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Abstract 
This paper presents a method for  localization 

and interpretation of modeled objects thai is general 
enough to cover articulated and other types of con- 
strained models. The flexibility between components 
of the model are expressed as spatial constraints which 
are fused into the pose estimation during the inter- 
pretation process. The constraint fusion assists in 
obtaining a precise and stable pose of each object’s 
component and in finding the correct interpretation. 
The proposed method can handle any constraint (in- 
cluding inequalities) between any number of diflerent 
components of the model. The framework is based on 
Kalman filtering. 

1 Introduction 
Estimating the pose of a 3D object from images or 

other sensed data is a classical problem in computer vi- 
sion. Quite often, a model of the object is known and 
this information is used to estimate the pose of the 
object in the world. This problem is known as model- 
based pose determination and is used in many applica- 
tions such as object recognition, object tracking, robot 
navigation, motion detection, etc. A complementary 
problem to the pose determination problem is the in- 
terpretation problem which deals with the correspon- 
dence between the given sensory data and the model 
features. This correspondence is necessary in localiza- 
tion procedures which are based on local features of 
the model. Both, the positioning and the interpreta- 
tion problems are well documented in the literature 
(for reviews see [15, 161) however, the majority of the 
papers deal with 3D rigid objects and little attention 
has been given to articulated or constrained objects 
(e.g. [3, 5, 10, 121). 

An articulated object is an object composed of a set 
of rigid components connected at  joints which allow 
certain degrees of freedom. These joints can be, for 
example, przsmatic joints which allow relative transla- 
tion between components, or revolute joints which al- 
low relative rotation of the components about a point. 
An example for such an object is a robot arm made 
up of several rigid components connected by movable 
joints. In this case, each model joint enforces a con- 
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straint on the spatial location of the body’s compo- 
nents, thus, the problem of articulated objects is a 
special case of the general study of constrained mod- 
els. We extend the definition of the problem to models 
that include additional general constraints such as co- 
linearity or co-planarity of the model components, an- 
gle relationships, etc, and also include inequality con- 
straints such as a limited range of distances between 
points or a limited range of angles. We call these kind 
of models constrained models. 

Existing methods that deal with constrained ob- 
jects are restricted to deal with articulated models 
(e.g. [3, 5, 10, 121). They deal with constraints that 
are due to prismatic or revolute joints. In this paper 
we present a general framework that can deal with all 
types of spatial constraints which are not limited to 
any particular type. The method solves the interpre- 
tation and the localization problems simultaneously 
where constraints and measurements are considered 
and fused incrementally. Fusion of constraints into 
the pose determination of the components enables the 
information obtained on the pose of any single compo- 
nent to be propagated to all other components through 
the mutual constraints. In this manner, the estimated 
solution takes into account all the existing measure- 
ments and all the defined constraints. In addition, 
the process enables a simple and efficient interpreta- 
tion strategy. The fusion of the constraints and the 
measurements is performed using the Kalman filter. 

We deal here with models consisting of a set of fea- 
ture points, such as maximum curvature, segment end- 
points or corners. The measurements taken on these 
points are noisy. 

2 Formal Description of the Problem 
A constrained model M of a 3 0  object consists 

of a set of rigid components M = {Ci}i=l, .n. Each 
component Ci has its own local coordinate system 
and consists of a set of feature points whose loca- 
tions are: Ci = { L I ~ , , } ~ = ~ , , , ~ ,  . The 3 dimensional 
vector ui,j represents the location of the j t h  point in 
the ith component and is given in the local coordi- 
nate system of Ci. A set of points forming a com- 
ponent is rigid but the collection of components are 
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not rigid. For each component Ci there is an ass+ 
ciated parameter-vector T, representing the position 
of Ci relative to the viewer-centered frame of refer- 
ence. Hence, Ti is a six dimensional vector describing 
the location and the orientation of the local coordi- 
nates system of Ci relative to the viewer coordinates 
system. Since the components are restricted in their 
location due to  flexible joints, the model includes, in 
addition to the representation of each component, a 
set of constraints which describe the mutual relation- 
ships between the components. These constraints are 
of the form: $k(Tp , T, , . . .) = 0. Each constraint may 
involve a single model component, such as a known 
location or a known orientation of the component, or 
several components as in the case of a revolute or pris- 
matic joint between two components, a known dis- 
tance between components, etc. Each constraint is 
expressed by an appropriate equation, for example, 
in an articulated constraint two components, C, and 
C,, are linked at  a rotational point whose location is 
given by up,i in the local coordinates of C,, and by 
U,,, in the local coordinates of C,. In such a case the 
constraint equation will be: Tp(up,i) - Tq(Uq,j)  = 0 , 
where is the transformation function defined by the 
parameters in Ti. 

As previously mentioned, the model may also con- 
sist of inequality constraints of the form I+!J(T,,T,,.. .) 
> 0. Let us assume, for the moment, that the con- 
straints are restricted to equality constraints, and we 
will later describe the direct extension of these con- 
straints to inequality constraints. 

A measurement M' of a constrained object is rep- 
resented by a collection of noise contaminated mea- 
surements and their uncertainties: 

- is a noise-contaminated measurement of the real 
location-vector u:,~ , associated with the j t h  measured 
point of the ith component. Both, and u:,~ are 
represented in a viewer-centered frame of reference. It 
is possible to have more than one measurement for a 
model point. 
Ai>j  - is the covariance matrix depicting the uncer- 
tainty in the sensed vector We do not constrain 
the dimensionality of the measured data but allow it 
to be 3 0  (stereo, range finder, etc.) or 2 0  (ortho- 
graphic or perspective projection). 

A matching (correspondence) between the model M 
and the measurement M' is a set of pairs of the form: 

which represents the correspondence between the 
model points and the measured points. For simplicity 
we mark every model point and its matched measure- 
ment with the same indices. 

The problem : 
Given a model M and a measurement M ' ,  for each 
component Ci, find the measured points that cor- 
respond to its feature points and estimate its loca- 
tion Ti. It is important to note that the solution 
{Ti},=l...n must satisfy the model constraints: 

3 Background and Related Works 
Extensive studies can be found in the literature 

dealing with pose estimation of rigid objects from mea- 
surements, however, little attention has been given to 
pose estimation of articulated or constrained objects. 
Several studies can be found that deal with special 
cases of constrained objects, namely, articulated ob- 
jects having prismatic or revolute joints, most of them 
in the context of recognition ([3, 5, 10, 121). In gen- 
eral, the existing methods dealing with this problem 
can be divided into two main paradigms: 

Divide and conquer methods: 
The basic and naive method is to decompose the ob- 
ject into its parts and to estimate the pose of each 
part separately. Grimson [5] and Shakunaga [13] fol- 
low this paradigm. In [5] the pose estimation of each 
part separately was followed by an assessment of the 
current interpretation of the parts by testing whether 
the parts satisfy the constraints defined between them 
(up to a predefined threshold). Although the simplic- 
ity of this method is attractive, it is obvious that it is 
unsatisfying since it does not exploit the fact that dif- 
ferent components do belong to the same object, thus, 
no mutual information passes between parts and each 
part is located using only its measurements. 

Parametric methods: 
It is possible to eliminate the defined constraints by 
decreasing the number of parameters that describe the 
pose of the object (so that the number of free parame- 
ters equals the degrees of freedom of the object). The 
remaining parameters are estimated during the esti- 
mation process. 

For example, the pose of an articulated object in 2D 
having two components connected by a revolute joint, 
can be described by the translation and the orientation 
of each component (6 parameters) with an additional 
constraint due to the joint between the components 

117 



corumini 
........................... " ................. " 

Figure 1: Two possibilities of parameter sets for 
the pose definition of an articulated object having 
a revolute joint. 

(see Fig. 1). Alternatively, the pose of the object can 
be described by the translation and orientation of one 
of the components and the relative angle to the sec- 
ond component (4 parameters). The latter descrip- 
tion eliminates the need to consider a constraint in 
the estimation process. Lowe [lo] follows this method 
and estimates the free parameters of the viewpoint 
and of the model using Newton iterations. A similar 
method was used by Brooks [4] in the well known sys- 
tem ACRONYM. Mulligan et. al. [12] use the same 
approach for estimating the positions of an excavator's 
arm. The main problem in the method of parameter 
reduction is the need for defining the dependence of 
each measurement on all the free parameters during 
the estimation process. The definition of the depen- 
dence is problematic for two reasons: 
First, the complexity of this definition increases with 
the number of the body's components. Second, in 
most cases, as the number of components of the ob- 
ject is greater, the order of the nonlinearity of the de- 
pendence equations is higher. This results in a more 
complex and less stable solution especially when us- 
ing iterative methods based on linear approximation 
of the nonlinear equations (such as in [lo]). 

4 Constraints Fusion Method 
In the two kind of methods described in the last sec- 

tion there are no direct consideration of constraints in 
the estimation process. Either, the constraints are not 
considered in the divide and conquer methods or they 
are eliminated, by reducing the number of estimated 
parameters, in the parametric methods. The method 
suggested in this paper considers both, measurements 
and constraints, in the estimation process. The pose 
of the object parts is estimated to conform optimally 
with the measurements while satisfying the model con- 
straints. The method we suggest is a general scheme 
which overcomes the drawbacks of the other methods. 

The idea is to treat both measurements and con- 
straints similarly while varying only their associated 

uncertainty. The constraints are considered as perfect 
"measurements" with zero uncertainty whereas the 
measurements themselves (the actual measurements) 
have uncertainty greater than zero. In other words the 
actual measurements are considered soft constraints 
whereas the constraints are considered strong. The 
fusion of the actual measurements and the constraints 
during the pose estimation process is performed using 
the Kalman filter and it is in accord with [l]. In order 
to simplify the explanation of the pose determination 
of general constrained objects, we first elaborate the 
solution in the case where each of the object's com- 
ponent consists of a single model point, and then we 
expand the solution to include multiple-point compo- 
nents. 

5 Constrained Objects Having One 
Point Per Component 

The simplest case of a constrained object is where 
each of its components consists of a single model 
point. In this case the object model is represented 
by: M = {Ck}k=l...n, where each component ck has 
a single model point whose location is uk. Without 
loss of generality, we choose this point to be located 
at  the origin of the local coordinates associated with 
C k ,  i.e: U& = ( O , O ,  0)'. Measurements of the locations 
of the model points are obtained. For simplicity as- 
sume ra measurements are obtained, {(U:, A,)}.= I 1...n,a 
single measurement for each model point, represented 
in the viewer-centered coordinates. Additionally, as- 
sume in this case that the measurements are 3 0  data. 
The latter assumption is due to the inability to induce 
the 3 0  position of an isolated point from a single 2 0  
measurement. The transformation of the k t h  compo- 
nent, Tk, is composed only of the translation vector 
tk = (t,,ty,t,)t since the rotation part is irrelevant 
for an isolated point. Therefore, the general position 
vector, T, to be estimated in such a case consists of 
the translation vectors of all the model components: 
T = (ti ,  t i , .  . . , t;)" Since the model points are lo- 
cated at  the origin of the local coordinates the trans- 
lation vector tk = (z i ,  & zk)' also describes the po- 
sition of the k th  point in the viewer centered frame 
of reference. However, the evaluated estimation must 
satisfy aset  ofconstraints: {$j(T) = O}j=1  . . . r .  For the 
specific case of an articulated object the constraints 
are: 

$j(tkr tl) = l l t l  - tk1I2 - d t k , I )  = 0 

where d(k,,) represents the constant Euclidean distance 
between two adjacent points, Uk and U/, in the object. 
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5.1 Solving the System Using An Incre- 
mental Process of K.F. 

As stated, enforcing the model constraints into the 
pose solution is performed by considering the con- 
straints m additional artificial “measurements” hav- 
ing zero uncertainty. The  zero uncertainty of these 
“measurements” assures that the constraints are sat- 
isfied in the final solution. The estimation process 
is composed of an incremental refinement, fof which 
at  each step IC - 1, there exists an estimate Tk-’ of 
the transformation T and a covariance matrix Fk-’ 
which represents the “quality” of the estimate Tk-l: 
p - 1  = E((Tk-1- T)(TkV1 - T)t} . Given a new 
measurement (which is a real one (ui, Ak)  or a con- 
straint $k(T) = 0) the current estimate is updated 
to  be Tk with an associated uncertainty Ck. The ac- 
curacy of the estimate increases, as additional mea- 
surements are fused, i.e. Ck < Ck-’ (C”l - Ck is 
nonnegative definite). Fusion of a constraint or a real 
measurement into the solution is performed, using the 
ertended Kalman f i l t e r  (E.K.F.) [113 which is a gen- 
eralization of the Kalman filter to  non-linear systems. 
In addition local iterations [ll] are performed in or- 
der to  reduce the influence of the linearization effect on 
the final solution. Detailed explanation with full equa- 
tions about the measurements and constraints fusion 
can be found in [8]. 

The sequential fusion of the measurements is pos- 
sible due to  the assumption that there is no correla- 
tion between the noise of different measurements (i.e. 
cov{ui,u,} = 0 if i # j ) .  The incremental fusion of 
measurements rather than batch fusion (fusing all the 
measurements a t  once) is important since it gives us 
the ability to  easily incorporate a matching (interpre- 
tation) process into the estimation process as will be 
described in the following section. 

In some cases inequality constraints such as g(z) 2 
0 can be appear. Examples of such inequality con- 
straints can be found in articulated models such as 
scissors and robot arms that are limited in the range 
of feasible angles between parts. In such a case we re- 
duce the inequality constraint to equality by adding a 
slack variable. I.e. the inequality g(z) 2 0, is rewrit- 
ten as g(z) - X2 = 0, where X is a new variable that 
is added to the state vector and is estimated during 
the filtering process. The initial a priori uncertainty 
associated with the parameter X is infinite. 

6 The Measurement Interpretation 

space. These techniques regard the correspondence 
problem as a search problem in a graph (Interpretation 
Tree). This graph defines a pairing between the model 
features and the measured features. The basic scheme 
behind these methods is to prune parts of the graph 
which represent impossible pairings. 

Suppose we want to match the measurement 
( i i i ,A, )  with the j t n  model point. From the current 
estimate (Tcur, CCur), we extract an estimate of the 
location u j :  (tj””‘, Cy‘) and evaluate the Mahanalo- 
bis distance between ir‘ and U:: 

6 = (itup 3 - U:)(xjeur + Ai) - l ( iYr  - . 

If 6 is greater than a predefined threshold, the match 
is rejected. The greater the number of measurements 
and constraints fused prior to  the match, the more pre- 
cise is the estimate fy‘ and the elimination of irrele- 
vant measurements is more effective. Therefore, there 
is great importance, in this method, to  the order of 
the points being fused (matched) since before match- 
ing the j t h  model point, we would like the system to 
obtain as much information as possible on the location 
estimate tj so that the match verification is significant. 
Thus, at each step of the process the next point to 
be matched should be one associated with previously 
matched points through constraints, so that previous 
information (measurements and constraints) can be 
exploited. Before trying to  match a measurement to 
a certain point we fuse as many constraints as pos- 
sible associated with this point (and with previously 
matched points). Moreover, we choose the next point 
to be matched as that point having the largest num- 
ber of constraints associated with previously matched 
points. A detailed algorithm for this matching process 
can be found in [ 6 ] .  In the case where a good match 
for the model point U, can not be found due to occlu- 
sion or inability to obtain information about certain 
interest points in the image, we synthesize an artificial 
measurement for the model point and associate it with 
an infinite uncertainty so that its influence on the rest 
of the process will be minimal. This scheme can also 
be helpful when we want to fuse a constraint $k where 
some of its associated points are unavailable. 

7 Multiple-Point Components 
We easily extend the solution for objects having one 

point per component to  objects that have multiple- 
point components. For every Fomponent ck , one must 
estimate the transformation Tk which is composed of 

Using the incremental approach described above we 
adopt the techniques which solve the interpretation 
problem by a pruning search in the correspondence 

a rotation part Rk and a translation part tk.  
The process of evaluating all the transformations 

{Ti} is similar to  the methods previously described 
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Figure 2: Some examples of constrained models including inequality constraints. Four examples are shown, the 
original input (measurements, constraints and model points) are shown above and the solution is shown below. 

for models having a single point per component, how- 
ever the constraints are now associated with compo- 
nents rather than with single points. The information 
obtained from a measurement u k , j  is fused into the 
solution T with the same manner as we fuse mea- 
surements for a rigid object pose estimation. Detailed 
explanation of such a process can be found in [9]. The 
information obtained from a constraint is fused as de- 
scribed in Section 5.1. The order in which the mea- 
surements and constraints are fused follows the line 
given in Section 6 with the following two changes: 
The constraints are now associated with components 
rather than with single points. Additionally, following 
the fusion of the constraints associated with compo- 
nent ck, we find and fuse matched measurements for 
all the feature points belonging to component Ck . The 
matching process applied for the feature points is sim- 
ilar to that for a rigid body, as presented in [9], where 
in our case there is additional a priori information 
about Tk from the previously fused constraints. This 
order of interpretation ensures that prior to fusion of a 
point in any component, all available information from 
neighboring components and mutual constraints have 
been exploited in order to assist in rejecting irrelevant 
matches. 

In the case where every component contains several 
model points, there is no need to restrict the measure- 
ments to be 3D since the pose of the component can 
be estimated from projections (2D measurements) [9]. 

8 Results on Simulated Data 
We applied our method to estimate the pose of a 

2 0  constrained model consisting of single point com- 
ponents. We used the parametric modeler described in 
[7] which we developed based on our techniques. The 

modeler enables the definition of constraint graphs 
and the constrained models in Figure 2 were created 
using this software. In the figures, model points are 
shown as full circles and measurements are described 
as rectangles positioned at  the measurement location 
and having width and length proportional to the s.t.d. 
of the measurement. A fixed-location distance con- 
straint is visualized by a line segment with one end- 
point at  the fixed location and the other connected to 
the constrained point (see constraint ’a’ in bl) .  An 
inter-point distance constraint is visualized by a line 
segment connecting the constrained points (constraint 
’b’ in b l ) .  A three points  co-linearity constraint is 
shown by a fixed length line segment connected on 
both its ends and its middle to the constrained points 
(constraint ’c’ in a l ) .  A point on right of line con- 
straint (inequality constraint) is shown by an arrow- 
headed line segment connected to a model point (con- 
straint ’d’ in b l )  and a point on line constraint is 
shown by a double arrow-headed line connected to a 
model point (constraint ’e’ in a l ) .  The connections 
between constraints and associated model points, are 
marked by dashed lines. Figure 2 shows four complex 
examples which include inequality constraints. As can 
be seen, the solutions conserve the model constraints. 
Further examples with various initial guesses and dif- 
ferent measurements can be found in [6]. It is also 
shown there that the simulated results obtained by 
the suggested method indeed correspond to the mini- 
mum variance solutions. 

9 Results on Real Image Data 
We applied our method to estimate the position of a 

real articulated 3D object from 2D images. The artic- 
ulated model used, is a desk lamp shown in Figure 4, 
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Figure 3: A schematic diagram of a lamp model 
having 23 points. 

Real 81 
Values 82 

Const. O2 
With O1 

Const. I O2 

NO el 

Figure 4: a-b) Images of a desk lamp a t  different posi- 
tions. c-d) The corresponding result shown as a synthetic 
image created from the estimated location vector. 

having 5 degrees of freedom. We consider the lamp 
model as a 23-point model (as shown in Figure 3) and 
we included the following constraints into the model: 

0 constant distance constraints between couples of 
points in the model (e.g. points 10 and 12). 

0 parallel constraints between 2 pairs of points (be- 
tween points 2 and 7 and points 4 and 6). 

0 co-planar constraints between 4 or more points 
(points 10,12,13 and 9 are constrained to be CO- 

planar). 

Measurements of the 3D location of the points and the 
measurement uncertainty were obtained from stereo 
image pairs. This data is noisy due to digitization, 

17.0 12.0 14.0 26.0 
61.0 103.0 84.0 56.0 

58.4 104.6 80.2 53.4 
16.5 12.3 14.1 25.8 
60.8 104.2 84.7 57.4 

20.2 13.6 13.7 29.3 

inconsistent lighting and imprecise feature matching. 
The uncertainty due to noise were modeled according 
to the auto-correlation of the image features [14]. We 
estimated the pose of the lamp components from the 
noisy 3D measurements and from the constraints using 
our technique. The evaluated vector is a 23 . 3  dimen- 
sional location vector composed of the 23 locations of 
the model points. Figures 4a and 4b show 2 examples 
of lamp images having 2 different positions. Figures 4c 
and 4d show the corresponding results as synthetic im- 
ages created from the estimated location vector. As 
can be seen, there is high correlation between the real 
model location and the synthesized reconstruction. 

Additionally, the angles 81 and 8 2  (shown in Fig- 
ure 3) were physically measured in several positions of 
the lamp. These values were also extracted from the 
pose estimate obtained with our method. The real 
values and the constructed values for four typical ex- 
amples are compared in the following table: 

I pose A I Pose B 1 Pose C I pose D I 

The table values show the improvement in the recon- 
structed angle values when the fusion includes the con- 
straints. The difference between the real angle values 
and the reconstructed values decreases when the con- 
straints are fused. The s.t.d of these differences is 2.60 
for the reconstruction without fusing the constraints 
and 0.73 for the reconstruction with constraint fusion. 

The importance of propagating the pose informa- 
tion of each component to its neighboring components, 
is shown in Figures 5 and 6. Figure 5 shows several 
views of a synthesized lamp reconstructed only from 
the 3D measurements taken on the lamp shown in Fig- 
ure 4b. Figure 6 shows the same views after mutual 
information was propagated between the components 
through the constraints. The improvement is signifi- 
cant, as demonstrated. 

9.1 Interpretation Results 
Figure 7 shows a limited part of the interpretation 

tree (I.T.) which is constructed for the desk lamp in- 
terpretation. This I.T. is used for the matching pro- 
cess as described in Section 6. Each node on the kth 
level of this I.T. represents a possible matching be- 
tween the kth model point, as numbered in Figure 
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3, and some particular measured point. The measure- 
ments are numbered according to their real correspon- 
dence (i.e. the true match of the kth measured point 
is the kth model point). The score of each match is 
shown at  the appropriate node where the value is the 
Mahalanobis distance 6 calculated using the formula 
given in Section 6. For each level in the I.T. we show 
the three best scored nodes. The model constraints 
are fused during the parsing of the I.T. as described by 
the algorithm in Section 6. The distance constraints 
between model points k and j (denoted by d i s t ( k , j ) )  
are shown in the figure at  the level at  which they are 
fused. As can be seen the score of the correct matches 
are significantly lower than the erroneous matches. 

10 Conclusion 
This paper presented a framework based on Kalman 

filtering for model based pose estimation and interpre- 
tation that is general enough to cover articulated and 
other types of non-rigidly constrained models. The 
constraints are general and can be associated with any 
number of different parts of the model. The validity 
of the framework was shown on real and simulated 
images. 

The suggested method has several advantages over 
existing methods: 

In any pose estimation method, exploiting the in- 
formation supplied by the measurement requires 
a definition of the functional dependence between 
the measurement and the estimated parameters. 
In the parametric methods (Section 3), this de- 
pendence is not simple since it must include all 
the parameters on which the measurement de- 
pends. Additionally, the order of the nonlinearity 
of the dependence equations increases with the 
number of parameters. In our method, the func- 
tional dependence includes only the local param- 
eters (i.e. only the parameters that define the 
transformation of the measured component) since 
the dependence of the measurement on other pa- 
rameters is expressed through the constraints of 
the model. This local dependence is simply de- 
fined and is not as highly nonlinear as obtained by 
the parametric methods. Additionally, there is no 
need to reduce the constrained parameter space 
into a set of free parameters (a is performed in 
the parametric methods), thus the definition of 
the set of parameters to be estimated, is simple. 

The information obtained on the position of a 
given component is propagated to all other com- 
ponents of the model through the constraints be- 

tween them. Thus the estimated pose of a certain 
component takes into consideration 4 the exist- 
ing measurements and all the defined constraints 
(this is not true in the divide and conquer meth- 
ods). 

The proposed scheme enables an efficient simul- 
taneous matching procedure which allows incre- 
mental fusion of additional matches that improve 
the pose estimation and the search complexity in 
the I.T. 

The existing methods of pose estimation of con- 
strained models, deal with articulated objects and 
with constraints that are due to prismatic or rev- 
olute joints between the model components. In 
our method we are not limited to any type of con- 
straints and can deal with all types of constraints 
including inequalities. 

There are computational aspects that were not cov- 
ered in this paper such as methods to stabilize the 
convergence, parallelezation technique and methods to 
speed up the computation and to reduce the time com- 
plexity using Optimal Smoothing. This techniques is 
described in [6]. 

This framework can be easily extended to handle 
flexible models made of elastic materials. This exten- 
sion can be done by associating non-zero uncertainty 
with the artificial “measurements” produced from the 
constraints. 
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Figure 5: Several views of a synthesized lamp reconstructed from the 3D measurements only. 

Figure 6: Several views of a synthesized lamp reconstructed from the 3D measurements and the model constraints. 
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model-point 1: 

model-point 2: 

Figure 7: Results of the matching algorithm for the lamp 
model. A section of the pruned interpretation tree is dis- 
played. Every level of the tree corresponds to  one model point, 
and each node at a particular level corresponds to  a possible 
match between the model point and a measured point. The 
score of each match is shown at the node where the value is 
the Mahalanobis distance of this match. For each level in the 
interpretation tree the three best scored nodes are shown. The 
distance constraints (denoted by dist(k, j)) are shown at the 
level a t  which they are fused. 
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