to efficiently solve other
hard problems such as the nearest-neighbor search problem
and its variants. We show that using TCAM, one could
solve such problems in much higher rates than previously
suggested solutions, and outperform known lower bounds in
traditional memory models. We show by experiments that
the translation process of RENÉ on switch hardware induces
only a negligible 2.5% latency overhead. Our nearest neigh-
bor implementation on a TCAM device provides search rates
that are up to four orders of magnitude higher than previous
best prior-art solutions.

1. INTRODUCTION
Ternary content addressable memories (TCAMs) have be-

come highly popular in networking equipment and network
processing units. TCAMs are used for high-speed IP lookup
and packet classification in switches and routers [24, 45].
Software defined networking (SDN) schemes such as Open-
Flow [39] rely on TCAM as the main hardware for their
data path. TCAM was also suggested to be used for other
computationally intensive tasks such as pattern matching
[9, 19], heavy-hitters detection [35], and similarity search in
databases [54].

∗A preliminary version of this paper was presented in Da-
MoN 2015 workshop.
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Figure 1: Diagram of the TCAM lookup process.
The query is compared to all entries in parallel and
the index of the first matching entry is used to find
the result.

TCAM is an associative memory module. It is composed
of an array of ternary words, each consisting of ternary dig-
its, namely: 0, 1, or *. The ‘*’ digits serve as ‘wild cards’
that can be matched with either ‘0’ or ‘1’. Given a query
word, TCAM returns the first location in the memory ar-
ray that matches the query. This process is illustrated in
Figure 1.

Multi-field packet classification is becoming more and more
important in modern network architectures, such as SDN
and network function virtualization (NFV) [17]. Specifi-
cally, recently suggested SDN frameworks perform more net-
work functionalities on switches, such as load balancing [58],
DDoS prevention [43], and quality of service (QoS) [53].
The initiative for NFV suggests to implement higher level
tasks such as deep packet inspection and caching as virtual
software services, and make traffic flow through them using
smart classification rules. All such frameworks heavily rely
on multi-field packet classification. Many of these fields are
better expressed as ranges.

While TCAMs become more and more popular, it is still
a hard problem to efficiently represent range rules on such
memories. Over the last decade there has been an intense
line of research on range encoding on TCAM [8,10,12,13,16,
27, 29, 31, 33, 49, 55–57]. Aside from propositions to rearchi-
tect TCAM devices to natively support range rules [55],
these solutions can roughly be classified as either database-
independent or database-dependent encoding schemes. Database-
independent schemes encode all possible ranges using the
same technique, thus allowing fast hot updates [10, 27, 56].
However, these schemes use exponential TCAM row expan-
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Figure 2: Toy example: A binary-reflected Gray code (BRGC) encoding tree and the encoding of ranges [5, 8]
and [7, 10] using our scheme. In this example, maximal range length is 4. Ranges are divided into layers of
non-overlapping ranges. Two layers contain only ranges that can be encoded using Gray code and therefore
are not shown. Containing range [4, 11] is encoded based on the BRGC values, which forms the first left four
bits. Extra bits correspond to layers: Fifth bit to layer L1 and sixth bit to layer L3. If a range belongs to
a layer, then the value of the bit corresponding to that layer is the binary value of the range for this layer.
Otherwise, that bit is set to ‘*’. The total number of bits is proportional to the maximal encoded length and
is independent of the number of encoded ranges.

sion, where a row is expanded into several rows, exponen-
tially to the number of range fields in it.

Database-dependent schemes trades the hot updates flex-
ibility for more compact codes [8, 13], but usually performs
well only when the number of encoded ranges is small, as
the produced code is proportional to the number of ranges
in database. Database-dependent schemes do not scale for
large number of ranges, as we show in Section 4.1. Therefore,
this paper focuses on a database-independent approach.

In this paper we present a database-independent range
encoding scheme, called RENÉ - Range Encoding with No
Expansion - that eliminates row expansion completely when
ranges are short enough. The code produced by RENÉ is
proportional to the maximal range length, not to the num-
ber of ranges, as in database-dependent schemes. In many
cases, as we show in this paper, ranges are limited in length.
For example, it was shown in [10] that in real-life packet
classification tables more than 60% of the TCP port ranges
are short. Moreover, packet classification also uses other
range fields, where all ranges are short (such as IP ToS or
TTL). On some fields one may apply quantization and cat-
egorization to reduce the length of ranges without hurting
classification accuracy (e.g. packet length). Nonetheless,

RENÉ can be combined with other approaches to represent
a wider spectrum of ranges if necessary.

In addition to packet-classification, where TCAM has al-
ready been selected as de-facto industry standard, we pro-
pose in this paper using a TCAM as a co-processor to CPU
in order to solve hard problems from other domains in com-
puter science. Specifically, we show how an encoding scheme
such as RENÉ, which requires no row expansion, can be
used to practically and efficiently solve the nearest neigh-

bor search problem and its variants, removing the infamous
curse of dimensionality from them.

To our knowledge, we are the first to present a database-
independent encoding scheme for short ranges on TCAM
with no row expansion. In a nutshell, RENÉ divides all
ranges of some length hmax into hmax layers of disjoint
ranges. Using the binary-reflected Gray code (BRGC) [20],
which was shown to be more expressive for ranges than bi-
nary representation [10], it focuses on a specific area where
the encoded range is. Using additional bits, it exactly points
to the encoded range inside the area in focus, where a single
additional bit represents the location of the range inside the
layer it belongs to. A toy example is shown in Figure 2.

Using a general conjunction operator we present next, we
are able to encode all ranges with length up to hmax. The
total length of RENÉ’s code for a w-bits field, when encoding
ranges of up to length hmax, is w − log2(hmax) + hmax − 1.

This means that RENÉ is feasible on contemporary TCAMs
for ranges up to length of 512, depending on the available
space on TCAM and number of range fields. We also present
a theoretical analysis and show that at least max(hmax −
1, w) bits are required to encode short ranges of up to length

hmax in a w-bits field. RENÉ is closer to this lower bound
than any previously-suggested technique.

We show several applications for RENÉ in the area of
packet classification, along with an implementation of such
an application on a powerful OpenFlow switch. We also
show by experiments that the penalty in latency for trans-
lating values using RENÉ is negligible.

We evaluate and experiment our nearest-neighbor algo-
rithms on a real TCAM device and achieve search rates up



to four orders of magnitude higher than previous best prior-
art solutions [3, 18,54].

2. BACKGROUND

2.1 Ternary Content Addressable Memory
(TCAM)

Contemporary TCAM devices operate at very high rates,
between hundreds of millions to more than one billion queries
per second [22,46]. These devices have about 20-40 megabits
of memory that can be configured to accommodate entries
of up to about 640-bits wide (the wider the entry, the fewer
entries can be stored on the chip).

The downsides of TCAM are that it is power hungry, tends
to generate high heat (thus requiring extra cooling), and rel-
atively expensive, compared to a standard DRAM chip. A
high-density TCAM consumes 12 to 15W per chip when the
entire memory is used [45]. However, compared to com-
pute units and coprocessors such as CPU or GPU, TCAMs’
power requirement, heating and price are actually lower, and
become similar only when connecting multiple TCAMs in
parallel, as usually done in high end networking equipment.
For example, Intel’s E7-4870 CPU consumes 130W [15], and
Nvidia’s Tesla K80 GPU consumes up to 300W [37]. An-
other downside could be that currently, a TCAM cannot be
easily deployed on a standard PC, as they are manufactured
for networking equipment.

However, due to their impressive adoption for network-
ing devices, TCAMs are becoming larger, faster, less power
hungry and less expensive. We speculate that this trend will
continue. Inspired by the adoption of Graphics Processing
Units (GPUs) for general purpose parallel computing in re-
cent years, in Section 5 we also suggest that TCAMs may
be useful for other tasks outside the networking field.

2.2 Range Encoding on TCAM
The problem of range encoding on TCAM has received

considerable attention in the context of packet classification.
The traditional technique for range representation [56] is

prefix expansion, where a range is represented by a set of
prefixes, each of which can be stored by a single TCAM
entry. The worst-case expansion ratio when using prefix ex-
pansion for a w-bit field is 2w − 2 and for an entry with d
ranges it is (2w−2)d. The authors of [10,27] suggest encod-
ing schemes other than binary: In [27], the authors propose
DIRPE, a hierarchical version of fence encoding. The au-
thors of [10] propose SRGE - an encoding based on binary
reflected Gray code [20]. However, these works do not re-
duce the range expansion to one, or, in the case of [27], it
requires an infeasible exponential memory size to do that.
SRGE [10] points out that more ranges can be expressed by
using Gray code than when using binary representation, but
it only reduces the worst case of row expansion to 2w − 4.
DIRPE [27] suggests a tradeoff between row expansion and
the number of bits required to code the range. For encod-
ing without expansion, it demands the unfeasible number of
2w − 1 bits.

The database-dependent range encoding techniques de-
sign the encoding to efficiently encode the ranges that specif-
ically appear in the database. These techniques [8,12,13,29,
57] use extra bits, in addition to the w bits of the range field.
The basic idea [29] is to use the extra bits as a bit map: a
single extra bit is assigned to each selected range in order

to avoid the need to represent it by prefix expansion. Sev-
eral works [8,12,13,29,57] deal with the scalability problem
of this basic technique, which requires one bit per range.
However, all these solutions still require either very long
rows, proportionally to the number of encoded ranges, or
they trade that for row expansion. Moreover, some of these
solutions demand extra logic or extra memory that makes
them useless in our case, where the number of ranges is high.
In [47, 48] it was suggested to use negation rules on TCAM
instead of row expansion, when applicable, such that rules
may specify the opposite of a range and a corresponding op-
posite action (e.g. ‘deny’ instead of ‘accept’ in ACL). This
reduces worst-case expansion factor to w but does not elim-
inate it, and is only applicable in certain scenarios. Other
works [16,26,31–33,49] improve the overall TCAM memory
requirements for classification rules, or split the rules into
multiple TCAM chips [34,60]. However, these works do not
focus specifically on range encoding, and can be used on top
of most of the range encoding techniques including the one
proposed in this paper.

Other works use TCAM for similarity search in databases.
Shinde et al. [54] encode probabilistic hash functions on
TCAM to implement locality-sensitive hashing [3]. Our pre-
liminary workshop paper [7] has shown how the encoding
technique presented in this paper is used to provide deter-
ministic nearest neighbor search, as further elaborated in
Section 5.

Afek et al. [1] use TCAM to implement priority queues
with a constant time lookup operation and as a by-product,
to provide a TCAM-based sorting algorithm with O(n) time.

The limitation of all the methods has inspired a sug-
gestion to change the TCAM hardware [55], to implement
range matching directly in hardware. However this solution
changes TCAM architecture dramatically, and it does not
seem feasible in the near future, since TCAM is a popular
memory chip that exists in tens of millions of routers and
switches today. Moreover, the solution harms the flexibil-
ity of TCAM implementation, where every entry is simply
encoded as a string of ternary bits, regardless of the fields
type and borders.

3. ENCODING SCHEME FOR SHORT
RANGES

Our goal is to encode a range up to a certain length hmax

using a single TCAM entry of as few bits as possible. Such
code will allow encoding classification rules with multiple
ranges without row expansion at all.

3.1 Basic Definitions
We begin with some basic definitions that will be used

throughout the rest of this section. First, we define a ternary
bit-wise comparison:

Definition 1. Let a = a0, . . . , am and b = b0, . . . , bm be
two ternary words (ai, bi ∈ {0, 1, *}). a matches b, denoted
a ≈ b, if and only if for every i ∈ {0, . . . ,m}, either ai = bi,
or ai is *, or bi is *.

RENÉ encodes ranges in discrete spaces. We begin by
defining an encoding function tcode for values and ranges.
Let U = [0, 2w) ⊂ N0 be a range on the natural line. RENÉ’s
encoding function tcode encodes either a value v ∈ U , or
a range R ⊆ U . It is important to note that RENÉ treats



U as a cyclic ‘wrap-around’ space and thus throughout this
paper, any range [x, y) refers in fact to [x, y mod 2w).

The result of the encoding function is either a binary word
(for exact values) or a ternary word (for ranges), and we
expect that a ternary match tcode(v) ≈ tcode(R) will imply
that the value v is inside the range R. This is formally
defined as follows:

Definition 2. An encoding function tcode is admissi-
ble if for every value v ∈ U and every range R ⊆ U ,
tcode(v) ≈ tcode(R) if and only if v ∈ R. Furthermore,
for any point v ∈ U , tcode(v) does not contain ‘*’ symbols.

3.2 Binary-Reflected Gray Code for TCAM
The binary-reflected Gray code (BRGC) [20] is a binary

encoding of integers in a contiguous range such that the
codes of any two consecutive numbers differ by a single bit.
A b-bits BRGC is constructed recursively by reflecting a
(b− 1)-bits BRGC 1.

Definition 3. The BRGC encoding function BRGC(v, 2w)
encodes a point p (where 0 6 p < 2w) with w bits. It is de-
fined recursively as follows:

BRGC(0, 1) = ε

BRGC(p, 2w) =

 0 ·BRGC(p, 2w/2) if p < 2w/2

1 ·BRGC(2w − p− 1, 2w/2) otherwise

where ε is the empty word and ‘·’ denotes concatenation.

For example, BRGC(4, 8) = 1 · BRGC(3, 4) =
11 · BRGC(0, 2) = 110 · BRGC(0, 1) = 110. An example
for values in [0, 16) is shown in Figure 2.

By wildcarding some of the bits of a BRGC codeword we
can create a ternary range representation. For example, as
can be seen in Figure 2, the ternary word *1** matches all
values in the range [4, 11]. In fact, when looking at this
tree representation of the BRGC encoding, we observe that
all ranges that exactly contain a full sub-tree, or two adja-
cent full sub-trees, can be represented using a single ternary
BRGC codeword (namely, a BRGC codeword where some
of the 0-1 bits were replaced by ‘*’ symbols).

Before formulating and proving this observation we define
the following terms that will be used in the proof:

• k-prefix is a ternary word in which the k least signifi-
cant bits are ‘*’ and the rest are either 0 or 1.

• k-semi-prefix is a ternary word in which the k least
significant bits are ‘*’, one additional bit is also ‘*’,
and the rest are either 0 or 1.

We now formulate the following theorem. Due to space
constraints, proofs for all theorems and lemmas in the paper
appear in [6].

Theorem 1. If all values are BRGC-encoded, then a sin-
gle ternary BRGC codeword suffices to admissibly encode
a range R = [x, y mod 2w) if and only if there exist non-
negative integers i, k, for which x = i ·2k and y = (i+2) ·2k.
Specifically, one of the following cases holds:
1 The BRGC of a value x can be directly calculated using
the following formula: x ⊕ (x >> 1), where ⊕ and >> are
the bitwise operations of XOR and Right Shift, respectively.

Ternary BRGC
Bit of

L1
. . .

Bit of

Lh/2-1

w-log(h)+1 bits h-2 bits

Bit of

Lh-1

Bit of

Lh/2+1
. . .

Figure 3: Encoding structure for a value or range
of length h

1. If i is even, the (k + 1) least significant bits of the
codeword are *, and the rest are either 0 or 1. Thus,
the ternary codeword is (k + 1)-prefix.

2. If i is odd, the k least significant bits of the codeword
are *, one additional bit is *, and the rest are either 0
or 1. Thus, the ternary codeword is k-semi-prefix.

Theorem 1 implies that when encoding ranges of length
h, the log2(h) − 1 least significant bits are always ‘*’ thus
one can save TCAM space by omitting these uninformative
bits.

3.3 An Encoding Function for Ranges
We call those ranges that can be encoded using a single

ternary BRGC codeword trivial ranges, and all other ranges
nontrivial ranges. In this section, we extend the BRGC en-
coding scheme so that it can encode in a single ternary word
nontrivial ranges as well. We append extra bits to the end of
BRGC codewords, as depicted in Figure 3: w − log2(h) + 1
bits are used for the binary BRGC encoding of a value v ∈ U ,
or for the ternary BRGC encoding of some trivial range R.
To encode nontrivial ranges of length h = 2k (k ∈ N0), at
most h− 2 bits are added as extra bits.

The key idea of RENÉ is to divide all ranges of some
length h = 2k (k ∈ N0) into h layers, such that a layer
Li

h is the set of all ranges [x, x + h) for which x mod h =
i. Note that two of these layers contain only trivial ranges

(L0
h and L2k−1

h ). We are left with h− 2 layers that contain
nontrivial ranges. We assign an extra bit for each layer of
nontrivial ranges. The value of this bit alternates between
adjacent ranges in the same layer, such that for any pair of
consecutive ranges in the same layer, the value of the bit
corresponding to this layer is different. Hence, for a value
v ∈ U , tcode(v) is the 1 + w − log2(h) most significant bits
of BRGC(v), concatenated with h−2 extra bits. The value

of the ith extra bit corresponds to layer Li
h and is set to⌊

v−i
h

⌋
mod 2.

For nontrivial ranges we define their cover range as fol-
lows:

Definition 4. For any nontrivial range of length h = 2k

(k ∈ N0), R = [x, x+h), let the cover range of R, denoted
by cover(R), be the range [bx/hc ·h, (bx/hc+ 2) · h).

We first notice the following property of cover ranges:

Lemma 1. For any range R = [x, x+ h) of length h = 2k

(k ∈ N0), cover(R) fully contains R.

Note that the existence of the cover range is a unique
property of the binary-reflected Gray code. The cover range
cover(R) helps us distinguish R from other ranges in the
same layer. For range R = [x, x+ h) ∈ Li

h of length h = 2k

(k ∈ N0), tcode(I) starts with the 1 + w − log2(h) most
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Figure 4: Encoding for all sub-ranges of length 4 and values in range [0, 16). Left bits are the ternary BRGC
encoding. Right bits are the extra bits for nontrivial layers. The bits in gray can be removed as explained in
Section 3.2

significant bits of the ternary BRGC representation of R, if
R is trivial, or of cover(R), if R is nontrivial. Then, h − 2

extra bits are concatenated one after the other where the ith

bit is either * if I /∈ Li
h or

⌊
x−i
h

⌋
mod 2 otherwise (namely,

all the extra bits except one are *).

Our main result is that RENÉ’s encoding function, tcode

, is an admissible encoding function for ranges of any length
h = 2k (k ∈ N0). The total length of the admissible encoding
produced by tcode for a single value or range is hence w −
log(h) + h− 1.

Before proving this result (Theorem 2), we introduce the
following two technical lemmas:

Lemma 2. If a range R is nontrivial, then no other range
from the same layer is fully contained in cover(R).

Based on this property of cover ranges, we can completely
distinguish between ranges in the same layer using the extra
bits we added to the ternary BRGC encoding:

Lemma 3. Let R = [x, x + h), where h = 2k, be a range
in Li

h. For every value v in cover(R), if v ∈ R, v has the
same bit value as R, and if v /∈ R, then v has the opposite
bit value.

We now turn to the main theorem.

Theorem 2. The function tcode is an admissible encod-
ing function for ranges of length h = 2k.

Figure 4 shows the encoding of all sub-ranges of length 4
in range [0, 16). Note that the first and third layers do not
require extra bits, so these are both set to * in their encod-
ing. In other layers, the corresponding extra bit alternates
between ranges in the same layer. For example, the range
[1, 4], which cannot be encoded solely using a ternary BRGC
codeword, is encoded as 0***1*, where the fifth bit is the
extra bit that corresponds to the second layer. Only points
in [1, 4] match this encoding.

3.4 Encoding Multiple Range Lengths
Given RENÉ’s encoding function for ranges of some maxi-

mal length hmax we can encode, without using more bits, all
ranges whose lengths are smaller than hmax as well. We de-
fine a logical conjunction operation, denoted by u, to encode
the intersection of two ranges. The truth table of such a con-
junction is given in Table 1. ⊥ means an undefined output,

ai bi ai u bi
* * *

0 * 0
* 0 0
0 0 0
1 * 1

ai bi ai u bi
* 1 1
1 1 1
0 1 ⊥
1 0 ⊥

Table 1: The truth table of a ternary logical con-
junction, denoted by the u operator.

and we later make sure to never get such an output when
using this operation. For two ternary words, a = a0, . . . , am
and b = b0, . . . , bm, the conjunction c = a u b is the ternary
word where ci = ai u bi. If at least one of the symbols ci
is ⊥, then c is also marked as ⊥ and is not defined. Note
that the conjunction operation is independent of the specific
encoding function.

The essence of the conjunction operation is captured in
the following two lemmas:

Lemma 4. For any value v ∈ U and any two ranges R1, R2 ⊆
U , if tcode is an admissible encoding function for R1 and
R2, then tcode(v) ≈ tcode(R1) u tcode(R2) if and only if
v ∈ R1 ∩R2.

Lemma 5. If tcode is an admissible encoding function
for R1 and R2, and the result of tcode(R1) u tcode(R2) is
⊥ then R1 ∩R2 = ∅.

Note that the other direction of Lemma 5 is not necessarily
true: the conjunction of codes of two disjoint ranges may not
be ⊥.

We assume that there is a value hmax = 2kmax , which
is the maximum length we should consider. Note that any
range [x, x + h) of length h < hmax (h is not necessarily a
power of 2 anymore) can be written as the intersection of
two ranges of length hmax as follows:

[x, x+ h) = [x+ h− hmax, x+ h) ∩ [x, x+ hmax).

Using the conjunction operator and Lemma 4 we can con-
struct the code for ranges of any length h 6 hmax , with
hmax − 2 extra-bits:

tcode([x, x+ h)) =

tcode([x+ h− hmax, x+ h)) u tcode([x, x+ hmax)).



Algorithm 1 Encoding Function for a Value v

1: function tcode (v, hmax)
2: . v - value, hmax - maximal range length
3: word← BRGC(p) >> (log2(hmax)− 1) . Bitwise shift
4: for i← 0 to (hmax − 1) do
5: if layer is skipped then
6: continue . Optional - encode less layers
7: end if
8: if layer is nontrivial (i 6= 0 and i 6= hmax

2
) then

9: b←
⌊

v−i
hmax

⌋
mod 2

10: word← (word << 1)|b . Bitwise OR
11: end if
12: end for
13: return word
14: end function

We also know from Lemma 5 that tcode([x, x + h)) is not
⊥ as the intersection is never empty.

The encoding function tcode(v) for some value v when
using any range lengths up to hmax is shown in Algorithm
1. When encoding a range R of length h 6 hmax that is
centered at some point v, Algorithm 2 is used to obtain
tcode(R).

The length of the resulting encoding of a value v ∈ U or
a range R ⊆ U is therefore w − log2(hmax) + hmax − 1.

3.5 Running Time Analysis
Computing tcode for either a value or a range is simple:

results only depend on the value or range themselves, and
the maximal range length hmax. The running time of both
functions, for a value and a range, is linear with hmax, and
does not depend in the number of encoded ranges: O(hmax)
when encoding a value and O(hmax + h) when encoding a
range of length h 6 hmax.

3.6 Lower Bound on the Number of Bits per
Range

As previously recalled, Lakshminarayanan et al. [27] in-
troduced the worst-case necessary condition of 2w − 1 bits
to encode a w-bit range. We use this observation to intro-
duce a lower bound for the number of bits required to encode
ranges, when their lengths are limited by some upper bound
hmax:

Theorem 3. In order to represent any ranges up to length
hmax without row expansion, in a field of width w bits, at
least max(hmax − 1, w) bits are necessary.

4. RENÉ FOR PACKET CLASSIFICATION
Range encoding on TCAM has been used for packet clas-

sification for long time. Row expansion significantly limited
its usage when multiple header fields are ranges, leading ven-
dors and administrators to avoid such situations as much as
possible [41]. However, next generation SDN applications,
such as load balancers, security tools, and quality of service,
rely on sophisticated packet classification that is performed
on the datapath itself (i.e. the switch) [5, 43, 53, 58]. Most
of these solutions require range based matching on multi-
ple header fields. We summarize several examples for such
fields and metadata information that can benefit when using
RENÉ:

• TCP/UDP Port Fields: In real-life datasets, short
ranges (up to length 64) sometimes consist more than

Algorithm 2 Encoding Function for a Range [s, t]

1: function tcode ([s, t], hmax)
2: . [s, t] - range, hmax - maximal range length
3: if t− s + 1 6= hmax then
4: . Encode range as an intersection
5: R1 = [s, s + hmax − 1]
6: R2 = [t− hmax + 1, t]
7: Γ← {R1, R2}
8: else . Encode range directly
9: Γ← {[s, t]}

10: end if
11: result← 0
12: count← 0
13: for [x, y] ∈ Γ do
14: mask ← 0
15: for i← x + 1 to y do
16: mask ← mask|(BRGC(i− 1)⊕BRGC(i))
17: . bitwise OR and XOR
18: end for
19: word← BRGC(x) >> (log2(hmax)− 1)
20: mask ← mask >> (log2(hmax)− 1)
21: for i← 0 to (hmax − 1) do
22: if layer is skipped then
23: continue . Optional - encode less layers
24: end if
25: if layer is nontrivial (i 6= 0 and i 6= hmax

2
) then

26: if x mod hmax 6= i then . Irrelevant layer
27: mask ← (mask << 1)|1 . Put a ‘*’
28: word← word << 1
29: else . [x, y] is in this layer
30: mask ← mask << 1

31: b←
⌊

x−i
hmax

⌋
mod 2

32: word← (word << 1)|b
33: end if
34: end if
35: end for
36: if count > 0 then
37: result← result u (word,mask)
38: else
39: result← (word,mask)
40: end if
41: count← count + 1
42: end for
43: return result
44: end function

60% of the unique ranges [10]. Thus, if a network
administrator uses mainly short ranges for TCP/UDP

port fields, or even for only one of these fields, RENÉ may
suit their needs.

• Network ToS (or DSCP): In both the deprecated
ToS field and the new DSCP field the precedence is set
using an increasing value, and to specify one or more
precedence classes, either an exact value or a short
range should be used.

• Packet Size: Packet size (e.g. IP total length field)
can be a useful piece of information for packet classi-
fication. When classifying according to this property,
a categorization can be done in order to reduce range
lengths. As usually one does not classify packets ac-
cording to a specific length, but rather according to
categories (small, medium, large, etc.), short ranges
can be used to represent multiple categories. For ex-
ample, a recent attack named Tsunami SYN Flood
Attack can be identified based on the size of packets
(about 1000 bytes or more) [44].



• Timestamp and Counters: Recent works suggest
adding packet’s metadata such as hit counters and
timestamps (or time deltas) to classification data path,
for example in OpenFlow switches [5]. It is likely that
classification on such fields would be based on ranges
and not on exact values, and thus RENÉ may be used.

• IP Spoofing Detection: In order to protect against
IP spoofing and attacks that use this technique (e.g.,
DDoS), it was suggested to inspect the IP TTL value
and conclude about possible spoofed packets [25, 40].
The detection is based on the fact that the TTL value
does not change dramatically over short time for the
same host or subnet, and these values can be found
using ping and other tools. Thus, if a packet with IP
from a known subnet comes with a TTL value that
is too far from the expected value, it is classified as
spoofed and dropped.

Since the TTL value is not compared to an exact value,
but rather to a short range, RENÉ can be used in order
to implement IP spoofing detection on classification
hardware with TCAM.

• AS Numbering: BGP routers and SDX [21] some-
times make classification decisions based on autonomous
systems (ASes) numbers. Large ISPs and content providers
usually hold multiple, consecutive AS numbers [14],
which form one or more short ranges. For example,
Comcast has multiple such short ranges 7015-7016,
33489-33491, 33650-33668 (in addition to five more
non-consecutive AS numbers). Grouping AS numbers
to ranges can reduce the total number of classifica-
tion rules, as long as no row expansion is induced.
RENÉ fits this goal as the ranges are short and it in-
duces no row expansion.

4.1 Evaluation and Experiments

4.1.1 Experiment on an OpenFlow Switch
We implemented RENÉ and a sample SDN application

that uses it for packet classification over the Ryu SDN con-
troller [51]. We use a NoviFlow NoviKit 250 hardware switch
that supports OpenFlow 1.3 [39] and has an internal TCAM.
Our code is available at https://github.com/yotamhc/rene.

Classification uses OpenFlow table pipeline in the follow-
ing way: First table, given a destination TCP port for a
packet, writes its translation into RENÉ’s encoding to the
metadata field (using the OpenFlow’s Write-Metadata in-
struction). This table is precomputed on the controller and
contains up to 64K entries - an entry for each port num-
ber. Then, second table matches the packet according to
the metadata only (original port information is not neces-
sary at this stage), and forwards it accordingly.

On the same switch, when a packet is classified based on
only its TCP port, without table pipeline, the total round-
trip time to and from the switch, using a 1Gbps copper
link, is 157µs. Using our table pipeline, such round-trip
takes 161µs. Thus, latency increases by only 2.5%, which is
a negligible factor.

4.1.2 Quantitative Evaluation
To evaluate the quality of RENÉ’s encoding function tcode

we compare it with best prior-art encoding techniques that
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Figure 5: Analysis of the number of TCAM bits
required for a 16-bits range field when representing
all ranges of up to a given length.

can provide no row expansion: DIRPE [27], a database-
independent encoding scheme and LIC [8], a database-dep-

endent encoding scheme. We do not compare RENÉ to
SRGE [10], for example, as it requires row expansion. We
evaluate the database dependent scheme LIC both in its
worst case, where all ranges are to be represented, and us-
ing a commercial classification dataset with 257 range rules.
Since our goal is no expansion of TCAM entries, we compare
the amount of TCAM bits required for a single range field,
such that no expansion is induced whatsoever. Using the
classification database, LIC performs worse than RENÉ on
ranges up to length 32. When the dataset contains much
higher number of ranges, LIC always performs worse than
RENÉ.

Figure 5 shows the bit requirement of each encoding tech-
nique, given the maximal length of encoded ranges, assum-
ing a 16-bits range field. In addition, it shows the lower
bound of max(hmax−1, w) bits (see Theorem 3), as a black,

dotted line. Evidently, RENÉ (blue, solid line) is much
closer to the lower bound than all other techniques. More-
over, the bit requirements for database-dependent techniques
such as LIC [8] are higher by an order of magnitude, when
all ranges up to a certain length should be encoded. The
database-independent technique DIRPE [27] always requires
2w − 1 bits as it does not use the additional information on
the maximal range length.

5. RENÉ FOR NEAREST NEIGHBOR
SEARCH

TCAM is a powerful device with high parallelism that can
also be used for tasks outside of the networking fields. Just
as TCAM has broken the performance limits of packet clas-
sification and IP lookup in networking, it can also be used
to break such computational limits in problems from other
fields, serving as a coprocessor for the CPU, similarly to a
GPU or FPGA. RENÉ can be used to implement on such
TCAM applications that use the nearest-neighbor problem
or its variants. We show several such variants in this section,
and by experiments and simulations we show that RENÉ can
improve their performance by orders of magnitudes.

Multidimensional nearest neighbor search (NN) lies at the



core of many computer science applications. In the space of
integers, the problem is formally defined as follows:

Definition 5. Given a set of data points S = {pi}ni=1,
pi ∈ Zd and a query point q ∈ Zd, The Nearest-Neighbor
Problem is to find the point s∗ = arg mins∈S D(s, q), where
D(s, q) is a distance between s and q.

The NN problem and its variants are utilized in a wide
range of applications, such as spatial search, object recog-
nition, image matching, image segmentation, classification
and detection, to name a few [11,28,42].

When the dimensionality of the points is small, many solu-
tions were proven to be very effective. These include mainly
space partitioning techniques [52]. However, when the num-
ber of the data points is large (in the order of tens of thou-
sands or higher) and the dimensionality is high (in the order
of tens or hundreds), the exact solutions break down and
produce exponential time complexity2 [3,59]. This problem
is widely known as the curse of dimensionality.

To overcome the curse of dimensionality, approximated
nearest neighbor (ANN) solutions are commonly used. In
particular, a c-ANN is a solution where the distance of the
retrieved point from q is at most c times the true distance
from the nearest point. For the ANN problem, probabilistic
dimensionality reduction such as locality sensitive hashing
(LSH) [3] was proven to be useful, with query time sub-
linear in n but linear in d. For very-high dimensional space
this may still pose a problem [36]. Note also that the solu-
tion provided by LSH is correct only with high probability.

In this section we present super high-speed algorithms
for the NN problem using TCAM as a coprocessor, and
our encoding scheme RENÉ. The proposed algorithms solve
the ANN problem with `∞-normed distance using a single
TCAM lookup and linear space.

To the best of our knowledge, using TCAM for nearest
neighbor search has been considered only once, by Shinde
et al. [54] who proposed the TLSH scheme, where a TCAM
device is utilized to implement LSH with a series of TCAM
lookup cycles. Our algorithms, however, are deterministic
and they provide higher throughput with less memory re-
quired on TCAM.

A simpler problem that we will use as a building block in
our algorithms only searches for a neighbor close enough to
the query point, or discovers that there is no such neighbor
at all:

Definition 6. Given a set of points S = {pi}ni=1, pi ∈
Zd, and a query point q ∈ Zd, let d∗ = mins∈S D(s, q). The
r–Near-Neighbor Report Problem is to find the point
s′ ∈ S such that D(s′, q) ≤ r if d∗ ≤ r, and to return false
if d∗ > r.

Note that under `∞, a solution for the r–Near-Neighbor
Report Problem is a data point within the d-dimensional
cube of edge length 2r that is centered in the query point.
Thus, our framework for solving c-ANN can be viewed as
solving (either in parallel or sequentially) a series of r–Near-
Neighbor Report Problem instances for increasing values
of r. As pointed out in [23], this solves the c-Approximate
Nearest Neighbor Problem, where the approximation

2Exact brute-force search works in time that is linear to n
and d, but is very slow for high n and d. Space partitioning
techniques are exponential in d.

Algorithm 3 Encoding Function for a d-Dimensional Point

1: function tcode(p[], d, hmax)
2: word← ε
3: for i← 1 to d do
4: word← word + tcode(p[i], hmax)
5: end for
6: return word
7: end function

Algorithm 4 Encoding Function for a d-Dimensional Cube

1: function tcode(p[], d, h, hmax)
2: word← ε
3: for i← 1 to d do
4: word← word+tcode([p[i]−bh/2c , p[i]+bh/2c], hmax)
5: end for
6: return word
7: end function

ratio is determined by the maximum ratio between consec-
utive values of r.

Using RENÉ’s encoding function tcode , a single ternary
match can determine whether a given d-dimensional point is
inside a given d-dimensional cube: To encode a d-dimensional
point, or a d-dimensional cube, each coordinate is encoded
using the tcode function, and the codewords of all d co-
ordinates are concatenated into a single ternary word. The
encoding functions for a d-dimensional point and for a d-
dimensional cube are shown in Algorithm 3 and in Algo-
rithm 4, respectively.

5.1 Approximate Nearest-Neighbor Search
Our Approximate Nearest-Neighbor Search algorit-

hms solve in fact multiple instances of the r-Near Neigh-
bor Report Problem for increasing values of r. In `∞, the
value of r defines a cube around each data point p such that
for all query points q inside that cube, p is a valid solution of
the r-Near Neighbor Report Problem with q, and for
all query points outside that cube p is not a valid solution.

Our time-efficient method solves the Approximate Nearest-
Neighbor Search in a single TCAM lookup. Given a
set H of edge lengths, let hmax = maxhH. For each point
p ∈ S and h ∈ H we store a TCAM entry representing a d-
dimensional cube centered at p, with edge length h. Entries
are sorted by the value of h: the smaller h is, the higher the
priority of the entry.

Given a query point q ∈ [0, w)d, we use tcode to build a
d-dimensional point representation for maximal edge length
of hmax, and use a single TCAM lookup to find the smallest
cube that contains the point q. The TCAM returns the
highest priority entry that matches, which is the entry of the
cube that is centered at some point p, has the shortest edge
length, and contains q. An example is shown in Figure 6
(left). Note that in general, p is not necessarily the exact
nearest neighbor of q (as there may be more than one such
cube with the same edge length h). However, the distance
(under `∞) of q from its exact nearest neighbor is strictly
more than

⌊
1
2

maxh′∈H{h′ < h}
⌋
. As we will show later,

by carefully choosing the edge length set, we can obtain
a c = 1 + ε approximation factor, where the size of H is
inversely proportional to ε.

In our memory-efficient method, the data points and query
points switch roles: we store in the TCAM a single entry for
each data point. The order of the entries does not matter.
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Figure 6: Illustration of the two alternative algo-
rithms for Nearest Neighbor Search using TCAM.
Left: Encoding nested cubes around each point in
the database. A query is a point in this encoding,
and the result is the smallest cube encompassing
the query point. Right: Encoding cubes around the
query points and the data is encoded as points. A
query is a sequence of nested cubes in increasing
edge length. The result is the first data point that
matches a cube.

Upon a query q, we construct a sequence of |H| cubes cen-
tered in p with edge lengths in H. Then, we perform TCAM
lookups with cubes of increasing edge length values until a
match is found. As in the previous method, if a point was
matched with a query of edge length h, then it is a solution
of the h/2-Near Neighbor Report Problem.

5.1.1 Analysis of Approximation
Let H = {h1, h2, . . . , hmax} such that hi < hj for each

i < j. Matching a data point p corresponding to a cube

with edge length hi implies that D(p, q) ≤
⌊

hi
2

⌋
(where D

is defined under `∞). Since hi is the first edge length to

be matched, D(s∗, q) ≥
⌊

hi−1

2

⌋
+ 1 (s∗ is the exact nearest

neighbor of q). This implies that under `∞, both meth-
ods solve the c-Approximate-Nearest-Neighbor Prob-
lem for c = maxhi∈H

bhi/2c
bhi−1/2c+1

, where hi is the ith small-

est element in H and h1 = 1 ∈ H. 3

In order to get the exact nearest neighbor in `∞, one can
choose H to be the set of odd numbers. Reducing the size of
H reduces the number of required entries, but decreases the
quality of the results. For example, to get a c-approximate
solution, H can consist of all even values up to 2/(c − 1),
along with the values of a geometric series starting at 2/(c−
1), with the parameter c.

When distances are defined under `p norms, for finite val-

ues of p ≥ 1, the approximation ratio is at most c · p
√
d in `p,

where c is the approximation ratio in `∞.

5.1.2 Database Update
Our algorithms allow efficient hot updates in the lookup

database (the set S). Deletion of data points is trivial (sim-
ply delete all corresponding entries from the TCAM). When
using the time-efficient method, efficient addition of new
points is possible by keeping some empty TCAM entries
between entries of different edge length, by adding entries
for the corresponding cubes in these empty slots. Also, one
can track deletion for more empty slots. Nevertheless, this
further increases space requirement.

3 To get a bounded approximation ratio, 1 must be added
to H.

When using the memory-efficient method, the situation is
simpler: since the order of entries is not important, point
addition or deletion requires a single TCAM entry update.

5.2 Exact Nearest-Neighbor Search in `p

Our algorithms achieve p
√
d approximate solution under `p

norm. We suggest the following extension to find (exactly)
the nearest neighbor under `p: For each data point s ∈ S
and for each edge length h ∈ H, we precompute the neigh-
borhood set N (s, h) = {s′ ∈ S | Dp(s, s′) ≤ h p

√
d}, where

Dp is the distance between the two points under the p-norm.
The neighborhood sets are stored in memory. Precomputing
these sets is possible since datasets are relatively static and
the neighborhood sets do not depend on the query points.

Since for every two points, the distance in `p is at most
p
√
d the distance in `∞, we immediately conclude that if the

algorithms described in Section 5.1 return a data point s
for query point q with some distance h ∈ H, then the exact
nearest neighbor in `p of q is in N (s, h).

While this method requires additional computations fol-
lowing the TCAM lookup, in most datasets the number of
points in N (s, h) would be very small. In our experiments
(see Section 5.5) N (s, h) contained only s itself for lower val-
ues of h in most cases and was small even for higher values of
h. Thus, the time required to find the exact nearest neigh-
bor is still much shorter than that required for brute-force
over all points in the database.

The precomputed neighborhood sets can also be used to
find k-nearest neighbors instead of only one. However, the
number of neighbors in these sets might be smaller than k,
so one TCAM lookup might not suffice. To find the set of
k exact nearest neighbors, the lookup process should con-
tinue until k or more neighbors are found, and also until
no more neighbors are found in cubes whose edge length
is equal to that of previous neighbors. This process is for-
mally described in [6, Algorithm 5], assuming a multi-match
technique such as the one presented in [27] is used.

5.3 Algorithms for the Partial Match Problem
The Partial Match Problem is defined as follows:

Definition 7. Given a set of data points S = {pi}ni=1,
pi ∈ Zd, a query point q ∈ Zd, and a subset of the dimen-
sions Dq ⊆ {1, . . . , d} of size dq < d, The Partial Match
Problem is to find the point s∗ = arg mins′∈S D(s′, q)|Dq ,
where D(a, b)|Dq is the distance between a and b under some
norm in the dq-dimensional space. Namely, for a p-norm,

D(a, b)|Dq =

∑
i∈Dq

|ai − bi|p
1/p

.

This problem is useful when some features in the vector
are not important for a specific query or user, and in tradi-
tional computing models it is known to be more difficult [4]
than the nearest neighbor problem, where all relevant di-
mensions are given a-priori. For example, LSH (and its ex-
tension to TCAMs, TLSH [54]) cannot be used to solve this
problem. However, our solution for the NN problem can be
used instantly to solve the partial match problem.

Under the maximum norm `∞, a Partial Match solution
is to replace, in the queries, all the bits corresponding to
coordinates in irrelevant dimensions with * bits. We replace
coordinates in queries and not for data point, as the relevant
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Figure 7: Throughput comparison of the various al-
gorithms for solving the nearest neighbor problem,
as a function of the size of the search database.
Throughput of TCAM-based algorithms is simu-
lated based on 360MHz TCAM throughput. We
denote TLSH with one TCAM lookup per r-Near
Neighbor Report Problem instance as time-efficient,
and TLSH with log(1/ε) TCAM lookups per instance
as space-efficient.

dimensions are selected per query. This technique works
both for our time-efficient and memory-efficient methods.

For `p, our solution results in p
√
dq approximation, where

dq is the dimension of the specific query. The extensions to
exact nearest neighbor search and k–nearest neigh-
bors search, as described in Section 5.2, work also for
this problem. The neighborhood sets are precomputed on
the d-dimensional space, but queries and distance computa-
tions after queries are done on the specific dq dimensional
space. The results are still correct as distances in the dq-
dimensional space are bounded by distances in the d-dimensional
space.

5.4 Geometric Clustering on TCAM
Another closely related problem that could benefit from

using TCAM with RENÉ is high-dimensional geometric clus-
tering. The k-means clustering problem, for example,
is usually solved as a sequence of nearest-neighbor search
problems, each of these consists of a database with k d-
dimensional points [30].

Algorithm [6, Algorithm 6] shows how the traditional k-
means clustering algorithm can be implemented on TCAM
using our encoding function tcode , under `∞ norm. As k
is usually much smaller than the number of points, this so-
lution requires relatively low TCAM space. Still, a standard
TCAM can support up to thousands of clusters using this
algorithm.

5.5 Evaluation and Experimental Results
We evaluate our nearest-neighbor algorithms using an im-

age similarity search application (using GIST [38] descrip-
tors), on a real-life image dataset [50]. We then compare the
results and performance with prior-art solutions. Our eval-

uation is based both on experiments with real-life TCAM
devices and simulations. Each image in the dataset was en-
coded as a GIST vector in R512, downsampled to R40 and
quantified to {0, . . . , 255}40 before performing search. Im-
ages were randomly partitioned to a dataset of 21, 019 im-
ages a query set of 1, 000 images.

5.5.1 Experiment with a TCAM Device
Since there is no evaluation board for such devices, we

used a commodity network switch (Quanta T1048-LB9) that
contains a TCAM for our experiment (similarly to [54]).
This switch has 48 1 Gbps ports, each handling at most
1.5M packets per second. TCAM is used for packet clas-
sification for OpenFlow 1.3. Using the OpenFlow interface
to the switch, we mapped each entry produced by our algo-
rithms to a set of header fields. A commercial traffic gen-
erator injected manually crafted packets that contain the
queries in their headers, where each query is broken into
header fields in the same way TCAM entries are stored.

We verified correctness by counting the number of matches
of each TCAM entry. Using one ingress port the switch
easily achieved a throughput of 1.5M queries per second,
which is the upper bound of the link between the traffic
generator and the switch (but not of the TCAM). Using 24
ingress ports we achieved throughput of 35.69M queries per
second (almost 1.5M × 24). Hence, the bottleneck was not
in the TCAM: If we had more ports we could have reached
much higher throughput.

5.5.2 Simulation Results
We compared our results to the results of brute-force exact

nearest neighbor (using MATLAB or on GPU [18]), locality
sensitive hashing [3,23] (using implementation from [2]), and
TLSH [54]. LSH approximated results in `2 were compara-
ble to our approximated results in `2 only when LSH used
the most complex hash functions, or when used very large
bins. Both options mean longer computation time due to ei-
ther more complex hash computation or much more distance
computations.

Figure 7 presents a comparison of the throughput (queries
per second) of CPU implementations of LSH [2], GPU im-

plementation [18], TLSH [54] simulation, and RENÉ simu-
lation. Each line in the figure presents the throughput of a
single algorithm/implementation, as a function of the num-
ber of data points in the dataset. 4

The required TCAM space for our space efficient method
is 8M bits and for our time efficient method with 10 different
cube sizes is 80M bits, with 440 bits wide entries. These
requirements are available in most modern TCAM devices.
TLSH requires much higher TCAM capacity and much wider
TCAM entries.

6. CONCLUSIONS
While the problem of range encoding on TCAM has been

deeply investigated over recent years, the proven theoreti-
cal limits on the number of bits one must use have diverted
researchers to use row expansion. However, row expansion

4LSH implementations were ran on an Intel Core i7 2600
3.4GHz CPU. We used the same dataset and queries for
our algorithms, LSH and TLSH. TCAM algorithms used 10
different cube sizes. GPU throughput is as reported in [18]
for the closest lower values of n and d.



causes exponential increment in the number of TCAM en-
tries. New applications such as SDN implementations for
load balancing, security tools, and NFV frameworks use
more than a few range fields. Thus, row expansion makes
solutions that use it impractical.

In this paper we introduce the sub-problem of short range
encoding, and we show that the theoretical limits on the
number of required bits can be lowered in this situation.
We present RENÉ: An encoding scheme for short ranges,
and show that it is closer to the lower bound than any other
technique. We then present multiple applications that may
benefit from such short range encoding, in the area of packet
classification. Furthermore, we propose to use TCAM as a
co-processor for solving problems outside of the network-
ing field, such as the nearest neighbor problem and its vari-
ants, which so far has been known to take very long time to
compute. We show that using TCAM, one could solve such
problems in much higher rates than previously suggested so-
lutions, and outperform known lower bounds in traditional
memory models.
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