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Linear-Time Subspace Clustering
via Bipartite Graph Modeling

Amir Adler, Michael Elad, Fellow, IEEE, and Yacov Hel-Or

Abstract— We present a linear-time subspace clustering
approach that combines sparse representations and bipartite
graph modeling. The signals are modeled as drawn from a union
of low-dimensional subspaces, and each signal is represented by
a sparse combination of basis elements, termed atoms, which
form the columns of a dictionary matrix. The sparse repre-
sentation coefficients are arranged in a sparse affinity matrix,
which defines a bipartite graph of two disjoint sets: 1) atoms
and 2) signals. Subspace clustering is obtained by applying
low-complexity spectral bipartite graph clustering that exploits
the small number of atoms for complexity reduction. The
complexity of the proposed approach is linear in the number
of signals, thus it can rapidly cluster very large data collections.
Performance evaluation of face clustering and temporal video
segmentation demonstrates comparable clustering accuracies to
state-of-the-art at a significantly lower computational load.

Index Terms— Bipartite graph, dictionary, face clustering,
sparse representation, subspace clustering, temporal video
segmentation.

I. INTRODUCTION

D IMENSIONALITY reduction is a powerful tool for
processing high-dimensional data, such as video,

image, audio, and biomedical signals. The simplest of such
techniques is probably principal component analysis (PCA)
that models the data as spanned by a single low-dimensional
subspace; however, in many cases, a union-of-subspaces
model can more accurately represent the data: for example,
Vidal et al. [1] proposed to generalize PCA to identify
multiple subspaces for computer vision applications,
Ho et al. [2] proposed to generalize k-means to cluster
facial images, and Lu and Do [3] proposed efficient
sampling techniques for practical signal types that emerge
from a union-of-subspaces model. Subspace clustering is
the problem of clustering a collection of signals drawn
from a union of subspaces, according to their spanning
subspaces. Subspace clustering algorithms can be divided
into four approaches: 1) statistical; 2) algebraic; 3) iterative;
and 4) spectral clustering based; see [4] for a review.
State-of-the-art approaches, such as sparse subspace cluster-
ing (SSC) [5], [6], low-rank representation (LRR) [7], [8], and
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low-rank subspace clustering (LR-SC) [9], are spectral-
clustering based. These methods provide excellent
performance, however, their complexity limits the size
of the data sets to ≈104 signals. K -subspaces [2] is a
generalization of the K -means algorithm to subspace
clustering that can handle large data sets. However, it requires
explicit knowledge of the dimensions of all subspaces and
its performance is inferior compared with state-of-the-art.
In this paper, we address the problem of applying subspace
clustering to very large data collections. This problem is
important due to the following reasons.

1) Existing subspace clustering tasks are required to handle
the ever-increasing amounts of data, such as image and
video streams.

2) Subspace-clustering-based solutions could be applied to
applications that traditionally could not employ subspace
clustering and require large data processing.

In the following, we formulate the subspace clustering prob-
lem, review previous works based on sparse and low-rank
modeling, and highlight the properties of our approach.

A. Problem Formulation

Let Y ∈ R
N×L be a collection of L signals {yl ∈ R

N }L
l=1,

drawn from a union of K > 1 linear subspaces {Si }K
i=1. The

bases of the subspaces are {Bi ∈ R
N×di }K

i=1 and {di }K
i=1

are their dimensions. The task of subspace clustering is to
cluster the signals according to their subspaces. The number
of subspaces K is either assumed known or estimated during
the clustering process. The difficulty of the problem depends
on the following parameters.

1) Subspaces Separation: The subspaces may be indepen-
dent (as defined in Appendix A) or disjoint, or some
of them may have a nontrivial intersection, which is
considered as the most difficult case.

2) Signal Quality: The collection of signals Y may be
corrupted by noise, missing entries, or outliers, thus
distorting the true subspaces structure.

3) Model Accuracy: The union-of-subspaces model is often
only an approximation of a more complex and unknown
data generation model, and the magnitude of the error
it induces affects the overall performance.

B. Prior Art: Sparse and Low Rank Modeling

SSC and LRR reveal the relations among signals by finding
a self-expressive representation matrix W ∈ R

L×L such that
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Y � YW and obtain subspace clustering by applying spectral
clustering [10] to the graph induced by W. SSC forces W to be
sparse by solving the following set of optimization problems,
for the case of signals contaminated by noise with standard
deviation ε in [5, Sec. 3.3]:
min
wi

‖wi‖1 s.t. ‖Yî wi − yi‖2 ≤ ε (for i = 1, . . . , L) (1)

where wi ∈ R
L−1 is the sparse representation vector, yi is

the ith signal, and Yî is the signal matrix Y excluding the
ith signal. By inserting a zero at the ith entry of wi and
augmenting the dimension of wi to L, the vector ŵi ∈ R

L

is obtained, which defines the ith column of W ∈ R
L×L , such

that diag(W) = 0. For the case of signals with sparse outlying
entries, SSC forces W to be sparse by solving the following
optimization problem:
min
W,E

‖W‖1 + λ ‖E‖1 s.t. Y = YW + E and diag(W) = 0

(2)

where E is a sparse matrix representing the sparse errors
in the data and λ > 0. LRR forces W to be low rank
by minimizing its nuclear norm (sum of singular values)
and solves the following optimization problem for clustering
signals contaminated by noise and outliers:

min
W,E

‖W‖∗ + λ ‖E‖2,1 s.t. Y = YW + E. (3)

SSC was reported to outperform agglomerative lossy
compression [11] and RANdom SAample Consensus, [12],
whereas LRR was reported to outperform local subspace
affinity [13] and generalized-PCA [1]. LRR and SSC provide
excellent performances; however, they are restricted to rela-
tively moderate-sized data sets due the following reasons.

1) Polynomial complexity affinity calculation—SSC solves
L sparse coding problems with a dictionary of L − 1
columns, leading to an approximate complexity
of O(L2). The complexity of LRR is higher as its
augmented Lagrangian-based solution involves repeated
Singular Value Decomposition (SVD), computations of
an L × L matrix during the convergence to W , leading
to complexity of O(L3) multiplied by the number of
iterations (which can exceed 100).

2) Polynomial complexity spectral clustering—Both LRR
and SSC require eigenvalue decomposition (EVD) of
an L × L Laplacian matrix, leading to polynomial
complexity of the spectral clustering stage.1 In addition,
the memory space required to store the entries of the
graph Laplacian is O(L2), which becomes prohibitively
large for L � 1.

In addition, whenever the entire data set is contaminated by
noise, both LRR and SSC suffer from degraded performance
since each signal in Y is represented by a linear combination of
other noisy signals. LR-SC [9] provides closed-form solutions
for noisy data and iterative algorithms for data with outliers.
LR-SC provides solutions for noisy data by introducing the

1Note that a full EVD of the Laplacian has a complexity of O(L3); however,
a complexity of O(L2) is required for computing only several eigenvectors.

clean data matrix Q and solving relaxations of the following
problem:

min
W,E,Q

‖W‖∗ + λ ‖E‖F s.t. Q = QW and Y = Q + E. (4)

Note that the computational load of the spectral clustering
stage remains the same as that of LRR and SSC since
the dimensions of the affinity matrix remains L × L. The
clustering accuracy of LR-SC was reported as comparable
with SSC and LRR, while better than agglomerative lossy
compression [11], local subspace affinity [13], and shape
interaction matrix [14]. A fast version of LR-SC was proposed
in [15] that achieves a complexity of O(L log(L)) by utilizing
a partial SVD to approximate the solution of LR-SC and
by employing locality sensitive hashing to construct a sparse
affinity matrix. A scalable version of SSC was proposed in [16]
that employs four main steps: sampling, clustering, coding,
and classifying. The first two steps select a small number of
data points as in-sample data and perform SSC over it. The
latter steps encode out-of-sample data as a linear combination
of in-sample data and assign the out-of-sample data points to
the subspace clusters by classification.

Sprechmann and Sapiro [17] proposed a Lloyd-type
algorithm that alternates between learning a set of K
subdictionaries (for K data classes) and an assignment of each
signal to the best subdictionary that represents it. This method
differs from the proposed approach in three aspects.

1) It employs either standard spectral clustering or recur-
sive graph clustering for the subdictionaries’ initializa-
tion stage.

2) It performs jointly the task of dictionary learning and
clustering.

3) The number of atoms used in [17] is an order of
magnitude higher than that used in the proposed
approach.

The complexity of this approach is approximately an order
of magnitude higher than that of the proposed approach,
mostly due to the signals’ classification stage that occurs in
each stage of the subdictionaries learning. Probabilistic Sparse
Subsapce Clustering (PSSC) [18] proposed a dictionary-based
approach, which employs a probabilistic mixture model to
compute signals likelihoods and obtains subspace clustering
using a maximum-likelihood rule. PSSC treats the sparse
representations matrix as a cooccurrence matrix of atoms
and signals, and decomposes the cooccurrence matrix into
the product of two probability matrices: the first is the joint
probabilities of atoms and subspaces and the second is the
likelihood probabilities of each signal for the given each
subspace. The key differences between the proposed approach
and PSSC are the following.

1) The sparse representation matrix is utilized by
the proposed approach to define a bipartite
graph.

2) Subspace clustering is obtained by a spectral
bipartite graph clustering approach. PSSC offers
linear-time complexity; however, its performance is
inferior to the proposed approach in low signal-to-noise
ratios (SNRs) and real-life datasets.
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C. Paper Contributions

This paper presents a new spectral clustering-based
approach that is built on sparsely representing the given signals
using a dictionary, which is either learned or known a priori.2

The matrix of sparse representations is used to construct
the affinity matrix of a bipartite graph, which is segmented
by a linear-time spectral bipartite clustering algorithm. The
contributions of this paper are as follows.

1) Bipartite Graph Modeling: A novel solution to the
subspace clustering problem is obtained by mapping
the sparse representation matrix to an affinity matrix
that defines a bipartite graph with two disjoint sets of
vertices: dictionary atoms and signals.

2) Linear-Time Complexity: The proposed approach
exploits the small number of atoms M for complexity
reduction, leading to an overall complexity that depends
only linearly on the number of signals L.

3) Theoretical Study: The conditions for correct clustering
of independent subspaces are proved for the cases of
minimal and redundant dictionaries.

This paper is organized as follows. Section II overviews
sparse representation modeling that forms the core for learning
the relations between signals and atoms. Section III presents
bipartite graphs and the proposed approach. Section IV
provides the performance evaluation of the proposed approach
and compares it with leading subspace clustering algorithms.

II. SPARSE REPRESENTATIONS MODELING

Sparse representations provide a natural model for signals
that live in a union of low-dimensional subspaces. This model-
ing assumes that a signal y ∈ R

N can be described as y � Dc,
where D ∈ R

N×M is a dictionary matrix and c ∈ R
M is sparse.

Therefore, y is represented by a linear combination of a few
columns (atoms) of D. The recovery of c can be cast as an
optimization problem

ĉ = arg minc ‖c‖0 s.t. ‖y − Dc‖2 ≤ ε (5)

for some approximation error threshold ε. The l0 norm ‖c‖0
counts the nonzeros components of c, leading to a Nonde-
terministic Polynomial time (NP)-hard problem. Therefore, a
direct solution of (5) is infeasible. An approximate solution
is given by applying the orthogonal matching pursuit (OMP)
algorithm [21], which successively approximates the sparsest
solution. The recovery of c can also be cast by an alternative
optimization problem that limits the cardinality of c

ĉ = arg min
c

‖y − Dc‖2 s.t. ‖c‖0 ≤ T0 (6)

where T0 is the maximum cardinality. The dictionary D
can be either predefined or learned from the given set of
signals (see [22] for a review). For example, the K -SVD
algorithm [23] learns a dictionary by solving the following
optimization problem:

{D, C} = arg minD,C ‖Y − DC‖2
F s.t. ∀i ‖ci‖0 ≤ T0 (7)

2For example, ODCT-based dictionaries are well suited for sparsely
representing image patches [19] or audio frames [20].

Fig. 1. Dictionary learning of (a) independent and (b) disjoint subspace
bases.

where Y ∈ R
N×L is the signal matrix containing yi in its ith

column and C ∈ R
M×L is the sparse representation matrix,

containing the sparse representation vector ci in its ith column.
Once the dictionary is learned, each one of the signals {yi }L

i=1
is represented by a linear combination of few atoms. Each
combination of atoms defines a low-dimensional subspace;
thus, our subspace clustering approach exploits the fact that
signals spanned by the same subspace are represented by
similar groups of atoms. In the following, we demonstrate
this property for signals that are drawn from a union of
independent or disjoint subspaces (as defined in Appendix A).
Consider data points drawn from a union of two independent
subspaces in R

3: a plane and a line, as shown in Fig. 1(a).
A dictionary with three atoms was learned from a few hun-
dreds of such points using the K -SVD algorithm, and as shown
in Fig. 1(a), the learned atoms span the two subspaces. Next,
consider data points drawn from a union of three disjoint
subspaces in R

3: a plane and two lines, as shown in Fig. 1(b).
A dictionary with four atoms was learned from a few hundreds
of such points using the K -SVD algorithm, and as shown
in Fig. 1(b), the learned atoms span the three subspaces.

III. PROPOSED APPROACH

A. From Bipartite Graphs to Subspace Clustering

The sparse representations matrix C provides an explicit
information on the relations between signals and atoms, which
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Fig. 2. (a) Bipartite graph consisting of 12 vertices: four atoms (squares)
and eight signals (circles). (b) Signals were drawn from a union of two
subspaces; however, the sparse coding stage (OMP) produced inseparable
groups in the graph. The normalized cut approach attempts to resolve this
by grouping together signals with the atoms that are the most significant in
the signals’ representations. The edges that correspond to the least significant
links between atoms to signals are neglected (dashed edges in the figure).
The graph partitioning solution is shown by the bold line: the vertices of the
first group are {1, 2, 5, 6, 7, 8, 9} and the vertices of the second group are
{3, 4, 10, 11, 12}.

we leverage to quantify the latent relations among the signals:
the locations of nonzero coefficients in C determine the atoms
that represent each signal and their absolute values determine
the respective weights of the atoms in each representation.
Therefore, subspace clustering can be obtained by a bicluster-
ing approach: simultaneously grouping signals with the atoms
that represent them, such that a cluster label is assigned to
every signal and every atom and the labels of the signals
provide the subspace clustering result. In cases where a parti-
tion into disjoint groups does not exist (as a result of intersect-
ing subspaces, or errors in the sparse coding stage or noise),
a possible approach is to group together signals with the
most significant atoms that represent them. This biclustering
problem can be solved by bipartite graph partitioning [24]: let
G = (D,Y, E) be an undirected bipartite graph consisting of
two disjoint sets of vertices: atoms D = {d1, d2, . . . , dM } and
signals Y = {y1, y2, . . . , yL}, connected by the corresponding
set of edges E . An edge between an atom and a signal exists
only when the atom is part of the representation of the signal.
The two disjoint sets of vertices are enumerated from 1 to
M + L: the leading M vertices are atoms and the tailing
L vertices are signals, as shown in Fig. 2(a). Let W = {wi j }
be a nonnegative affinity matrix such that every pair of vertices
is assigned a weight wi j . The affinity matrix is defined by

W =
[

0 A
AT 0

]
∈ R

(M+L)×(M+L) (8)

where A = |C| (each element Aij equals to |Cij |). Note that
the structure of W implies that only signal-atom pairs can be

assigned a positive weight (i.e., when the atom is part of
the representation of the signal). The matrix W is used to
define the set of edges, such that an edge between the ith
and jth vertices exists in the graph only if wi j > 0 and
the weight of this edge is ei j = wi j . Thus, the particular
structure of W imposes only one type of connected com-
ponents: bipartite components that are composed of at least
one atom and one signal. This type of graph modeling differs
from the modeling employed by LRR, SSC, and LR-SC since
these methods construct a graph with only a single type of
vertices (which are signals) and seek for groups of connected
signals. In addition, bipartite graph modeling differs from
Sprechmann and Sapiro’s method [17] that partitions either
a graph of atoms or a graph signals (each graph with only
a single type of vertices) as an initialization stage of the K
subdictionaries learning algorithm.

A reasonable criterion for partitioning the bipartite graph
is the normalized cut [10], which seeks well-separated groups
while balancing the size of each group, as shown in Fig. 2(b).
Let V1,V2 be a partition of the graph such that V1 = D1 ∪Y1
and V2 = D2 ∪ Y2, where D1 ∪ D2 = D and Y1 ∪ Y2 = Y .
The normalized cut partition is obtained by minimizing the
following expression:

Ncut(V1,V2) = cut(V1,V2)

weight(V1)
+ cut(V1,V2)

weight(V2)
(9)

where cut(V1,V2) = ∑
i∈V1, j∈V2

Wij quantifies the accu-
mulated edge weights between the groups and weight
(V) = ∑

i∈V
∑

k Wik quantifies the accumulated edge weights
within a group. Therefore, we propose to partition the bipartite
graph using the normalized cut criterion, and obtain subspace
clustering from the signals’ cluster labels.

Direct minimization of (9) leads to an NP-hard prob-
lem, therefore, spectral clustering [10] is often employed as
an approximate solution to this problem. A low-complexity
bipartite spectral clustering algorithm was derived in [24]
for natural language processing applications. This algorithm
is detailed in Appendix B and requires the SVD of an
M × L matrix, which has a complexity of O(M2 L) [25].
Note that in our modeling, the number of atoms is fixed and
obeys M � L, leading to complexity that depends linearly
in L (compared with the complexity of the spectral cluster-
ing stage of state-of-the-art approaches [6], [8], [9] that is
polynomial is L). We leverage the SVD-based algorithm to
our problem and incorporate it into the proposed algorithm,
as detailed in Algorithm 1. The overall complexity of the
proposed approach depends only linearly on L, and is given by
O(qJNML)+ O(qNML)+ O(M2 L)+ O(TMKL), where the
first term is K -SVD complexity (q is the average cardinality
of the sparse representations, J the number of iterations, and
L � 1), the second term is OMP complexity, and the third
(SVD complexity) and fourth (k-means complexity with T
iterations) terms compose the bipartite spectral clustering stage
complexity.

B. Theoretical Study

In the following, we provide two theorems that pose condi-
tions for correct segmentation of independent subspaces using
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Algorithm 1 Subspace Biclustering (SBC)

Input: data Y ∈ R
N×L , # of clusters K , # of atoms M . 1.

1) Dictionary Learning: Employ K -SVD to learn a
dictionary D ∈ R

N×M from Y.
2) Sparse Coding: Construct the sparse matrix

C ∈ R
M×L by the OMP algorithm, such that Y � DC.

3) Bi-Clustering:I.
a) Construct the matrix A = |C|.
b) Compute the rank-M SVD of A = D

− 1
2

1 AD
− 1

2
2 ,

where D1 and D2 as in equation (11).

c) Construct the matrix Z =
⎡
⎣D

− 1
2

1 U

D
− 1

2
2 V

⎤
⎦, where U =

[u2...uK ] and V = [v2...vK ] as in equation (17).
The M leading rows of Z correspond the atoms
and the L tailing rows correspond the signals.

d) Cluster the rows of Z using k-means.

Output: cluster labels for all signals k̂(y j ), j = 1..L.

the proposed approach. Our analysis proves that given a correct
dictionary, OMP will always recover successfully the bipartite
affinity matrix.3 Further segmentation of the bipartite graph
using the normalized cut criterion leads to correct subspace
clustering. The following theorem addresses the case of a
dictionary D that contains the set of minimal bases for all
subspaces.

Theorem 1: Let Y = [Y1, Y2, . . . , YK ] be a collection
of L = L1 + L2 + · · · + L K signals from K indepen-
dent subspaces of dimensions {di }K

i=1. Given a dictionary
D = [D1, D2, . . . , DK ] such that Di ∈ R

N×di spans Si and
di = dim(Si ), OMP is guaranteed to recover the correct and
unique sparse representation matrix C such that Y = DC, and
minimization of the normalized cut criterion for partitioning
the bipartite graph defined by (8) will yield correct subspace
clustering.

The proof is provided in Appendix C.
We now address the more general case of a redun-

dant dictionary in which the subdictionaries are redundant
Di ∈ R

N×ti and ti > di . This situation is realistic in dictionary
learning, whenever the number of allocated atoms is higher
than necessary. Note that for a redundant dictionary, there is
an infinite number of exact representations for each signal
yi ∈ Si , and OMP is prone to select wrong atoms (that
represent subspaces S j �= Si ) during its operation. However,
the following theorem proves that the support of the OMP
solution is guaranteed to include atoms only from the correct
subspace basis (although the accumulated4 support set might
contain atoms that represent other subspaces). Fig. 3 shows
this in practice.

Theorem 2: Let Y = [Y1, Y2, . . . , YK ] be a collection

3Note that this statement is far stronger than a successful OMP conditioned
on Restricted Isometry Property [26] or mutual coherence [27] since: 1) we
address the case of independent subspaces and 2) our goal is segmentation
and not signal recovery.

4The accumulated support set is the set of atoms selected by OMP.

Fig. 3. Sparse representation recovery using OMP with a redundant
dictionary and a data collection Y = [Y1, Y2] ∈ R

4×2000, where
Y1,2 ∈ R

4×1000 are drawn from two independent subspaces of dimensions
two each. A redundant dictionary D = [D1, D2] ∈ R

4×8 with four atoms
per subspace was used to compute the sparse representation of each data
point. (a) Recovered support set often contains atoms of the wrong subspace.
(b) Cardinality of the support set often exceeds the correct dimensions of two.
Owing to the pseudoinverse in the OMP operation, the wrong coefficients are
effectively nulled, thus leading to (c) perfectly correct supports and (d) correct
cardinalities.

of L = L1 + L2 + · · · + L K signals from K independent
subspaces of dimensions {di }K

i=1. Given a dictionary
D = [D1, D2, . . . , DK ] such that Di ∈ R

N×ti spans Si and
ti > dim(Si ), OMP is guaranteed to recover a correct sparse
representation matrix C such that Y = DC, C includes only
atoms from the correct subspace basis for each signal, and
minimization of the normalized cut criterion for partitioning
the bipartite graph defined by (8) will yield correct subspace
clustering.

The proof is provided in Appendix C.
The next natural steps in studying the theoretical properties

and limitations of our proposed scheme are to explore more
general cases of disjoint subspaces instead of independent
ones, and also explore to the sensitivity to a wrong
dictionary. We choose to leave these important questions for
future work.

IV. PERFORMANCE EVALUATION

This section evaluates5 the performance of the proposed
approach for synthetic data clustering, face clustering, and
temporal video segmentation. In addition, the performances
of SSC, LRR, LR-SC, PSSC, and K -subspaces are compared
using code packages that were provided by their authors (the
parameters of all methods were optimized for the best perfor-
mance). The objective of this section is to demonstrate that as
long as the collection size L is sufficiently large for training
the dictionary, then the clustering accuracy of the proposed
approach is comparable with state-of-the-art algorithms. The
correct number of clusters was supplied to all algorithms in

5The results presented in this paper are reproducible using a MATLAB
package that is freely available for distribution.
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Fig. 4. Computation time versus number of data samples L , for K = 32
subspaces, and for data sample dimension N = 64 and M = 64 learned
atoms. The slopes and offsets were estimated using least squares.

every experiment. All experiments were conducted using a
computer with Intel i7 Quad Core 2.2 GHz and 8-GB RAM.

A. Computation Time

Computation time comparison of clustering L signals
(upto L = 1 048 576) in R

64 is provided in Fig. 4. The reported
durations for the proposed approach include a dictionary
D ∈ R

64×64 learning stage from the L signals if L < 215

or 215 signals if L ≥ 215. The results indicate polynomial
complexity in L (slope > 2 in logarithmic scale) of state-
of-the-art approaches compared with linear complexity (slope
≈ 1 in logarithmic scale) in L of the proposed approach
and K -subspaces (PSSC also has linear complexity in L, as
discussed in [18]).

B. Synthetic Data Clustering

Clustering accuracy6 was evaluated for signals contami-
nated by zero-mean white Gaussian noise, in the SNR range
of 5–20 dB. Per each experiment, we generated a set
of 800 signals in R

100 drawn from a union of eight subspaces
of dimensions 10 with equal number of signals per subspace.
The bases of all subspaces were chosen as random combina-
tions (nonoverlapping for disjoint subspaces) of the columns of
a 100 × 200 overcomplete discrete cosine transform (ODCT)
matrix [23]. The coefficients of each signal were randomly
sampled from a Gaussian distribution of zero mean and
unit variance. The clustering accuracy results, averaged over
10 noise realizations per SNR point, are presented in Table I.
The results of the proposed approach (SBC) are based on a
learned dictionary D ∈ R

100×100 per every noise realization.
The results demonstrate comparable clustering accuracies of
the proposed approach and state-of-the-art,7 and a superior

6Accuracy was computed by considering all possible permutations and
defined by 1 − number of miss-classified signals/total number of signals.

7SSC was evaluated using the code that solves (1) with
ε = noise standard deviation [5, Sec. 3.3], LRR (λ = 0.15) was evaluated
using the code that solves (3), and LR-SC (τ = 0.01) was evaluated using
the code that solves [9, Lemma 1].

performance compared with K -subspaces. Note that (only) the
results of K -subspaces are based on explicit knowledge of the
true dimensions (d = 10) of all subspaces, as this parameter is
required by K -subspaces. For the proposed approach and for
PSSC, we employed OMP to approximate the solution of (5)
and set the sparse representation target error ε to the noise
standard deviation (the target error used for SSC was also close
to the noise standard deviation). Fig. 5 compares clustering
accuracy of the dictionary-based method PSSC versus the
proposed approach in the low SNR range of −2 to +2 dB:
it is evident that the proposed approach outperforms PSSC
in this range and achieves accuracies above 90% for an
SNR of 0 dB and above. The reason for this advantage over
PSSC is due to the degraded accuracy in low SNR of the
likelihood probabilities estimator employed by PSSC. Fig. 6
shows clustering accuracy versus the number of dictionary
atoms per cluster (subspaces dimension = 10): clustering
accuracies above 90% are achieved in the range of M/K = 6
to M/K = 16 for an SNR of 0 dB and above. For an
SNR of 6 dB and above, accuracies above 90% are obtained
in the range of M/K = 5 to M/K = 25. For all SNR
levels, accuracy deteriorates as M/K drops below five. In the
cases of medium to low SNR, it was found that setting the
number of atoms to be too high (M/K > 16 for 0 dB,
M/K > 20 for 2 dB, and M/K > 24 for 4 dB) degraded8

the connectivity of the bipartite graph as well as the clustering
accuracy. Fig. 7 shows clustering accuracy versus the size L of
dictionary training set: close to 100% accuracy is obtained
for L > 800, namely, at least 10 training samples per atom.
Finally, we tested OMP accuracy in terms of selecting correct
and wrong atoms: Fig. 8 presents the results for the SNR range
of 0–20 dB, using the ground truth dictionary and known
support of each subspace. These results indicate that the
ratio of correctly selected atoms grows approximately from
35% (0 dB) to 90% (20 dB), and the ratio of mistakenly
selected atoms decreases approximately from 15% (0 dB) to
10% (20 dB). Therefore, the bipartite clustering stage achieves
high-clustering accuracy even with a partially correct support.

C. Face Clustering

Face clustering is the problem of clustering a collection
of facial images according to their human identity. Facial
images taken from the same view point and under varying
illumination conditions are well approximated as spanned by
a subspace of dimension <10 [28], [29], where a unique sub-
space is associated with each view point and human subject.
Subspace clustering was applied successfully to this problem
in [2] and [7]. Face clustering accuracy was evaluated using the
extended Yale B database [30], which contains 16 128 images
of 28 human subjects under nine view points and 64 illu-
mination conditions (per view point). In our experiments,
we allocated 10 atoms per human subject (assuming each
subspace dimension <10), and to enable efficient dictionary
training, we found that a minimum ratio of L/M > 10 is
required for good clustering results (i.e., at least a hundred

8This was also verified by increasing L such that L/M = 10, as shown
in Fig. 7.
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TABLE I

CLUSTERING ACCURACY (%) FOR L = 800 SIGNALS IN R
100 DRAWN FROM EIGHT DISJOINT SUBSPACES WITH DIMENSIONS 10: MEAN,

MEDIAN, AND STANDARD DEVIATION WITH RESPECT TO MEAN (σMean ) AND TO MEDIAN (σMedian)

Fig. 5. Clustering accuracy at low SNR of PSSC and the proposed approach
(eight disjoint subspaces of dimensions 10 and L = 800).

Fig. 6. Clustering accuracy versus the number of dictionary atoms per cluster
M/K (eight disjoint subspaces of dimensions 10 and L = 800).

facial images per subject). Therefore, we generated from the
complete collection a subset of 1280 images containing the
first 10 human subjects, with 128 images per subject, by merg-

Fig. 7. Clustering accuracy versus the dictionary training set size L (eight
disjoint subspaces of dimensions 10 and M = 100 atoms).

Fig. 8. OMP support estimation accuracy: the ratio (%) of correctly selected
atoms and of mistakenly selected atoms.

ing the fourth and fifth viewpoints which are of similar angles.
We further verified that the fourth and fifth view points (of
each human subject) can be modeled using a single subspace,
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Fig. 9. Reconstruction of facial images from the third merged class of the
extended Yale B collection (the five leftmost columns are from the fourth
view point and the five rightmost columns are from the fifth view point):
the first row displays the original images and the second row displays the
reconstructed images from their projections onto the nine leading PCA basis
vectors, as obtained from the PCA of the 128 images in the merged class (the
union of the fourth and fifth view points).

TABLE II

FACE CLUSTERING ACCURACY (%), AVERAGED OVER 40 DIFFERENT

HUMAN SUBJECTS COMBINATIONS PER EACH NUMBER

OF CLUSTERS (K )

by reconstructing all 128 images from their projections onto
their nine leading PCA basis vectors (obtained by the PCA
of each merged class of 128 images). Visual results of this
procedure are provided for the third human subject in Fig. 9,
demonstrating an excellent quality of the reconstructed images.
All images were cropped, resized to 48 × 42 pixels, and
column-stacked to vectors in R

2016. Clustering accuracy was
evaluated for K = 2, . . . , 8 classes by averaging clustering
results over 40 different subsets of human subjects, for each
value of K , and by choosing 40 different combinations of
human subjects out of the 10 classes. Clustering results,
provided in Table II, show comparable accuracies of the pro-
posed approach to state-of-the-art9 and a consistent advantage
compared with PSSC [18] and K -subspaces. The parameters
of each method were optimized for the best performance and
summarized in Table V. Computation times are provided in
Table IV, indicating the advantage of the proposed approach
over LRR, SSC, and LR-SC. For the proposed approach, we
employed OMP to approximate the solution of (6) and set
T0 = 9. We have also found that a small accuracy gain of a
few percent can be obtained using A = |C|p (0 < p < 1),
which balances edge weights (nonzeros become closer to 1).10

Clustering accuracy sensitivity of the proposed approach to
the number of dictionary atoms was evaluated in the range

9State-of-the-art methods were evaluated with sparse outliers support: SSC
with the Alternating Direction Method of Multipliers (ADMM)-based version
that solves (2), LRR with the version that solves (3), Low Rank Representation
version H (LRR-H) that is the same as LRR but with postprocessing of the
affinity matrix [8], and LR-SC with the version that solves (4).

10Note that the extended Yale B dataset contains many corrupted images,
and in our experiments, we found that the dynamic range of the sparse
representation coefficients was high. Using A = |C|p (0 < p < 1), this
dynamic range is reduced, thus, balancing edge weights (p = 0.4 provided
the best results). A similar approach is employed by LRR [8, Sec. 5.4] with
p > 1 which improves its performance compared with p = 1.

TABLE III

FACE CLUSTERING ACCURACY (%) VERSUS THE NUMBER OF

DICTIONARY ATOMS PER CLUSTER (M/K ), AVERAGED

OVER 40 DIFFERENT HUMAN SUBJECTS COMBI-

NATIONS PER EACH NUMBER OF CLUSTERS

TABLE IV

FACE CLUSTERING COMPUTATION TIME (SECONDS).

RESULTS PRESENTED FOR K = 8 CLUSTERS

(L = 1024 FACIAL IMAGES)

TABLE V

FACE CLUSTERING: ALGORITHMS PARAMETERS SETTINGS

M/K = 5–15, and the results are provided in Table III:
the accuracies were high and stable for M/K = 9, . . . , 15
and the choice of M/K = 5 provided the lowest accuracies.
The highest accuracies for K = 2, 3, 4 were obtained using
M/K = 9, 11; and M/K = 15 provided the highest accuracies
for K > 5.

D. Temporal Video Segmentation

Temporal video segmentation is the problem of cluster-
ing the frames of a video sequence according to the scene
each belongs to (the same scene may repeat several times).
By modeling each frame as a point in a high-dimensional
linear space, and each scene as spanned by a low-dimensional
subspace, temporal video segmentation was successfully
solved using subspace clustering in [1]. This work [1]
employed GPCA to segment short video sequences of
up to 60 frames. In our experiments, we evaluated seg-
mentation accuracy and computational load for two video
sequences. The first sequence V1 contained six scenes
and 1190 frames (30 frames/s) of dimensions 360 ×
6404 pixels in Red, Green and Blue (RGB) format. The
frames of V1 were converted to gray scale, downsam-
pled to 90 × 160 pixels, and column stacked to vectors
in R

14 400. The second sequence V2 contained three scenes and
12 000 frames (25 frames/s) of dimensions 288 × 512 pixels
in RGB format. The frames of V2 were converted to gray
scale, downsampled to 72 × 128 pixels, and column stacked
to vectors in R

9216. To determine the number of dictionary
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Fig. 10. Temporal video segmentation of V1 using the proposed approach (98.99% accuracy).

TABLE VI

TEMPORAL VIDEO SEGMENTATION ACCURACY (%): V1 (1190 FRAMES

FROM ABCS TV SHOW WHEEL OF FORTUNE) AND V2

(12 000 FRAMES FROM ABCS TV SHOW

ONE PLUS ONE)

atoms, we computed the PCA basis of several scenes (for each
one separately) and found that ∼80% of the energy of each
scene is represented by its nine leading PCA basis vectors.
Therefore, we allocated 9 × K atoms (K is the number
of scenes) for the dictionary of each video sequence. The
correct segmentation of both sequences was obtained man-
ually, and segmentation accuracy was evaluated using the
proposed approach (using A = |C|), SSC (ρ = 1, α = 10),
LRR-H (λ = 0.1), and LR-SC (τ = 0.1). The parameters
of all methods were optimized for the best results,11 and for
SSC, we also projected12 the column-stacked frames onto
their PCA subspace of dimensions nine and segmented the
projected frames (excluding this step SSC performance was
worse). The results are provided in Table VI, and demonstrate
almost perfect segmentation of V1 (Fig. 10) using all methods,
excluding PSSC that segmented the scene between frames
410 and 900 (that contained camera zoom changes) into
different scenes. The segmentation of V2 was possible only
with the proposed approach, while LRR, SSC, and LR-RC
methods were unable to segment the 12 000 frames due to their
complexity. Computation times are provided in Table VIII,
indicating the advantage of the proposed approach over LRR,

11SSC was evaluated with the ADMM-based version without outlier sup-
port, LRR-H was evaluated with the version that solves (3) with postprocess-
ing of the affinity matrix, and LR-SC was evaluated with the version that
solves [9, Lemma 1].

12The ADMM-based SSC code provides the projection option.

TABLE VII

TEMPORAL VIDEO SEGMENTATION ACCURACY (%) VERSUS THE

NUMBER OF DICTIONARY ATOMS PER CLUSTER (M/K )

TABLE VIII

TEMPORAL VIDEO SEGMENTATION TIME (SECONDS) OF V1

SSC, and LR-SC. The clustering accuracy sensitivity of the
proposed approach to the number of dictionary atoms was
evaluated in the range M/K = 5–11, and the results are
provided in Table VII: the accuracies were consistently high
for V2 using M/K = 5, 7, 9, 11. For V1, the accuracies were
highest for M/K = 7, 9, 11, and decreased for M/K = 5.

V. CONCLUSION

Subspace clustering is a powerful tool for processing
and analyzing high-dimensional data. This paper presented
a low complexity subspace clustering approach that utilizes
sparse representations in conjunction with bipartite graph
partitioning. By modeling the relations between the signals
according to the atoms that represent them, the complexity
of the proposed approach depends only linearly in the num-
ber of signals. Therefore, it is suitable for clustering very
large signal collections. The performance evaluation for syn-
thetic data, face clustering, and temporal video segmentation
demonstrate comparable performance13 with state-of-the-art at

13The valid intervals of the parameters of the proposed approach are as
follows: the dictionary training set size should be an order of magnitude higher
than the number of learned atoms (see Fig. 7 for more details). The ratio M/K
should be on the same order of the expected subspaces dimensions di with
a tolerance range of −25% to +50% from the value of di .
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a significantly lower computational load. We further plan
to explore several research directions: 1) extension of the
theoretical study to the cases of noiseless data drawn from
disjoint subspaces and noisy data drawn from independent
subspaces; 2) automatic selection of the number of dictionary
atoms; and 3) extension of the proposed approach for data
contaminated by outliers and missing entries. Finally, we
would like to thank the reviewers of this paper for their
constructive comments and guidance.

APPENDIX A
INDEPENDENT AND DISJOINT SUBSPACES

Independent [31] and disjoint subspaces are defined using
the sum and the direct sum of a union of subspaces.

Definition 1: The sum of subspaces {Si }K
i=1 is denoted by

V = S1 + S2 + · · · + SK such that every v ∈ V equals to
v = s1 + s2 + · · · + sK and si ∈ Si .

Definition 2: The sum of subspaces V = S1 + S2 + · · · +
SK is direct if every v ∈ V has a unique representation
v = s1 + s2 + · · · + sK , where si ∈ Si . The direct sum is
denoted by V = S1 ⊕ S2 ⊕ . . . ⊕ SK .

Given the above definitions, we turn now to define indepen-
dent and disjoint subspaces.

Definition 3: The subspaces {Si }K
i=1 are independent if their

sum is direct. As a consequence, no nonzero vector from any
S j is a linear combination of vectors from the other subspaces
S1, . . . , S j−1, S j+1, . . . , SK .

Definition 4: The subspaces {Si }K
i=1 are disjoint if

Si ∩ S j = {0} ∀i �= j . Note that independent subspaces
are disjoint; however, disjoint subspaces are not necessarily
independent.

APPENDIX B
SPECTRAL BIPARTITE GRAPH CLUSTERING

This appendix provides the derivation of the spectral cluster-
ing algorithm for bipartite graphs [24]. Spectral clustering [10]
provides an approximate solution to the NP-hard problem
of minimizing the normalized cut criterion. This approach
requires the solution of the generalized eigenvalue problem
L z = λDz, where L = D − W is the Laplacian and D is
diagonal such that D(i, i) = ∑M+L

k=1 W (i, k). In the bipartite
case, the affinity matrix is given by

W =
[

0 A
AT 0

]
∈ R

(M+L)×(M+L)

and the Laplacian is given by

L =
[

D1 −A
−AT D2

]
∈ R

(M+L)×(M+L) (10)

where D1 ∈ R
M×M and D2 ∈ R

L×L are diagonal such that

D1(i, i) =
L∑

j=1

A(i, j) and D2( j, j) =
M∑

i=1

A(i, j). (11)

The generalized eigenvalue problem can be rewritten as[
D1 −A

−AT D2

] [
z1
z2

]
= λ

[
D1 0
0 D2

] [
z1
z2

]
(12)

Algorithm 2 Spectral Bipartite Graph Clustering

Input: Affinity matrix W =
[

0 A
AT 0

]
and number of

clusters K . 1)

1) Compute the SVD of A = D
− 1

2
1 AD

− 1
2

2 .

2) Construct the matrix Z =
⎡
⎣D

− 1
2

1 U

D
− 1

2
2 V

⎤
⎦, where

U = [u2...uK ] and V = [v2...vK ].
3) Cluster the rows of Z using the k-means algorithm.

Output: cluster labels for all graph nodes.

where z =
[ z1

z2

]
. Equation (12) can be further expanded as

follows:

D1z1 − Az2 = λD1z1 (13)

−AT z1 + D2z2 = λD2z2. (14)

By setting u = D1/2
1 z1 and v = D1/2

2 z2, the following are
obtained (assuming nonsingularity of D1 and D2):

D
− 1

2
1 AD

− 1
2

2 v = (1 − λ)u (15)

D
− 1

2
2 AT D

− 1
2

1 u = (1 − λ)v (16)

which define the SVD equations of A = D−1/2
1 AD−1/2

2

Avi = σi ui and A
T

ui = σi vi (17)

where vi is the ith right singular vector, ui is the ith left
singular vector, and σi = 1 − λi is the ith singular value.
Therefore, spectral bipartite graph clustering can be obtained
from the SVD of A, as summarized in Algorithm 2, which has
a significant complexity advantage over explicit decomposition
of the Laplacian, whenever M � L, since the complexity of
the SVD of A is O(M2 L).

Estimating the number of clusters: a simple estimator can
be derived using the spectral gap of the Laplacian; following
the discussion in [10, Sec. 8.3], which suggests to estimate K
such that all eigenvalues λ1, λ2, . . . , λK are small and λK+1
is relatively large, the relation σi = 1 − λi can be utilized
to estimate K such that all singular values σ1, σ2, . . . , σK are
large and σK+1 is relatively small.

APPENDIX C
PROOF OF THEOREMS

The proof of Theorem 1 is composed of two parts: the first
part addresses the correctness and uniqueness of the recovery
of C by OMP (as detailed in Algorithm 3), and the second part
addresses the correctness of the subspace clustering result by
bipartite graph partitioning. The proof relies on the following
lemma.

Lemma 1: Let D ∈ R
N×M contain K minimal bases for

K independent subspaces, then the null space N (D) = {0}.
Proof: Let {Si }K

i=1 be a collection of K
independent subspaces of dimensions {di}K

i=1, respectively,
and let D = [D1, D2, . . . , DK ] such that Di ∈ R

N×di is
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a basis of the ith subspace and
∑

i di = M ≤ N . Since the
subspaces are independent, their sum is direct, and every
vector v in their direct sum has a unique representation
v = ∑K

i=1 Diαi . Equivalently, the solution to the linear
system of equations Dα = v is unique, which leads to
rank([D|v]) = rank(D) = M . Therefore, D is full rank and
N (D) = {0}.

Theorem 1: Let Y = [Y1, Y2, . . . , YK ] be a collection
of L = L1 + L2 + · · · + L K signals from K indepen-
dent subspaces of dimensions {di }K

i=1. Given a dictionary
D = [D1, D2, . . . , DK ] such that Di ∈ R

N×di spans Si

and di = dim(Si ), OMP is guaranteed to recover the
correct and unique sparse representation matrix C such that
Y = DC, and minimization of the normalized cut criterion
for partitioning the bipartite graph defined by (8) will yield
correct subspace clustering.

Proof (Part I): The matrix C is computed column by
column using OMP; therefore, correctness is proved for one
column ci = xk that represents a signal yi �= 0 from
subspace Si . OMP terminates either if the residual rk = 0
or the iteration counter k = Kmax = M . The proof is provided
for each possible termination state of OMP.

1) The residual rk = 0 and the columns of D selected by
the support set �k form exactly Di (Si = Span(D�k )):

in this case, we have yi = Dxk = [Di Dic ]
[ xi

0

]
, where

Dic is equal to D excluding the i th basis Di . On the
other hand, yi has a unique representation using Di that

is given by yi = Di c∗ = [Di Dic ]
[ c∗

0

]
. Therefore, we

can write D
[ xi

0

]
= D

[ c∗
0

]
, which can be rewritten as

D
([

xi
0

]
−

[
c∗
0

])
= 0.

Since N (D) = {0}, the only solution to this equation is
xi = c∗. Therefore, OMP recovers exactly and uniquely
the representation of yi .

2) The residual rk = 0 and the columns of D selected
by �k include Di (Si ⊂ Span(D�k )): in this case, we

have yi = Dxk = [Di Dic ]
[ xi

xic

]
. Using the unique

representation of yi , we obtain D
[ xi

xic

]
= D

[ c∗
0

]
, which

can be rewritten as

D
([

xi
xic

]
−

[
c∗
0

])
= 0.

Since N (D) = {0}, the only solution to this equation is
xi = c∗ and xic = 0. Therefore, OMP recovers exactly
and uniquely the representation of yi .

3) OMP reached the maximum number of iterations
Kmax = M and the residual rk �= 0: This scenario
is impossible as proved in the following. In this case,
xk is the solution (stage 4 in Algorithm 3) of the convex
least squares problem arg minx ‖yi − Dx‖2; therefore,
the gradient of the least-squares objective equals zero at
the global minimum: DT (yi − Dxk) = 0. By replacing

yi with its unique representation D
[ c∗

0

]
, we obtain

DT D
([

c∗
0

]
− xk

)
= 0.

Since rank(DT D) = M , then N (DT D) = {0}, and the

only solution to this equation is xk =
[ c∗

0

]
, which

results in rk = 0. Therefore, OMP recovers exactly and
uniquely the representation of yi .

Part II: Given the correct recovery of C, the collection Y
is decomposed as follows14:

Y = [Y1 Y2] = DC = [D1 D2]
[

C1 0
0 C2

]
. (18)

By defining A1 = |C1| ∈ R
d1×L1 and A2 = |C2| ∈ R

d2×L2 ,
the affinity matrix is given by

W =

⎡
⎢⎢⎣

0
A1 0
0 A2

AT
1 0
0 AT

2
0

⎤
⎥⎥⎦ .

The optimal partition is V1 = {d1 atoms of
D1 ∪ L1 signals spanned by D1} and V2 = {d2 atoms of
D2 ∪ L2 signals spanned by D2}. W.l.o.g., we rearrange the
rows and columns of W such that the vertices associated with
V1 are the leading vertices and the vertices associated with
V2 are the tailing vertices. The rearranged affinity is given by

W =

⎡
⎢⎢⎣

0 A1

AT
1 0

0

0
0 A2

AT
2 0

⎤
⎥⎥⎦.

The cut of the optimal partition is given by

cut(V1,V2) =
∑

i∈V1, j∈V2

Wi j = 0 (19)

and the weight of each group is given by

weight(V1,2) =
∑

i∈V1,2

∑
k

W ik = 2S(A1,2) > 0 (20)

where S(Q) = ∑
n,m Qnm is the sum of matrix entries.

Therefore, the normalized cut metric equals zero for the
optimal partition. �

Theorem 2: Let Y = [Y1, Y2, . . . , YK ] be a collection
of L = L1 + L2 + · · · + L K signals from K indepen-
dent subspaces of dimensions {di }K

i=1. Given a dictionary
D = [D1, D2, . . . , DK ] such that Di ∈ R

N×ti spans Si and
ti > dim(Si ), OMP is guaranteed to recover a correct sparse

14This part of the theorem is proved for the case of two subspaces, to focus
on the essence of the method and avoid cumbersome notations. The extension
to more subspaces is as follows: in the case of K > 2 clusters, the normalized
cut criterion is extended to be the sum of K components (each one is the cut
of the kth cluster with the complement of this cluster, divided by the weight
of the kth cluster). The extension of the proof to K > 2 is enabled by:
1) proving that W can be transformed into a block diagonal matrix (with
K > 2 blocks) and 2) proving that the cut of each block with the block
formed by the union of the other blocks is null.
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Algorithm 3 Orthogonal Matching Pursuit (OMP)

Input: y, D = [d1, d2, ..., dM] ∈ R
N×M.

Initialize:
1) Iteration counter k = 0.
2) Maximum number of iterations Kmax = M .
3) Support set �0 = ∅.
4) Residual r0 = y.

Repeat until rk = 0 or k = Kmax

1) Increment iteration counter k = k + 1.
2) Select atom: find j = arg max j | < rk−1, dj > |.
3) �k = �k−1 ∪ j .
4) solution xk = arg minu ‖y − Du‖2 s.t. Support{u} =

�k .
5) rk = y − Dxk

Output: xk.

representations matrix C such that Y = DC, C include only
atoms from the correct subspace basis for each signal, and
minimization of the normalized cut criterion for partitioning
the bipartite graph defined by (8) will yield correct subspace
clustering.

Proof: The matrix C is computed column by column
using OMP; therefore, correctness is proved for one column
ci = xk that represents a signal yi �= 0 from subspace Si . OMP
terminates either if the residual rk = 0 or the iteration counter
k = Kmax = M . The proof is provided for each possible
termination state of OMP.

1) rk = 0 and Si = Span(D�k ): in this case, we have

yi = Dxk = [Di Dic ]
[ xi

0

]
= Dixi, and xi �= 0.

Therefore, yi is correctly and exclusively represented
by atoms that span Si .

2) rk = 0 and Si ⊂ Span(D�k ): in this case, we have

yi = Dxk = [Di Dic ]
[ xi

xic

]
. On the other hand, xk is the

solution to the least squares problem 4) of Algorithm 3,
which is computed using the pseudoinverse xk = D†

�k yi .
Therefore, this solution is guaranteed to have the small-
est l2-norm among all feasible solutions to the equation
yi = Du (such that support(u) = �k). Since yi ∈ Si , it

can be represented by yi = Di c∗ = [Di Dic ]
[ c∗

0

]
, which

leads to Di c∗ = Di xi + Dic xic . Note that this equation
can be rewritten as15 Di (c∗ − xi) = Dic xic , in which
the left-hand side is a vector in Si and the right-hand
side is a vector in ⊕K

j=1, j �=iS j . The subspaces Si and
⊕K

j=1, j �=iS j are independent; therefore, their intersection
contains only the null vector. The implications of this
result are that Dic xic = 0 and that xi is a feasible
solution (namely, yi = Di xi). Since the pseudoinverse-
based solution provides the solution with the smallest
l2-norm, we obtain that∥∥∥∥

[
xi
0

]∥∥∥∥
2

<

∥∥∥∥
[

xi
xic

]∥∥∥∥
2

∀ xic �= 0).

15The following argument relies on [6, Th. 1].

Therefore, this solution must lead to xic = 0 and thus,
yi is correctly and exclusively represented by atoms that
span Si .

3) OMP reached the maximum number of iterations
Kmax = M: in this case, there is an infinite number of
solutions to the equation yi = D�M xk = Dxk = Di xi +
Dic xic , such that Dic xic = 0. Therefore, the minimizer of
the convex least squares problem arg minx ‖yi − Dx‖2
must reach its global minimum, which is rk = 0,
and following the case 2) above, yi is correctly and
exclusively represented by atoms that span Si .

The second part of the theorem follows exactly from part II
of Theorem I. Note that the proof of the first part of Theorem II
can be also applied to the first part of Theorem I; however,
we chose to present the two different approaches: the proof
of Theorem I uses null-space properties of the dictionary and
covers only the minimal dictionary case, whereas the proof
of Theorem II uses pseudoinverse properties and covers the
over-complete dictionary case.
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