
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE/ACM TRANSACTIONS ON NETWORKING 1

Encoding Short Ranges in TCAM Without
Expansion: Efficient Algorithm and Applications

Anat Bremler-Barr, Member, IEEE, Yotam Harchol , Member, IEEE,
David Hay, Member, IEEE, and Yacov Hel-Or, Member, IEEE

Abstract— We present range encoding with no expansion
(RENÉ)— a novel encoding scheme for short ranges on Ternary
content addressable memory (TCAM), which, unlike previous solu-
tions, does not impose row expansion, and uses bits proportionally
to the maximal range length. We provide theoretical analysis to
show that our encoding is the closest to the lower bound of
number of bits used. In addition, we show several applications
of our technique in the field of packet classification, and also,
how the same technique could be used to efficiently solve other
hard problems, such as the nearest-neighbor search problem
and its variants. We show that using TCAM, one could solve
such problems in much higher rates than previously suggested
solutions, and outperform known lower bounds in traditional
memory models. We show by experiments that the translation
process of RENÉ on switch hardware induces only a negligible
2.5% latency overhead. Our nearest neighbor implementation on
a TCAM device provides search rates that are up to four orders
of magnitude higher than previous best prior-art solutions.

Index Terms— Computer networks, switching systems, infor-
mation retrieval, search methods, nearest neighbor search.

I. INTRODUCTION

TERNARY content addressable memories (TCAMs) have
become highly popular in networking equipment and

network processing units. TCAMs are used for high-
speed IP lookup and packet classification in switches and
routers [1], [2]. Software defined networking (SDN) schemes
such as OpenFlow [3] rely on TCAM as the main hardware
for their data path. TCAM was also suggested to be used
for other computationally intensive tasks such as pattern
matching [4], [5], heavy-hitters detection [6], and similarity
search in databases [7].

TCAM is an associative memory module. It is composed
of an array of ternary words, each consisting of ternary digits,
namely: 0, 1, or *. The ‘*’ digits serve as ‘wild cards’ that can
be matched with either ‘0’ or ‘1’. Given a query word, TCAM
returns the first location in the memory array that matches the
query. This process is illustrated in Figure 1.

Manuscript received June 14, 2017; revised September 26, 2017; accepted
January 19, 2018; approved by IEEE/ACM TRANSACTIONS ON NETWORK-
ING Editor Y. Ganjali. This work was supported in part by the European
Research Council under the European Union’s Seventh Framework Pro-
gramme FP7/2007-2013/ERC under Grant 259085 and in part by the Israeli
Centers of Research Excellence Program under Center 4/11. Partial and
preliminary versions of this paper appeared in ACM DaMoN 2015 and ACM
SPAA 2016. (Corresponding author: Yotam Harchol.)

A. Bremler-Barr and Y. Hel-Or are with the Interdisciplinary Center
Herzliya, School of Computer Science, Herzliya 46150, Israel.

Y. Harchol is with the Electrical Engineering and Computer Science
Department, University of California at Berkeley, Berkeley, CA 94720 USA
(e-mail: yotam@eecs.berkeley.edu).

D. Hay is with the School of Computer Science and Engineering, The
Hebrew University of Jerusalem, Jerusalem 91904, Israel.

Digital Object Identifier 10.1109/TNET.2018.2797690

Fig. 1. Diagram of the TCAM lookup process. The query is compared to
all entries in parallel and the index of the first matching entry is used to find
the result.

Multi-field packet classification is becoming more and more
important in modern network architectures, such as SDN
and network function virtualization (NFV) [8]. Specifically,
recently suggested SDN frameworks perform more network
functionalities on switches, such as load balancing [9], DDoS
prevention [10], and quality of service (QoS) [11]. The initia-
tive for NFV suggests to implement higher level tasks such
as deep packet inspection and caching as virtual software
services, and make traffic flow through them using smart
classification rules. All such frameworks heavily rely on multi-
field packet classification. Many of these fields are better
expressed as ranges.

While TCAMs become more and more popular, it is still
a hard problem to efficiently represent range rules on such
memories. Over the last decade there has been an intense line
of research on range encoding on TCAM [12]–[24]. Aside
from propositions to rearchitect TCAM devices to natively
support range rules [13], these solutions can roughly be clas-
sified as either database-independent or database-dependent
encoding schemes. Database-independent schemes encode all
possible ranges using the same technique, thus allowing fast
hot updates [12], [14], [15]. However, these schemes use
exponential TCAM row expansion, where a row is expanded
into several rows, exponentially to the number of range fields
in it.

Database-dependent schemes trades the hot updates flexi-
bility for more compact codes [17], [20], but usually performs
well only when the number of encoded ranges is small, as the
produced code is proportional to the number of ranges in
database. Database-dependent schemes do not scale for large
number of ranges, as we show in Section IV-A. Therefore, this
paper focuses on a database-independent approach.

In this paper we present a database-independent range
encoding scheme, called RENÉ - Range Encoding with No
Expansion - that eliminates row expansion completely when
ranges are short enough. The code produced by RENÉ is
proportional to the maximal range length, not to the number

1063-6692 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-0659-7800

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 2. Toy example: A binary-reflected Gray code (BRGC) encoding tree and the encoding of ranges [5− 8] and [7, 10] using our scheme. In this example,
maximal range length is 4. Ranges are divided into layers of non-overlapping ranges. Two layers contain only ranges that can be encoded using Gray code
and therefore are not shown. Containing range [4, 11] is encoded based on the BRGC values, which forms the first left four bits. Extra bits correspond to
layers: Fifth bit to layer L1 and sixth bit to layer L3. If a range belongs to a layer, then the value of the bit corresponding to that layer is the binary value
of the range for this layer. Otherwise, that bit is set to ‘*’. The total number of bits is proportional to the maximal encoded length and is independent of the
number of encoded ranges.

of ranges, as in database-dependent schemes. In many cases,
as we show in this paper, ranges are limited in length. For
example, it was shown in [15] that in real-life packet classifi-
cation tables more than 60% of the TCP port ranges are short.
Moreover, packet classification also uses other range fields,
where all ranges are short (such as IP ToS or TTL). On some
fields one may apply quantization and categorization to reduce
the length of ranges without hurting classification accuracy
(e.g. packet length). Nonetheless, RENÉ can be combined with
other approaches to represent a wider spectrum of ranges if
necessary.

In addition to packet-classification, where TCAM has
already been selected as de-facto industry standard, we pro-
pose in this paper using a TCAM as a co-processor to CPU in
order to solve hard problems from other domains in computer
science. Specifically, we show how an encoding scheme such
as RENÉ, which requires no row expansion, can be used to
practically and efficiently solve the nearest neighbor search
problem and its variants, removing the infamous curse of
dimensionality from them.

Multidimensional nearest neighbor search (NN) lies at
the core of many computer science applications. Given a
database of objects and a query, we wish to find the object
in the database most similar to the query object. Commonly,
the objects are mapped to points in high-dimensional metric
space. In this context, given a query point q ∈ R

d and a
set of points S = {pi}ni=1, pi ∈ R

d, the goal is to find a
point p ∈ S most similar to the query point q under some
distance metric. In addition to the exact NN, many variants of
this problem exist, including k-nearest neighbor, approximate
nearest neighbor, fixed-radius near neighbors, and more. The
NN and its variants are utilized in a wide range of applications,
such as spatial search, object recognition, image matching,
image segmentation, classification and detection, to name a
few [25]–[29].

When the dimensionality of the points is small, many solu-
tions were proven to be very effective. These include mainly
space partitioning techniques [30]–[32]. However, when the
number of the data points is large (in the order of tens of

thousands or higher) and the dimensionality is high (in the
order of tens or hundreds), the exact solutions break down and
produce exponential time complexity1 [33], [34]. This problem
is widely known as the curse of dimensionality.

To overcome the curse of dimensionality, approximated
nearest neighbor (ANN) solutions are commonly used. In par-
ticular, a c-ANN is a solution where the distance of the
retrieved point from q is at most c times the true dis-
tance from the nearest point. For the ANN problem, prob-
abilistic dimensionality reduction such as locality sensitive
hashing (LSH) [33] was proven to be useful, with query time
sub-linear in n but linear in d. For very-high dimensional space
this may still pose a problem [35]. Note also that the solution
provided by LSH is correct only with high probability.

To our knowledge, we are the first to present a database-
independent encoding scheme for short ranges on TCAM with
no row expansion. In a nutshell, RENÉ divides all ranges
of some length hmax into hmax layers of disjoint ranges.
Using the binary-reflected Gray code (BRGC) [36], which
was shown to be more expressive for ranges than binary
representation [15], it focuses on a specific area where the
encoded range is. Using additional bits, it exactly points to
the encoded range inside the area in focus, where a single
additional bit represents the location of the range inside the
layer it belongs to. A toy example is shown in Figure 2.

Using a general conjunction operator we present next,
we are able to encode all ranges with length up to hmax. The
total length of RENÉ’s code for a w-bits field, when encoding
ranges of up to length hmax, is w− log2(hmax) + hmax − 1.
This means that RENÉ is feasible on contemporary TCAMs
for ranges up to length of 512, depending on the available
space on TCAM and number of range fields. We also present
a theoretical analysis and show that at least max(hmax−1, w)
bits are required to encode short ranges of up to length hmax

in a w-bits field. RENÉ is closer to this lower bound than any
previously-suggested technique.

1Exact brute-force search works in time that is linear to n and d, but is very
slow for high n and d. Space partitioning techniques are exponential in d.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

BREMLER-BARR et al.: ENCODING SHORT RANGES IN TCAM WITHOUT EXPANSION 3

We show several applications for RENÉ in the area of
packet classification, along with an implementation of such an
application on a powerful OpenFlow switch. We also show by
experiments that the penalty in latency for translating values
using RENÉ is negligible.

We evaluate and experiment our nearest-neighbor algo-
rithms on a real TCAM device and achieve search rates
up to four orders of magnitude higher than previous best
prior-art solutions [7], [33], [37].

II. BACKGROUND

A. Ternary Content Addressable Memory (TCAM)

Contemporary TCAM devices operate at very high rates,
between hundreds of millions to more than one billion
queries per second [38], [39]. These devices have about 20-40
megabits of memory that can be configured to accommodate
entries of up to about 640-bits wide (the wider the entry,
the fewer entries can be stored on the chip).

The downsides of TCAM are that it is power hungry,
tends to generate high heat (thus requiring extra cooling),
and relatively expensive, compared to a standard DRAM chip.
A high-density TCAM consumes 12 to 15 W per chip when
the entire memory is used [2]. However, compared to com-
pute units and coprocessors such as CPU or GPU, TCAMs’
power requirement, heating and price are actually lower, and
become similar only when connecting multiple TCAMs in
parallel, as usually done in high end networking equipment.
For example, Intel’s E7-4870 CPU consumes 130 W [40],
and Nvidia’s Tesla K80 GPU consumes up to 300 W [41].
Another downside could be that currently, a TCAM cannot be
easily deployed on a standard PC, as they are manufactured
for networking equipment.

However, due to their impressive adoption for network-
ing devices, TCAMs are becoming larger, faster, less power
hungry and less expensive. We speculate that this trend will
continue. Inspired by the adoption of Graphics Processing
Units (GPUs) for general purpose parallel computing in recent
years, in Section V we also suggest that TCAMs may be useful
for other tasks outside the networking field.

B. Range Encoding on TCAM

The problem of range encoding on TCAM has received
considerable attention in the context of packet classification.

The traditional technique for range representation [12] is
prefix expansion, where a range is represented by a set of
prefixes, each of which can be stored by a single TCAM
entry. The worst-case expansion ratio when using prefix expan-
sion for a w-bit field is 2w − 2 and for an entry with d
ranges it is (2w − 2)d. Lakshminarayanan et al. [14], and
Bremler-Barr and Hendler [15] suggest encoding schemes
other than binary: In [14], Lakshminarayanan et al. propose
DIRPE, a hierarchical version of fence encoding. Bremler-
Barr and Hendler [15] propose SRGE - an encoding based on
binary reflected Gray code [36]. However, these works do not
reduce the range expansion to one, or, in the case of [14],
it requires an infeasible exponential memory size to do that.
SRGE [15] points out that more ranges can be expressed by
using Gray code than when using binary representation, but

it only reduces the worst case of row expansion to 2w − 4.
DIRPE [14] suggests a tradeoff between row expansion and
the number of bits required to code the range. For encoding
without expansion, it demands the unfeasible number of 2w−1
bits.

The database-dependent range encoding techniques design
the encoding to efficiently encode the ranges that specifically
appear in the database. These techniques [16]–[20] use extra
bits, in addition to the w bits of the range field. The basic
idea [18] is to use the extra bits as a bit map: a single extra
bit is assigned to each selected range in order to avoid the
need to represent it by prefix expansion.

Several works [16]–[20] deal with the scalability problem
of this basic technique, which requires one bit per range.
However, all these solutions still require either very long rows,
proportionally to the number of encoded ranges, or they trade
that for row expansion. Moreover, some of these solutions
demand extra logic or extra memory that makes them useless
in our case, where the number of ranges is high.

In [42] and [43] it was suggested to use negation rules on
TCAM instead of row expansion, when applicable, such that
rules may specify the opposite of a range and a corresponding
opposite action (e.g. ‘deny’ instead of ‘accept’ in ACL).
This reduces worst-case expansion factor to w but does not
eliminate it, and is only applicable in certain scenarios.

In [44] and [45] it was suggested to use the independence
of order between entries [44], or the independence between
ingress and egress linecards [45], in order to reduce the
number of bits used to represent multi-field forwarding tables.
Specifically, this reduces the width of TCAM entries and
compacts longer ranges to shorter ranges. It is possible to
use our proposed encoding scheme can be used on top of
the result tables provided by these works. In such a case, this
will allow our scheme to represent longer ranges efficiently.
However, our scheme is database independent and using such
techniques will force it to be database-dependent.

Other works [21]–[24], [46], [47] improve the overall
TCAM memory requirements for classification rules, or split
the rules into multiple TCAM chips [48], [49]. However, these
works do not focus specifically on range encoding, and can be
used on top of most of the range encoding techniques including
the one proposed in this paper.

Other works use TCAM for similarity search in databases.
Shinde et al. [7] encode probabilistic hash functions on TCAM
to implement locality-sensitive hashing [33]. Afek et al. [50]
use TCAM to implement priority queues with a constant time
lookup operation and as a by-product, to provide a TCAM-
based sorting algorithm with O(n) time.

The limitation of all the methods has inspired a suggestion
to change the TCAM hardware [13], to implement range
matching directly in hardware. However this solution changes
TCAM architecture dramatically, and it does not seem feasible
in the near future, since TCAM is a popular memory chip
that exists in tens of millions of routers and switches today.
Moreover, the solution harms the flexibility of TCAM imple-
mentation, where every entry is simply encoded as a string of
ternary bits, regardless of the fields type and borders.

Gray code [36] was originally designed for error correction
purposes in communication networks. However, as shown

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE/ACM TRANSACTIONS ON NETWORKING

in [15], the reflectivity of this encoding can be used in TCAMs,
along with the ternary representation provided by this device,
to represent intervals. As ternary gray code cannot be used
to represent all possible intervals, it was suggested in [20] to
divide intervals into layers, and use binary encoding of those
layers to represent all intervals. In this work we rely on both
ideas.

C. Nearest-Neighbor Search

The nearest neighbor search problem is formally defined
by the following definition for points in a discrete space of
dimension d:

Definition 1: Given a set of data points S = {pi}ni=1,
pi ∈ Z

d and a query point q ∈ Z
d, THE NEAREST-NEIGHBOR

PROBLEM is to find the point s∗ = arg mins∈S D(s, q), where
D(s, q) is a distance between s and q.

As discussed above, in order to overcome the curse of
dimensionality, the accuracy of the solution is sometimes
compromised. The c–APPROXIMATE NEAREST-NEIGHBOR

PROBLEM (c-ANN) searches for a point p ∈ S such that
D(p, q) < c ·D(s∗, q), where s∗ is the nearest point to q.

One important generalization of the nearest neighbor prob-
lem that can be solved with minor adaptations of our frame-
work is the THE k–NEAREST-NEIGHBOR PROBLEM, which
finds a set S′ ⊆ S of k points such that for each p′ ∈ S′ and
p ∈ S \ S′, D(p′, q) ≤ D(p, q). We show these adaptations in
Section V-B.

A simpler problem that we will use as a building block in
our algorithms only searches for a neighbor close enough to
the query point, or discovers that there is no such neighbor at
all:

Definition 2: Given a set of points S = {pi}ni=1, pi ∈ Z
d,

and a query point q ∈ Z
d, let d∗ = mins∈S D(s, q). The

r–NEAR-NEIGHBOR REPORT PROBLEM is to find the point
s′ ∈ S such that D(s′, q) ≤ r if d∗ ≤ r, and to return false if
d∗ > r.

Note that under �∞, a solution for the r–NEAR-NEIGHBOR

REPORT PROBLEM is a data point within the d-dimensional
cube of edge length 2r that is centered in the query point.
Thus, our framework for solving c-ANN can be viewed as
solving (either in parallel or sequentially) a series of r–NEAR-
NEIGHBOR REPORT PROBLEM instances for increasing values
of r. As pointed out in [51], this solves the c-APPROXIMATE

NEAREST NEIGHBOR PROBLEM, where the approximation
ratio is determined by the maximum ratio between consecutive
values of r.

One method for solving the NEAR NEIGHBOR REPORT

PROBLEM is bucketing [51]. The idea behind it is to divide
the d-dimensional space into a grid of d-dimensional cells.
Given a point q located in some cell, we look for its nearest
neighbor, p, in the cell. Then, we search for other points p′

in adjacent cells such that D(p′, q) < D(p, q). If such a point
p′ exists, we update p to be p′. We then continue looking for
such points in adjacent cells until the distance of the cell’s
boundary from q is larger than D(p, q). Other, more advanced
space-partitioning techniques to solve the NEAR NEIGHBOR

REPORT PROBLEM are kd-Trees [52] and Random Projection
Trees [53]. However, all these methods are only useful if the

dimension of the search space (d) is low (e.g., around 10
or 20) [33]. An experimental study [34] has in fact shown
that such approaches scale poorly with the number of dimen-
sions d, and even when d > 10, they may perform worse than
a brute-force scan.

Locality sensitive hashing (LSH) [51] is another tech-
nique for solving instances of the NEAR NEIGHBOR REPORT

PROBLEM; its goal is to be more useful in higher dimensions.
The idea of this technique is to find a family of hash functions
that map neighboring points to the same hash bucket with
high probability, so that if two points are in the same bucket,
they are likely to be close-enough neighbors. One could create
different LSH solvers for different NEAR NEIGHBOR REPORT

PROBLEM instances and thus provide an approximated solu-
tion for the nearest-neighbor problem. The size of the hash
function family depends on the size of the data set, rather
than on the space dimension. LSH was further investigated
and later works provided better approximation and running
times [33], [54]. Building on the LSH idea, Lv et al. [55]
proposed reducing the number of hash functions by multiple
probing of hash buckets that are likely to contain query
results. Another LSH-based approach is locality sensitive B-
trees (LSB-Trees) [56], which improves the running time and
quality of results. In Section V-E we show, however, that
for high-quality results, the computation time of LSH can
be relatively long, and incomparable to the computation time
required by our solution.

A different approach to tackle the curse of dimensionality
is to use parallel hardware. For example, graphics processing
units (GPUs), which are currently fully programmable using
CUDA and OpenCL, have hundreds of computing cores,
and can help reduce the effect of higher dimensions. Two
fast nearest neighbor search implementations were presented
in [37], [57], and [58]. These implementations, both written in
CUDA, basically perform a multithreaded brute-force scan of
the data set using a GPU. A GPU was also used to implement
a parallel version of the LSH algorithm [59]. While these
approaches leverage the parallelism of GPUs and provide
much faster solutions than previous approaches, we show in
Section V-E how TCAM can provide an even more time-
efficient solution to the nearest-neighbor problem.

To the best of our knowledge, using TCAM for near-
est neighbor search has been considered only once, by
Shinde et al. [7] who proposed the TLSH scheme, where a
TCAM device is utilized to implement LSH with a series of
TCAM lookup cycles. In this scheme, each database point is
mapped to a ternary code, where each ternary digit is generated
using a random projection and dividing the projected line into
m bins whose assignments alternate between ternary digits
[0, ∗, 1, ∗, 0, ∗, 1, · · ·]. As the ‘*’ digit can match both ‘0’ and
‘1’, this assignment blurs the boundaries between the 0 and
1 bins such that the ternary hashed representation of nearby
points matches with high probability. Our algorithms, however,
are deterministic and take a completely different approach,
as we will highlight in the rest of the paper.

III. ENCODING SCHEME FOR SHORT RANGES

Our goal is to encode a range up to a certain length hmax

using a single TCAM entry of as few bits as possible. Such

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

BREMLER-BARR et al.: ENCODING SHORT RANGES IN TCAM WITHOUT EXPANSION 5

Fig. 3. Encoding trees for Binary Reflected Gray Codes of length 1, 2, and 3 bits.

code will allow encoding classification rules with multiple
ranges without row expansion at all.

A. Basic Definitions

We begin with some basic definitions that will be used
throughout the rest of this section. First, we define a ternary
bit-wise comparison:

Definition 3: Let a = a0, . . . , am and b = b0, . . . , bm be
two ternary words (ai, bi ∈ {0, 1,*}). a matches b, denoted
a ≈ b, if and only if for every i ∈ {0, . . . , m}, either ai =
bi, or ai is *, or bi is *.

RENÉ encodes ranges in discrete spaces. We begin by
defining an encoding function tcode for values and ranges.
Let U = [0, 2w) ⊂ N0 be a range on the natural line. RENÉ’s
encoding function tcode encodes either a value v ∈ U , or a
range R ⊆ U . It is important to note that RENÉ treats U as
a cyclic ‘wrap-around’ space and thus throughout this paper,
any range [x, y) refers in fact to [x, y mod 2w).

The result of the encoding function is either a binary word
(for exact values) or a ternary word (for ranges), and we expect
that a ternary match tcode(v) ≈ tcode(R) will imply that
the value v is inside the range R. This is formally defined as
follows:

Definition 4: An encoding function tcode is admissible
if for every value v ∈ U and every range R ⊆ U , tcode(v) ≈
tcode(R) if and only if v ∈ R. Furthermore, for any point
v ∈ U , tcode(v) does not contain ‘*’ symbols.

B. Binary-Reflected Gray Code for TCAM

The binary-reflected Gray code (BRGC) [36] is a binary
encoding of integers in a contiguous range such that the codes
of any two consecutive numbers differ by a single bit. A b-bits
BRGC is constructed recursively by reflecting a (b − 1)-bits
BRGC.2

Definition 5: The BRGC encoding function
BRGC(v, 2w) encodes a point p (where 0 � p < 2w)
with w bits. It is defined recursively as follows:

BRGC (0, 1)= ε

BRGC (p, 2w) =
{

0 · BRGC (p, 2w/2) if p < 2w/2

1 · BRGC (2w−p−1, 2w/2) otherwise

where ε is the empty word and ‘·’ denotes concatenation.

2The BRGC of a value x can be directly calculated using the following
formula: x ⊕ (x � 1), where ⊕ and � are the bitwise operations of XOR
and Right Shift, respectively.

For example, BRGC(4, 8) = 1 · BRGC(3, 4) =
11 · BRGC(0, 2) = 110 · BRGC(0, 1) = 110. An example
for values in [0, 16) is shown in Figure 2.

Figure 3 shows the recursive process of constructing BRGC
for n = log w = 3 bits. We begin with n = 1, where 0 is
encoded as 0 and 1 is encoded as 1. To construct the code for
n = 2, the code is duplicated and reflected, and an additional
leading 0-bit (1-bit) is added to the first (second) part. The
result is can be viewed as a tree with two levels, where
the encoding of a number (a leaf) is the sequence of binary
digits (transitions) that lead to it. This process can continue
recursively for any number of bits. The BRGC codeword can
also be computed directly using a simple formula

By wildcarding some of the bits of a BRGC codeword
we can create a ternary range representation. For example,
as can be seen in Figure 2, the ternary word *1** matches
all values in the range [4, 11]. In fact, when looking at this
tree representation of the BRGC encoding, we observe that all
ranges that exactly contain a full sub-tree, or two adjacent full
sub-trees, can be represented using a single ternary BRGC
codeword (namely, a BRGC codeword where some of the
0-1 bits were replaced by ‘*’ symbols).

Before formulating and proving this observation we define
the following terms that will be used in the proof:

• k-prefix is a ternary word in which the k least significant
bits are ‘*’ and the rest are either 0 or 1.

• k-semi-prefix is a ternary word in which the k least
significant bits are ‘*’, one additional bit is also ‘*’, and
the rest are either 0 or 1.

We now formulate and prove the following theorem:
Theorem 1: If all values are BRGC-encoded, then a single

ternary BRGC codeword suffices to admissibly encode a range
R = [x, y mod 2w) if and only if there exist non-negative
integers i, k, for which x = i · 2k and y = (i + 2) · 2k.
Specifically, one of the following cases holds:

1) If i is even, the (k + 1) least significant bits of the
codeword are *, and the rest are either 0 or 1. Thus,
the ternary codeword is (k + 1)-prefix.

2) If i is odd, the k least significant bits of the codeword
are *, one additional bit is *, and the rest are either
0 or 1. Thus, the ternary codeword is k-semi-prefix.

Proof: The proof follows by induction on k: For k = 0,
ranges are [i, i + 2). These ranges are simply two adjacent
leaves in the BRGC tree representation, and, by definition of
Gray code, they differ in a single bit only.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 4. BRGC encoding tree for points in range [0, 16), and ternary representations of intervals of lengths 4, 8 that can be represented using this encoding.

If i is even, then there is an even number of leaves before
these two, and thus these two leaves are siblings and have
a common direct ancestor x with height k + 1 = 1. Thus,
the (k + 1)-prefix that is the concatenation of the log(w)− 1
bits that represent the path to x with one *, represents the
range [i, i + 2) (case 1 in Theorem 1).

If i is odd, then the two leaves do not have a common direct
ancestor. However, they do have some common ancestor up
in the higher levels of the tree, let it be at height h. Thus,
their representation differ in the hth bit. Since the codewords
of i and i + 1 differ only in one bit, there are no additional
bits where they differ. Therefore, the k-semi-prefix in which
the hth bit is * and the rest of the bits are as in i and i + 1
BRGC codewords, represents the range [i, i + 2) (case 2 in
Theorem 1).

We assume that the lemma is correct for some k, and show
that it is correct also for k+1: Let R = [i ·2k+1, (i+2) ·2k+1)
be a range of length 2k+2, for some positive integer i. Let
j1 = 2i, j2 = 2i+2, and let R1 = [j1 ·2k, (j1 +2) ·2k), R2 =
[j2 · 2k, (j2 + 2) · 2k) be two ranges of length 2k+1. Then,
R = R1 ∪ R2, and since j1 and j2 are even, R1, R2 can be
represented using (k + 1)-prefixes (case 1 in Theorem 1).

If i is even, then in the tree representation of the BRGC
encoding there exists an even number of subtrees of height
k + 1 before the subtree that represents R1. Thus, the roots
of the subtrees that represent R1, R2 are siblings, and the
first w − k − 2 bits of their ternary BRGC codewords are
equal. Wildcarding the k + 2 least significant bit would
yield a (k + 2)-prefix that represents their union and thus
represents R.

If i is odd, then the roots of the subtrees that represent
R1, R2 are not siblings, but they do have some common ances-
tor. We denote the right bound of R1 as x = (2i + 2) · 2k − 1
and the left bound of R2 as y = (2i+2) ·2k. x and y are two
consecutive integers and thus their BRGC representation differ
in one bit only. If we assume towards a contradiction that the
difference is in one of the k + 1 least significant bits, then
both BRGC codewords of these points share the same prefix
of length that is greater than w− k− 1, so the two values can
be represented using the same subtree of height k + 1, which
is impossible as R1 	= R2. Thus, the difference between the
two codewords is in one of the w−k−1 most significant bits,
and the (k + 1)-semi-prefix that has ‘*’s in this bit and in the
k +1 least significant bits, represents the union of R1 and R2

which is R.

Fig. 5. Encoding structure for a value or range of length h.

Figure 4 illustrates the BRGC encoding tree for all points
in the range [0, 15], and the ternary encoding for all intervals
of lengths 4, 8 that satisfy the condition above.

Theorem 1 implies that when encoding ranges of length h,
the log2(h) − 1 least significant bits are always ‘*’ thus one
can save TCAM space by omitting these uninformative bits.

C. An Encoding Function for Ranges

We call those ranges that can be encoded using a single
ternary BRGC codeword trivial ranges, and all other ranges
nontrivial ranges. In this section, we extend the BRGC encod-
ing scheme so that it can encode in a single ternary word
nontrivial ranges as well. We append extra bits to the end of
BRGC codewords, as depicted in Figure 5: w − log2(h) + 1
bits are used for the binary BRGC encoding of a value v ∈ U ,
or for the ternary BRGC encoding of some trivial range R.
To encode nontrivial ranges of length h = 2k (k ∈ N0), at most
h− 2 bits are added as extra bits.

The key idea of RENÉ is to divide all ranges of some length
h = 2k (k ∈ N0) into h layers, such that a layer Li

h is the set of
all ranges [x, x+h) for which x mod h = i. Note that two of
these layers contain only trivial ranges (L0

h and L2k−1

h). We are
left with h−2 layers that contain nontrivial ranges. We assign
an extra bit for each layer of nontrivial ranges. The value of
this bit alternates between adjacent ranges in the same layer,
such that for any pair of consecutive ranges in the same layer,
the value of the bit corresponding to this layer is different.
Hence, for a value v ∈ U , tcode(v) is the 1 + w − log2(h)
most significant bits of BRGC(v), concatenated with h − 2
extra bits. The value of the ith extra bit corresponds to layer
Li

h and is set to
⌊

v−i
h

⌋
mod 2.

For nontrivial ranges we define their cover range as follows:
Definition 6: For any nontrivial range of length h = 2k

(k ∈ N0), R = [x, x + h), let the cover range of R, denoted
by cover(R), be the range [
x/h� ·h, (
x/h�+ 2) · h).

We first notice the following property of cover ranges:
Lemma 1: For any range R = [x, x + h) of length h = 2k

(k ∈ N0), cover(R) fully contains R.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

BREMLER-BARR et al.: ENCODING SHORT RANGES IN TCAM WITHOUT EXPANSION 7

Fig. 6. Encoding for all sub-ranges of length 4 and values in range [0, 16). Left bits are the ternary BRGC encoding. Right bits are the extra bits for
nontrivial layers. The bits in gray can be removed as explained in Section III-B.

Proof: Assume by contradiction that R starts before
cover(R) starts or ends after cover(R) ends. If R starts
before cover(R), x <
x/h� ·h. So x/h <
x/h�, which is
of course impossible. Also, if R ends before cover(R) ends,
x + h > (
x/h�+ 2) · h. This implies that x/h >
x/h�+ 1
which is also impossible, and thus a contradiction.

Note that the existence of the cover range is a unique
property of the binary-reflected Gray code. The cover range
cover(R) helps us distinguish R from other ranges in the
same layer. For range R = [x, x + h) ∈ Li

h of length h = 2k

(k ∈ N0), tcode(I) starts with the 1 + w − log2(h) most
significant bits of the ternary BRGC representation of R, if R
is trivial, or of cover(R), if R is nontrivial. Then, h−2 extra
bits are concatenated one after the other where the ith bit is
either * if I /∈ Li

h or
⌊

x−i
h

⌋
mod 2 otherwise (namely, all the

extra bits except one are *).
Our main result is that RENÉ’s encoding function, tcode ,

is an admissible encoding function for ranges of any length
h = 2k (k ∈ N0). The total length of the admissible encoding
produced by tcode for a single value or range is hence w−
log(h) + h− 1.

Before proving this result (Theorem 2), we introduce the
following two technical lemmas:

Lemma 2: If a range R is nontrivial, then no other range
from the same layer is fully contained in cover(R).

Proof: Assume R = [x, x + h), where h = 2k, and that
there exists another range from the same layer, R′, that is
also fully contained in cover(R). By the definition of the
layers, R and R′ are both of length h and are not overlapping.
By Definition 6, cover(R) is of length 2k+1, implying that
the union of R and R′ is equal to cover(R), but since both
ranges are fully contained in the cover, the union is exactly
the cover. This, in turn, implies that x mod h =
x/h�.
Choosing i = 2
x/h� yields that R = [i · 2k, (i + 2) · 2k)
and thus, by Theorem 1, R is a trivial range, in contrast to the
assumption.

Based on this property of cover ranges, we can completely
distinguish between ranges in the same layer using the extra
bits we added to the ternary BRGC encoding:

Lemma 3: Let R = [x, x + h), where h = 2k, be a range
in Li

h. For every value v in cover(R), if v ∈ R, v has the
same bit value as R, and if v /∈ R, then v has the opposite bit
value.

Proof: Assume that a value v ∈ R, has a bit value that is
different than the bit value of R. v is in R so v− x � h, and
thus

⌊
v−i
h

⌋
=

⌊
x−i
h

⌋
, meaning that the bit value of v must be

equal to the bit value of R.

To prove the other direction, assume that a value v /∈ R
has the same bit value as R. Let Rbefore = [x− h, x) be the
range that precedes R in Li

h and Rafter = [x + h, x + 2h) be
the range that succeeds R in Li

h. The bit value of Rbefore and
Rafter must be different than the bit value of R as they are
both adjacent to R. Since v ∈ cover(R) but not in R, and
since the length of cover(R) is at most 2h, v must be either
in Rbefore or in Rafter, and thus it must have the opposite
bit value than R.

We now turn to the main theorem.
Theorem 2: The function tcode is an admissible encoding

function for ranges of length h = 2k.
Proof: Assume that there exist a value v and a range R

for which v ∈ R but tcode(v) 	≈ tcode(R). v is in R so
the ternary BRGC of R (in case R is trivial) or of cover(R)
(in case R is nontrivial) must match the BRGC encoding of
v ternary-wise. Thus, some extra bit does not match. Since
for trivial ranges all extra bits are *, R must be nontrivial.
For nontrivial ranges, only one extra bit in tcode(R) is not
a ‘*’. However, this bit must be equal to the corresponding
bit in tcode(v) by Lemma 3, which is a contradiction to the
assumption that tcode(v) 	≈ tcode(R).

To prove the opposite direction, assume that there exist a
value v and a range R for which tcode(v) ≈ tcode(R)
but v /∈ R. The BRGC encoding of v must match the ternary
BRGC encoding of R (in case R is trivial) or cover(R)
(if R is nontrivial). If R is trivial and there is a match then
v ∈ R, as all extra bits in tcode(R) are ‘*’. Thus, R must
be nontrivial, and v must be inside cover(R). However by
Lemma 3, if v ∈ cover(R) and has the same bit value as R
for the layer R belongs to, then v must be in R.

Figure 6 shows the encoding of all sub-ranges of length 4
in range [0, 16). Note that the first and third layers do not
require extra bits, so these are both set to * in their encoding.
In other layers, the corresponding extra bit alternates between
ranges in the same layer. For example, the range [1, 4], which
cannot be encoded solely using a ternary BRGC codeword,
is encoded as 0***1*, where the fifth bit is the extra bit that
corresponds to the second layer. Only points in [1, 4] match
this encoding.

D. Encoding Multiple Range Lengths
Given RENÉ’s encoding function for ranges of some max-

imal length hmax we can encode, without using more bits,
all ranges whose lengths are smaller than hmax as well.
We define a logical conjunction operation, denoted by �,
to encode the intersection of two ranges. The truth table

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE/ACM TRANSACTIONS ON NETWORKING

TABLE I

THE TRUTH TABLE OF A TERNARY LOGICAL CONJUNCTION,
DENOTED BY THE � OPERATOR

of such a conjunction is given in Table I. ⊥ means an
undefined output, and we later make sure to never get such
an output when using this operation. For two ternary words,
a = a0, . . . , am and b = b0, . . . , bm, the conjunction c = a�b
is the ternary word where ci = ai � bi. If at least one of
the symbols ci is ⊥, then c is also marked as ⊥ and is not
defined. Note that the conjunction operation is independent of
the specific encoding function.

The essence of the conjunction operation is captured in the
following two lemmas:

Lemma 4: For any value v ∈ U and any two ranges
R1, R2 ⊆ U , if tcode is an admissible encoding function
for R1 and R2, then tcode(v) ≈ tcode(R1)�tcode(R2)
if and only if v ∈ R1 ∩R2.

Proof: Assume tcode(v) ≈ tcode(R1) � tcode(R2)
and v /∈ R1 ∩R2. Without loss of generality, assume v /∈ R1.
Since v /∈ R1 and tcode is an admissible encoding function,
there exists some i for which tcode(v)i 	= *, tcode(R1)i 	=
*, and tcode(v)i 	= tcode(R1)i. Without loss of gen-
erality, let tcode(v)i = 0, so tcode(R1)i = 1 and
therefore tcode(R1)i � tcode(R2)i is either 1 or ⊥. Thus,
by definition, tcode(v)i 	≈ tcode(R1)i � tcode(R2)i

implying tcode(v) 	≈ tcode(R1) � tcode(R2), which is
a contradiction.

To prove the other direction, assume that v ∈ R1 ∩ R2.
Since v ∈ R1 and v ∈ R2 and tcode is admissible,
tcode(v)i ≈ tcode(R1)i and tcode(v)i ≈ tcode(R2)i,
for any i. The admissibility of tcode also implies that
tcode(v)i is either 0 or 1. Assume without loss of generality
that for some i it is 0. Then, tcode(R1)i and tcode(R2)i

are either 0 or *. Hence, tcode(R1)i � tcode(R2)i is
either 0 or *, and therefore, tcode(v)i ≈ tcode(R1)i �
tcode(R2)i. Since this is true for any i, it implies that
tcode(v) ≈ tcode(R1) � tcode(R2), and the claim
follows.

Lemma 5: If tcode is an admissible encoding function
for R1 and R2, and the result of tcode(R1) � tcode(R2)
is ⊥ then R1 ∩R2 = ∅.

Proof: Assume tcode(R1) � tcode(R2) = ⊥ and to
the contrary, that R1 ∩ R2 	= ∅. Then, there exists some i
for which, without loss of generality, tcode(R1)i = 0 and
tcode(R2)i = 1, and some value v ∈ R1 ∩ R2. From the
admissibility of tcode , if v ∈ R1, then tcode(v) = 0,
and thus v /∈ R2, and if v ∈ R2, then tcode(v) = 1, and
thus v /∈ R1, which is a contradiction.

Note that the other direction of Lemma 5 is not necessarily
true: the conjunction of codes of two disjoint ranges may not
be ⊥.

We assume that there is a value hmax = 2kmax , which is
the maximum length we should consider. Note that any range

Algorithm 1 Encoding Function for a Value v

1: function tcode (v, hmax)
2: � v - value, hmax - maximal range length
3: word← BRGC(p)� (log2(hmax)− 1) � Bitwise

shift
4: for i← 0 to (hmax − 1) do
5: if layer is skipped then
6: continue � Optional - encode less layers
7: end if
8: if layer is nontrivial (i 	= 0 and i 	= hmax

2) then

9: b←
⌊

v−i
hmax

⌋
mod 2

10: word← (word� 1)|b � Bitwise OR
11: end if
12: end for
13: return word
14: end function

[x, x + h) of length h < hmax (h is not necessarily a power
of 2 anymore) can be written as the intersection of two ranges
of length hmax as follows:

[x, x + h) = [x + h− hmax, x + h) ∩ [x, x + hmax).

Using the conjunction operator and Lemma 4 we can construct
the code for ranges of any length h � hmax , with hmax − 2
extra-bits:

tcode([x, x + h))
= tcode([x + h− hmax, x + h)) � tcode([x, x + hmax)).

We also know from Lemma 5 that tcode([x, x + h)) is not
⊥ as the intersection is never empty.

The encoding function tcode(v) for some value v when
using any range lengths up to hmax is shown in Algorithm 1.
When encoding a range R of length h � hmax that is centered
at some point v, Algorithm 2 is used to obtain tcode(R).

The length of the resulting encoding of a value v ∈ U or a
range R ⊆ U is therefore w − log2(hmax) + hmax − 1.

E. Running Time Analysis

Computing tcode for either a value or a range is simple:
results only depend on the value or range themselves, and
the maximal range length hmax. The running time of both
functions, for a value and a range, is linear with hmax, and
does not depend in the number of encoded ranges: O(hmax)
when encoding a value and O(hmax + h) when encoding a
range of length h � hmax.

F. Lower Bound on the Number of Bits per Range

As previously recalled, Lakshminarayanan et al. [14] intro-
duced the worst-case necessary condition of 2w − 1 bits to
encode a w-bit range. We use this observation to introduce a
lower bound for the number of bits required to encode ranges,
when their lengths are limited by some upper bound hmax:

Theorem 3: In order to represent any ranges up to length
hmax without row expansion, in a field of width w bits, at least
max(hmax − 1, w) bits are necessary.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

BREMLER-BARR et al.: ENCODING SHORT RANGES IN TCAM WITHOUT EXPANSION 9

Algorithm 2 Encoding Function for a Range [s, t]
1: function tcode ([s, t], hmax)
2: � [s, t] - range, hmax - maximal range length
3: if t− s + 1 	= hmax then
4: � Encode range as an intersection
5: R1 = [s, s + hmax − 1]
6: R2 = [t− hmax + 1, t]
7: Γ← {R1, R2}
8: else � Encode range directly
9: Γ← {[s, t]}

10: end if
11: result← 0
12: count← 0
13: for [x, y] ∈ Γ do
14: mask ← 0
15: for i← x + 1 to y do
16: mask ← mask|(BRGC(i− 1)⊕BRGC(i))
17: � bitwise OR and XOR
18: end for
19: word← BRGC(x)� (log2(hmax)− 1)
20: mask ← mask� (log2(hmax)− 1)
21: for i← 0 to (hmax − 1) do
22: if layer is skipped then
23: continue � Optional - encode less layers
24: end if
25: if layer is nontrivial (i 	= 0 and i 	= hmax

2) then
26: if x mod hmax 	= i then � Irrelevant layer
27: mask ← (mask� 1)|1 � Put a ‘*’
28: word← word� 1
29: else � [x, y] is in this layer
30: mask ← mask� 1
31: b←

⌊
x−i

hmax

⌋
mod 2

32: word← (word� 1)|b
33: end if
34: end if
35: end for
36: if count > 0 then
37: result← result � (word, mask)
38: else
39: result← (word, mask)
40: end if
41: count← count + 1
42: end for
43: return result
44: end function

Proof: The maximal range length hmax is given as some
fixed value. We show that the theorem is correct for any w �
log2(hmax), as a field with less bits than that cannot have
ranges of length hmax. For w = log2(hmax), the range field
starts at 0 and ends at hmax−1 and is of size of exactly hmax.
According to the condition in [14, Th. 1], to encode all ranges
in this field, the worst-case length of the ternary representation
is at least 2w − 1 = hmax − 1 bits.

The proof of [14, Th. 1] stems from the fact that for a
range of size 2w there are 2w−1 contained sub-ranges that are

also contained in each other (and thus are overlapping), and a
single bit per range is necessary to distinguish between them.
When using a range field with more bits (i.e. larger w), we do
not reduce the number of possibly overlapping range. Thus,
the number of required bits cannot be lower than hmax − 1
(note that this lower bound is not necessarily tight).

In any case, and specifically when w > hmax − 1, at
least w bits are necessary to represent singular values (ranges
of length 1).

IV. RENÉ FOR PACKET CLASSIFICATION

Range encoding on TCAM has been used for packet clas-
sification for long time. Row expansion significantly limited
its usage when multiple header fields are ranges, leading
vendors and administrators to avoid such situations as much
as possible. However, next generation SDN applications, such
as load balancers, security tools, and quality of service, rely
on sophisticated packet classification that is performed on the
datapath itself (i.e. the switch) [9]–[11], [60]. Most of these
solutions require range based matching on multiple header
fields. We summarize several examples for such fields and
metadata information that can benefit when using RENÉ:

• TCP/UDP Port Fields: In real-life datasets, short ranges
(up to length 64) sometimes consist more than 60% of the
unique ranges [15]. Thus, if a network administrator uses
mainly short ranges for TCP/UDP port fields, or even for
only one of these fields, RENÉ may suit their needs.

• Network ToS (or DSCP): In both the deprecated ToS
field and the new DSCP field the precedence is set
using an increasing value, and to specify one or more
precedence classes, either an exact value or a short range
should be used.

• Packet Size: Packet size (e.g. IP total length field) can
be a useful piece of information for packet classification.
When classifying according to this property, a catego-
rization can be done in order to reduce range lengths.
As usually one does not classify packets according to a
specific length, but rather according to categories (small,
medium, large, etc.), short ranges can be used to represent
multiple categories. For example, a recent attack named
Tsunami SYN Flood Attack can be identified based on the
size of packets (about 1000 bytes or more) [61].

• Timestamp and Counters: Recent works suggest adding
packet’s metadata such as hit counters and timestamps
(or time deltas) to classification data path, for example in
OpenFlow switches [60]. It is likely that classification on
such fields would be based on ranges and not on exact
values, and thus RENÉ may be used.

• IP Spoofing Detection: In order to protect against IP
spoofing and attacks that use this technique (e.g., DDoS),
it was suggested to inspect the IP TTL value and conclude
about possible spoofed packets [62], [63]. The detection
is based on the fact that the TTL value does not change
dramatically over short time for the same host or subnet,
and these values can be found using ping and other
tools. Thus, if a packet with IP from a known subnet
comes with a TTL value that is too far from the expected
value, it is classified as spoofed and dropped.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE/ACM TRANSACTIONS ON NETWORKING

Since the TTL value is not compared to an exact value,
but rather to a short range, RENÉ can be used in
order to implement IP spoofing detection on classification
hardware with TCAM.

• AS Numbering: BGP routers and SDX [64] sometimes
make classification decisions based on autonomous sys-
tems (ASes) numbers. Large ISPs and content providers
usually hold multiple, consecutive AS numbers [65],
which form one or more short ranges. For example,
Comcast has multiple such short ranges 7015-7016,
33489-33491, 33650-33668 (in addition to five more
non-consecutive AS numbers). Grouping AS numbers
to ranges can reduce the total number of classification
rules, as long as no row expansion is induced. RENÉ fits
this goal as the ranges are short and it induces no row
expansion.

A. Evaluation and Experiments

1) Experiment on an OpenFlow Switch: We implemented
RENÉ and a sample SDN application that uses it for packet
classification over the Ryu SDN controller [66]. We use a
NoviFlow NoviKit 250 hardware switch that supports Open-
Flow 1.3 [3] and has an internal TCAM. Our code is available
at https://github.com/yotamhc/rene.

Classification uses OpenFlow table pipeline in the following
way: First table, given a destination TCP port for a packet,
writes its translation into RENÉ’s encoding to the metadata
field (using the OpenFlow’s Write-Metadata instruction). This
table is precomputed on the controller and contains up to 64K
entries - an entry for each port number. Then, second table
matches the packet according to the metadata only (original
port information is not necessary at this stage), and forwards
it accordingly.

On the same switch, when a packet is classified based on
only its TCP port, without table pipeline, the total round-
trip time to and from the switch, using a 1Gbps copper
link, is 157μs. Using our table pipeline, such round-trip takes
161μs. Thus, latency increases by only 2.5%, which is a
negligible factor.

2) Quantitative Evaluation: To evaluate the quality of
RENÉ’s encoding function tcode we compare it with best
prior-art encoding techniques that can provide no row expan-
sion: DIRPE [14], a database-independent encoding scheme
and LIC [20], a database-dependent encoding scheme. We do
not compare RENÉ to SRGE [15], for example, as it requires
row expansion. We evaluate the database dependent scheme
LIC both in its worst case, where all ranges are to be
represented, and using a commercial classification dataset with
257 range rules. Since our goal is no expansion of TCAM
entries, we compare the amount of TCAM bits required
for a single range field, such that no expansion is induced
whatsoever. Using the classification database, LIC performs
worse than RENÉ on ranges up to length 32. When the dataset
contains much higher number of ranges, LIC always performs
worse than RENÉ.

Figure 7 shows the bit requirement of each encoding tech-
nique, given the maximal length of encoded ranges, assuming
a 16-bits range field. In addition, it shows the lower bound

Fig. 7. Analysis of the number of TCAM bits required for a 16-bits range
field when representing all ranges of up to a given length.

of max(hmax − 1, w) bits (see Theorem 3), as a black,
dotted line. Evidently, RENÉ (blue, solid line) is much closer
to the lower bound than all other techniques. Moreover,
the bit requirements for database-dependent techniques such
as LIC [20] are higher by an order of magnitude, when all
ranges up to a certain length should be encoded. The database-
independent technique DIRPE [14] always requires 2w−1 bits
as it does not use the additional information on the maximal
range length.

V. RENÉ FOR NEAREST NEIGHBOR SEARCH

TCAM is a powerful device with high parallelism that
can also be used for tasks outside of the networking fields.
Just as TCAM has broken the performance limits of packet
classification and IP lookup in networking, it can also be
used to break such computational limits in problems from
other fields, serving as a coprocessor for the CPU, similarly
to a GPU or FPGA. RENÉ can be used to implement on
such TCAM applications that use the nearest-neighbor prob-
lem or its variants. We show several such variants in this
section, and by experiments and simulations we show that
RENÉ can improve their performance by orders of magni-
tudes.

Multidimensional nearest neighbor search (NN) lies at the
core of many computer science applications. The formal
definition of the problem in the space of integers is provided
in Section II-C.

The NN problem and its variants are utilized in a wide
range of applications, such as spatial search, object recogni-
tion, image matching, image segmentation, classification and
detection, to name a few [26]–[28].

In this section we present super high-speed algorithms for
the NN problem using TCAM as a coprocessor, and our
encoding scheme RENÉ. The proposed algorithms solve the
ANN problem with �∞-normed distance using a single TCAM
lookup and linear space.

The r–NEAR-NEIGHBOR REPORT PROBLEM is a simpler
problem that we will use as a building block in our algorithms.
It only searches for a neighbor close enough to the query
point, or discovers that there is no such neighbor at all. It is
formally defined in Definition 2.

Using RENÉ’s encoding function tcode , a single ternary
match can determine whether a given d-dimensional point is

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

BREMLER-BARR et al.: ENCODING SHORT RANGES IN TCAM WITHOUT EXPANSION 11

Fig. 8. Illustration of the two alternative algorithms for Nearest Neighbor Search using TCAM. Left: Encoding nested cubes around each point in the
database. A query is a point in this encoding, and the result is the smallest cube encompassing the query point. Right: Encoding cubes around the query points
and the data is encoded as points. A query is a sequence of nested cubes in increasing edge length. The result is the first data point that matches a cube.

Algorithm 3 Encoding Function for a d-Dimensional Point

1: function TCODE(p[], d, hmax)
2: word← ε
3: for i← 1 to d do
4: word← word + tcode(p[i], hmax)
5: end for
6: return word
7: end function

Algorithm 4 Encoding Function for a d-Dimensional Cube

1: function TCODE(p[], d, h, hmax)
2: word← ε
3: for i← 1 to d do
4: word ← word + tcode([p[i] −
h/2� , p[i] +

h/2�], hmax)

5: end for
6: return word
7: end function

inside a given d-dimensional cube: To encode a d-dimensional
point, or a d-dimensional cube, each coordinate is encoded
using the tcode function, and the codewords of all d
coordinates are concatenated into a single ternary word.
The encoding functions for a d-dimensional point and for a
d-dimensional cube are shown in Algorithm 3 and in
Algorithm 4, respectively.

A. Approximate Nearest-Neighbor Search

Our APPROXIMATE NEAREST-NEIGHBOR SEARCH algorit-
hms solve in fact multiple instances of the r-NEAR NEIGHBOR

REPORT PROBLEM for increasing values of r. In �∞, the value
of r defines a cube around each data point p such that for all
query points q inside that cube, p is a valid solution of the
r-NEAR NEIGHBOR REPORT PROBLEM with q, and for all
query points outside that cube p is not a valid solution.

Our time-efficient method solves the APPROXIMATE

NEAREST-NEIGHBOR SEARCH in a single TCAM lookup.
Given a set H of edge lengths, let hmax = maxhH. For each
point p ∈ S and h ∈ H we store a TCAM entry representing a
d-dimensional cube centered at p, with edge length h. Entries

are sorted by the value of h: the smaller h is, the higher the
priority of the entry.

Given a query point q ∈ [0, w)d, we use tcode to build
a d-dimensional point representation for maximal edge length
of hmax, and use a single TCAM lookup to find the smallest
cube that contains the point q. The TCAM returns the highest
priority entry that matches, which is the entry of the cube that
is centered at some point p, has the shortest edge length, and
contains q. An example is shown in Figure 8 (left). Note that
in general, p is not necessarily the exact nearest neighbor of q
(as there may be more than one such cube with the same edge
length h). However, the distance (under �∞) of q from its exact
nearest neighbor is strictly more than

⌊
1
2 maxh′∈H{h′ < h}⌋.

As we will show later, by carefully choosing the edge length
set, we can obtain a c = 1 + ε approximation factor, where
the size of H is inversely proportional to ε.

In our memory-efficient method, the data points and query
points switch roles: we store in the TCAM a single entry for
each data point. The order of the entries does not matter. Upon
a query q, we construct a sequence of |H| cubes centered in
p with edge lengths in H. Then, we perform TCAM lookups
with cubes of increasing edge length values until a match is
found. As in the previous method, if a point was matched with
a query of edge length h, then it is a solution of the h/2-NEAR

NEIGHBOR REPORT PROBLEM.
1) Analysis of Approximation: LetH = {h1, h2, . . . , hmax}

such that hi < hj for each i < j. Matching a data point
p corresponding to a cube with edge length hi implies that
D(p, q) ≤ ⌊

hi

2

⌋
(where D is defined under �∞). Since hi is

the first edge length to be matched, D(s∗, q) ≥
⌊

hi−1
2

⌋
+ 1

(s∗ is the exact nearest neighbor of q). This implies that under
�∞, both methods solve the c-APPROXIMATE-NEAREST-
NEIGHBOR PROBLEM for c = maxhi∈H

�hi/2�
�hi−1/2�+1 , where

hi is the ith smallest element in H and h1 = 1 ∈ H.3

In order to get the exact nearest neighbor in �∞, one can
choose H to be the set of odd numbers. Reducing the size
of H reduces the number of required entries, but decreases
the quality of the results. For example, to get a c-approximate
solution,H can consist of all even values up to 2/(c−1), along
with the values of a geometric series starting at 2/(c−1), with
the parameter c.

3To get a bounded approximation ratio, 1 must be added to H.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE/ACM TRANSACTIONS ON NETWORKING

When distances are defined under �p norms, for finite values
of p ≥ 1, the approximation ratio is at most c· p

√
d in �p, where

c is the approximation ratio in �∞.
2) Database Update: Our algorithms allow efficient hot

updates in the lookup database (the set S). Deletion of
data points is trivial (simply delete all corresponding entries
from the TCAM). When using the time-efficient method,
efficient addition of new points is possible by keeping some
empty TCAM entries between entries of different edge length,
by adding entries for the corresponding cubes in these empty
slots. Also, one can track deletion for more empty slots.
Nevertheless, this further increases space requirement.

When using the memory-efficient method, the situation is
simpler: since the order of entries is not important, point
addition or deletion requires a single TCAM entry update.

B. Exact Nearest-Neighbor Search in �p

Our algorithms achieve p
√

d approximate solution under �p

norm. We suggest the following extension to find (exactly) the
nearest neighbor under �p: For each data point s ∈ S and for
each edge length h ∈ H, we precompute the neighborhood
set N (s, h) = {s′ ∈ S | Dp(s, s′) ≤ h p

√
d}, where Dp is

the distance between the two points under the p-norm. The
neighborhood sets are stored in memory. Precomputing these
sets is possible since datasets are relatively static and the
neighborhood sets do not depend on the query points.

Since for every two points, the distance in �p is at most
p
√

d the distance in �∞, we immediately conclude that if the
algorithms described in Section V-A return a data point s for
query point q with some distance h ∈ H, then the exact nearest
neighbor in �p of q is in N (s, h).

While this method requires additional computations follow-
ing the TCAM lookup, in most datasets the number of points
in N (s, h) would be very small. In our experiments (see
Section V-E) N (s, h) contained only s itself for lower values
of h in most cases and was small even for higher values of
h. Thus, the time required to find the exact nearest neighbor
is still much shorter than that required for brute-force over all
points in the database.

The precomputed neighborhood sets can also be used to find
k-nearest neighbors instead of only one. However, the number
of neighbors in these sets might be smaller than k, so one
TCAM lookup might not suffice. To find the set of k exact
nearest neighbors, the lookup process should continue until
k or more neighbors are found, and also until no more
neighbors are found in cubes whose edge length is equal to
that of previous neighbors. This process is formally described
in Algorithm 5, assuming a multi-match technique such as the
one presented in [14] is used.

C. Algorithms for the Partial Match Problem

The PARTIAL MATCH PROBLEM is defined as follows:
Definition 7: Given a set of data points S = {pi}ni=1,

pi ∈ Z
d, a query point q ∈ Z

d, and a subset of the dimensions
Dq ⊆ {1, . . . , d} of size dq < d, THE PARTIAL MATCH

PROBLEM is to find the point s∗ = argmins′∈S D(s′, q)|Dq ,
where D(a, b)|Dq is the distance between a and b under some

Algorithm 5 Exact k-NEAREST NEIGHBORS SEARCH Algo-
rithm in �p

1: function FIND-EXACT-KNN(q, S, k)
2: N = ∅ � Candidate neighbors set
3: hlast = −1
4: repeat
5: (s, h)← TCAMLOOKUP(q, S)

� returns the datapoint and correponding edge length
6: if |N | < k or hlast = −1 or h = hlast then
7: N ← N ∪N (s, h)
8: hlast ← h
9: end if

10: until |N | � k and h > hlast

11: R← argmink
s′∈N Dp(s′, q) � k min-distance points

12: return R
13: end function

norm in the dq-dimensional space. Namely, for a p-norm,

D(a, b)|Dq =

⎛
⎝ ∑

i∈Dq

|ai − bi|p
⎞
⎠

1/p

.

This problem is useful when some features in the vector are
not important for a specific query or user, and in traditional
computing models it is known to be more difficult [67] than
the nearest neighbor problem, where all relevant dimensions
are given a-priori. For example, LSH (and its extension to
TCAMs, TLSH [7]) cannot be used to solve this problem.
However, our solution for the NN problem can be used
instantly to solve the partial match problem.

Under the maximum norm �∞, a PARTIAL MATCH solution
is to replace, in the queries, all the bits corresponding to
coordinates in irrelevant dimensions with * bits. We replace
coordinates in queries and not for data point, as the relevant
dimensions are selected per query. This technique works both
for our time-efficient and memory-efficient methods.

For �p, our solution results in p
√

dq approximation, where dq

is the dimension of the specific query. The extensions
to EXACT NEAREST NEIGHBOR SEARCH and k–NEAREST

NEIGHBORS SEARCH, as described in Section V-B, work also
for this problem. The neighborhood sets are precomputed
on the d-dimensional space, but queries and distance com-
putations after queries are done on the specific dq dimen-
sional space. The results are still correct as distances in
the dq-dimensional space are bounded by distances in the
d-dimensional space.

D. Geometric Clustering on TCAM

Another closely related problem that could benefit from
using TCAM with RENÉ is high-dimensional geometric
clustering. The k-MEANS CLUSTERING problem, for exam-
ple, is usually solved as a sequence of nearest-neighbor
search problems, each of these consists of a database with k
d-dimensional points [68].

Algorithm 6 shows how the traditional k-MEANS CLUS-
TERING algorithm can be implemented on TCAM using our

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

BREMLER-BARR et al.: ENCODING SHORT RANGES IN TCAM WITHOUT EXPANSION 13

Algorithm 6 k-MEANS CLUSTERING Algorithm on TCAM
1: function FIND-K-MEANS(S, k)
2: changed← false
3: t← 1
4: Randomly select D ← {d1, . . . , dk} ⊆ S (|D| = k)
5: for i← 1 to k do
6: Ci

0 ← ∅
7: Ci

1 ← ∅
8: end for
9: repeat

10: Clear TCAM
11: for h← 1 to H do
12: for i← 1 to k do
13: Add tcode (di, h) to end of TCAM
14: end for
15: end for
16: for each s ∈ S do
17: di ← query TCAM with tcode (s)
18: if s /∈ Ci

t−1 then
19: changed← true
20: Ci

t ← Ci
t ∪ {s}

21: end if
22: end for
23: if changed then
24: for i← 1 to k do
25: di ← center of Ci

t

26: Ci
t+1 ← ∅

27: end for
28: t← t + 1
29: changed← false
30: end if
31: until changed = false
32: return D = {d1, . . . , dk}
33: end function

encoding function tcode , under �∞ norm. As k is usually
much smaller than the number of points, this solution requires
relatively low TCAM space. Still, a standard TCAM can
support up to thousands of clusters using this algorithm.

E. Evaluation and Experimental Results

We evaluate our nearest-neighbor algorithms using an image
similarity search application (using GIST [69] descriptors),
on a real-life image dataset [70]. We then compare the results
and performance with prior-art solutions. Our evaluation is
based both on experiments with real-life TCAM devices and
simulations. Each image in the dataset was encoded as a
GIST vector in R

512, downsampled to R
40 and quantified

to {0, . . . , 255}40 before performing search. Images were
randomly partitioned to a dataset of 21, 019 images a query
set of 1, 000 images.

1) Experiment With a TCAM Device: Since there is no
evaluation board for such devices, we used a commodity
network switch (Quanta T1048-LB9) that contains a TCAM
for our experiment (similarly to [7]). This switch has 48
1 Gbps ports, each handling at most 1.5M packets per second.

Fig. 9. Throughput comparison of the various algorithms for solving the
nearest neighbor problem, as a function of the size of the search database.
Throughput of TCAM-based algorithms is simulated based on 360 MHz
TCAM throughput. We denote TLSH with one TCAM lookup per r-Near
Neighbor Report Problem instance as time-efficient, and TLSH with log(1/ε)
TCAM lookups per instance as space-efficient.

TCAM is used for packet classification for OpenFlow 1.3.
Using the OpenFlow interface to the switch, we mapped each
entry produced by our algorithms to a set of header fields.
A commercial traffic generator injected manually crafted pack-
ets that contain the queries in their headers, where each query
is broken into header fields in the same way TCAM entries
are stored.

We verified correctness by counting the number of matches
of each TCAM entry. Using one ingress port the switch
easily achieved a throughput of 1.5M queries per second,
which is the upper bound of the link between the traffic
generator and the switch (but not of the TCAM). Using
24 ingress ports we achieved throughput of 35.69M queries
per second (almost 1.5M×24). Hence, the bottleneck was not
in the TCAM: If we had more ports we could have reached
much higher throughput, as contemporary TCAM devices are
capable of query throughput of 360M to 1.6 billion queries
per second [38], [39].

2) Simulation Results: We compared our results to the
results of brute-force exact nearest neighbor (using MAT-
LAB or on GPU [37]), locality sensitive hashing [33], [51]
(using implementation from [71]), and TLSH [7]. LSH approx-
imated results in �2 were comparable to our approximated
results in �2 only when LSH used the most complex hash
functions, or when used very large bins. Both options mean
longer computation time due to either more complex hash
computation or much more distance computations.

Figure 9 presents a comparison of the throughput (queries
per second) of CPU implementations of LSH [71], GPU imple-
mentation [37], TLSH [7] simulation, and RENÉ simulation.
Each line in the figure presents the throughput of a single
algorithm/implementation, as a function of the number of data
points in the dataset.4

For the TCAM simulations we used a software simulation
with unbounded memory limits for the TCAM, 360MHz
throughput, with 50 cycles latency per query.

4LSH implementations were ran on an Intel Core i7 2600 3.4GHz CPU.
We used the same dataset and queries for our algorithms, LSH and TLSH.
TCAM algorithms used 10 different cube sizes. GPU throughput is as reported
in [37] for the closest lower values of n and d.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE/ACM TRANSACTIONS ON NETWORKING

The required TCAM space for our space efficient method
is 8M bits and for our time efficient method with 10 different
cube sizes is 80M bits, with 440 bits wide entries. These
requirements are available in most modern TCAM devices.
TLSH requires much higher TCAM capacity and much wider
TCAM entries.

3) Geometric Clustering Analysis: In this section we ana-
lyze the running time of Algorithm 6. We define i to be
the number of iterations until convergence, Tc as the time
for completing a single TCAM cycle, T� as the number of
cycles required for TCAM to complete a request,5 and Tclear

as the time to clear the whole TCAM. Given the set of points
S, the set of edge lengths H and the number of clusters k,
the running time of the algorithm is:

Θ(i · (Tc · (k|H|+ T� · (1 + |S|)) + Tclear))

4) Comparison to TLSH: As recalled, Shinde et al. [7]
were the first to suggest using TCAM for nearest neighbor
search. They use a ternary variant of the Locality Sensitive
Hashing, called TLSH, to provide a probabilistic solution for
the nearest neighbor problem. The main advantages of our
algorithms over TLSH are that our time-efficient algorithm
solves multiple instances of the r-NEAR-NEIGHBOR REPORT

PROBLEM in a single TCAM lookup, while TLSH requires
|H| lookups (hence the factor of 10 difference in the results
presented in Figure 9), and that the TCAM space requirements,
and specifically and more importantly TCAM entry width
requirement, are lower in at least one order of magnitude
than those of TLSH. Furthermore, our algorithms provide
deterministic results and are not subject to probabilistic errors,
and they allow database hot updates.

VI. CONCLUSION

While the problem of range encoding on TCAM has been
deeply investigated over recent years, the proven theoretical
limits on the number of bits one must use have diverted
researchers to use row expansion. However, row expansion
causes exponential increment in the number of TCAM entries.
New applications such as SDN implementations for load
balancing, security tools, and NFV frameworks use more than
a few range fields. Thus, row expansion makes solutions that
use it impractical.

In this paper we introduce the sub-problem of short range
encoding, and we show that the theoretical limits on the
number of required bits can be lowered in this situation.
We present RENÉ: An encoding scheme for short ranges,
and show that it is closer to the lower bound than any other
technique. We then present multiple applications that may
benefit from such short range encoding, in the area of packet
classification. Furthermore, we propose to use TCAM as a co-
processor for solving problems outside of the networking field,
such as the nearest neighbor problem and its variants, which
so far has been known to take very long time to compute.
We show that using TCAM, one could solve such problems
in much higher rates than previously suggested solutions,
and outperform known lower bounds in traditional memory
models.

5TCAM works in a pipeline, where a request is processed over multiple
cycles, but at each cycle a new request may begin.

REFERENCES

[1] W. Jiang, Q. Wang, and V. K. Prasanna, “Beyond TCAMs: An SRAM-
based parallel multi-pipeline architecture for terabit IP lookup,” in Proc.
INFOCOM, 2008, pp. 1786–1794.

[2] V. C. Ravikumar and R. Mahapatra, “TCAM architecture for IP lookup
using prefix properties,” IEEE Micro, vol. 24, no. 2, pp. 60–69,
Mar./Apr. 2004.

[3] OpenFlow Switch Specification Version 1.3.2, Open Netw. Found.,
Menlo Park, CA, USA, Apr. 2013.

[4] A. Bremler-Barr, D. Hay, and Y. Koral, “CompactDFA: Scalable pattern
matching using longest prefix match solutions,” IEEE/ACM Trans. Netw.,
vol. 22, no. 2, pp. 415–428, Apr. 2014.

[5] A. Goel and P. Gupta, “Small subset queries and bloom filters using
ternary associative memories, with applications,” in Proc. SIGMETRICS,
2010, pp. 143–154.

[6] M. Moshref, M. Yu, R. Govindan, and A. Vahdat, “DREAM: Dynamic
resource allocation for software-defined measurement,” in Proc.
SIGCOMM, 2014, pp. 419–430.

[7] R. Shinde, A. Goel, P. Gupta, and D. Dutta, “Similarity search and
locality sensitive hashing using ternary content addressable memories,”
in Proc. SIGMOD, 2010, pp. 375–386.

[8] ETSI. (Oct. 2012). Network Function Virtualization. [Online]. Available:
http://portal.etsi.org/NFV/NFV_White_Paper.pdf

[9] R. Wang, D. Butnariu, and J. Rexford, “OpenFlow-based server load
balancing gone wild,” in Proc. Hot-ICE, 2011, p. 12.

[10] Radware. (2014). DefenseFlow—SDN Applications and DDoS Attack
Defense. [Online]. Available: http://www.radware.com/Products/
DefenseFlow/

[11] M. S. Seddiki et al., “FlowQoS: QoS for the rest of us,” in Proc.
HotSDN, 2014, pp. 207–208.

[12] V. Srinivasan, G. Varghese, S. Suri, and M. Waldvogel, “Fast and
scalable layer four switching,” in Proc. SIGCOMM, 1998, pp. 191–202.

[13] E. Spitznagel, D. Taylor, and J. Turner, “Packet classification using
extended TCAMs,” in Proc. ICNP, 2003, pp. 120–131.

[14] K. Lakshminarayanan, A. Rangarajan, and S. Venkatachary, “Algo-
rithms for advanced packet classification with ternary CAMs,” in Proc.
SIGCOMM, 2005, pp. 193–204.

[15] A. Bremler-Barr and D. Hendler, “Space-efficient TCAM-based classi-
fication using Gray coding,” in Proc. INFOCOM, 2007, pp. 1388–1396.

[16] Y.-K. Chang and C.-C. Su, “Efficient TCAM encoding schemes for
packet classification using Gray code,” in Proc. GLOBECOM, 2007,
pp. 1834–1839.

[17] H. Che, Z. Wang, K. Zheng, and B. Liu, “DRES: Dynamic range
encoding scheme for TCAM coprocessors,” IEEE Trans. Comput.,
vol. 57, no. 7, pp. 902–915, Jul. 2008.

[18] H. Liu, “Efficient mapping of range classifier into ternary-CAM,” in
Proc. 10th Symp. High Perform. Interconnects, 2002, pp. 95–100.

[19] J. V. Lunteren and T. Engbersen, “Fast and scalable packet classifi-
cation,” IEEE J. Sel. Areas Commun., vol. 21, no. 4, pp. 560–571,
May 2003.

[20] A. Bremler-Barr, D. Hay, and D. Hendler, “Layered interval codes
for TCAM-based classification,” Comput. Netw., vol. 56, no. 13,
pp. 3023–3039, Sep. 2012.

[21] O. Rottenstreich, I. Keslassy, A. Hassidim, H. Kaplan, and E. Porat, “On
finding an optimal TCAM encoding scheme for packet classification,”
in Proc. INFOCOM, 2013, pp. 2049–2057.

[22] Q. Dong, S. Banerjee, J. Wang, D. Agrawal, and A. Shukla, “Packet
classifiers in ternary CAMs can be smaller,” in Proc. SIGMETRICS,
2006, pp. 311–322.

[23] C. R. Meiners, A. X. Liu, and E. Torng, “TCAM Razor: A systematic
approach towards minimizing packet classifiers in TCAMs,” in Proc.
ICNP, Oct. 2007, pp. 266–275.

[24] C. R. Meiners, A. X. Liu, and E. Torng, “Topological transformation
approaches to optimizing TCAM-based packet classification systems,”
in Proc. SIGMETRICS, 2009, pp. 73–84.

[25] J. S. Beis and D. G. Lowe, “Shape indexing using approximate nearest-
neighbour search in high-dimensional spaces,” in Proc. IEEE Comput.
Soc. Conf. Comput. Vis. Pattern Recognit., Jun. 1997, pp. 1000–1006.

[26] M. Brown and D. G. Lowe, “Recognising panoramas,” in Proc. ICCV,
vol. 3. 2003, p. 1218.

[27] L. Liang, C. Liu, Y.-Q. Xu, B. Guo, and H.-Y. Shum, “Real-time texture
synthesis by patch-based sampling,” ACM Trans. Graph., vol. 20, no. 3,
pp. 127–150, 2001.

[28] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman, “Object
retrieval with large vocabularies and fast spatial matching,” in Proc.
CVPR, 2007, pp. 1–8.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

BREMLER-BARR et al.: ENCODING SHORT RANGES IN TCAM WITHOUT EXPANSION 15

[29] D. G. Lowe, “Object recognition from local scale-invariant features,”
in Proc. 7th IEEE Int. Conf. Comput. Vis., vol. 2. Sep. 1999,
pp. 1150–1157.

[30] H. Samet, Foundations of Multidimensional and Metric Data Structures.
San Mateo, CA, USA: Morgan Kaufmann, 2006.

[31] J. L. Bentley, “Multidimensional divide-and-conquer,” Commun. ACM,
vol. 23, no. 4, pp. 214–229, 1980.

[32] N. Beckmann, H.-P. Krıegel, R. Schneider, and B. Seeger,
“The R*-tree: An efficient and robust access method for points
and rectangles,” in Proc. ACM Sigmod Rec., 1990, vol. 19. no. 2,
pp. 322–331.

[33] A. Andoni and P. Indyk, “Near-optimal hashing algorithms for approx-
imate nearest neighbor in high dimensions,” Commun. ACM, vol. 51,
no. 1, pp. 117–122, Jan. 2008.

[34] R. Weber, H.-J. Schek, and S. Blott, “A quantitative analysis and
performance study for similarity-search methods in high-dimensional
spaces,” in Proc. VLDB, 1998, pp. 194–205.

[35] M. Muja and D. G. Lowe, “Fast approximate nearest neighbors
with automatic algorithm configuration,” in Proc. VISAPP, 2009,
pp. 331–340.

[36] F. Gray, “Pulse code communication,” U.S. Patent 2 632 058 A,
Mar. 17, 1953.

[37] V. Garcia, É. Debreuve, F. Nielsen, and M. Barlaud, “K-nearest neigh-
bor search: Fast GPU-based implementations and application to high-
dimensional feature matching,” in Proc. ICIP, 2010, pp. 3757–3760.

[38] Renesas Electronics America Inc. 20 Mbit QUAD-Search Content
Addressable Memory. Accessed: Jul. 11, 2016. [Online]. Available:
http://www.renesas.com/products/memory/TCAM/index.jsp

[39] C. Inc. (2014). NEURON Search Processors. [Online]. Available:
http://www.cavium.com/processor_NEURON-Search.html

[40] I. Corp. (2011). Intel Xeon Processor E7-4870. [Online]. Available:
http://ark.intel.com/products/53579/

[41] Nvidia. (Nov. 2014). Tesla K80 GPU Accelerator. [Online].
Available: http://international.download.nvidia.com/pdf/kepler/BD-
07317-001_v04.pdf

[42] O. Rottenstreich and I. Keslassy, “Worst-case TCAM rule expansion,”
in Proc. INFOCOM, 2010, pp. 1–5.

[43] O. Rottenstreich and I. Keslassy, “On the code length of TCAM coding
schemes,” in Proc. ISIT, 2010, pp. 1908–1912.

[44] K. Kogan, S. I. Nikolenko, O. Rottenstreich, W. Culhane, and P. Eugster,
“Exploiting order independence for scalable and expressive packet
classification,” IEEE/ACM Trans. Netw., vol. 24, no. 2, pp. 1251–1264,
Apr. 2016.

[45] K. Kogan, S. I. Nikolenko, P. Eugster, A. Shalimov, and O. Rottenstreich,
“Efficient FIB representations on distributed platforms,” IEEE/ACM
Trans. Netw., vol. 25, no. 6, pp. 3309–3322, Dec. 2017.

[46] K. Kogan, S. Nikolenko, O. Rottenstreich, W. Culhane, and P. Eugster,
“SAX-PAC (scalable and expressive packet classification),” in Proc.
SIGCOMM, 2014, pp. 15–26.

[47] C. R. Meiners, A. X. Liu, and E. Torng, “Bit Weaving: A non-prefix
approach to compressing packet classifiers in TCAMs,” in Proc. ICNP,
2009, pp. 93–102.

[48] K. Zheng, H. Che, Z. Wang, B. Liu, and X. Zhang, “DPPC-RE: TCAM-
based distributed parallel packet classification with range encoding,”
IEEE Trans. Comput., vol. 55, no. 8, pp. 947–961, Aug. 2006.

[49] C. R. Meiners, A. X. Liu, E. Torng, and J. Patel, “Split: Optimizing
space, power, and throughput for TCAM-based classification,” in Proc.
ANCS, 2011, pp. 200–210.

[50] Y. Afek, A. Bremler-Barr, and L. Schiff, “Recursive design of hardware
priority queues,” in Proc. SPAA, 2013, pp. 23–32.

[51] P. Indyk and R. Motwani, “Approximate nearest neighbors: Towards
removing the curse of dimensionality,” in Proc. STOC, 1998,
pp. 604–613.

[52] J. L. Bentley, “Multidimensional binary search trees used for associative
searching,” Commun. ACM, vol. 18, no. 9, pp. 509–517, 1975.

[53] S. Dasgupta and Y. Freund, “Random projection trees and low dimen-
sional manifolds,” in Proc. STOC, 2008, pp. 537–546.

[54] A. Gionis, P. Indyk, and R. Motwani, “Similarity search in high
dimensions via hashing,” in Proc. VLDB, 1999, pp. 518–529.

[55] Q. Lv, W. Josephson, Z. Wang, M. Charikar, and K. Li, “Multi-probe
LSH: Efficient indexing for high-dimensional similarity search,” in Proc.
VLDB, 2007, pp. 950–961.

[56] Y. Tao, K. Yi, C. Sheng, and P. Kalnis, “Quality and efficiency in
high dimensional nearest neighbor search,” in Proc. SIGMOD, 2009,
pp. 563–576.

[57] V. Garcia, E. Debreuve, and M. Barlaud, “Fast k nearest neigh-
bor search using GPU,” in Proc. IEEE CVPR, Jun. 2008, pp. 1–6,
doi: 10.1109/CVPRW.2008.4563100.

[58] S. Liang, C. Wang, Y. Liu, and L. Jian, “CUKNN: A parallel implemen-
tation of K-nearest neighbor on CUDA-enabled GPU,” in Proc. YC-ICT,
2009, pp. 415–418.

[59] J. Pan and D. Manocha, “Fast GPU-based locality sensitive hashing for
K-nearest neighbor computation,” in Proc. GIS, 2011, pp. 211–220.

[60] P. Bosshart et al., “P4: Programming protocol-independent packet
processors,” Comput. Commun. Rev., vol. 44, no. 3, pp. 87–95, 2014.

[61] Radware. (Oct. 2014). Tsunami SYN Flood Attack—A New Trend in
DDoS Attacks? [Online]. Available: http://blog.radware.com/security/
2014/10/tsunami-syn-flood-attack/

[62] G. Pazi, A. Bremler-Bar, R. Rivlin, and D. Touitou, “Protecting against
distributed denial of service attacks,” U.S. Patent 2003 0 110 274 A1.
Jun. 12, 2003. [Online]. Available: http://www.google.com/patents/
US20030110274

[63] C. Jin, H. Wang, and K. G. Shin, “Hop-count filtering: An effective
defense against spoofed DDoS traffic,” in Proc. CCS, 2003, pp. 30–41.

[64] A. Gupta et al., “SDX: A software defined internet exchange,” in Proc.
SIGCOMM, 2014, pp. 551–562.

[65] AS Names—CIDR Report. Accessed: Jan. 29, 2018. [Online]. Available:
http://www.cidr-report.
org/as2.0/autnums.html

[66] (2014). Ryu SDN Controller. [Online]. Available: http://osrg.github.
io/ryu/

[67] A. Borodin, R. Ostrovsky, and Y. Rabani, “Lower bounds for high
dimensional nearest neighbor search and related problems,” in Proc.
STOC, 1999, pp. 312–321.

[68] S. P. Lloyd, “Least squares quantization in PCM,” IEEE Trans. Inf.
Theory, vol. IT-28, no. 2, pp. 129–137, Mar. 1982.

[69] A. Oliva and A. Torralba, “Modeling the shape of the scene: A holistic
representation of the spatial envelope,” Int. J. Comput. Vis., vol. 42,
no. 3, pp. 145–175, 2001.

[70] B. C. Russell, A. Torralba, K. P. Murphy, and W. T. Freeman, “LabelMe:
A database and Web-based tool for image annotation,” Int. J. Comput.
Vis., vol. 77, nos. 1–3, pp. 157–173, 2008.

[71] M. Aly, M. Munich, and P. Perona, “Indexing in large scale image
collections: Scaling properties and benchmark,” in Proc. WACV, 2011,
pp. 418–425.

Anat Bremler-Barr received the Ph.D. degree
(Hons.) in computer science from Tel Aviv Uni-
versity, Tel Aviv, Israel. In 2001, she co-founded
and was the Chief Scientist of Riverhead Networks,
Inc. (acquired by Cisco Systems in 2004), which
provided systems to protect from denial-of-service
attacks. She then joined the Interdisciplinary Cen-
ter Herzliya, Herzliya, Israel, in 2004, where she
co-founded (with Prof. D. Hay) the DEEPNESS
Laboratory (funded by an ERC starting grant) that
focuses on designing deep packet inspection for

next-generation network devices. She is currently an Associate Professor
with the School of Computer Science, Interdisciplinary Center Herzliya. Her
research interests include computer networks and network security.

Yotam Harchol received the Ph.D. degree from the
Hebrew University of Jerusalem, Israel, in 2017.
Before joining the University of California at
Berkeley (UC Berkeley), Berkeley, CA, USA, he
was a Post-Doctoral Researcher with VMware
Research. He is currently a Post-Doctoral Scholar
(with Prof. S. Shenker) with the Department of
Electrical Engineering and Computer Science, UC
Berkeley. His research interests include software-
defined networking, network security, and high-
performance algorithms for network middleboxes.

He was the recipient of the Intel Award for Graduate Students in 2010,
the Hammer Fellowship for Master Students in 2009, and the Chais Scholar-
ship for Social Leadership in 2007.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

16 IEEE/ACM TRANSACTIONS ON NETWORKING

David Hay received the B.A. degree (summa cum
laude) and the Ph.D. degree in computer science
from the Technion Israel Institute of Technology,
Haifa, Israel, in 2001 and 2007, respectively. In addi-
tion, he was with: the IBM Haifa Research Laborato-
ries, Haifa; Cisco Systems, San Jose, CA, USA; the
Electronic Department, Politecnico di Torino, Turin,
Italy; and the Electrical Engineering Department
with Columbia University, New York, NY, USA.
In 2010, he co-founded (with Prof. A. Brembler-
Barr) the DEEPNESS laboratory, focusing on deep

packet inspection in next-generation network devices. He is currently an
Associate Professor with The Rachel and Selim Benin School of Computer
Science and Engineering, The Hebrew University of Jerusalem, Jerusalem,
Israel. His research interests include computer networks in particular, network
algorithmics, packet classification, deep packet inspection, network survivabil-
ity, and software-defined networking.

Yacov Hel-Or received the Ph.D. degree in com-
puter science from the The Hebrew University of
Jerusalem. He was a Visiting Scientist with Google
Inc. and a Research Scientist with Amazon from
2016 to 2018. Prior to this, he held post-doctoral
positions with the Weizmann Institute of Science
and the NASA Ames Research Center, California.
He is currently a Faculty Member with the School
of Computer Science, Interdisciplinary Center Her-
zliya, Israel. His main research interests include
computer vision, image processing, and computer
graphics.

