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Abstract

An application of an active method in order to compute highly accurate 3D local-
ization of point features from few projections is presented. The angle of projection
of the image is controlled by the system and directed to extract 3D information
from the environment in a manner leading to accurate location in less computation.

This model is relevant for tomographic reconstruction, for feature based stereo
and for model based robot registration.

1 Introduction

Image analysis embraces a wide range of image processing tasks, including object local-
ization and identification. Traditional approachs to these tasks have entailed a passive
approach to the data collection problem, the main emphasis being on the algorithms to ex-
tract the exact information from the images already taken. The fullfillment of computer
vision tasks is based on analysis of a given image or image sequence. The recognition
process has no control over the imaging process. The results usually have no reliability
measure associated with them. Consequently, current systems are often characterized by
such shortcomings as problems with uniqueness, accuracy and/or stability.

An active approach to the imaging process is advocated, in order to achieve more
robust and reliable results using less computation. Active vision, as referred to in this
paper, is input dependent data acquisition, coupled with a treatment of the reliability of
the acquired information. A mathematical model is proposed that includes the known
information in the scene and the expected information to be sensed by the system. From
the model a new optimal sensing position is determined. A picture taken from this new
position should enable the system to deduce as much new 3D information as possible.
Generally, the 3D information is composed of location in space and its certainty. Intelli-
gent active perception includes algorithms for updating the known information according
to the input, positioning the sensor and judging the reliability of the information that the
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system already has. Kalman filtering techniques [5] are used for updating information, as
Kalman filtering is an optimal method of integrating data.

The proposed approach contributes to the following problems: improving the stability
of solutions and the ability to perform tasks in a noisy environment; improving exactness
and reliability of solutions; and reducing the quantity of data needed and the time for
its analysis. Reducing the amount of necessary data and speeding its analysis is a side
effect of gathering only the information needed to complete the computation, rather than
collecting information in a random manner.

There has been some previous work done using active vision as a model for robot vision
using different aspects of vision such as vergence, stereo, fixation and focus in a human
like manner. These papers treat the control, activation and reinforcement of certain of
the sensing modes on the others [4, 3, 1].

This paper describes an application of the active method in order to compute highly
accurate 3D localization of point features from few projections. The angle of projection
of the image is controlled by the system and directed to extract 3D information from
the environment in a manner leading to accurate location on less computation. After
each phase of computation (between projections), the information already computed is
assessed and when information is still needed a new optimal angle for the next projection
is derived. This process repeatedly takes place, until a sufficient accuracy is achieved in
the solution.

This model is relevant for tomographic reconstraction and for robot registration based
on scene model.

Section 2 contains an introduction of the Gauss-Markov model and the Kalman filter.
Sections 3 and 4 treat the 2 and 3D cases in detail. The imaging model and the compu-
tation of optimal angle for the next projection are described. Simulation results are given
in section 5.

2 The Static Gauss-Markov Model and
the Kalman Filter

The Static Gauss-Markov discrete time model is a particular case of the general Gauss-
Markov Model and describes a class of physical or abstract systems. The state of the
system is described by a finite dimensional vector s. This state is measured at time ¢ by
m; which is the result of a linear transformation (H!) of the state contaminated by an
additive noise process v;:

my = HtTS —I_ UVt (1)
Vs ~ N(O,Rt)

(The subscript ¢ denotes a time argument).
The noise process is described as a zero mean Gaussian process, with known covariance
matrix R;. It is characterized as a white process in the sense that for any two different
time instants k£ and [, vy and v; are independent random variables.

For the model described above, the static Kalman filter [5, 2] is a method for optimally
estimating the system state by using the measurements recorded up to the current time.



Current estimation of the system state 3; is in effect the conditional expectance
S = E(s|my,ma,...omy)  for >0

(X for any X means the estimated X).
The quality of this estimate is given by the error covariance matrix

Y= F([s — &][s — §t]T|m1,m2, weymy)  for > 0.

The Kalman filter is an unbiased estimator, and in addition to that it is optimal with
respect to the minimum variance criteria ;

traceX; = E(||s — &|*|my1, ma,...;ms)  for >0

is the conditional error variance associated with the estimate 3;, and
§ = E(s¢/m1, ma,...,m;) minimizes this error variance.

The explicit state update and error covariance matrix update euations, describing one
step of the static Kalman filter, are:

Si41 = S+ Zth+1(H£12th+1 + Rt+1)_1(mt+1 — Hg_lét)

Yiepr = Xy — Eth+1(H£12th+1 + Rt+1)_1H£12t (2)

S0 and Yg are assumed to be known due to prior knowledge.

The incremental character of the equations enables the extraction of all the information
realized by previous measurements by using the estimation and variance corresponding
to the current time.

Further description of both the Gauss-Markov model and the Kalman filter can be
found in [2, 5].

3 Uncertainty Driven Active Projection

3.1 Optimal Positioning of a Single Feature

The model described through this section is concerned with the 2D plane specified by the
Cartesian coordinates (X,Y'). Let F' be a feature point in the 2D plane. The position of
F (Pr) is uncertain, and modelled in time ¢ as a bivariate Gaussian random vector

where

ry U@/l/

R X 2 2
o= ()t o= (2 )
1 1

are the current estimation of the position of F' and the covariance matrix that evaluates
this estimation.



Figure 1: Coordinate systems of the 2D plane and
measurement projection line. 6 is the projection
angle and « is the angle by which the axes are ro-
tated.

Naturally, reduction of the uncertainty of the feature location is needed. The means
by which this reduction takes place is a sequence of orthographic projections of Pr onto
a line ¢ residing in the plane (see Figure 1). For each projection, the line may be rotated
differently relative to the axes. Locations on ¢ are specified by their coordinate x on the
line. Any measurement x; that takes place in time ¢ is corrupted by an additive zero mean
Gaussian random noise v, whose variance R, is known.

In order to refine the estimation of the position of £, the static Kalman filter is used.
The state vector corresponds to the coordinates of the feature:

Suppose that the measurement projection line ¢ is rotated 07 relative to the X axis in
time ¢. Thus, the transformation matrix specifying the measurement is

HtT = (—sin b, cos 0;).
The appropriate static Gauss-Markov measurement equation is
my = (Tp) :H?PF—I—vt

Substituting (PF)t,Ht and (Xr); in the static Kalman filter updating equations (Eq. 2)
results by two expressions specifying the values of (X5 )41 and (Pr)igr :

A

(Pr)ir = (Pr)+ (Sp)iHea [HY (SF)iHi + R 7 (wp) e — H (Pr)d)
Sk = (S — (Sp)iHipa [H (Sp)iHipy + R HEL L (35), (3)
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Recall that trace(X;) is the conditional error variance associated with the estimate §
of the static Kalman filter. To optimally estimate Pr and accelerate the reduction of
uncertainty resulting by the next measurement, trace(Xr);41 should be minimized. The
trace operator is invariant under axis rotation. For the simplicity of demonstration, the
axes are rotated in order to diagonalize ¥; resulting in ¥, (prime denotes the value in the
new coordinate system). A cross section parallel to the XY plane cutting the Gaussian
represented by Y is an ellipse whose axes are parallel to the X,Y axes.
Rotation of the axes by an angle o where

gives

2
¥ = ( ng U(/)Q ) and  H, = (—sin(f;, — a), cos(f; — a))

vy
To determine a uniquely, the condition &2, > 0';2/ is imposed (i.e. the major axis of the

ellipse is parallel to the x axis). The corresponding values of o 2 and Ufy are

/ 1 1
O-xzx = 5(03’1’ + Uiy) + \/Z(Ug’w - O-Zy)z + U;cly

and

/ 1
O-yf/ = 5(03’1’ + Uiy) - \/Z(Ug’w - O-Zy)z + O-;’Iy

Substituting H; by H, and ¥; by ¥, in Eq. 3 results in

/2 /2 2 I /2 /2 /2 . I I
S 1 Um,?yy ,COS 0 /—I— UmlRt /Um}ayy sm(? cos/@
i . . . 2
L 62 sin® 0 + 072 cos? 0’ + R, 0,0, sinf cos 00 sin® 0 4+ o2 Ry
and 19 19 ) 19
/ Uamco-yy + Rt(o-xx + Uyy)
trace(¥,4,) =trace(Yi) = —o—— 57— (4)
clsin“0 + 02 cos? + R,
vy
where

0, =6, — a.

Taking the derivative of Equation (4) with respect to 6 shows that the minimum of
trace(Xp)iy1 is obtained for

™
eminl - 5 + «

37
0min2 - 7 + «

The two different results are actually equal, since the results of projections in the two
different directions differ only by the sign. The result is in accordance with our intuition
since it prefers the projection to be performed on a line which is parallel to the major
axis of the ellipse. The information about the location of F' along this direction is the
most inexact compared to the other directions. Thus, measuring in the direction 8,,;,1 or
0,in2 Teduces the uncertainty in positioning along the “worst” direction, resulting by the
largest possible reduction of the global uncertainty.



3.2 Optimal Positioning of Some Features

Most application require the positioning of more than one feature at a time. The following
subsection includes an extension of the previous subsection result to handle the case of n
features in the plane.

The appropriate state vector is

P

Py
5= ] ,  where P, =

e
~—

P
is the position of the " feature.

The uncertainty corresponding to the estimation of the position of the i** feature in time
t is represented by the covariance matrix

Assuming that no correlation exists among the locations of different features, the global
covariance matrix is

(Z1): 0
Y= (H2)e .
0 (Z0)e

The measurement vector my; represents the projections in time ¢ of the n features on
the line ¢ rotated by 6; radians relative to the X axis. Thus the transformation matrix
specifying the measurement is

(H: )i 0
H
H, = (H2): ‘ where  (H;)T = (—sin 6y, cosb;).

0 (H,),

The equation specifying the measurement (Eq. 1) still holds:

mi 1
m z
my = :2 = :2 = HtTS + Vy
m, /), Tn /,
where
U1
Uy
v = : and  (v;)e ~ N(0,(R;)s).
O



Substituting the above mentioned values into Equation (2) gives

(Zl)t-l—l 0

(X2)e41
Zzf-l—l =

0 (S

where for each ¢ (X;):41 is derived by Equation (3).
Thus

trace(Xiy1) = Z trace((X;)i41)

Using the value corresponding to trace(¥;);+1 (Equation 4) we get

'2) + (Bi)il(02)i + (73)i]

/
n

q

trace(Se) = ; (0/2);sin? 0; —I—( ) cos? 0 + (R;); )
where
0, =0— o
(87 lELI’C an Q(Uz’y)l )
S (w;@,)z ~ (oL,

(02 = SR (o2 4 Mot () + ()
and

(020 = 5102 )i+ (o2 - ¢ () — (02, + (02,2
Let

&= (02)ido)i+ (Bi)il(o2)i + (0)i]
for each ¢, & is known and constant. Equation (5) can be rewritten by

trace(Spq1) = i

= (02)isin® 0; + (0,2); cos? 0 + (R;); (6)

The direction ,,;, of the projection in time ¢ which minimizes trace(¥;41) is the direction
which maximally reduces the global uncertainty of the features estimated positioning:

0,in = m@in[trace(ZtH)]

For each individual feature ¢, trace(¥;):+1 has two minima as was previously shown. How-
ever, trace(X.41) has up to 2n local minima. Using simple iterative methods we can find
a local minimum which is close to the initial state. To find the global minimum one must
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start the iterative process at a point close to its location. In our case the measurement
noise (R;); can be artificially increased in trace(X;11) so that only a single minimum is left.
This minimum is close to 8,,;, and thus it can be used as the initial state in the iterative
process. The iterative process should now incorporate decreasing the measurement noise
to its real values, so as to converge to the real global minimum. Artificially increasing the
measurement noise is analogous to “smoothing” trace(¥;11) which is a common concept
in relaxation methods for findind the global minimum of a function.

In order to find 0,,;, we require

d(trace(Xitq1)) s &l(02)isin20; — (o /2)'sin 20’
00 = [(02)isin? 0 4 (0,2); cos? 0 4 (R;).]?

=1

=0 (7)

(R;): is artificially increased so that (R;); > (0;290)2',(0/2 )i Equation (7) can then be

vy
approximated by

n /2) —(Uz)]SIHQG _
P % xx) + (o)) + (Bi)e)?

Substituting 0 by 0 — a; we get

" (o) — ( 2 )i] (sin 20 cos 2a; — cos 20 sin 20y;)
; [%(( o)+ ()i + (Ri).]?

Let

from equation (3.2) we get

sin 26 Z n; cos 2ay; — cos 20 Z n; sin 2¢a; = 0

=1 =1

and thus

i1 i S1n 20
Yoy misin 2« ‘ (8)

f = — arctan
2 Y oisq M €os 2ay;

In order to find 6, we start from the value # found in Equation (8) and converge
iteratively to the global minimum. In each step the measurement noise is decreased
towards its real values and convergence achieved iteratively in the new minima. The
process stops when the artificially added noise vanishes.

Figure (3.2) shows the effect of "smoothing” the trace function using different amounts
of artificially added noise. One can notice that the outline of the function doesn’t change
drastically. Thus the value of 8 corresponding to the global minimum doesn’t vary much
through changing the amount of artificial noise.
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Figure 2: The values of trace(¥;41) (y axis) as a function of the
angle 0 (x axis) for 14 points with different amounts of added
noise: top left R = 0.0, top right R = 2.0, bottom left R = 4.0,
bottom right R = 8.0. The black triangle in the bottom right
graph represents the values of § derived from Equation (8).

4 3D optimal positioning

This section describes a 3D schematic generalization of the 2D ideas that were specified

in the previous sections.
Let S be the 3D space specified by a global right handed Cartesian coordinate system
(X,Y, 7). Let F be a point feature in S. The position of F'is uncertain, and modelled



as a 3-variate Gaussian random vector

5 2 2 2
XF XF Tre O-wy Tz
’ ol o o
PF — YF ~ N YF 9 Y vy Yz
A 2 2 2
ZF ZF Tz Uyz T2
F
where Pp is the best current estimation of the position of F.
z
Y

Figure 3: Coordinate systems of the 3D space and
measurement projection plane

Measurements are modelled as an orthographic projection of any P € S on a plane D.
Locations on the plane D are specified by a local Cartesian coordinate system (x,y). The
(x,y) coordinate system is positioned on D such that the line that goes through the cen-
ters of the two coordinate systems is vertical to D. This line is specified by the pair (¢, 6)
that represents its angles relative to the Z and X axes accordingly. The z axis of the
projection plane is parallel to the space XY plane. Any measurement (x,y); that takes
place in time ¢ is contaminated by a bivariate zero mean Gaussian random noise v; whose
covariance matrix is R;. For simplicity of the analysis it is assumed that R; is diagonal
but it could be analysed also for the general case. Then

0 r2, 0
vt ~ N 0 y 0 T;y .
t
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The appropriate Gauss-Markov model is static, and its formalization is the following:

XF
s = PF = YF
ZF
x
my = r = HtTS + vy
yr J,
where
ot —sind cos 0
¢\ —cosgcos —cosgsinf sin @

Considering the case of optimizing the positioning of one feature [’ in time ¢ + 1,
trace(Xp)iy1 should be minimized. The considerations taken in the previous section
concerning the rotation of the axes in order to achieve a diagonal covariance matrix hold
in this case as well. Rotation of the X Z plane around the Y axis followed by rotation of
the XY plane around the Z axis results in a Gaussian which is aligned to the axes. Thus,
with no loss of generality, the following analysis considers a feature F' whose position
density function is aligned to the axes, having the covariance matrix

ol 0 0
(Sp)e=| 0 oy O
0 o2

Substitution of H! (X Fr); and R; into Equation (2) results in (¥ );41, which is the error
covariance matrix corresponding to the position of F' in time £ + 1. Applying the trace
operator to this matrix results in an expression that represents the predicted uncertainty
of the position of F' in time ¢t + 1 (see Appendix).

For many applications the assumption that the measurement noise has an identical
distribution functions in both axes (r2, = riy) is valid. Deriving trace(Xr )41 with respect
to 6 and ¢ for this case (see Appendix) shows that the minima of the trace is obtained in
two projection orientations while four other orientations are maxima and saddle points.

2 2

For the particular case o7, > o7 > o2, the characteristics of these orientations is as

following:

two minima

=0 , 0=anyvalue
0 = anyvalue

Y

two maxima

6=w/2 , 0=0
o=7/2 , O=x

and two saddle points

o=r/2 , O0=x/2
p=x/2 , 6=3r/2
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For the cases of other orders among o2, 07, and o2, the locations of these six points

remain, while their classiffication to maxima, minima and saddle points varies. The
locations of the minima are always vertical to the plane created by the two larger axes of
the covariance ellipsoid.

The shape of the surface representing trace(Xp):41 as a function of ¢ and 6 is shown
in figure (4). The surface presents the particular case of a diagonal (Xr), where o2 >
2 2

2 2 _
og, > 05, and ri, =rs .

.
! T A
A, B S ST S
S A R b T A
T T T T AT Y
S b Lo

Figure 4: Surface of predicted trace(Xp);11 as a function of
the projection plane orientation

5 Experimental Results

The performances of the suggested active projection method were tested by simulations.
The same tests were applied to the passive projection method which is currently in use.
The passive approach suggests projecting in angular locations which are uniformly dis-
tributed. The number of the projections determines the angular difference between two
successive projections.

Figure (5) presents the results of one of the simulations that were held. It compares
the performances of the two methods for a particular case of positioning one feature with
an initial uncertainty o2 = 100 , Uiy = 20, O'z,y = 0, with noisy measurements such that

12



R = 100. The simulation contains up to 50 projections. It can be seen that the active
approach is preferable. Its superiority to the passive approach is more significant as the
allowed number of the projections reduces. The asymptotic behaviour of the two methods

for a large number of projections is similar.

120

uncertainty

projections

Figure 5: Results of one comparissom between the active and
the passive methods. The horizontal axis presents the number
of projections taken by the two methods. The vertical axis
measures the uncertainty (trace(X)) corresponding to the esti-
mated positioning of the feature. The dashed line presents the
passive method results while the solid line presents the active
method results.

From Equation (4) it follows that when the angle for the next projection is chosen to
be 0,,;, then the uncertainty improvement for each active projection is

'y
trace(X;) — trace(Xipq1) = ';m*a—i[{
o

maxr

!
where o 2

maxr g

= max[o,.,0,.] .
On the other hand the average uncertainty improvement for each passive projection is

2 ’2]

14 2 2
g ' 0-1’1’ —I‘ g
av where o2 =2 W

o2 4 R w T T
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2

. . . . . . . !
Thus the improvement in using the active method is more significant as | o2 — o,

increases.

6 Conclusion

An active approach for fine positioning of features in a noisy neighborhood has been pre-
sented. The active method is based on determination of the location of the projections
according to the uncertainty corresponding to the current knowledge. The method accel-
erates the accuracy of the estimated features position. Its performances are better than
those of the passive approach, especially where the uncertainty is nonisotropic.

A generalization of the method to polygonal models is currently in research. The
number of degrees of freedom to position such models is larger than that of a unique
feature point. An extension to models with uncertain shape is being considered as well.

Appendix

In section 4 s, HI',(XF); and R; are presented for the 3D case. The conditional error
variance associated with the estimate §;11 is accepted by substituting HtT, (Xp): and Ry
into Equation (2) resulting in:

trace(Xp)ipr =

2 -2 2 2 2 2 2 2
[(0Z, stn"d + ryy)(am sin® 0 + o, cos” f + ro )+

2 4002 2 .2 2 2 2 2 2 -1
+cos® @(r,,0,,8in" 0 +r; 0. cos* O+ o 0, )]

2 202 2 2 2 o2 2 2 2
[y cOS™ @(0,,0,, + 02 0, sin"0 + 07 0, cos” 0)+

2, 2 2 2 2 .2 2 2 2 2 2
—I—UZZ(UMUW—I—UMTM sin” ¢ + 0,1, sin qﬁ—l—rmryy)—l—

2 /.2 2 2 2 2 2 2 2 .2 2 2 2
—I—Tyy(am,ayy T n Ty TonOyy + 02,0, 8i0" 0 + 07 0, cos 6)]

Taking the partial derivatives of trace(Xp).41 with respect to 8 and ¢ for the particular

case 12 = riy = r? shows that the minimum of the trace is obtained for the values of 0, ¢

that satisfy:

sin26{(r*(oh, — 0,) + 02,02 (02, — o)) + 02,) "+
+sin? (9[7“2(0;11/ — Uix)(fl + TQUEZ + sz)"’
2

—I_(O-;y - 0'9090)(7“40';12 + 27"20'3,1,0'51/(7"2 - 0-,32) + Uzwaiyajz)]} =0

sin20sin? 6{(r2 + 02 )2(02, — 02,) (202, + 0%,0%, + 1%, )+

vy T T Yy Ul/l/

—|—T4 C082 ¢[sz(o-§y - sz) + O-;Iy(o-zx - 0-,32) + O-;Ix(o-gz - Uiy)]} =0
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