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Abstract

An application of an active method in order to compute highly accurate �D local�

ization of point features from few projections is presented� The angle of projection

of the image is controlled by the system and directed to extract �D information

from the environment in a manner leading to accurate location in less computation�

This model is relevant for tomographic reconstruction� for feature based stereo

and for model based robot registration�

� Introduction

Image analysis embraces a wide range of image processing tasks� including object local�
ization and identi�cation� Traditional approachs to these tasks have entailed a passive
approach to the data collection problem� the main emphasis being on the algorithms to ex�
tract the exact information from the images already taken� The full�llment of computer
vision tasks is based on analysis of a given image or image sequence� The recognition
process has no control over the imaging process� The results usually have no reliability
measure associated with them� Consequently� current systems are often characterized by
such shortcomings as problems with uniqueness� accuracy and�or stability�

An active approach to the imaging process is advocated� in order to achieve more
robust and reliable results using less computation� Active vision� as referred to in this
paper� is input dependent data acquisition� coupled with a treatment of the reliability of
the acquired information� A mathematical model is proposed that includes the known
information in the scene and the expected information to be sensed by the system� From
the model a new optimal sensing position is determined� A picture taken from this new
position should enable the system to deduce as much new 	D information as possible�
Generally� the 	D information is composed of location in space and its certainty� Intelli�
gent active perception includes algorithms for updating the known information according
to the input� positioning the sensor and judging the reliability of the information that the
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system already has� Kalman �ltering techniques 
�� are used for updating information� as
Kalman �ltering is an optimal method of integrating data�

The proposed approach contributes to the following problems improving the stability
of solutions and the ability to perform tasks in a noisy environment� improving exactness
and reliability of solutions� and reducing the quantity of data needed and the time for
its analysis� Reducing the amount of necessary data and speeding its analysis is a side
e�ect of gathering only the information needed to complete the computation� rather than
collecting information in a random manner�

There has been some previous work done using active vision as a model for robot vision
using di�erent aspects of vision such as vergence� stereo� �xation and focus in a human
like manner� These papers treat the control� activation and reinforcement of certain of
the sensing modes on the others 
�� 	� ���

This paper describes an application of the active method in order to compute highly
accurate 	D localization of point features from few projections� The angle of projection
of the image is controlled by the system and directed to extract 	D information from
the environment in a manner leading to accurate location on less computation� After
each phase of computation �between projections�� the information already computed is
assessed and when information is still needed a new optimal angle for the next projection
is derived� This process repeatedly takes place� until a su�cient accuracy is achieved in
the solution�

This model is relevant for tomographic reconstraction and for robot registration based
on scene model�

Section � contains an introduction of the Gauss�Markov model and the Kalman �lter�
Sections 	 and � treat the � and 	D cases in detail� The imaging model and the compu�
tation of optimal angle for the next projection are described� Simulation results are given
in section ��

� The Static Gauss�Markov Model and

the Kalman Filter

The Static Gauss�Markov discrete time model is a particular case of the general Gauss�
Markov Model and describes a class of physical or abstract systems� The state of the
system is described by a �nite dimensional vector s� This state is measured at time t by
mt which is the result of a linear transformation �HT

t � of the state contaminated by an
additive noise process vt

mt � HT
t s� vt ���

vt � N��� Rt��

�The subscript t denotes a time argument��
The noise process is described as a zero mean Gaussian process� with known covariance
matrix Rt� It is characterized as a white process in the sense that for any two di�erent
time instants k and l� vk and vl are independent random variables�

For the model described above� the static Kalman �lter 
�� �� is a method for optimally
estimating the system state by using the measurements recorded up to the current time�
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Current estimation of the system state �st is in e�ect the conditional expectance

�st � E�sjm��m�� ����mt� for t � �

� �X for any X means the estimated X��
The quality of this estimate is given by the error covariance matrix

�t � E�
s� �st�
s� �st�
T jm��m�� ����mt� for t � ��

The Kalman �lter is an unbiased estimator� and in addition to that it is optimal with
respect to the minimum variance criteria �

trace�t � E�jjs� �stjj
�jm��m�� ����mt� for t � �

is the conditional error variance associated with the estimate �st� and
�st � E�stjm��m�� ����mt� minimizes this error variance�

The explicit state update and error covariance matrix update euations� describing one
step of the static Kalman �lter� are

�st�� � �st � �tHt���H
T
t���tHt�� �Rt���

���mt�� �HT
t���st�

�t�� � �t � �tHt���H
T
t���tHt�� �Rt���

��HT
t���t ���

�s� and �� are assumed to be known due to prior knowledge�
The incremental character of the equations enables the extraction of all the information

realized by previous measurements by using the estimation and variance corresponding
to the current time�

Further description of both the Gauss�Markov model and the Kalman �lter can be
found in 
�� ���

� Uncertainty Driven Active Projection

��� Optimal Positioning of a Single Feature

The model described through this section is concerned with the �D plane speci�ed by the
Cartesian coordinates �X�Y �� Let F be a feature point in the �D plane� The position of
F �PF � is uncertain� and modelled in time t as a bivariate Gaussian random vector

PF �

�
XF

YF

�
� N�� �PF �t� ��F �t�

where

� �PF �t �

�
�XF

�YF

�
t

and ��F �t �

�
��xx ��xy
��xy ��yy

�
t

are the current estimation of the position of F and the covariance matrix that evaluates
this estimation�
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Figure � Coordinate systems of the �D plane and
measurement projection line� � is the projection
angle and � is the angle by which the axes are ro�
tated�

Naturally� reduction of the uncertainty of the feature location is needed� The means
by which this reduction takes place is a sequence of orthographic projections of PF onto
a line � residing in the plane �see Figure ��� For each projection� the line may be rotated
di�erently relative to the axes� Locations on � are speci�ed by their coordinate x on the
line� Any measurement xt that takes place in time t is corrupted by an additive zero mean
Gaussian random noise vt� whose variance Rt is known�

In order to re�ne the estimation of the position of F � the static Kalman �lter is used�
The state vector corresponds to the coordinates of the feature

sF � PF �

�
XF

YF

�
�

Suppose that the measurement projection line � is rotated ��t relative to the X axis in
time t� Thus� the transformation matrix specifying the measurement is

HT
t � �� sin �t� cos �t��

The appropriate static Gauss�Markov measurement equation is

mt � �xF �t � HT
t PF � vt

Substituting � �PF �t�Ht and ��F �t in the static Kalman �lter updating equations �Eq� ��
results by two expressions specifying the values of ��F �t�� and � �PF �t�� 

� �PF �t�� � � �PF �t � ��F �tHt��
H
T
t����F �tHt�� �Rt���

��
�xF �t�� �HT
t��� �PF �t�

��F �t�� � ��F �t � ��F �tHt��
H
T
t����F �tHt�� �Rt���

��HT
t����F �t �	�
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Recall that trace��t� is the conditional error variance associated with the estimate �st
of the static Kalman �lter� To optimally estimate PF and accelerate the reduction of
uncertainty resulting by the next measurement� trace��F �t�� should be minimized� The
trace operator is invariant under axis rotation� For the simplicity of demonstration� the
axes are rotated in order to diagonalize �t resulting in �

�

t �prime denotes the value in the
new coordinate system�� A cross section parallel to the XY plane cutting the Gaussian
represented by �

�

t is an ellipse whose axes are parallel to the X�Y axes�
Rotation of the axes by an angle � where

� �
�

�
� arctan�

���xy
��yy � ��xx

�

gives

�
�

t �

�
�

��
xx �
� �

��
yy

�
and H

�

t � �� sin��t � ��� cos��t � ���

To determine � uniquely� the condition �
��
xx � �

��
yy is imposed �i�e� the major axis of the

ellipse is parallel to the x axis�� The corresponding values of �
��
xx and �

��
yy are

�
��

xx �
�

�
���xx � ��yy� �

s
�

�
���xx � ��yy�

� � ��xy

and

�
��

yy �
�

�
���xx � ��yy��

s
�

�
���xx � ��yy�

� � ��xy

Substituting Ht by H
�

t and �t by �
�

t in Eq� 	 results in

�
�

t�� �
�

���
xx sin

� �� � ���
yy cos

� �� �Rt

�
�

��
xx�

��
yy cos

� �
�

� �
��
xxRt �

��
xx�

��
yy sin �

�

cos �
�

�
��
xx�

��
yy sin �

�

cos �
�

�
��
xx�

��
yy sin

� �
�

� �
��
yyRt

�

and

trace��
�

t��� � trace��t��� �
�

��
xx�

��
yy �Rt��

��
xx � �

��
yy�

���
xx sin

� �� � ���
yy cos

� �� �Rt

���

where
�

�

t � �t � ��

Taking the derivative of Equation ��� with respect to � shows that the minimum of
trace��F �t�� is obtained for

�min� �
�

�
� �

�min� �
	�

�
� �

The two di�erent results are actually equal� since the results of projections in the two
di�erent directions di�er only by the sign� The result is in accordance with our intuition
since it prefers the projection to be performed on a line which is parallel to the major
axis of the ellipse� The information about the location of F along this direction is the
most inexact compared to the other directions� Thus� measuring in the direction �min� or
�min� reduces the uncertainty in positioning along the �worst� direction� resulting by the
largest possible reduction of the global uncertainty�
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��� Optimal Positioning of Some Features

Most application require the positioning of more than one feature at a time� The following
subsection includes an extension of the previous subsection result to handle the case of n
features in the plane�
The appropriate state vector is

s �

�
BBBB�

P�
P�
���
Pn

�
CCCCA � where Pi �

�
Xi

Yi

�

is the position of the ith feature�
The uncertainty corresponding to the estimation of the position of the ith feature in time
t is represented by the covariance matrix

��i�t �

�
���xx�i ���xy�i
���xy�i ���yy�i

�
t

�

Assuming that no correlation exists among the locations of di�erent features� the global
covariance matrix is

�t �

�
BBBB�

����t �
����t

� � �

� ��n�t

�
CCCCA

The measurement vector mt represents the projections in time t of the n features on
the line � rotated by �t radians relative to the X axis� Thus the transformation matrix
specifying the measurement is

Ht �

�
BBBB�

�H��t �

�H��t
� � �

� �Hn�t

�
CCCCA where �Hi�

T
t � �� sin �t� cos �t��

The equation specifying the measurement �Eq� �� still holds

mt �

�
BBBB�

m�

m�

���
mn

�
CCCCA
t

�

�
BBBB�

x�
x�
���
xn

�
CCCCA

t

� HT
t s� vt

where

vt �

�
BBBB�

v�
v�
���
vn

�
CCCCA
t

and �vi�t � N��� �Ri�t��
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Substituting the above mentioned values into Equation ��� gives

�t�� �

�
BBBB�

����t�� �

����t��
� � �

� ��n�t��

�
CCCCA

where for each i ��i�t�� is derived by Equation �	��
Thus

trace��t��� �
nX
i��

trace���i�t���

Using the value corresponding to trace��i�t�� �Equation �� we get

trace��t��� �
nX
i��

��
��
xx�i��

��
yy�i � �Ri�t
��

��
xx�i � ��

��
yy�i�

����
xx�i sin

� �
�

i � ����
yy�i cos

� �
�

i � �Ri�t
���

where
�

�

i � � � �i

�i �
�

�
arctan

�
����xy�i

���yy�i � ���xx�i

�

��
��

xx�i �
�

�

���xx�i � ���yy�i� �

s
�

�

���xx�i � ���yy�i�

� � ���xy�
�
i

and

��
��

yy�i �
�

�

���xx�i � ���yy�i��

s
�

�

���xx�i � ���yy�i�

� � ���xy�
�
i �

Let
�i � ��

��

xx�i��
��

yy�i � �Ri�t
��
��

xx�i � ��
��

yy�i�

for each i� �i is known and constant� Equation ��� can be rewritten by

trace��t��� �
nX
i��

�i
����

xx�i sin
� �

�

i � ����
yy�i cos

� �
�

i � �Ri�t
���

The direction �min of the projection in time t which minimizes trace��t��� is the direction
which maximally reduces the global uncertainty of the features estimated positioning

�min � min
�

trace��t����

For each individual feature i� trace��i�t�� has two minima as was previously shown� How�
ever� trace��t��� has up to �n local minima� Using simple iterative methods we can �nd
a local minimum which is close to the initial state� To �nd the global minimum one must
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start the iterative process at a point close to its location� In our case the measurement
noise �Ri�t can be arti�cially increased in trace��t��� so that only a single minimum is left�
This minimum is close to �min and thus it can be used as the initial state in the iterative
process� The iterative process should now incorporate decreasing the measurement noise
to its real values� so as to converge to the real global minimum� Arti�cially increasing the
measurement noise is analogous to �smoothing� trace��t��� which is a common concept
in relaxation methods for �ndind the global minimum of a function�
In order to �nd �min we require

	�trace��t����

	�
�

nX
i��

�i
��
��
xx�i sin ��

�

i � ��
��
yy�i sin ��

�

i�


����
xx�i sin

� �
�

i � ����
yy�i cos

� �
�

i � �Ri�t��
� � ���

�Ri�t is arti�cially increased so that �Ri�t � ��
��
xx�i� ��

��
yy�i� Equation ��� can then be

approximated by

nX
i��

�i
��
��
xx�i � ��

��
yy�i� sin ��

�

i


�
�
�����

xx�i � ����
yy�i� � �Ri�t��

� �

Substituting �
�

i by � � �i we get

nX
i��

�i
��
��
xx�i � ��

��
yy�i��sin �� cos ��i � cos �� sin ��i�


�
�
�����

xx�i � ����
yy�i� � �Ri�t��

� � �

Let


i �
�i
��

��
xx�i � ��

��
yy�i�


�
�
�����

xx�i � ����
yy�i� � �Ri�t��

from equation �	��� we get

sin ��
nX
i��


i cos ��i � cos ��
nX
i��


i sin ��i � �

and thus

� �
�

�
arctan

Pn
i�� 
i sin ��iPn
i�� 
i cos ��i

� ���

In order to �nd �min we start from the value � found in Equation ��� and converge
iteratively to the global minimum� In each step the measurement noise is decreased
towards its real values and convergence achieved iteratively in the new minima� The
process stops when the arti�cially added noise vanishes�

Figure �	��� shows the e�ect of �smoothing� the trace function using di�erent amounts
of arti�cially added noise� One can notice that the outline of the function doesn�t change
drastically� Thus the value of � corresponding to the global minimum doesn�t vary much
through changing the amount of arti�cial noise�
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Figure � The values of trace��t��� �y axis� as a function of the
angle � �x axis� for �� points with di�erent amounts of added
noise top left R � ���� top right R � ���� bottom left R � ����
bottom right R � ���� The black triangle in the bottom right
graph represents the values of � derived from Equation ����

� �D optimal positioning

This section describes a 	D schematic generalization of the �D ideas that were speci�ed
in the previous sections�

Let S be the 	D space speci�ed by a global right handed Cartesian coordinate system
�X�Y�Z�� Let F be a point feature in S� The position of F is uncertain� and modelled
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as a 	�variate Gaussian random vector

PF �

�
BBB�

XF

YF

ZF

�
CCCA � N

�
BBBB�

�
BBB�

�XF

�YF

�ZF

�
CCCA �

�
BBB�

��xx ��xy ��xz

��xy ��yy ��yz

��xz ��yz ��zz

�
CCCA
F

�
CCCCA

where �PF is the best current estimation of the position of F �

x

y

X

Y

Z

Figure 	 Coordinate systems of the 	D space and
measurement projection plane

Measurements are modelled as an orthographic projection of any P � S on a plane D�
Locations on the plane D are speci�ed by a local Cartesian coordinate system �x� y�� The
�x� y� coordinate system is positioned on D such that the line that goes through the cen�
ters of the two coordinate systems is vertical to D� This line is speci�ed by the pair ��� ��
that represents its angles relative to the Z and X axes accordingly� The x axis of the
projection plane is parallel to the space XY plane� Any measurement �x� y�t that takes
place in time t is contaminated by a bivariate zero mean Gaussian random noise vt whose
covariance matrix is Rt� For simplicity of the analysis it is assumed that Rt is diagonal
but it could be analysed also for the general case� Then

vt � N

�
�
�
� �

�

�
A �
�
� r�xx �

� r�yy

�
A
t

�
A �

��



The appropriate Gauss�Markov model is static� and its formalization is the following

s � PF �

�
BBB�

XF

YF

ZF

�
CCCA

mt �

�
� xF

yF

�
A
t

� HT
t s� vt

where

HT
t �

�
� sin � cos � �

� cos� cos � � cos� sin � sin �

�

Considering the case of optimizing the positioning of one feature F in time t � ��
trace��F �t�� should be minimized� The considerations taken in the previous section
concerning the rotation of the axes in order to achieve a diagonal covariance matrix hold
in this case as well� Rotation of the XZ plane around the Y axis followed by rotation of
the XY plane around the Z axis results in a Gaussian which is aligned to the axes� Thus�
with no loss of generality� the following analysis considers a feature F whose position
density function is aligned to the axes� having the covariance matrix

��F �t �

�
BBB�

��xx � �

� ��yy �

� � ��zz

�
CCCA
F

�

Substitution ofHT
t ���F �t and Rt into Equation ��� results in ��F �t��� which is the error

covariance matrix corresponding to the position of F in time t � �� Applying the trace
operator to this matrix results in an expression that represents the predicted uncertainty
of the position of F in time t� � �see Appendix��

For many applications the assumption that the measurement noise has an identical
distribution functions in both axes �r�xx � r�yy� is valid� Deriving trace��F �t�� with respect
to � and � for this case �see Appendix� shows that the minima of the trace is obtained in
two projection orientations while four other orientations are maxima and saddle points�
For the particular case ��xx � ��yy � ��zz the characteristics of these orientations is as
following
two minima

� � � � � � anyvalue

� � � � � � anyvalue

two maxima
� � ��� � � � �

� � ��� � � � �

and two saddle points
� � ��� � � � ���

� � ��� � � � 	����

��



For the cases of other orders among ��xx� �
�
yy and ��zz the locations of these six points

remain� while their classi�cation to maxima� minima and saddle points varies� The
locations of the minima are always vertical to the plane created by the two larger axes of
the covariance ellipsoid�

The shape of the surface representing trace��F �t�� as a function of � and � is shown
in �gure ���� The surface presents the particular case of a diagonal ��F �t where ��xx �
��yy � ��zz� and r�xx � r�yy�

Figure � Surface of predicted trace��F �t�� as a function of
the projection plane orientation

� Experimental Results

The performances of the suggested active projection method were tested by simulations�
The same tests were applied to the passive projection method which is currently in use�
The passive approach suggests projecting in angular locations which are uniformly dis�
tributed� The number of the projections determines the angular di�erence between two
successive projections�

Figure ��� presents the results of one of the simulations that were held� It compares
the performances of the two methods for a particular case of positioning one feature with
an initial uncertainty ��xx � ��� � ��yy � ��� ��xy � �� with noisy measurements such that
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R � ���� The simulation contains up to �� projections� It can be seen that the active
approach is preferable� Its superiority to the passive approach is more signi�cant as the
allowed number of the projections reduces� The asymptotic behaviour of the two methods
for a large number of projections is similar�
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Figure � Results of one comparissom between the active and
the passive methods� The horizontal axis presents the number
of projections taken by the two methods� The vertical axis
measures the uncertainty �trace���� corresponding to the esti�
mated positioning of the feature� The dashed line presents the
passive method results while the solid line presents the active
method results�

From Equation ��� it follows that when the angle for the next projection is chosen to
be �min then the uncertainty improvement for each active projection is

trace��t�� trace��t��� �
�

��
max

���
max �R

where �
��
max � max
�

��
xx� �

��
yy� �

On the other hand the average uncertainty improvement for each passive projection is

�
��
av

���
av �R

where �
��

av �
�

��
xx � �

��
yy

�
�

�	



Thus the improvement in using the active method is more signi�cant as j �
��
xx � �

��
yy j

increases�

� Conclusion

An active approach for �ne positioning of features in a noisy neighborhood has been pre�
sented� The active method is based on determination of the location of the projections
according to the uncertainty corresponding to the current knowledge� The method accel�
erates the accuracy of the estimated features position� Its performances are better than
those of the passive approach� especially where the uncertainty is nonisotropic�

A generalization of the method to polygonal models is currently in research� The
number of degrees of freedom to position such models is larger than that of a unique
feature point� An extension to models with uncertain shape is being considered as well�

Appendix

In section � s�HT
t � ��F �t and Rt are presented for the 	D case� The conditional error

variance associated with the estimate �st�� is accepted by substituting HT
t � ��F �t and Rt

into Equation ��� resulting in
trace��F �t�� �
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��� r�yy���

�
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� � � r�xx��
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�
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�

yy��
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�
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� ���
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�
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�
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�
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�

xx sin
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�

yy��
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�
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�

yy � r�xx�
�

xx � r�xx�
�

yy � ��zz�
�

xx sin
� � � ��zz�

�

yy cos
� ���

Taking the partial derivatives of trace��F �t�� with respect to � and � for the particular
case r�xx � r�yy � r� shows that the minimum of the trace is obtained for the values of �� �
that satisfy

sin ��f�r����xx � ��yy� � ��xx�
�

zz��
�

xx � ��zz���r
� � ��yy�

�
�

�sin� �
r����yy � ��xx��r
� � r���zz � ��zz��

����yy � ��xx��r
���zz � �r���xx�

�

yy�r
� � ��zz� � ��xx�

�

yy�
�

zz��g � �

sin �� sin� �f�r� � ��zz�
����yy � ��xx��r

���xx � ��xx�
�

yy � r���yy��

�r� cos� �
��zz��
�

yy � ��xx� � ��yy��
�

xx � ��zz� � ��xx��
�

zz � ��yy��g � �
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