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� Introduction

The design of geometric models is a major activity in various �elds� including computer graphics�
mechanical computer aided design �MCAD�� bio�medical CAD� robotics� and more� A design
paradigm should support fast model speci�cation� modi�cation and variation synthesis�

The process of designing geometric models consists of iterations of top�down and bottom�up
passes� In each iteration� one of the levels of the design� and its components� are re�ned and
tuned based on experience gained by previous passes� It is highly desirable that the designer
not over�work on a particular level or over�specify it� i�e�� make decisions unnecessarily limiting
the freedom in the design of other levels�

Parametric design �Sutherland	�� Borning��� Lin��� PTC��� is a paradigm in which the
degrees of freedom �DOFs� of a model are not determined directly by the designer� rather� a
set of constraints �relations� is de�ned over them� and the system automatically computes the
degrees of freedom� Parametric design is one of the most important development in MCAD is the
last few years and is commercially successful �Porter��� However� current parametric systems
require full and exact speci�cation of the DOF constraints� Under� and over�constrained models
are easy to produce� and manual correction of these is time consuming and error prone� Current
parametric systems therefore cause over�speci�cation and over�work�

In this paper we suggest a design method we call relaxed parametric design� The method
provides the designer with the capability of expressing soft constraints� constraints which do not
have to be met exactly� Soft constraints are used whenever the designer wishes to express a
general decision or guideline� avoiding over�speci�cation�

We present the probabilistic constraints scheme for implementing the relaxed parametric
design paradigm� The mathematical tool with which soft constraints are expressed is probability
theory� The rigidity of a constraint is determined by the uncertainty �covariance� of a suitable
random variable� The model is viewed as a static stochastic process� and the resulting system
of probabilistic equations is solved using the Kalman �lter� a powerful estimation tool from
the theory of stochastic systems� The model�s degrees of freedom constitute the process�s state
vector� and the constraints are regarded asmeasurements of a function of the state� The solution
yields the model with the highest probability under some criterion�

In addition to the advantages in terms of relaxed design� the system is easier to solve since
it is less rigid� Additionally� the user can provide guidelines as to which solution to choose
among the possible multiple solutions� by using an a priori state vector and a covariance matrix
associated with it�

Soft constraints on the location of representative points and on geometric dimensions bear
a strong similarity to schemes for representing tolerances �Roy�� Juster��� The tolerance
and dimensioning representation problem is in some sense simpler than the general parametric
constraints problem� and in some sense more complex� In this paper we do not attempt to
address tolerances�

In Section � we discuss relaxed design and parametric design and describe the relaxed para�
metric design paradigm� Section � presents the general idea of the probabilistic constraints
scheme and reviews the Kalman �lter� In Section � the solution algorithm is described in detail
and Section � studies some of its properties� Section 	 describes an implementation of a simple
parametric modeler using the algorithm�
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� Relaxed Parametric Design

In this section we discuss the parametric design modeling paradigm and its main disadvantage�
over�speci�cation� We then describe the relaxed parametric design paradigm� which attempts
to solve this disadvantage�

��� Relaxed Design

A model to be designed can be viewed in numerous levels of abstraction� In the highest level� only
the outside behavior �functionality� of the model is considered� while the lowest level speci�es
the exact design and operation of the smallest sub�parts� Interim levels specify the relationship
of modules assembled from sub�modules �components��

Design is an incremental� exploratory activity �Smithers��� The process of designing a
model is composed of iterations between top�down and bottom�up design stages� A top�down
stage starts from a speci�cation of the functionality of a particular component in some level�
and breaks the problem into a set of smaller problems� to be solved by the next level� A
bottom�up stage assembles various already�designed components into a larger one� having more
complex functionality� Usually� each level has to be tuned according to knowledge gained while
designing the ones above and below it� The design proceeds in such iterations until the goal is
met �Ba�nares�Alc�antara���

There are two related potential dangers when using this design paradigm� over�work and over�
speci�cation� Over�work means spending too much work on a level or a component while the
iterations between levels are still being performed� Many of the decisions taken when designing
a particular level are modi�ed later� when tuning an adjacent level� Over�speci�cation of one
level means that while designing it� decisions that needlessly in�uence the design of other levels
are taken� The two dangers are highly related and we will refer to both as over�speci�cation�

The design by least commitment �DLC� paradigm �M�antyl�a�� avoids over�speci�cation of the
design in order to facilitate later process planning� The de�nition of DLC given in �M�antyl�a��
is
 �systematically avoiding making design decisions that unnecessarily limit the freedom of later
process planning�� A so�called �relaxed feature model� is de�ned in which aspects unimportant
from the designer�s point of view are left to be determined by the process planner�

This de�nition can be rephrased to say
 �systematically avoiding making design decisions
that needlessly limit the freedom of the design of other levels or components�� We refer to this
paradigm as relaxed design�

��� Parametric Design

Parametric design is one of today�s strongest trends in commercial solid modeling �PTC���
Porter��� Its main purpose is achieving �exibility and e�cient variation generation� but it can
also be viewed as a relaxed design technique�

A parametric geometric model consists of

� A collection O � fo�� ���� ogg of geometric objects or features�

� A set D � fu�� ���� usg of degrees of freedom �DOFs� which completely determine the state
of the geometric objects in O�
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� An external parameter vector ��

� A set C � fc�� ���� crg of parameterized constraints among the members of D� ci �
ci�ui� � ���� uim� ���

The geometric objects can be simple geometric primitives� such as cubes� spheres� cylinders�
cones and torii� or more complex primitives� such as polyhedra and spline surfaces� or assemblies
of such objects� Any collection of objects which can be represented in a computer can be
completely speci�ed by a �nite set of degrees of freedom� It is convenient to choose the DOFs
so that they have a geometric interpretation� e�g� points� vectors and angles� We denote by n

the total dimensionality of the degrees of freedom� For example� if all s DOFs are represented
as d�dimensional points� then n � ds�

Every constraint ci � C speci�es a relation that must hold between some DOFs ui� � ���� uim�
Constraints can be of numerous types� The most common types specify constraints through an
implicit equation �i�e�� ci�ui� � ���� uim� �� � �� or inequality� Other types involve geometric con�
structions� e�g� a point has to be on the convex hull of a set of points� or functional optimizations�
e�g� minimum strain energy�

Design of a level is done by imposing constraints between its degrees of freedom� instead
of �xing them exactly� This has the e�ect of expressing the model in higher level terms� since
functionality is captured rather than one of its particular implementations� The composition and
behavior of a level are thus determined by a generally smaller number of parameters� since the
relational� constraint�based� expression is higher level than DOF manipulation� The advantage
of parametric design is the ability to make fast modi�cations and produce design variations
easily� through modi�cations of the parameters�

Parametric design can thus be be viewed as a technique for avoiding over�speci�cation of
the degrees of freedom� The designer does not make decisions regarding the DOFs themselves�
rather� the system can compute the exact DOFs corresponding to a particular choice of param�
eter vector automatically� using numeric constraint solvers �symbolic solvers are basically still a
research topic when dealing with practical parametric systems with many types of constraints
�Roy�� Juster����

Notwithstanding� parametric design can also cause over�speci�cation� Existing parametric
systems require a complete and accurate speci�cation of all the constraints between DOFs� This
is due to the fact that computing the DOFs from the constraints is done by solving systems of
equations� and solvers encounter problems with under�constrained systems� When confronted
with such a system� the typical solver has to �x the under�constrained DOFs so that the system
could be expressed and solved� Usually� the only sensible way to do this is to use an initial guess
for the solution� supplied by the user or taken from the current system state� Consequently� the
user can only express exact relations and give an initial guess� it is impossible to give inexact
guidelines to the solver� This stands in contradiction with the relaxed design paradigm� since
the user may be forced to express many more constraints than currently necessary� limiting the
design freedom of later stages by over�speci�cation�

Another problem with the requirement for exactly constrained models is the danger of pro�
ducing over�constrained models� It may be di�cult for the user to express a set of constraints
which leave the model neither under�constrained nor over�constrained� Thus� parametric design
requires a much greater e�ort than is intuitively needed� This phenomenon is being recognized
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by many design teams� who found out that a great deal of e�ort is required in order to bene�t
from the advantages of parametric design �Porter���

��� Relaxed Parametric Design

We can view the constraints that the designer expresses in parametric design as �guidelines�
given to the system so that it can compute exact DOFs� The problem described above can
be succinctly summarized by saying that designer guidelines have to be exact� We propose a
modeling paradigm in which the designer is given the capability of explicitly expressing relaxed
constraints� Relaxed �or soft� constraints are constraints which do not have to be satis�ed
exactly� but can be approximated according to some criterion�

The above de�nition of a parametric model is augmented by


� A set S � ff�� ���� frg of softness functions� fi � fi�ci��

A softness function is de�ned for each constraint� giving the amount of rigidity with which the
constraint has to be satis�ed� The value of a softness function can be a scalar� a vector� a
matrix� or a more complex entity� The semantics of the value of a softness function is given by
the constraint solver� This rigidity is in general a multi�dimensional entity� not a scalar� in order
to be able to assign a di�erent softness to di�erent characteristics of a constraint �for example�
along di�erent spatial directions��

In relaxed parametric design� only the constraints that are required in the design of the cur�
rent level or component are expressed as completely rigid� All other constraints are expressed
as soft constraints with a user�de�ned certainty� Con�icts with later design decisions can be
resolved without re�designing the whole component by assigning a higher rigidity to the new de�
cision� The degree of satisfaction of each constraint can be derived from the estimated covariance
matrix�

In addition to the advantage of avoiding over�speci�cation� the relaxed parametric design
paradigm possesses advantages related to the solution process itself� A common problem with
numerical constraint solvers is their inability to recognize the existence of several solutions� usu�
ally the solver converges to the solution closest to the initial guess� The relaxed parametric
design scheme can be used to guide the solver to prefer one solution over another� by de�ning
relaxed constraints whose sole purpose is to hint at the preferred solution� These relaxed con�
straints can be used as persistent guidelines for choosing a solution� if they are stored as a part
of the model and not discarded after each solution�

The modeling system described in �M�antyl�a�� uses the delta�blue algorithm for constraint
satisfaction� which enables the assignment of a �strength� to a constraint� In theoretical AI
various approaches towards representing the degree of belief in a piece of information have
been suggested� In the rest of the paper we will present a novel scheme for implementing
relaxed parametric design� termed probabilistic constraints� Softness functions of constraints are
expressed as covariance matrices� and the resulting system is solved using the Kalman �lter� an
estimation tool for stochastic systems�
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� Probabilistic Constraints

In this section we describe a scheme for implementing the relaxed parametric design paradigm�
a scheme which we term probabilistic constraints� We also review necessary techniques and
concepts from the theory of stochastic systems�

��� General Idea

The general idea in the probabilistic constraints scheme is to treat the relaxed parametric model
as a static stochastic system� The general measurement model of a static stochastic system is

�m � f�u� � e�

where u is the vector of parameters describing the state of the system� f�u� is a mathematical
function of the state� which can be measured� �m is the vector of actual measurements� and e

is the measurement noise� whose covariance �or uncertainty� is assumed known� By convention�
actual measurements are denoted with hats� while �true� measurements �without the noise vector
e� are written without the hat� The central problem in the theory of such systems is to estimate
the state vector from the measurements�

In the probabilistic constraints scheme� the system�s state is the vector of the model�s de�
grees of freedom �the external parameter vector is considered constant� being set by the user��
Constraints are viewed as �measurements� �Zhang���� Since the noise in the stochastic model
is associated with a measurement� we have a tool of expressing the softness of a constraint�
The softness function �measurement uncertainty� is a covariance matrix which represents the
prescribed rigidity of the constraints�

A measurement �i�e�� a constraint�� with a large uncertainty will not be enforced as strictly
by the estimator as one with a small amount of uncertainty� Note the nomenclature
 we say
estimate instead of compute� and uncertainty �or covariance� instead of softness�

��� Kalman Filter Summary

The main tool which we use is the Kalman �lter� The Kalman �lter is a tool for estimating
the state of a stochastic linear system from measurements� Here we brie�y describe the static
Kalman �lter and state some of its properties� For a complete discussion see e�g� �Anderson���

The static Kalman �lter is based on the measurement model �m � Hu� e� The vector u is
the state vector� The �not necessarily square� matrix H is a linear operator relating the state
to the true measurements� e is the noise vector associated with the measurements� and �m is a
vector of actual measurements�

It is assumed that the mean vector of the noise is zero and that its covariance matrix R is
given


Efeg � �� EfeeTg � R�

and that an a priori estimate of the state vector with its associated covariance are known


Efug � �u�� Ef�u� �u���u� �u��
Tg � ���

	



The Kalman �lter equations for estimating u�� given �m are


K � ��H
T �H��H

T �R���

�u � �u� �K� �m�H �u�� ���

� � �� �KH���

The �rst equation computes the Kalman gain matrix� the second produces the new estimate� and
the third gives the certainty of the estimate� A �black box� view of the �lter is shown in Figure ��
The equations result in an unbiased estimator of u �i�e�� having the same mean� which is optimal
in the sense of linear minimal variance �i�e�� among all linear estimators it produces the smallest
unconditional error covariance matrix� hence yielding the minimum squared error�� When the
noise e is normally distributed� which is a very reasonable assumption� the estimator is optimal
in the maximum likelihood sense �i�e�� it is the estimator for which the input measurement vector
is the event with maximum probability��

a−priori estimate

measurements new
estimate

Kalman
filter

model

Figure �
 A �black box� view of the Kalman �lter�

When the model is non�linear� the extended Kalman �lter is used� The extended �lter
performs a linearization of the model to produce the linear matrix H � We use the extended
�lter to enable non�linear constraints� This linearization process is explained in detail later�

The model and equations described above are actually a degenerate case of the Kalman �lter
for static system and measurement models� We have chosen to present it as a Kalman �lter
estimator since we make use of a more general model in other applications of our techniques�

� Expressing and Solving the System

In this section we describe an algorithm for expressing and solving systems of probabilistic
constraints� utilizing the Kalman �lter� We detail the expression of the previous state estimate�
the measurements and their uncertainties�

In this paper we assume that all the constraints can be expressed as implicit mathematical
functions with a Taylor expansion around any points� This assumption encompasses almost all
types of �rst order constraints used in current parametric modelers� We do not treat symbolic�
non�numeric constraints such as those that can be solved using the algorithm in �M�antyl�a���
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A Priori State Estimate

In our algorithm the a priori state estimate �u� consists of the current values of the system DOFs�
There are two methods for determining the a priori uncertainty ��� The simple method is to
use a uniform� very high uncertainty� to avoid clinging to a far�o� a priori estimate� In this case
the covariance matrix is a diagonal matrix with numbers which are large relative to the numbers
in which the DOFs are expressed� This method corresponds to the initial guess demanded by
exact parametric systems�

A more interesting method enables the user to provide guidelines for choosing among multiple
solutions� The a priori covariance matrix is de�ned according to the relative weight assigned to
each DOFs guideline� If this covariance matrix is stored with the model� it can be viewed as a
persistent guideline for choosing among multiple solutions�

Measurements and Linear Operator

Recall that the main idea is to represent the constraints as measurements� Linear constraints
can be expressed directly� For non�linear constraints� we use a process of linearization of the
constraints� This process can be viewed as an internal part of the extended Kalman �lter�

As an example� take a constraint ci between two degrees of freedom uj � uk� ci�uj � uk� �� � ��
A �rst order expansion of ci to a Taylor�s series around any pair of similar DOFs a� b gives

ci�a� b� ���
�ci

�uj

�����
T

�a�b�

�uj � a� �
�ci

�uk

����
T

�a�b�
�uk � b� � ��

using the Jacobian matrices of ci with respect to uj and uk� computed at the �point� �a� b�� This
equation can be re�written as a linear equation


mi � Hiu

where u is the n�dimensional vector of the components of the uis� and

mi � �ci�a� b� ���

�
�ci

�uj

�T

a�

�
�ci

�uk

�T

b

Hi � ��� � � � �

�
�ci

�uj

�T

� �� � � � � ��

�
�ci

�uk

�T

� �� � � � � ���

Note that a single constraint does not necessarily generate a single equation� For example� an
exact constraint on the location of a �D point generates two rows� We denote by dim�c� the
number of equations generated by a constraint c� and w �

Pr
i�� dim�ci��

The linear operatorHi is a dim�ci��n matrix full of zeros except at the columns correspond�
ing to the DOFs uj � uk� The values �a� b� around which linearization is performed are initially
identical to the a priori estimate �see below��

This linearization process can be done for all the constraints C � �c�� � � � � cr�� regardless of
the number of DOFs that they constrain� yielding the linear system m � Hu� The vector m
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and the matrix H are formed by concatenating the vectors mi and the matrices Hi vertically�
The matrix H is therefore of dimensions w � n� and the vector m is of dimension w�

For example� a constraint ci�uj � uk� di� stating that the distance between two �D points
should be di can be expressed as k uj � uk k� � d�i � �� Linearization around points a� b yields

k a� b k� � d�i � ��a� b�Tuj � ��a� b�Tuk

The appropriate entries in the row vectorH are ��ax�bx�� ��ay�by�����ax�bx� and ���ay�by��
The measurement mi is k a� b k� � d�i �

Uncertainty

Constraints are viewed as measurements� measurement uncertainty is where we represent the
softness of a constraint� A constraint ci generates a square block Ri on the diagonal of the
covariance matrixR� An interface is needed for transforming user�intents into suitable covariance
matrices�

The equation mi � Hiu resulting from linearization of the constraint ci becomes a stochastic
equation �mi � Hiu� ei after incorporation of the noise vector ei associated with the constraint�
The Kalman �lter does not assume knowledge of ei� but of its covariance matrixRi� A completely
rigid constraint has a zero covariance matrix �corresponding to �zero uncertainty��� A non�rigid
constraint has a non�zero covariance matrix� Denote by �i the sub�set of the parameter vector �
on which softness is de�ned in constraint ci �for example� the distance in the �distance between
two points� constraint�� To obtain the covariance matrix Ri� linearization is done around ��i in
addition to the participating DOFs� This results in

mi � Hiu�
�ci

��i

����T
��i

� ��i � �i��

We assume that translation of user speci�cations regarding the softness of �i to a covariance
matrix R�

i of the noise vector
��i � �i is available� The desired block covariance matrix is given

by Ri �
�ci
��
R�

i
�ci
��

T
�

We model the error distribution as a multi�dimensional normal random variable with mean
zero� The standard deviation of each dimension corresponds to the rigidity of the constraint
along that dimension� For example� assume that the softness is de�ned for a constraint on the
location of a �D point� For better intuition� we can think of the covariance matrix as de�ning
a local coordinate system centered at the desired location of the point� rotated by any desired
angle � and scaled by any desired amount along its local axes� The scale factors along the
axes are the standard deviations of the random variable� In our implementation �see below�
we visualize such a covariance as a rectangle centered at the desired location �Figure ��� The
covariance matrix R is obtained by R � RotT�ScaRot�� where Sca is a diagonal matrix having
the standard deviation along the axis i in the entry �i� i� and Rot� is a rotation by the angle of
rotation ��

Note that the scale factors on the diagonal are not to be interpreted as de�ning a �tolerance�
region beyond which the probability of the constraint is zero� The probability of a randomly
distributed event is non�zero everywhere� The scale factors only denote the area whose distance
from the mean is the standard deviation�





Local Iterative Kalman Filter

The Kalman equations ���� when given the input described above� supply a new estimate for the
state vector� If all the constraints are linear the �lter estimate is the weighted least square solu�
tion� hence when the system is solvable the correct solution is immediately obtained� However�
non�linear constraints are abundant �e�g� distances�� In this case� the exactness of the solution
depends upon the points around which linearization was performed� If these are far away from
a correct solution� the estimate generated by the Kalman �lter is not accurate�

To improve the Kalman estimate we use the local iterative Kalman �lter� in which the whole
process is iterated by using the points estimated by a previous stage as linearization points in
the current stage� This is continued until convergence is detected �using standard methods� or
until reaching a pre�de�ned limit for the number of iterations�

It is important to emphasize that this process is not equivalent to a dynamic measurement
model� The previous estimate is only used for �nding better linearization points� it does not
replace the a priori estimate in the next iteration� since this would mean that a single measure�
ment �constraint� is counted more than once
 once in the measurementm and operator H of the
present stage� and also in the estimate u from the previous stage� Counting measurements more
than once increases their certainty� and in the limit �performing the process an in�nite number
of times� we would treat all constraints as rigid constraints� The process performs multiple
iterations of a single time step Kalman �lter�

� Properties of the Algorithm

In this section we study some properties of the Kalman �lter probabilistic constraints algorithm

its treatment of under� and over�constrained systems� convergence and complexity�

��� Under�Constrained Systems

A designer given a probabilistic constraints interface can produce under�constrained systems if
not required to supply an uncertainty to all the constraints� The user interface can either require
this� use a default uncertainty� or both� assuming that constraints that were not de�ned to be
exact are soft� Even in the �rst option� specifying an uncertainty is much easier than specifying
an exact constraint� and it conforms to the relaxed design paradigm when the designer does not
care at the moment about the exact nature of the degree of freedom� In any case� it is easy to
prevent under�constrained systems altogether�

��� Over�Constrained Systems

Recall that the Kalman �lter equations use the inverse of a matrix B � H�HT �R� The �lter
fails when this matrix is singular� In the following we characterize one case when this matrix is
singular�

Suppose that all the constraints are rigid� so that the matrix R is zero� and that the a
priori uncertainty matrix is normalized to be the identity matrix� In this case the Kalman �lter
attempts to compute the inverse of HHT � H is a w � n matrix�
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Suppose �rst that n � w� in which case Rank�H� � n� therefore also Rank�HHT� � n � w�
But HHT is a w � w matrix� therefore it is singular� In words� there is no solution when the
system is over�constrained �more equations than unknowns�� On the other hand� suppose that
w � n and that the system is over�constrained in the sense that for almost every choice of
linearization points some rows of H are linearly dependent on other rows� In this case HHT is
singular� since Rank�H� � w hence Rank�HHT� � w�

We can summarize the above by saying that when all constraints are rigid� B is singular if
and only if the system is over�constrained�

The case when there is no inverse to B can be easily identi�ed in the course of the solution
process� When this happens� we can try additional linearization points� since singularity may be
a result of a special con�guration of these points� When this fails� we can add a non�zero matrix
R giving equal uncertainty to all the constraints� resulting in a compromise between con�icting
constraints� We also can naturally use the pseudo�inverse of B or attempt to remove dependent
rows� However� the optimality properties of the �lter would not necessarily hold�

��� Convergence

Although it has many attractive properties� we should not forget that the Kalman �lter is
designed for use in linear systems� When there are non�linear constraints� as is the case in all
interesting parametric modelers� we are not guaranteed to �nd a solution� There is no magic
here
 our algorithm does not guarantee solution of general non�linear constraint systems� It
is unique in that it provides a general framework for dealing with probabilistic constraints and
their solution� In our implementation convergence was generally satisfactory� Problems occurred
mainly when dealing with highly over�constrained models with totally rigid constraints�

��� Complexity

Each iteration of the Kalman �lter involves matrix inversion� Practical algorithms for matrix
inversion take O�n�� time� There are algorithms which are asymptotically more e�cient� but
it is not clear that they are better in practice �Press���� The complexity of all other steps
�linearization� matrix multiplications� is dominated by that of matrix inversion� hence we can
assume that O�n�� is the complexity of one Kalman iteration� The number of iterations is
generally much smaller than n and can be regarded as constant relative to n� Consequently�
O�n�� is also the complexity of the whole algorithm� Improved algorithms for inversion of sparse
matrices will improve this cubic complexity� It is worth mentioning that there exist hardware
implementations of the Kalman �lter �Anderson���

� Results

A simple two�dimensional parametric modeler was implemented to test the correctness of the
algorithm� the modeler is described in detail in �Rappoport��� It is implemented in C and runs
under Unix� using SGI GL or X�Windows for graphics and the Motif user interface toolkit� In
our implementation all the model DOFs are represented as points� In most cases of interest
other degrees of freedom can be represented in terms of points or vectors� For example� an angle
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can be represented by three points� This representation simpli�es the treatment of the set D�
since all its members are of a single type�

Figure �
 A simple model�

Figure �
 The model after solution�

The modeler enables the de�nition of constraint graphs using the following constraint types

location of a point� co�linearity of three points� the angle between three points� the distance
between two points� the distance between a point and a �xed location� and constraining a
point to lie on a �xed line� The user interface uses the concept of the direct manipulation
device �Dmd� �Emmerik�� Rappoport�� to achieve intuitive and easy�to�use interaction� The
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interface currently enbales de�ning softness only on point locations� Linearization equations
were derived using the symbolic mathematical package Maple from the University of Waterloo�
It was demonstrated that the algorithm is capable of computing solutions to non�trivial models�

The following �gures were created using this software� In the �gures� model points are shown
hollow� �xed points used by constraints are drawn full� distance constraints are visualized by line
segments connecting the constrained points� and �three point co�linearity� constraints are shown
by a �xed length line segment connected on two sides and its middle to the points �in the �gures
showing the situtation after the solution it is hard to distinguish them from distance constraints��
Softness is visualized by rectangles� as explained in Section �� Connections between the visual
appearance of constraints and the points they constrain are shown by gray lines� The gray lines
also give a visual impression regarding the amount in which the constraints are satis�ed�

Figure � shows a simple model with three points� The lower�left one is constrained to be
on a certain distance from a �xed point and on a di�erent distance from the upper�right point�
The distance between the upper�right and lower�right points is constrained� In addition� there
are two soft constraints on the locations of the two right points� Figure � shows the model after
the solution� All required distances are satis�ed� We can see that the upper point is farther
away from its desired soft location than the middle point from its soft location� This stems from
the fact that the standard deviation of the second distribution �visualized by the lengths of the
rectangles� sides� is much smaller�

Figures � and � show a more complex model� involving �� points� The points are circularly
connected by �� distance constraints� one of them is distance�constrained from a �xed point�
and there are three �three point co�linear� constraints� In Figure � the points were located rather
randomly on purpose� to show that the solver can cope with a bad initial guess� Note how the
soft point�location constraints enable choosing among the multitude of solutions� On further
stages of the design they can be made more rigid� to �nalize the guideline for a point�s location�

Figure �
 A more complex model�
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Figure �
 The model after solution�

� Discussion

We described relaxed parametric design� which uses soft constraints� constraints which do not
have to be satis�ed exactly� We presented the probabilistic constraints scheme� which views the
model as a stochastic system and constraints as measurements� representing their rigidity by
covariance matrices� An estimate of the model�s DOFs is computed using the Kalman �lter�

The relaxed parametric modeling paradigm is suitable for most geometric design processes
in which the design iterates between various levels and components� The designer is not forced
to over�work on one level and to make decisions which may limit the freedom of design of other
levels� The numerical system of equations which has to be solved in order to compute the
degrees of freedom of the parametric model is more relaxed� hence is easier to solve� There
are no problems of under�constrained systems� and the user can provide guidelines for choosing
between multiple solutions�

Our implementation is �D and uses a limited �albeit very useful� set of constraints� We plan
to extend our implementation to �D with more complex soft constraints types �e�g�� constraining
a point to lie on a spline curve or surface�� The density function of a constraint can be extended
beyond the normal distribution� In addition� ways of integrating our numerical constraints with
symbolic and discrete constraints should be investigated�

The algorithm as described in this paper is not very e�cient� We are currently developing
an e�cient incremental algorithm which fuses the constraints one at a time instead of all at the
same time�

Inequality constraints can in principle be dealt with using extra variables� It has to be
demonstrated that this technique actually works in the context of probabilistic constraints�

Some of our techniques have already been applied to interactive design of smooth ob�
jects �Rappoport�� and pose estimation �Hel�Or�a� Hel�Or�b�� The probabilistic constraints
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scheme can be used for many other applications� Two which immediately come to mind are the
representation of tolerances in mechanical CAD and constrained key�frame animation�
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