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Abstract

In this paper we propose a new classifier - the Maximal Rejection Classifier (MRC) - for

target detection. Unlike pattern recognition, pattern detection problems require a separation

between two classes, Target and Clutter, where the probability of the former is substantially

smaller, compared to that of the latter. The MRC is a linear classifier, based on successive

rejection operations. Each rejection is performed using a projection followed by thresholding. In

contrast to common classifiers the projection vector is influenced by the probabilities of obtaining

target or clutter signals. The projection vector is designed to minimize the expected number of

operations until detection. In the case where the probabilities of target and clutter signals are

equal, it is shown that the Fisher linear discriminant is optimal in the above sense. However,

in more common cases where the probablitities are quite different, a new optimal classifier is

suggested. An application of detecting frontal faces in images is demonstrated using the MRC

with encouraging results.
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1 Introduction

In target detection applications, the aim is to detect occurrences of a specific Target in a given

signal. In general, the target is subjected to some particular type of transformation, hence we

have a set of target signals to be detected. In this context, the set of non-Target samples are

referred to as Clutter. In practice, the target detection problem can be characterized as designing

a classifier C(z), which, given an input vector z, has to decide whether z belongs to the Target

class X or the Clutter class Y. In example based classification, this classifier is designed using

two training sets - X̂ = {xi}i=1..Lx (Target samples) and Ŷ = {yi}i=1..Ly (Clutter samples), drawn

from the above two classes.

Since the classifier C(z) is usually the heart of a detection algorithm, and is applied many

times, simplifying it translates immediately to an efficient detection algorithm. Various types of

example-based classifiers are suggested in the literature [1, 2, 3]. The most simple and fast are

the linear classifiers, where C(z) is based on a projection operation followed by a thresholding.

The projection of z is performed onto a projection vector u, thus, C(z) = f(utz) where f(∗) is a

thresholding operation (or some other decision rule). The Support Vector Machine (SVM) [2] and

the Fisher Linear Discriminant (FLD) [1] are two examples of linear classifiers. In both cases the

kernel u is chosen in some optimal manner. In the FLD, u is chosen such that the Mahalanobis

distance of the two classes after projection will be maximized. In the SVM approach the motive

is similar, but the vector u is chosen such that it maximizes the margin between the two sets.

In both these classifiers, it is assumed that the two classes have equal importance. In typical

target detection applications the above assumption is not valid since the probability of z belonging

to X is substantially smaller, compared to that of belonging to Y. Both the FLD and the SVM

do not exploit this property. Moreover, in both of these methods, it is assumed that the classes
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are linearly separable. in order to be able to treat more complex, and unfortunately, more

common scenarios, non-linear extensions of these algorithms are required [1, 2]. Such extensions

are typically at the expense of much more computationally intensive algorithms.

The Maximal Rejection Classifier (MRC) is a linear classifier that overcomes the above two

drawbacks. While maintaining the simplicity of a linear classifier, it can also deal with non

linearly separable cases. The only requirement is that the Clutter class and the convex hull of

the Target class are disjoint. We define this property as two convexly-separable classes, which is

a much weaker condition compared to linear-separability. In addition, this classifier exploits the

property of high Clutter probability. Hence, it attempts to give very fast Clutter labeling, even

if at the expense of slow Target labeling. Thus, the entire input signal is classified very fast.

The MRC is an iterative rejection based classification algorithm. The main idea is to apply

at each iteration a linear projection followed by a thresholding, similar to the SVM and the

FLD. However, as opposed to these two methods, the projection vector and the corresponding

thresholds are chosen such that at each iteration the MRC attempts to maximize the number

of rejected Clutter samples. This means that following the first classification iteration, many of

the Clutter samples are already classified as such, and discarded from further consideration. The

process is continued with the remaining Clutter samples, again searching for a linear projection

vector and thresholds that maximizes the rejection of Clutter points from the remaining set.

This process is repeated iteratively until a small number or non of the Clutter points remain.

The remaining samples at the final stage are considered as Targets. The idea of rejection-based

classifier was already introduced by [3]. However, in this work we extend the idea by using

maximal rejection.

In order to demonstrate the behavior of the MRC, this algorithm is applied to the problem of
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detecting frontal and vertical faces in images. It is demonstrated that the MRC is a very efficient

algorithm, requiring an effective computation of close to two convolutions of the input image per

each resolution layer in order to reliably detect faces at all scales and all spatial positions.

2 The MRC in Theory

Assume two classes are given in �n, X (the Target class) and Y (the Clutter class). It is

required to discriminate between these two classes, i.e., given a point z drawn from one of these

classes, we would like to be able to label it correctly as either Target or Clutter. One important

point, however, is that we know a-priori that for a typical input stream the vast majority of the

inputs are Clutters, i.e.:

P{X} � P{Y}. (1)

where P{X} is the a-priori probability that an input signal will be a Target, and P{Y} is

defined similarly. Based on this knowledge, we would like the classifier to give a decision as fast

as possible (i.e., with as few operations as possible). Thus, Clutter labeling should be performed

fast, even if at the expense of slow Target labeling.

Similar to other linear classifiers [1, 2], we suggest to first project the sample z onto a vector

u, and label it based on the projected value α = uT z. Projecting the Target class onto u results

with a Probability Density Function (PDF) P{α|X}, defined as:

P{α|X} =
∫

z
P{z|X} δ(uT z − α) dz (2)

where δ(x) is the Dirac’s function. The term P{α|X} defines the probability that a given input

drawn from the Target class will obtain the value α after it has been projected onto u. Similarly,
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Projecting the Clutter class onto u results with a PDF P{α|Y}:

P{α|Y} =
∫

z
P{z|Y} δ(uT z − α) dz. (3)

We define the following intervals based on P{α|X} and P{α|Y}:

Ct = {α|P{α|X} > 0, P{α|Y} = 0}

Cc = {α|P{α|X} = 0, P{α|Y} > 0} (4)

Cu = {α|P{α|X} > 0, P{α|Y} > 0}

(t-Target, c-Clutter and u-Unknown). After projection, z is labeled either as a Target, Clutter,

or Unknown, based on the following decision rule:

Classifier{z} =

⎧⎪⎨
⎪⎩

Target uT z ∈ Ct

Clutter uT z ∈ Cc

Unknown uT z ∈ Cu

(5)

Unknown classifications are obtained only in the Cu interval, where a decision cannot be made.

Figure 1 presents an example for the construction of the intervals Ct, Cc and Cu and their

appropriate decisions. The probability of the Unknown decision is given by:

P{Unknown} =
∫

α∈Cu

P{Y}P{α|Y}dα +
∫

α∈Cu

P{X}P{α|X}dα (6)

The above term is a function of the projection vector u. We would like to find the vector u

which minimizes the “Unknown” probability. However, since this is a complex minimization

problem, an alternative minimization is developed here, using a proximity measure between the

two PDF’s.

If P{α|Y} and P{α|X} are far apart and separated from each other P{Unknown} will be

small. Therefore, an alternative requirement is to minimize the overlap between these two PDF’s.

We will define this requirement using the following expected distance between a point α0 and a

distribution P{α}:
D(α0 || P{α}) =

∫
α

(α0 − α)2P{α}
σ2

dα
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Figure 1: The intervals Ct, Cc and Cu, for specific PDFs P{α|X} and P{α|Y}.

where σ is the variance of P{α} and the division by σ is performed in order to make the distance

scale-invariant (or unit-invariant). Calculating the integral above, it is easy to verify that:

D(α0 || P{α}) =
(α0 − µ)2 + σ2

σ2
(7)

where µ is the mean of P{α}. Using this distance definition, the distance of P{α|X} from

P{α|Y} can be defined as the expected distance of (α|Y) from P{α|X}:

D(P{α|Y} || P{α|X}) =
∫

α
D(α || P{α|X}) P{α|Y}dα = (8)

=
∫

α

(α − µx)
2 + σ2

x

σ2
x

P{α|Y}dα =
(µy − µx)

2 + σ2
x + σ2

y

σ2
x

where [µx, σx] and [µy, σy] are the mean-variance pairs of P{α|X} and P{α|Y}, respectively.

Since we want the two distributions to have as small an overlap as possible, we would like to

maximize this distance or minimize the proximity between P{α|Y} and P{α|X}, which can be

defined as the inverse of their mutual distance. Note, that this measure is asymmetric with

respect to the two distributions, i.e the proximity defines the closeness of P{α|Y} to P{α|X},
but not vice versa. Therefore, we define the overall proximity between the two distributions as
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follows:

Prox(P{α|Y}, P{α|X}) = P{X} σ2
y

σ2
x + σ2

y + (µy − µx)2
+ P{Y} σ2

x

σ2
x + σ2

y + (µy − µx)2
. (9)

Compared to the original expression in Equation 6, the minimization of this term with respect to

u is easier. If P{X} = P{Y}, i.e. if there is an even chance to obtain Target or Clutter inputs,

the proximity becomes:

Prox(P{α|Y} , P{α|X}) =
σ2

x + σ2
y

σ2
x + σ2

y + (µy − µx)2
(10)

which is the cost function minimized by the Fisher Linear Discriminant (FLD)[1]. In our case

P{X} � P{Y} (Equation 1), thus, the first term is negligible in Equation 9 and can be omitted.

Therefore, the optimal u should minimize the resulting term:

d(u) =
σ2

x

σ2
x + σ2

y + (µy − µx)2
(11)

where σ2
y , σ

2
x, µy and µx are all a function of the projection vector u.

Minimization of this expression usually results in a small σx and large σy. This means that

the projection of Target inputs tend to concentrate near a constant value, whereas the Clutter

inputs will spread with a large variance (see e.g. Fig 2) .

For the optimal u, most of the Clutter inputs will be projected onto Cc, while Ct might even be

an empty set. Subsequently, after projection, many of the Clutter inputs are usually classified,

whereas Target labeling may not be immediately possible. This serves our purpose because for

a Clutter input, there is a high probability that a decision will be made. Since these inputs are

more frequent, this means a faster decision for the vast majority of the inputs.

The method which we suggest follows this scheme: The classifier works in an iterative manner,

projecting and thresholding with different parameters at each iteration sequentially. Since the

7



classifier is asymmetric, the classification is based on rejections; Clutter inputs are classified and

removed from further consideration while the remaining inputs are kept as suspected Targets.

The iterations and the rejection approaches are both key concepts of the proposed scheme.

3 The MRC in Practice

Let us return to Equation 11 and find the optimal projection vector u. In order to do so, we

have to express σ2
y , σ

2
x, µy and µx as functions of u. It is easy to see that:

µx = uTMx and σ2
x = uTRxxu (12)

and similarly

µy = uTMy and σ2
y = uTRyyu (13)

where we define:

Mx =
∫

z
zP{z|X} dz Rxx =

∫
z
(z − Mx)(z − Mx)

T P{z|X} dz (14)

My =
∫

z
zP{z|Y} dz Ryy =

∫
z
(z − My)(z − My)

T P{z|Y} dz.

As can be seen, only the first and second moments of the classes play a role in the choice of the

projection vector u.

In practice we usually do not have the the probabilities P{z|X}, P{z|Y}, and inference on the

Target or Clutter class is achieved through examples. For the two example-sets X̂ = {xk}Lx
k=1 and

Ŷ = {yk}Ly

k=1, the mean-covariance pairs (Mx, Rxx, My, and Ryy) are replaced with empirical

approximations:

M̂x =
1

Lx

Lx∑
k=1

xk R̂xx =
1

Lx

Lx∑
k=1

(xk − M̂x)(xk − M̂x)
T (15)

M̂y =
1

Ly

Ly∑
k=1

yk R̂yy =
1

Ly

Ly∑
k=1

(yk − M̂y)(yk − M̂y)
T
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The function we aim to minimize is therefore:

d(u) =
uT R̂xxu

uT

[
R̂xx + R̂yy +

(
M̂y − M̂x

) (
M̂y − M̂x

)T
]
u

(16)

Similarly to [1, 4, 5], it is easy to show that u that minimizes the above expression satisfies:

R̂xxu = λ
[
R̂xx + R̂yy +

(
M̂y − M̂x

) (
M̂y − M̂x

)T
]
u (17)

and should correspond to the smallest possible λ. A problem of the form Au = λBu, as in

Equation 17, is known as the generalized eigenvalue problem [1, 4, 5], and has a closed form

solution. Notice that given any solution u for this equation, βu is also a solution with the same

λ. Therefore, without loss of generality, the normalized solution ‖u‖ = 1 is used.

After finding the optimal projection vector u, the intervals Ct, Cc, and Cu can be determined

according to Equation 4. An input z is labeled as a Target or Clutter if its projected value uT z

is in Ct or Cc, respectively. Figure 2 presents this stage for the case where Ct is empty, i.e. there

are no inputs which can be classified as Target.

Input vectors whose projected values are in Cu are not labeled. For these inputs we apply

another step of classification, where the design of the optimal projection vector in this step is

performed according to the following new distributions:

P{z|Y & uT
1 z ∈ Cu} and P{z|X & uT

1 z ∈ Cu}

We define the next projection vector u2 as the vector which minimizes the following proximity

measure:

Prox(P{uT
2 z|Y & uT

1 z ∈ Cu}, P{uT
2 z|X & uT

1 z ∈ Cu})

This minimization is performed in the same manner as described for the first step. Figure 3

presents the second rejection stage, which follows the first stage shown in Figure 2.
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Following the second step, the process continues similarly with projection vectors u3, u4, · · ·,
etc. Due to the optimality of the projection vector at each step, it is expected that a large

portion of the input vectors will be labeled as Clutter at each step, while following steps will deal

with the remaining input vectors. Applying the cascade of classifiers in such an iterative manner

ensures a good performance of the classification with respect to an accurate labeling and a fast

classification rate.

Since we exchanged the class probabilities with sets of points, it is impractical to define the

intervals Ct, Cc, and Cu using Equation 4. This is because the intervals will be composed of many

fragments each of which results from a particular example. Moreover, the domain of α cannot

be covered by a finite set of examples. Therefore, it is more natural to define for each set, two

thresholds bounding its projection values. As explained above, due to the functional that we are

minimizing, in most cases the Target thresholds define a small interval located inside the Clutter

interval (see Figure 2). Therefore for simplicity, we define only a single interval Γ = [T1, T2],

which is the interval bounding the Target set, where we classify points projected outside Γ as

Clutter and points projected inside Γ as Unknown.

In the case where the Target class forms a convex set, and the two classes are disjoint, it

is theoretically possible to completely discriminate between them. More generally, if there are

no Clutter inputs inside the convex hull of the Target set, exact discrimination is theoretically

possible. This property is easily shown by noticing that we are actually extracting the Target

set from the Clutter set by a sequence of two parallel hyper-planes, corresponding to the two

thresholding operations. This constructs a parallelogram (see Figure 4 (a)) that bounds the

Target set from outside. Since any convex set can be constructed by a set of parallel hyper-

planes, exact classification is possible. However, if the Target set is non-convex, or the two

classes are non-convexly separable (as defined in the Introduction), it is impossible to achieve
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a classification with zero errors; �Clutters inputs which are inside the convex hull of the Target

set cannot be rejected. Figure 4 (b) presents such a case. Overcoming this limitation can be

accomplished by a non-linear extension of the MRC, which is outside the scope of this paper.

1

1

(b)

3
3

4

4

2

2

Terget

Clutter

(a)

1

1

3
3

4

4

2

2
Target

Clutter

Points that cannot
be rejected by AIM

Figure 4: (a) Rejection of Clutter inputs for a convex Target set. (b) Rejection of Clutter inputs for a
non-convex Target set.

In practice, even if we deal with a convex Target set, false-alarms may exist due to the the

sub-optimal approach we are using, which neglects multi-dimensional moments higher than the

second. However, simulations demonstrate that the number of false-alarms is typically small.

4 Face Detection Using the MRC

The face detection problem can be specified as the need to detect all instances of faces in

a given image, at all spatial positions, all scales, all facial expressions, all poses, of all people,

and under all lighting conditions. All these requirements should be met, while having few or

no false alarms and miss-detections, and with as fast an algorithm as possible. This description

reveals the complexity of the detection problem at hand. As opposed to other pattern detection

problems, faces are expected to appear with considerable variations, even for detecting only

frontal and vertical faces. Variations are expected because of changes in skin color, facial hair,
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glasses, face shape, and more.

Several papers already addressed the face detection problem using various methods, such as

SVM [2, 6], Neural Networks [7, 8, 9], and other methods [10, 11, 12, 13]. In all of these

studies, the above complete list of requirements is relaxed in order to obtain practical detection

algorithms. Following [6, 7, 9, 10, 13], we deal with the detection of frontal and vertical faces

only.

In all these algorithms, spatial position and scale are treated through the same method, in

which the given image is decomposed into a Gaussian pyramid with near-unity (e.g., 1.2) resolu-

tion ratio. The search for faces is performed in each resolution layer independently, thus enabling

the treatment of different scales. In order to be able to detect faces at all spatial positions, fixed

sized blocks of pixels are extracted from the image at all positions (with full or partial overlap)

for testing. In addition to the pyramid part, which treats varying scales and spatial positions,

the core part of the detection algorithm is essentially a classifier which provides a Face/Non-Face

decision for each input block.

In this paper we propose the application of the MRC for this task. In the face-detection

application, Faces take the role of targets, and Non-Faces are the clutter. In a typical image

having millions of pixels, it is expected to detect a few dozens of faces at the most, which means

that picking a Non-Face block from the image is much more probable. This property is exploited

by the MRC in order to obtain an efficient face-detection classifier. The MRC produces very fast

Non-Face labeling (i.e., with a low computational cost), at the expense of slow Face labeling.

Thus, on the average, it has a short decision time per input block.

The first stage in the MRC is to gather two example-sets, Faces and Non-Faces. As mentioned

earlier, large enough sets are needed in order to guarantee good generalization for the faces and
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the non-faces that may be encountered in images. As to the Face set, the ORL data-base 1 was

used. This database contains 400 frontal and vertical face images of 40 different individuals. By

extracting the face portion from each of these images and scaling to 15× 15 pixels, we obtained

the set X̂ = {xk}Lx
k=1 (with Lx = 400).

The Non-Face set is required to be much larger, in order to represent the variability of Non-

Face patterns in images. We took 54 arbitrary images containing various textures, natural scenes,

graphic images, etc. Common to all these images is that they contain no faces. Each of the 54

images was decomposed into a Gaussian pyramid with a 1.2 resolution ratio, thus creating 1290

images. Using the pyramids is beneficial both for enriching the Non-Face set, and for including

multi-resolution versions of the same patterns in the data-base. Each possible block of 15 × 15

pixels in these 1290 images is considered as a candidate example of Non-Face. Thus, we have

effectively collected more than 20 million Non-Face examples.

5 Results

We trained the MRC for detecting faces by computing 50 sets of kernels {uk}50
k=1 and associated

thresholds {[T k
1 , T k

2 ]}50
k=1, using the above described databases of Faces and Non-Faces. The

following figures show the obtained results for several images.

In all these examples, the first stage rejected close to 90% of the candidates. This stage is

merely a convolution of the input image (at every scale) with the first kernel, u1, followed by

thresholding. For these examples, the complete MRC classification required an effective number

of close to two convolutions per each pixel in each resolution layer. As can be seen, there are few

false alarms, which typically correspond to blocks of pixels having a pattern which may resemble

1http://www.cam-orl.co.uk/facedatabase.html: ORL database web-site
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Figure 5: Face detection with the MRC - Example 1

Figure 6: Face detection with the MRC - Example 2
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Figure 7: Face detection with the MRC - Example 3

Figure 8: Face detection with the MRC - Example 4
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Figure 9: Face detection with the MRC - Example 5

Figure 10: Face detection with the MRC - Example 6
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a face. Generally speaking, the algorithm performs very well in terms of detection rate, false

alarm rate, and most important of all, computational complexity.

6 Conclusion

In this paper we presented a new classifier for target detection, which discriminates between

Target and Clutter classes. The proposed classifier exploits the fact that the probability of a

given input to belong to the Target class is much lower, as compared to its probability to belong

to the Clutter class. This assumption, which is valid in many pattern detection applications,

is exploited in designing an optimal classifier that detects Target signals as fast as possible.

Moreover, exact classification is possible when the Target and the Clutter classes are convexly

separable. The Fisher Linear Discriminant (FLD) is a special case of the proposed framework

when the Target and Clutter probabilities are equal. In addition, the proposed scheme overcomes

the instabilities arising in the FLD in cases where the mean of the two classes are close to each

other. An improvement of the proposed technique is possible by rejecting Target patterns instead

of Clutter patterns in advanced stages, when the probability of Clutter is not larger anymore.

The performance of the MRC is demonstrated in the face detection problem. The obtained

face detection algorithm is shown to be both computationally very efficient and accurate.

Further details on the theory of the MRC and its application to face detection can be found

in [14, 15].
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