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Abstract

Many natural shapes are chiral (or handed). Our hands, for example, have a right-
hand version and a left-hand version, the two types being mirror images of each other.
Molecules are also classi�ed according to their chirality, which determines their chem-
ical characteristics. Glucose, for example, is sweet only in one chirality, while it is
tasteless in the other.

The notion of chirality for two dimensional binary shapes is studied, and scales for
quantitative assessment of the degree of shape-chirality are developed. The chirality
measures are based on boundary analysis, and perfom well on shapes with natural
variations, scaling di�erences or digitization errors. The measures can also be used
with partially occluded shapes, and provide indications on the change of chirality as
resolution changes.

1 Introduction

A planar object is chiral in 2D if and only if it does not have a symmetry axis in the 2D

plane. A right hand will never be similar to a left hand unless we look at one of them through

a mirror. Thus, the set of all human hands can be divided into two classes, each having its

own speci�c chirality.

Not only body parts have right or left handedness. This property, chirality, exists almost

everywhere. Chirality has special signi�cance in the study of elementary particles [3] whose
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chirality is due to their spin. Similarly, molecules can appear in two possible con�gura-

tions, called D (dextro) chirality and L (levo) chirality [6], each having di�erent chemical

characteristics. For instance, glucose of D-chirality is sweet, whereas glucose of L-chirality

is tasteless. The �rst to observe the importance of chirality in chemistry were the French

chemists Louis Pasteur (1822-1895) and Jean Baptiste Biot (1774-1862) who determined the

connection between the chirality of crystals and the de
ection of the plane of polarization

light passing through them [2].

The goal of our work is to examine a set of two dimensional shapes, and conclude whether

the objects in the set are chiral. Once shapes are found to be chiral, we would like to classify

them according to chirality class. Theoretically, it is enough to check whether an object has

a re
ective symmetry, because chirality is a form of asymmetry. However, almost no real

object is exactly symmetric (especially after digitization), and therefore we must determine

whether the lack of symmetry is a dominant characteristic of the object.

Figure 1 exhibits some intuitive properties of this analysis. Shape A1 is symmetric

and non-chiral since its mirror image, A2, can be superimposed on it after translation and

rotation. Shape B1, which is obtained by shortening one arm of A1, is chiral. Shape C1, with

an even shorter arm, is chiral to a greater degree than B1. Shortening the arm completely

to produce the straight line D1 results in a symmetric shape again. This paper develops a

method which quanti�es chirality, and could compute by how much is shape C1 more chiral

than shape B1.

2 Basic De�nitions

2.1 Chirality

Let K be a set of points in <2, and let R`(K) be the set formed after re
ecting K about

the line ` in <2. K will be called chiral if and only if R`(K) 6= K for all `. Put simply, K

is chiral if and only if it can not be superimposed on its mirror image. It can be shown that

if K is not chiral then the line `, which satis�es R`(K) = K, passes through the centroid of

K.

Let K be a chiral set, and let R`(K) = K̂, that is K̂ is the mirror image of K. K and K̂

are called enantiomers and cannot be superimposed on each other.
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Figure 1: The shapes in the right column are mirror images of the shapes
in the left column. Shape A1 is non-chiral, since it can be superimposed
on its mirror image,A2, using only translations and rotations. B1 is chiral,
C1 even more chiral and D1 is symmetric.

2.2 Symmetry

� K is symmetric if and only if there exists an isometry (a distance preserving trans-

formation) which is not the identity, that transforms K onto itself. Therefore, a set

which is not chiral is symmetric.

� K is asymmetric if and only if there is no isometry that transforms K onto itself.

� K is dissymmetric if and only if there is no re
ection that transforms K onto itself.

Note: A set is chiral if and only if it is asymmetric or at least dissymmetric. There are

shapes, like the shape of the letter Z, that are symmetric, dissymmetric and chiral.
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3 Chirality Measures

Implementing the mathematical de�nition of chirality is not practical since most natural

shapes are not exactly symmetric, and even shapes with exact symmetry will lose this prop-

erty after digitization. We have tried to quantify chirality using moment invariants [5] and

the correlation between a shape and its mirror image, but have found such measures to be

too sensitive to noise and to variations caused by digitization. Furthermore, such analysis

could not distinguish between enantiomers. Another possible approach is to decompose the

image into a sum of chiral basis functions, like the polar Fourier transform presented by

Big�un and Granlund [1]. We have tried such an approach, and found it also to be sensitive

to small and irrelevant variations. Furthermore, the conversion into polar coordinates of a

grid-sampled image introduced additional inaccuracies.

We have found a chirality measure based on rotational features of the body to be the

most practical. As clockwise rotation of an object is identical to counterclockwise rotation

of its mirror image, non-chiral objects, which are identical to their mirror-image, will exhibit

indi�erence to the direction of rotation. Chiral objects, on the other hand, will behave

di�erently for the two directions of rotation.

In our scheme we use the following idea. Imagine the object as rotating in a medium full

of tiny particles. Some boundary segments will \collect" particles, and pull them towards

the axis of rotation. We will use the length of these segments as a feature for chirality

analysis. A spiral as shown in Figure 2, for example, will have no \collecting" points when

rotating clockwise. Its leading edge will push particles away from the axis of rotation. In

counter-clockwise rotation, however, the leading edge of the spiral will be \collecting", and

pulling particles towards the axis of rotation. We will initially analyze rotations around the

centroid, but eventually will use other points. The choice of the center of rotation will be

discussed later in this paper.

3.1 Boundary Based Measures

Let K be the set of points (pixels) of a simply connected 2D object. Let E = feig
n

i=1 be the

set of edge pixels of K, E � K. The edge pixels feig are ordered by following the border

[9] in the direction such that the object is always on the right as in Figure 3.
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Figure 2: In clockwise rotation, particles will be pushed away
from the center of the spiral. In counter-clockwise rotation, par-
ticles will be \collected", or pulled in, by all points on the leading
edge of the spiral.
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Figure 3: Illustration of the de�nitions on boundary pixels.

For a boundary pixel ei and an axis of rotation O we de�ne the following:

� ~ri : the vector from O to ei.

� di : the length of ~ri.

� �i : the angle between ~ri and the x-axis, represented in the range �� < �i � �.

� �di : d(i+1)modn � di.

� ��i : �(i+1)modn � �i. This is the angle (ei; O; ei+1), represented in the range �� <

��i � �.
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Figure 3 illustrates some of these de�nitions. When dealing with noisy images, the following

averages can be used: �di = (di+1 � di�1)=2 and ��i = (�i+1 � �i�1)=2 .

A boundary segment between ei and ei+1 will encounter particles upon clockwise rotation,

only if �di < 0 (Figures 4.C, 4.D). It will encounter particles in counter-clockwise rotation

if �di > 0 (Figures 4.A, 4.B). Particles encountered by a leading edge will be pushed away

unless the edge pulls them in when ��i > 0 (Figures 4.A, 4.C).
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Figure 4: Properties of edge segments in rotation.
A, B) Edge segments encountering particles in counter-clockwise rotation.
C, D) Edge segments encountering particles in clockwise rotation.
A) Edge segments encountering and grasping particles in counter-
clockwise rotation (LGP).
C) Edge segments encountering and grasping particles in clockwise rota-
tion (RGP).

Denote the subsets of edge segments E that collect particles upon clockwise and counter-

clockwise rotation by RGP (right-grasp-pixels) and LGP (left-grasp-pixels), respectively.

RGP or LGP are de�ned as follows, and illustrated in Figure 4.

LGP = feij��i > 0 ; �di > 0g (1)

RGP = feij��i > 0 ; �di < 0g :
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Note that RGP \ LGP = �, and LGP [ RGP � E. In practice we do not use only the

signs of ��i and �di as in De�nition (1), since the sign can be very unstable for values near

zero. Therefore, thresholds "1 and "2 are chosen to give the following de�nition:

LGP = feij��i > "1=di ; �di > "2g (2)

RGP = feij��i > "1=di ; �di < "2g :

As a chirality measure we then use the normalized di�erence

Z =
jLGP j � jRGP j

jEj
; (3)

where jLGP j represents the number of pixels in the set LGP. The normalization by the

number of edge points jEj makes the chirality measure independent of object size, but

dependent on the ratio of grasp-pixels to edge-pixels. The measure Z has the following

properties:

1. If left and right rotations have the same number of grasp pixels then Z = 0.

2. As the absolute value of Z increases, so does the degree of chirality of the analyzed

object.

3. The sign of Z is an indicator for the absolute con�guration. Z > 0 indicates left-

handed chirality (more particles are collected upon a left hand rotation than upon a

right hand rotation). Z < 0 indicates right handed chirality.

In order to further re�ne the chirality measurement we use the paradigm of torque, which

is force multiplied by the distance from the axis. Following this paradigm we get a slightly

di�erent chirality measure. Let

L =
1

dmax

X

i2LGP

di ;

and

R =
1

dmax

X

i2RGP

di :
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Figure 5: Application of the two rotational chirality measures on sev-
eral shapes. The thick edges represent RGP pixels and the double edges
represent LGP pixels. The computed measures are summarized below.
object Measure (3) Measure (4) object Measure (3) Measure (4)

A1 0.02 0.88 C1 -0.04 -0.25
A2 -0.02 -0.80 C2 -0.01 0.23
B1 0.26 0.94 D1 0.10 0.97
B2 -0.27 -0.97 D2 -0.16 -1.00

8



To avoid scale e�ects, dmax, the maximal value of di, is taken as a normalization param-

eter. The chirality measure will be de�ned as

Z 0 =
L �R

L +R
: (4)

This measure is analogous to the total normalized torque that is exerted on the axis by the

collected particles. Figure 5 shows measures (3) and (4) applied to several shapes, when

the centroid is used as the axis of rotation. Note that the shape in Figure 5.c is chiral, but

since jLGP j = jRGP j Measure (3) fails to �nd its chirality, while Measure (4) succeeds. By

applying Measure (3) to the shapes of Figure 1, we obtain the predicted results which are

shown in Figure 6. In Figure 6, shapes (a) and (d) are not chiral, and indeed have minimum

chirality measure. Shapes (b) and (c) are both chiral, and (c) is more chiral than (b). These

properties re also re
ected in the computed measurements.

Figure 6: Application of Measure (3) to the shapes of Figure 1. Rotation
is around the centroid. The computed measures are summarized in the
table below.

object Measure (3) object Measure (3)

a -0.001584 c -0.006369
b -0.005445 d 0.0
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4 Center of Chirality

Any chirality measure depends on the choice of the axis of rotation. The centroid has initially

been used as an axis of rotation, but this choice can be misleading in some cases, especially

for partially occluded shapes. Even for spirals the centroid is not the center of the spiral, as

shown in Figure 7. We therefore de�ne the following: the center of chirality is a point that

maximizes the rotational chirality measure (the absolute values of Measure (3)) when used

as a rotation axis. Figure 7 shows the center of chirality for two shapes. It �nds the correct

center of the spiral, as well as the correct center of another partially occluded shape. The

stability of the center of chirality in the cases of partially occluded shapes is an important

feature, as it is hard to assure that all analyzed shapes will be entirely visible.

Figure 7: The center of chirality (right) and centroid (left) of two shapes.
For spirals (bottom) the center of chirality better corresponds to the center
of the spiral than the centroid.
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Computing the center of chirality for an image involves the computation of chirality

measure many times, each time with another pixel as the rotation axis, and then choosing the

pixel which maximizes this measure. In order to reduce this high computational complexity

and to avoid computing the chirality measure around every point of the image, several

heuristics can be used. We could, for example, start searching for the maximal chirality

at the centroid, examine a small neighborhood of the current location, and move on to the

pixel of highest chirality in this neighborhood. This iterative search will stop when a point

has higher chirality measure than all its neighbors. Simulated Annealing [7] can be used to

prevent stopping at local maxima, but is not computationally e�cient. A faster method to

reach the center of chirality uses a multiresolution search.

4.1 Multiresolution Search

De�ne a pyramid [8] as a sequence of reduced resolution images. The lowest level of the

pyramid, L0, will be the original image whose side length is 2N . L1 will be a reduced image,

having a side length of 2N�1 , etc. There are several methods for reducing Li to Li+1; the

simplest is when every pixel of Li+1 is an average of a 2�2 block in Li. For binary shapes as

discussed in this paper, a pixel of Li+1 will get the majority value of the relevant 2� 2 block

in Li. The pyramid, multiresolution structure can be used to speed up the computation and

to measure resolution-dependent chirality information.

The computation of the center of chirality in the pyramid is very fast. We start by

computing the center of chirality at a small image using exhaustive search. This is fast,

as the small image has only a small number of pixels. Let ei be the center of chirality at

pyramid level i. The center of chirality at level i� 1 can now be computed by projecting ei

into level Li�1, and searching for maximum chirality only in a small neighborhood around

this projection. This speed-up is correct when details added between levels Li and Li�1

change the location of the center of chirality only by a limited distance.

Computing the chirality measure at all resolution levels not only speeds up computation,

but reveals additional information on the shape under consideration. The chirality at lower

resolution levels describes a feature of the general shape, while chirality at higher resolution

levels incorporates the features of the �ne details. When the chirality of the �ne details

di�ers from the chirality of the general shape, the chirality measure can change drastically

with resolution as shown in Figure 8.a .

The pyramid can also help in the analysis of non-connected objects. The rotational
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chirality measures works only on simply connected objects. When fragmented objects are

analyzed, the reduction of resolution can yield connected objects at lower resolution level,

where analysis is possible. Figure 8.b shows the analysis of non-connected object at lower

resolution.

Figure 8: Multiresolution Chirality Analysis. a) Di�erent chirality for
general shape at low resolution and details at high resolution. b) Non-
connected object that becomes connected at lower resolution level.

5 Chemistry Application

Chirality has special signi�cance in the study of chemistry and in particular in �eld of

surface science, which deals with adsorbed molecules. A 3D mulecule loses one degree of

freedom when adsorbed onto a surface; therefore it can be treated as a 2D object, and the

conditions for chirality are signi�cantly relaxed. It should be noted that chirality is by far

more common in the adsorbed (2D) state, compared to the bulk (3D) state. Consider for

example n-butane (Figure 9.1-2). This is a non-chiral molecule in 3D, yet when adsorbed it

becomes chiral. We have applied our chirality measure to some 2D molecules represented by

a sticks representation, with results presented in Figure 9.
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Figure 9: The molecules' skeleton structures analyzed using Measure (4) (see
table below). The rotation centers are chosen to be the centroids, and are
indicated by crosses.

No. molecule Measure (4) No. Molecule measure (4)

1 R-n-butane +0:98 5 2-methylhexane �0:06
2 S-n-butane �0:98 6 3-ethylpentane �0:96
3 propane �0:05 7 3-methylhexane +0:43
4 n-hexane +0:36 8 2-methylbutane �0:48

The rotational chirality measure helped us to develop a new sense of chirality called

dynamic chirality, which is described in [4]. Although not stated explicitly, the concept of

chirality is a static concept; a molecule is judged to be chiral or non-chiral based on its static

shape. This static concept collapses if one substitutes the static picture with a dynamic one.

Moreover, a moving object can be chiral even if its static shape is non-chiral. A rotating

molecule will therefore be judged to be dynamic-chiral or not by applying the measure with

the origin at the center of rotation of the molecule. Figure 10 demonstrates how dynamic

chirality is determined by the choice of rotational center. This chirality map shows the degree

of chirality as a function of the rotation axis.
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Figure 10: A grey-level map of the degree of chirality as a function of location
of the rotation axis. White represents highest positive chirality value, and
black represents lowest negative chirality values. The chirality was computed
according to measure (4).

6 Concluding Remarks

A measure based on rotational features of two dimensional objects has been suggested for

chirality analysis of binary simply-connected shapes. This measure is robust, and is immune

to insigni�cant deviation and some occlusions.
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