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Abstract

Many problems in computer vision and pattern recognition involve groups of trans�

formations� In particular� motion estimation� steerable �lter design and invariant fea�

ture detection are often formulated with respect to a particular transformation group�

Traditionally� these problems have been investigated independently� From a theoretical

point of view� however� the issues they address are related� In this paper� we examine

the relationships between these problems and propose a theoretical framework within

which they can be discussed in concert� This framework is based on constructing a

natural representation of the image for a given transformation group� Within this

framework� many existing techniques of motion estimation� steerable �lter design and

invariant feature detection appear as special cases� Furthermore� several new results

are direct consequences of this framework� First� a canonical decomposition of all �lters

that can be steered with respect to any one�parameter group and any multi�parameter

Abelian group is proposed� Filters steerable under various subgroups of the a�ne group

are also tabulated� Second� two approximation techniques are suggested for �lters that

cannot be steered exactly� Approximated steerable �lters can also be used for motion

estimation� Third� within this framework� invariant features can easily be constructed

using traditional techniques for computing point invariance�

Categories� Low�Level Processing� Pattern Analysis� Motion Analysis�



� Introduction

In computer vision� the problems of steerability� motion estimation and invariant feature

detection have usually been investigated independently� One reason for this could be that

the intended practical applications of each are vastly di�erent� From a theoretical point of

view� however� these three problems address similar core issues� In this paper� we examine

these common issues and propose a theoretical framework within which they can be discussed

in concert�

In this framework� we are concern with images undergoing some transformation 	trans�

lation� rotation� a
ne etc��� The main idea underlying this framework is to �nd an e
cient

representation of an image with respect to a given group of transformations� The represen�

tation is e
cient in the sense that it is simple 	linear and �nite�� and that transformations

in the group can both be identi�ed and applied directly to the representation� The repre�

sentation need not be complete� i�e� the image need not be reconstructible from the set of

features� For example� consider the group of all rotations about a given point� A possible

representation of an image which is e
cient with respect to this group is the horizontal and

vertical directional derivatives at that point� This representation is �nite 	two dimensional�

and linear 	since directional derivative is a linear operator�� It is e
cient with respect to

rotations since any directional derivative can be calculated from the horizontal and verti�

cal derivatives� i�e� the representation of a rotated image can be reconstructed from the

representation of the original image�

Such e
cient representations are useful in motion estimation� Because the transformation

is detectable from the representation� one can estimate the motion of the image from this

lower�dimensional representation instead of from the image directly� Practically� one �rst

computes the outputs of a set of �lters from the original and the transformed images� and

then estimates the motion from these two sets of measurements� Likewise� functions which

are invariant under image transformations can be de�ned directly over the representation�

Since the representation is �nite�dimensional� methods for computing invariants with features

like points can be employed� Furthermore� because the dimension of the new representation

is �nite� it is possible to generate all independent image invariants with respect to the given

transformation�

Lie group theory has been used extensively in constructing geometric invariants ��� ���

���� It is a useful theory because it relates the possibly nonlinear transformation group to

a linear vector space called the tangent space� which is the in�nitesimal action of the group

about its identity� Using this connection� many theorems about the group itself can be
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proven via simpler proofs in terms of its tangent space� The application of Lie theory to

the design of steerable �lters or to motion estimation has not� however� been as widespread�

The framework proposed in this paper is based on several results from Lie theory� so the

families of transformations treated are those that form Lie groups� This� however� is not

too restrictive since many transformations of interest to computer vision are Lie groups�

Examples include� image translation� rotation� scaling and a
ne transformation� These

transformations may either be global� i�e� acting over the entire image� or local� as in the

computation of optical �ow�

Several others have also used Lie group theory in a similar context� Amari originally

proposed the construction of such e
cient representations for invariant feature detection

via feature normalization �� ��� This work applies and extends his idea to the problems

of steerability and motion estimation� and suggests a framework encompassing all three

problems� Furthermore� the treatment of invariance within this framework is more general

than Amari�s feature normalization technique� Lenz also recognized the usefulness of �nite�

dimensional function spaces that are closed under some transformation and applied the idea

to several computer vision applications including pattern detection ����

The rest of the paper is organized as follows� Section � provides a brief introduction to

Lie group theory� Following that� Sections � and � outline the framework and detail several

important theorems� In Section �� examples concerning one�parameter groups are given along

with a canonical decomposition of e
cient representation spaces for one�parameter groups�

Section � describes the framework in the context of multi�parameter groups� Next� Section �

suggests two approximation techniques that are useful when no e
cient representation exists�

This is followed� in Section �� by a description of how invariants may be constructed within

the framework�

� Background on Lie Groups

Lie groups are often encountered as families of transformations acting on a signal� In this

paper� we consider� primarily� the families of transformation groups acting on real�valued�

two�dimensional images� We assume that these images are non�zero only within a bounded

region and denote them by s	x� y� � R� �� R� We describe each family of transformations

by operators fg	� �g� where � � 	��� � � � � �k� � Rk are parameters of the transformation� For

example� consider the family of one�dimensional translations of an image in the x�direction�

�s	�x� �y� � gtx	� � s	x� y� � s	x� �� y�
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where � denotes the amount of translation� In words� the operator gtx	� � acts on the original

image s	x� y� to yield a new translated image �s	�x� �y� � s	x� �� y��

A family of transformations fg	� �g parameterized by � over some prede�ned range is a

Lie group if� 	�� it satis�es the group conditions of closure under composition� associativity�

inverse and the existence of an identity� and 	�� the maps for inverse and composition are

smooth� Thus� the family of translations forms a Lie group� First� every translation operator

gtx	� � has an inverse� namely� gtx	�	� �� where �	� � � �� � Since �	�� � �� gtx	�� is also the

identity operator� Second� composition of two operators can be described by a third operator

which also belongs to the same family� i�e� gtx	�a�gtx	�b� � gtx	�	�a� �b�� where �	�a� �b� �

�a � �b� In addition� composition is associative� that is to say� gtx	�a�	gtx	�b�gtx	�c�� �

	gtx	�a�gtx	�b�� gtx	�c�� as such� �	�a� �	�b� �c�� � �	�	�a� �b�� �c�� Finally� both the inverse

map� �	� �� and the composition map� �	�a� �b� are smooth� The dimension of the parameter

space of a Lie transformation group may be di�erent from the dimension of the image space

upon which it acts� Here� the family of translations in the x�direction forms a one�parameter

Lie group 	� � R� while the space upon which it acts is two�dimensional 		x� y� � R���

Another familiar family of transformations that is also a Lie group is the group of rotations

in the plane gr	� � such that �s	�x� �y� � gr	� � s	x� y� � s	x cos � � y sin �� x sin � � y cos � �� It

is straightforward to check that the necessary conditions� veri�ed in the previous example�

are also satis�ed here�

Lie groups are rich in structure and many properties of the group can be discerned by

studying the properties of in�nitesimal actions of the group� In the following� in�nitesimal

actions of a group are de�ned and elaborated� We consider �rst one�parameter groups and

then extend our explanation to multi�parameter groups�

One�parameter Groups Given a one�parameter transformation group parameterized by

� � the in�nitesimal transformation of an image s	x� y� about the identity 	� � �� is de�ned

using Leibnitz�s chain rule�
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The di�erential operator on the right hand side of the equation is called the 	in�nitesimal�

generator of the transformation and is denoted by L� i�e�
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The set of elements G � f�L j � � Rg forms a one�dimensional vector space called the

tangent space of the group where L can be thought of as a one�dimensional basis vector�
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There is a strong connection between the tangent space and the Lie group from which it

was derived� Namely� each element g	� � of the group can be generated by an element in the

tangent space� �L � G� via the exponential map��

g	� � s	x� y� � e�L s	x� y� � 	��

The notation e�L represents the series expansion e�L � I � �L � �
��
� �L� � � � �� which is an

in�nite sum of di�erential operators ��� This is a rather surprising result since the operator

g	� � can transform the image in highly nonlinear ways while G is simply a linear vector

space�

Recall the group of translations in the x�direction presented earlier� The derivative of

the transformation about the identity is

d
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and hence its generator is Ltx � � �
�x
� Using the exponential map suggested in Equation ��

we �nd that
gtx	� � s � e�Ltx s
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which is exactly the Taylor expansion of s	x � �� y� about � � �� Further examples of

one�parameter groups and their generators are given in Table � of Section ��

Multi�parameter Groups The situation with multiple�parameter Lie groups is anal�

ogous� The generators of a multi�parameter group are the set of di�erential operators

fLi j i � � � � � kg corresponding to derivatives of the transformation at the identity with

respect to each parameter �i in turn� i�e�
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�To be precise� this is only true for group elements su�ciently close to the identity element so that their

Taylor expansions converge� and for elements within the connected component containing the identity� In

this paper� we consider only transformation groups with one connected component and for which convergence

also holds�
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The k generators provide a basis for the k�dimensional tangent space G � f��L� � � � � �
�kLkj� � Rkg�� As before� there is a correspondence between a k�parameter Lie group and

its k�dimensional tangent space in the form of the exponential map�

g	� � s	x� y� � 	
kY

i��

e�iLi� s	x� y� � e��L� � � � e�kLk s	x� y�� 	��

Although the exponential map provides a correspondence between every operator in the Lie

group and every element in its tangent space� the parameterization of the group generated

by the exponential map may be di�erent from that of the original group� Furthermore�

the choice of ordering the individual exponential maps in Equation � is arbitrary while

di�erent ordering give rise to a di�erent group parameterization� Hence� the exponential

map generates a group similar to the original group up to a change of parameterization� For

example� consider the two parameterizations of the two�parameter a
ne group acting solely

on the x coordinate�
g�	��� ��� s	x� y� � s	e��x� ��� y��

g�	��� ��� s	x� y� � s	e��	x� ���� y��

Both yield the same generators�

L�� � x
�

�x
� L�� � � �

�x

thus� having the same exponential map� However� this is not a problem as we are often

interested in the group of transformations and not the particular parameterization of it�

Furthermore� we can easily reparameterize the generated group using the original parame�

terization�

With multi�parameter groups� if we vary a single parameter �i and keep the others �xed�

we get a one�parameter group of transformations fgi	�i�g that is a subgroup of the original

k�parameter group� Hence� by varying each of the k di�erent parameters separately� we

can construct k di�erent one�parameter subgroups� When every element from one subgroup

commutes with every element from a second subgroup� i�e� gi	�i� gj	�j� � gj	�j� gi	�i�

for all �i� �j� the two subgroups are said to commute with each other� Two subgroups

commute if and only if their Lie bracket vanishes� i�e� Li� Lj�
�
� LiLj � LjLi � � ��� When

two subgroups commute� exponentiating their respective generators can be done in either

order� i�e� e�iLie�jLj � e�jLje�iLi � e�iLi��jLj � This is not true for non�commuting subgroups�

A multi�parameter group for which all its one�parameter subgroups commute is called an

�Loosely speaking� the linear independence of the k generators is assured if the k�parameter group from

which it was derived cannot be replaced by another with fewer parameters ����
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Abelian group� The two�parameter group of the previous example is not Abelian since

L��� L��� � �x �

�x
	
�

�x
� �

�

�x
	x

�

�x
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�

�x
�� ��

Hence� as demonstrated earlier� e��L�e��L� �� e��L�e��L� �� e��L����L��

On the other hand� for the one�parameter transformation groups listed in Table �� the

pairs� fgtx � gtyg� fgtx � gsyg� fgty � gsxg� fgsx� gsyg� fgr� gsg� are commutative�

� Equivariant Feature Spaces

In computer vision� a common method of extracting features from an image is via the inner�

product of the image with some function �	x� y��

f � � �� s �
�
�
Z Z

�	x� y�s	x� y� dxdy

where s	x� y� denotes the complex conjugate of s	x� y�� We assume that our images are

real�valued so the bar may be omitted� We also assume that our images are non�zero only

over a bounded region and denote the vector space of these images by S� We refer to

�	x� y� as the measuring function and f as the corresponding measured feature� In order to

consider several measuring functions in tandem� we introduce the vectorial function �	x� y�
�
�

	��	x� y�� � � ��n	x� y��T and de�ne the inner�product between a vectorial measuring function

�	x� y� and an image s	x� y� by

f � � �� s �
�
� 	� ��� s �� � � � � � �n� s ��T

where f is an n�dimensional feature vector� Assuming that the functions f�ig are linearly

independent� they form a basis for an n�dimensional function space called the measuring

space that is denoted by span	��� The choice of � as basis functions for the measuring space

is not unique as any other �� � CT�� where C is a non�singular matrix� will also span the

same measuring space� Likewise� the feature space F is the n�dimensional vector space of

measured features f � The inner�product of the signal with the vectorial measuring function

� is a linear mapping from the space of images S to the space of features F � If the dimension

of the feature space is lower than that of the image space� then the mapping is many�to�one�

i�e� many images could yield the same feature vector�

For a given transformation group g	� �� the set of images obtained by transforming

s	x� y� with every member of the group is known as the image orbit Og	s�� i�e� Og	s� �

f�s	�x� �y� j �� s�t �s	�x� �y� � g	� � s	x� y�g� When an image is transformed� the measured fea�

tures of the new image will� in general� be di�erent from those of the original� However� if
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the measuring functions are chosen appropriately 	with respect to the given transformation

group�� then although the new measured features will still be di�erent� they can be inter�

polated exactly from the original features� In this case� the transformation can be applied

directly in the feature space F without the necessity of transforming the image itself�

Denoting �f � h�� g	� � si as the n�dimensional feature vector of the transformed image�

we restate this property more formally as�

De�nition � �Equivariant Feature Space� A feature space F is equivariant under a

k�parameter transformation group g	� � if there exists A	� �� a matrix of functions in � �

known as the interpolation matrix� such that

�f � A	� � f

for each � � Rk and for every image s� This equation is called the interpolation equation�

Note� that if the original feature f is a complete representation of the image s� i�e� it

is possible to reconstruct the image s from f � then F is equivariant regardless of the choice

of measuring functions� However� in this paper we are interested in partial representations

where f is of small dimensionality and cannot reconstruct s	x� y��

The concept of equivariant feature spaces is particularly relevant to computer vision�

Given an equivariant feature space F � several problems� notably� steerability� motion esti�

mation and invariant feature detection� can be expressed in a common framework�

Steerability� Steerability is a property associated with a �lter when the outputs of trans�

formed replicas of its kernel� can be interpolated exactly from a �xed set of basis �lter

outputs� Formally� a �lter is steerable if hg	� �	� si � P
i ai	� � hbi� si where 	 is the kernel

of the �lter and fbig are some basis �lters� In Freeman and Adelson ��� for example� the

authors described a method of computing the output of a rotated �lter from a linear combi�

nation of the outputs of specially chosen basis �lters� Other authors have also put forward

techniques for designing steerable �lters ��� �� ��� ���� Since a transformation of the kernel

can be carried out by inversely transforming the image 	see below�� it is easy to see that

each measuring function �i in � associated with an equivariant feature space F is steerable

via the interpolation equation� �f � A	� � f � Thus� steerability can be viewed as a forward

problem within the framework� From a set of measured features f 	the outputs of the basis

�lters�� we compute �f for each transformation g	� � and for any image s�
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Figure �� Correspondence between orbits in image space and orbits in feature space� This

is possible only if the feature space is equivariant under the transformation group�

Motion Estimation� Motion estimation� on the other hand� is an inverse problem within

the framework�� Given f and �f � measurements made from the original and transformed

images respectively� we would like to determine the parameters � of the transformation

g	� �� Again� if the family of transformations is a Lie group� an equivariant space F is useful

to this extent as it relates any two sets of measurements in the space� e�g� f and �f � by the

interpolation equation �f � A	� � f � With this relation� one can then solve for the transform

parameters from the two sets of measurements� Besides being forward and inverse problems�

there is a small technical di�erence between the steerability property and motion estimation�

In the case of steerability� the transformation occurs on the �lter while motion estimation

computes the transformation that takes place on the image�

Invariant Feature Detection� An invariant feature or pattern detector indicates the

presence 	or absence� of a particular pattern in an image regardless of how the image has

been transformed� For example� an edge detector should be able to detect the presence

of an edge independent of the orientation of the edge in the image� The straightforward

�By motion estimation� we do not restrict ourselves only to the detection of in�nitesimal changes as is

usually implied by the term motion� instead� we consider �nite amounts of transformation as well�
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approach to this problem is to directly determine �lter kernels that are invariant to the given

transformation and then use their outputs to identify the pattern� Alternatively� the problem

can be approached in two stages� 	�� construct a large enough equivariant space F to best

characterize the pattern� and 	�� determine invariants within this �nite 	and possibly small�

dimensional space� Since the feature space is equivariant� measured features of transformed

versions of the pattern can be interpolated� i�e� �f � A	� � f � This equation is a parametric

description of a k�dimensional manifold in the feature space F � An implicit representation of

this manifold that is independent of � is clearly invariant under the transformation� Thus�

constructing invariants over the feature space amounts to implicitizing the interpolation

equation�

� Equivariant Measuring Spaces

In the previous section� the importance and relevance of equivariant feature spaces were

presented� In this section� we develop a framework for constructing measuring spaces whose

corresponding feature spaces are equivariant under a given transformation group� This frame�

work is based on the seminal work of S� Amari �� �� who originally proposed it in the context

of invariant feature detection in pattern recognition�

Throughout the rest of the paper� we will assume that the group of transformations

acts on the image� This is true in the case of motion estimation and invariant feature

detection� Before proceeding� we make the following observation� the inner�product between

a transformed image g	� �s	x� y� and some measuring function �	x� y� can be rewritten as the

inner�product between the original image s	x� y� and an appropriately transformedmeasuring

function �g	� � �	x� y���

h�� g	� � si � h�g	� � �� si � 	��

The transformation �g is known as the conjugate of g� It is easy to verify that if g is a Lie

group� then �g is also a Lie group� As such� we denote its generator by �L and refer to it as

the conjugate generator of g� Table � lists several common one�parameter groups and their

conjugate generators� With steerability� it is not necessary to introduce the conjugate of a

group as the transformation is applied directly onto the measuring function itself and not

onto the image� The derivation of conjugate generators is explained in Appendix A�

In the previous section� a feature space is de�ned to be equivariant under a given transfor�

�Again� we restrict ourselves to groups 	up to a re�parameterization
 that can be generated by the

exponential map�
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Figure �� Correspondence between orbits in image space and orbits in feature space� This

is possible only if the feature space is equivariant under the transformation group�

mation if any two feature vectors are related by the interpolation equation� In the following

theorem� the conditions required for a feature space to be equivariant are given in terms of

its measuring space�

Theorem � �Equivariant Measuring Space� Amari �	
 ��� � A feature space F is

equivariant with respect to a transformation group g	� � if and only if there exists a square

matrix A	� � such that

�g	� � � � A	� � � �� � Rk�

In this case� span	��� i�e� the function space spanned by the elements of �� forms an equiv�

ariant measuring space�

Proof � � If �g	� � � � A	� � �� then

�f
�
� h�� g	� � si
�
� h�g	� � �� si
� hA	� � �� si
� A	� � h�� si
� A	� � f �
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The necessity direction of the theorem can be veri�ed in a similar manner� However� this

direction follows from the de�nition of measured features� i�e� from the linearity of their

construction� If non�linear operations are permitted� it may be possible to �nd equivariant

feature space 	i�e� features satisfying �f � Af� despite the unsuitability of the necessity

condition� We further explore this point later on in this section� �

The last theorem states a very useful characteristic of an equivariant feature space� that

its associated measuring space is closed under the conjugate transformation� It makes sense

to say that the measuring space span	�� is equivariant because any element in the space can

be written as linear combinations of �i and since each �i is closed under the conjugate trans�

formation� any linear combination of �i is also closed under the conjugate transformation�

Because we are dealing with Lie transformation groups� the closure of the measuring space

under �g	� � can be reformulated� more simply� in terms of its set of generators f�L�� � � � � �Lkg�

Theorem � �Interpolation Equation� � The measuring space span	�� is equivariant un�

der the group g	� � if and only if � is closed under the action of each conjugate generator �Li

of g� i�e�

�g	� � � � A	� � � if and only if �Li � � Bi � � i � �� � � � � k

for some set of n� n matrices fB�� � � � � Bkg� In particular� the interpolation matrix can be

written as follows�

A	� � � e�kBk � � � e��B��

Proof � � Let ��	� � � �g	� � �� the 	conjugate� transformed measuring functions� Since �g	� �

is a Lie group� it follows from the exponential map in Equation � that

��	��� � � � � �k� � e��
�L� � � � e�k �Lk �

� 	� � �� �L� � � � �� � � � 	� � �k �Lk � � � �� �
� 	� � �� �L� � � � �� � � � 	� � �kBk � � � �� �
� 	� � �� �L� � � � �� � � � 	� � �k�� �Lk�� � � � �� e�kBk �

� 	� � �� �L� � � � �� � � � e�kBk 	� � �k�� �Lk�� � � � �� �
� 	� � �� �L� � � � �� � � � e�kBk e�k��Bk�� �
���

� e�kBk � � � e��B� ��

in which the substitution 	�Li�m� � 	Bi�m� is used repeatedly� It can easily be veri�ed

that �Li � � Bi � implies 	�Li�m� � 	Bi�m� via the linearity of the di�erential operator

��



�� Derive the conjugate generators �L�� � � � � �Lk of the given transfor�

mation group g	� ��

�� Verify for each generator �Li that

�Li � � Bi �

where Bi is some n� n matrix�

�� If so� the measuring space span	�� is equivariant and the interpo�

lation equation is simply

�f � A	� � f

where the interpolation matrix

A	� � � e�kBk � � � e��B��

Figure �� Recipe for verifying that the function space of span	�� is equivariant� If so� the

interpolation matrix A	� � is also derived�

�Li� The order in which the generators �Li are applied is arbitrary� However� as pointed

out in Section �� the order will determine the parameterization of the generated group�

Another way of proving this direction of the theorem is by solving the di�erential equation�

�Li�
�
� d	


d�i

���
���

� Bi�� for ��� Conversely� if �� � e�kBk � � � e��B� �� taking derivatives with

respect to �i 	about � � �� on both sides of the equation yields the system of equations

�Li � � Bi ��

Since each �i in � is closed under the action of every generator �Li� any linear combination of

�i is also closed� Hence� the function space span	�� is also closed under the action of every

generator �Li� �

Theorem � provides a recipe for verifying that the space spanned by a set of functions f�ig
is an equivariant measuring space� and if it is� derives the interpolation matrixA	� �� Figure �

summarizes the procedure� Unfortunately� the construction of all possible n�dimensional

equivariant measuring spaces is not as methodical in general� For one�parameter groups�

however� the construction is straightforward and will be treated extensively in the next

section�

��



The following are corollaries that can be used to construct more complicated equivariant

spaces from existing ones� Their validity can easily be veri�ed�

Corollary � � If � is a vector of n equivariant measuring functions� then P�� where P is

a non�singular n�n matrix� is also a vector of equivariant measuring functions� Hence� two

vectors of measuring functions ����� share the same equivariant space if and only if they

can be related by a non�singular n� n matrix P such that �� � P���

Corollary � � If �� and �� are vectors of equivariant measuring functions with respect to

the same transformation group� then the space spanned by their direct sum ��	�� �i�e� the

concatenation of the two vectors� is also equivariant�

Corollary � � If �� and �� are vectors of equivariant measuring functions with respect to

the same transformation group� then the space spanned by the Kronecker product of the two

vectors of functions ��
�� �i�e� the pairwise products of measuring functions from �� and

��� is also equivariant�

The last corollary presents a powerful way to enrich an equivariant measuring space�

For example� assume �� � 	�� x�T spans an equivariant measuring space with respect to

some transformation group� Using Corollary � 	and assuming �� � �� �� it is immediate to

conclude that 	�� x� x�� � � ��T also spans an equivariant space� This corollary stems from the

linearity of the equivariant equation� Since �g�i � Ai�i� i � �� �� it follows that

�g	���
T
� � � A����

T
�A

T
� � 	��

The entries of matrix ���
T
� are the elements of the Kronecker product �� 
 ��� Since

Equation � is linear in ���T
� � it is possible to rewrite it as �g���� � A�������� where A���

is some interpolation matrix and ���� is a vector function composed of entries from ���T
� �

Thus� ���� spans an equivariant measuring space as well� �

The linearity of the equivariant equation leads to a similar result with respect to the

feature space�

Corollary � � If f� and f� are features of two equivariant feature spaces with respect to the

same transformation group� then the feature space formed by f� 
 f� is also equivariant�

Proof � Similar to corollary �� the proof follows from the linearity of the interpolation

equation� �fi � Aifi� i � �� �� �

��



This corollary expands the variety of the equivariant feature spaces even further� It

enables 	in some cases� to perform non�linear operations on the image and yet to remain in

an equivariant feature space�

� Equivariant Spaces for One�Parameter Groups

In the previous section� the conditions that are required for a measuring space to be equivari�

ant under a transformation group were stated� In this section� we attend to the construction

of all possible equivariant spaces with respect to any one�parameter transformation group�

First� we provide examples of several equivariant measuring spaces� After that� we show

that any one�parameter group can be reparameterized to appear as a group of transla�

tions in the new parameterization� Finally� we propose a canonical decomposition of all the

measuring spaces equivariant under the translation group 	and correspondingly under any

one�parameter group that has been appropriately reparameterized��

��� The Translation Group

Consider the group of one�dimensional image translations in the x�direction� �s	�x� �y� �

gtx	� � s	x� y� � s	x � �� y� whose conjugate generator �Ltx � �
�x
� An n�dimensional mea�

suring space � is equivariant with respect to gtx	� � if �Ltx � � �
�x

� � B � for a given n� n

matrix B� The general solution to this di�erential equation is

�	x� y� � eBx �	�� 	��

where �	�� is the value of � at x � �� Actually� the product of �	x� y� with any function

solely in y leaves it equivariant� however� without loss of generality� we refer to �	x� y� only

as �	x�� Since �	�� can be arbitrary chosen� any element in the column space of eBx is a

possible solution� We will denote this by �	x� � R	eBx� where R refers to the column space

of the matrix eBx� Regardless of the choice of �	��� the interpolation equation is the same�

i�e� �f � eB�f � only the measuring functions associated with the features will be di�erent�

In the following examples� we present di�erent choices for the matrix B and derive the

corresponding measuring functions�

Example � � Consider the simplest case where B is a ��� matrix� i�e� B � 
� where 
 is

a scalar value 	which may be complex�� From Equation �� the space of measuring functions

��



is� �	x� � ae�x� where a is some scalar value 	the value at �	���� The interpolation equation

in this feature space is �f � e��f� An alternative way to show the above result is by expanding

the de�nitions of �f and f � Recall that f � h�� si � R R
ae�x s	x� y� dxdy� Therefore�

�f � h�� �si
�

R R
ae�x s	x� �� y� dxdy

�
R R

ae��u��� s	u� y� dudy

� e��
R R

ae�u s	u� y� dudy

� e��f�

When 
 is purely imaginary� the measuring functions are complex exponentials� In phase�

based motion estimation� the parameter � is regarded as the di�erence in phase� Fleet and

Jepson �� proposed an accurate method of measuring disparity by estimating the di�erence

in phase between two 	windowed� complex exponentials�

Example � � Now� let

B �

�
� 
� �

� 
�

�
A �

In this case� the solution to Equation � implies that

�	x� � R	eBx� � R
�
�
�
� e��x �

� e��x

�
A
�
	 and �f � e�B f �

�
� e��� �

� e���

�
A f �

Simoncelli et� al� ��� proposed a criterion for shiftability in position that decomposes the

�lter into a set of complex exponentials 	via the Fourier decomposition�� In this example� it

would correspond to B being a diagonal matrix with unique and purely imaginary 
�s�

Example � � Let

B �

�
BBB�

� � �

� � �

� � �

�
CCCA �

In this case� the measuring function and interpolation equation are

�	x� � R	eBx� � R

�



�
�
BBB�

� x �
��
x�

� � x

� � �

�
CCCA
�
���	 and �f � e�B f �

�
BBB�

� � �
��
� �

� � �

� � �

�
CCCA f

respectively� This example produces the moment �lters which are used in many applications

involving invariant feature detection ��� and motion estimation ����

��



��� The Rotation Group

Another commonly encountered one�parameter transformation group is the group of rota�

tions in the plane�

gr	� � s	x� y� � s	x cos � � y sin �� x sin � � y cos � �

where � represents the angle of rotation� The conjugate generator of the rotation group is�

�Lr � y �
�x
� x �

�y
� It is easy to see that if we represent the image s	x� y� in polar coordinates

	r� ��� then rotation becomes similar to translation� gr	� �s	r� �� � s	r� �� � �� In these coor�

dinates� the conjugate generator is �Lr � �
��
� Therefore� as before� an n�vector of measuring

functions �	r� �� is equivariant with respect to gr	� � if it satis�es the equation

�Lr �
�
�

��

��

�����
���

� B �

where B is an n� n matrix� The general solution to the above equation is simply

�	�� � eB��	��

where �	�� is the value of �	�� at � � �� Since �	�� is arbitrarily chosen� �	�� � R	eB���

Example � � In this example� we show that a vector of measuring functions is equivariant

with respect to rotation and derive its interpolation matrix� Let �	x� y� be a vectorial

function containing the spatial derivatives of a Gaussian in the x� and y� directions�

�	x� y� �

�
� �

�x
e��x

��y����

�
�y
e��x

��y����

�
A �

�
� �xe��x��y����
�ye��x��y����

�
A �

�
� �r cos	��e�r���
�r sin	��e�r���

�
A �

Applying the generator �Lr �
�
��

to �� we get

�Lr � �

�
� r sin	��e�r

���

�r cos	��e�r���

�
A �

�
� � ��

� �

�
A � � B ��

Thus� the elements of �	x� y� span a measuring space whose interpolation function is

�f � e�B f �

�
� cos	� � � sin	� �

sin	� � cos	� �

�
A f �

This is an example of the steerable �lters suggested by Freeman and Adelson ���

��



��� Canonical Coordinates of One	Parameter Groups

The construction of a set of equivariant measuring functions depends on the existence of a

solution to the system of partial di�erential equations �L � � B �� It was shown that for

translations and planar rotations� solutions exist for any given matrix B� In this section�

we show that solutions exist for any one�parameter transformation group� The simplest

way to show this is via a reparameterization of the current coordinates into some canonical

coordinates where solutions are known to exist� For any one�parameter transformation group

g	� �� there exists a change of coordinates such that the group resembles a translation in the

new parameterization ��� Hence� given an image s	x� y�� one can determine a change of

coordinates s	�	x� y�� 	x� y�� such that

g	� � s	�� � � s	� � �� ��

Segman et� al� ��� used this reparameterization to construct invariant kernels for pattern

recognition� Ferraro and Caelli �� also used this method in a similar context and suggested

its relevance to biological vision�

Since the group operation is the same as one�dimensional translation� the equivariant

condition with respect to the canonical coordinates is also the same� i�e�

�L��� �	�� �
�
�

�

��
�	�� �

�����
���

� B �	�� ��

Therefore� its equivariant spaces also resemble the equivariant spaces for translation 	up to

a change of coordinates��

Example � � In Section ���� polar coordinates were used for the group of rotations in the

plane� It is easy to show that polar coordinates are the canonical coordinates for this group�

Recall the change of coordinates from Cartesian to polar�

� � arctan	y�x� � � �  �
q
x� � y� � r�

Rotating an image s	x� y� in Cartesian coordinates is the same as translating the image in

polar coordinates� gr	� � s	�� � � s	� � �� � where � � �� ����

Example � � Consider next the one�parameter group of scaling in the x direction� i�e�

gsx	� � s	x� y� � s	e��x� y� where e�� ensures that the scaling constant is always positive� The

canonical coordinates of this transformation group are obtained by the following coordinate

changes�

� � ln	x� �  � y�

��



In this case�

gsx	� � s	�� � � s	ln	e��x�� � � s	ln	x� � ln	e���� � � s	� � �� �

which is a translation in the new coordinate system� Suppose now that

B �

�
BBB�

� � �

� � �

� � �

�
CCCA and �	�� � R	eB�� � R

�



�
�
BBB�

� � �
��
��

� � �

� � �

�
CCCA
�
���	

as in Example � of Section ��� with measuring space in � coordinates� After a change of

coordinates� the measuring space in x coordinates is

�	x� � R

�



�
�
BBB�

� lnx �
��
	lnx��

� � lnx

� � �

�
CCCA
�
���	 �

��� Canonical Decomposition of One	Parameter

Equivariant Spaces

For any one�parameter group� the n�vector of equivariant measuring functions � depends on

the apriori choice of the n�n matrixB� However� the same function space� span	��� may be

generated by di�erent B matrices� The following theorem provides an equivalence condition

among the various B matrices that generate the same equivariant measuring space�

Theorem � � Let ����� be two n�vectors of equivariant measuring functions �with respect

to the same one�parameter group� and B�� B� are such that� �L �� � B��� and �L �� � B����

then

�� � P �� i� B� � PB�P
���

for any non�singular n� n matrix P �

In words� two vectors of equivariant measuring functions ������ with respect to the

same group� span the same function space if and only if their corresponding matrices B�� B�

are similar � Hence� it su
ces to examine all matrices B that are unique up to a similarity

transformation� The proof of the above theorem and the decomposition of all the equivariant

measuring spaces into canonical classes can be found in ���� It is shown there that any

measuring function �	x� that is equivariant under x�translation can be represented by a

direct sum of equivariant measuring functions �Ji where

�Ji � 	e�ix� xe�ix� x�e�ix� � � � � xn��e�ix�T

��



Conjugate Equivariant

Group Operator Generator Generator Measuring Space

Brightness gb��� s�x� y� � e�s�x� y� Lb � I �Lb � I all the functions

scaling

x�translation gtx��� s�x� y� � s�x� �� y� Ltx � � �
�x

�Ltx �
�
�x f�p�y�x

pe�xg

for 	 � p � m�

x�scaling gsx��� s�x� y� � s�e��x� y� Lsx � �x �
�x

�Lsx � I 
 x �
�x f�p�y�x

��ln x�pg

for 	 � p � m�

Rotation gr��� s�x� y� � s�x cos �� Lr � x �
�y � y �

�x
�Lr � �x �

�y f�p�r��pe��g

�y sin �� x sin � 
 y cos �� � � �
�� 
y �

�x � �
�� for 	 � p � m�

Uniform gs��� s�x� y� � Ls � x �
�x � y �

�y
�Ls � �I 
 x �

�x f�p���r��ln r�pg

scaling s�e��x� e��y� � �r �
�r 
y �

�y � I 
 r �
�r for 	 � p � m�

Table �� Several examples of one parameter groups� their generators� conjugate generators�

and associated equivariant measuring spaces� In the rotation and uniform scaling examples�

	r� �� are the polar coordinates of the image�

for some 
i� When 
i is zero� the equivariant measuring space is spanned by the �rst n

moments� Alternatively� when n is one and 
i is purely imaginary� the space is spanned

by the complex exponentials� which are also the Fourier basis functions� Since any one�

parameter transformation group can be put into its canonical coordinates 	where the group

operation becomes a translation in these new coordinates�� the decomposition of equivariant

measuring spaces for translation applies directly to all other one�parameter transformation

groups 	after reparameterization� as well� Table � is a summary of several common one�

parameter groups and their equivariant measuring spaces�

� Equivariant Spaces for Multi�Parameter Groups

Unfortunately� there is no systematic way to construct general n�dimensional equivariant

spaces for multi�parameter groups� With one�parameter groups 	in their canonical coordi�

nates�� solutions to the system of partial di�erential equations exist for arbitrary choices of B�

Unlike one�parameter groups� arbitrary choices of Bi for multi�parameter groups will often

not yield solvable systems of di�erential equations� However� for Abelian multi�parameter

groups a categorization of the equivariant spaces similar to that for one�parameter groups

can be carried out� In the following� the categorization of equivariant spaces for Abelian

��



multi�parameter groups is presented� After that� two techniques for handling non�Abelian

multi�parameter groups are suggested�

Abelian Multi�Parameter Groups When the multi�parameter group is Abelian� there

exists a reparameterization of the group so that the group action is equivalent to independent

translations in the new parameterization �� ��� ��� Formally� for any two�parameter Abelian

group� there exists a reparameterization of the image s	�	x� y�� 	x� y�� so that

g	��� ��� s	�� � � s	� � ���  � ����

Segman and Zeevi in ��� describes a constructive way of determining this canonical repa�

rameterization� In the new parameterization� the equivariant space for the two�parameter

group is simply the product of the equivariant spaces for each one�parameter translation

group�

span	�	�� �� � span	 �pe�� �
 span	 �qe	� � � span	 �pqe���	� �

for � � p � m and � � q � l� Note that multi�parameter groups acting on a two�dimensional

image with more than two parameters are necessarily not Abelian as there are only two

independent translations in an image�

Example 	 � Consider the group of rotation and uniform scaling made up of the two one�

parameter subgroups gr	��� and gs	��� from Table � in Section �� The conjugate generators

for these groups are �Lr � �x �
�y

� y �
�x

and �Ls � �I �x �
�x

� y �
�y

respectively� Recall that two

one�parameter groups are Abelian if their generators commute� i�e�

 �Lr� �Ls� � �x �
�y

� y �
�x
� �I � x �

�x
� y �

�y
�

� �x �
�y
��x �

�x
� � �x �

�y
��y �

�y
� � y �

�x
��x �

�x
� � y �

�x
��y �

�y
�

� 	�x� ��

�y�x
� x �

�y
� x� ��

�x�y
� � 	�xy ��

�y�
� x �

�y
� xy ��

�y�
� �

	xy ��

�x�
� y �

�x
� xy ��

�x�
� � 	y� ��

�x�y
� y �

�x
� y� ��

�y�x
�

� ��

The reparameterization that makes gr	��� and gs	��� act like translations on the image is�

�	x� y� � arctan	y�x� � �

	x� y� � ln	
p
x� � y�� � ln	r�

Hence� the equivariant spaces for rotation and scaling are�

span	 ln	r�pe	 ln�r� �
 span	 �qe�� � for � � p � m and � � q � l �

��



Non�AbelianMulti�ParameterGroups For multi�parameter groups that are not Abelian�

there are no reparameterizations such that the group behaves like the group of independent

translations in the new parameterization� One way to approach the problem is to start with

the largest Abelian subgroup of the multi�parameter group for which the equivariant spaces

can be constructed� The rest of the subgroups impose constraints on the equivariant space

by way of the di�erential equations� �Li� � Bi�� Thus� the equivariant measuring space for

the multi�parameter group can be constructed by successively constraining the equivariant

space of the largest Abelian subgroup�

Example 
 � Consider the multi�parameter group made up of translations in the x and y

directions together with the group of rotations� i�e� gtx � gty and gr respectively� The largest

Abelian subgroup is the two�parameter group of translations in the x and y directions�

The equivariant space for this group is� span	�� � span	xpyqe�x�	y� for � � p � m and

� � q � l� The group of rotations yields the additional constraint that �Lr� � Br� where

�Lr � �x �
�y

� y �
�x
� By observation� we can rule out the exponentials e�x�	y 	i�e� � � � � ��

since applying �Lr to each term raises the power of the monomial factor by one each time�

repeated application of the conjugate generator will raise the power without bound� Applying

�Lr to the monomial xpyq� however� raises the power in one variable and decreases the power

in the other� Successive applications will result in one of the variables being reduced to zero�

Hence� fxpyqg is an equivariant space under this group where � � p � q � m for some m�

Throughout the paper� equivariant measuring spaces are constructed in two steps� 	�� Bi

matrices are selected� 	�� equivariant spaces are derived using the exponential map� Alterna�

tively� one could begin by selecting an interpolation matrix and deriving from it the systems

of di�erential equations� The interpolation matrix� parameterized by the group parameters

� � describes a family of matrices that together with matrix multiplication forms a matrix

group ���� This matrix group is known as the 	linear� representation of the transformation

group� In many cases� such representations have been derived ���� Given the interpolation

matrix A	� �� the interpolation equation 	in terms of the measuring function� is�

�g	� � � � A	� � ��

Taking derivatives on both sides with respect to the parameters � at � � � results in the

following k systems of di�erential equations�

�Li � � Bi � where Bi �
�

��i
A	� �

�����
���

�

Thus� the matricesBi are determined from the interpolation matrixA� Solving these systems

of di�erential equations for � yields a function space that is equivariant under the group�

��



Subsequently� the corollaries at the end of Section � can be used to create larger equivariant

spaces�

Example � � Consider the two�parameter group of translations and scalings in the x�

direction�

g	��� ��� s	x� y� � e��� s	e���x� ��� y��

An interpolation matrix A for this group is the following�

A	��� ��� �

�
� e��� ��

� �

�
A �

Notice that composition of two transformations g	� �� � �
�
� � g	�

�
� � �

�
� � resembles the multiplica�

tion of the two corresponding interpolation matrices A	� �� � �
�
� � A	� �� � �

�
� ��

g	� �� � �
�
� � g	�

�
� � �

�
� � � g	� �� � � �� � e

���
� � �� � � �� �

and

A	� �� � �
�
� � A	� �� � �

�
� � � A	� �� � � �� � e

���
� � �� � � �� ��

This is not a mere coincidence� in fact� all interpolation matrices are related to their groups

in a similar way� From the interpolation matrix A	��� ��� the conjugate generators can be

derived�

�L�
�
�

�

���
A	��� ���

�����
�������

�

�
� � �

� �

�
A � B�

�L�
�
�

�

���
A	��� ���

�����
�������

�

�
� � �

� �

�
A � B�

Subsequently� equivariant measuring functions are the solutions of the following systems of

di�erential equations�
�L� � � x �

�x
� � B� ��

�L� � � �
�x

� � B� ��

One solution to these equations is �	x� � 	x� ��T where again each entry of � can be

multiplied by a function solely in y� Using the corollaries at the end of Section �� larger

�Mathematically speaking� interpolation matrices are matrix representations of their groups� i�e� there is

a mapping � such that �	�g	� 

 � A	� 
 between the transformation group and the matrix group such that

�	g	��� � � � � � �
�

k 
 g	�
�

� � � � � � �
�

k 

 � �	g	��� � � � � � �
�

k 

 �	g	�
�

� � � � � � �
�

k 

�

This mapping is called a homomorphism� If� in addition� the mapping is one�to�one� then it is called an

isomorphism�
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Groups 	� parameters� Equivariant Measuring Space

x� y�translation 	�� fxpyqe�x�	yg for � � p � m and � � q � l�

x� y�scaling 	�� fx�y	 ln	x�p ln	y�qg for � � p � m and � � q � l�

Rotation f	ln r�p�qe���	ln�r�g for � � p � m and � � q � l�

Uniform�scaling 	��

x� y�translation fxpyqg for � � p � q � m�

Rotation 	��

x� y�translation fxpyqg for � � p � m and � � q � l�

x� y�scaling 	��

x� y�translation fxpyqg for � � p � q � m�

x� y�scaling

Rotation 	��

Table �� Several examples of multi�parameter groups and their equivariant measuring spaces�

equivariant spaces can be constructed� In particular� repeated application of the Kronecker

product of �	x� with itself shows that fxpg for � � p � m is a measuring space� where m

is some integer�

Table � is a summary of several common multi�parameter groups and their equivariant

measuring spaces�

� Approximating Equivariant Spaces

Often� one may be interested in designing a �lter kernel 	 with some desired properties� In

order to be able to predict the outputs of 	 under some given transformation group� 	 must

be included in some equivariant measuring space� If there is no such equivariant space� the

�lter kernel can �rst be approximate by a set of equivariant measuring functions�

	 �X
ci�i � cT� �

Then� a transformed version of 	 is approximated via the interpolation equation�

�g	 � cTA� �

A compactly�supported function is a function that is non�zero only over some compact

region of its domain� and zero everywhere else� A non�compact transformation group refers

��



to a group whose parameter space is non�compact� For example� the group of translations

is non�compact since its parameter space is R while the group of rotations whose parameter

space is S� is compact� For compactly�supported functions� there are no �nite�dimensional

function spaces that can be used to steer these functions under a non�compact transformation

group� The simple example of steering a raised cosine under translation is illustrative of this

point� in order to steer a raised cosine under translation� an in�nite number of raised cosines

are needed�

Fortunately� if only local steerability is desired� i�e�� only a limited range of transformation

is necessary� then a �nite number of functions might be su
cient to steer a compactly�

supported function� We suggest two possible approximation methods�

Function Approximation� As before� the function to be steered is �rst approximated

using an appropriate equivariant function space� This approximation is then steered by

steering the basis functions spanning the space� However� since only local steerability is

desired� the domain over which the function is approximated need only be a subset of its

actual domain� ���		x�� cT �	x�
���� � � for x � Rapprox

where � is some small value� the size of Rapprox depends on the range of parameter space

over which local steerability is expected�

Intuitively� we need to approximate the function over a large enough subset of its domain

such that all transformed replicas of it will also be adequately approximated� For example�

consider the problem of steering a one�dimensional raised cosine under translation� The

raised cosine is compactly�supported over the interval ��� ��� The range of translations

over which it is to be steered is ��� ��� Thus� the union of the support of all possible

translated raised cosines is ��� ��� We refer to this interval as the integration region as this

is the 	�xed� interval of integration for a corresponding steerable �lter� Clearly� then� the

original raised cosine needs to be well approximated over this interval ��� ��� Unfortunately�

approximating it over this interval is not enough� When the raised cosine is translated to the

left by ��� for example� the interval �� �� 	the right tail� of the original raised cosine�s domain

enters the integration interval� If the original raised cosine is poorly approximated in this

region� then the interval �� �� of this translated raised cosine will be poorly approximated

as well� The same holds when the raised cosine is translated to the right by �� Hence� the

original raised cosine needs to be well approximated over the interval ��� ��� We refer to this

interval as the approximation region� The integration region is a subset of the approximation

region� the compact support of the original function is� in turn� a subset of the integration

��



region� Figure �� illustrates the approximation and integration regions for a one�dimensional

function steered under translation�

The integration and approximation can also be de�ned mathematically� We assume

that the transformations are smooth and locality of steerability implies steerability within a

compact region of parameter space G  Rk� Let Rf be the compact support of the original

function outside of which it is zero� The integration region is therefore�

Rint �
�
��G

�g	� � Rf

where the union is taken over the compact region of parameter space� The application of

the group operator to the region Rf produces the corresponding region of the transformed

function� The approximation region is de�ned in terms of the inverse of the conjugate group�

Rapprox �
�
��G

g	� � Rint

For example� assume the permissible transformations consist of all the translations gtx	� �

where � � �d� d� 	see Figure ��� In this case� the integration interval will be Rint �

a� d� b� d� and the approximation interval is Rapprox � a� �d� b � �d�� In the case where

the translation parameter is � � �� d�� the integration interval will be Rint � a� b� d� and

the approximation interval Rapprox � a� d� b � d�� Note that if the equivariant measuring

functions are cyclic over Rapprox it is possible to take advantage of the repetitive behavior of

the approximated function cT�� Replicas of the approximated function are tiled in the spatial

domain and problem occurs when a neighbor replica is transformed into the integration

interval� To overcome this problem� it is enough to approximate the �lter kernel only over

the integration interval�

Using the approximation 		x� � cT�� approximated over Rapprox� the transformed func�

tion �g 		x� is now well approximated over the integration interval as long as the transfor�

mation parameters are in G� Therefore it is enough to calculate the inner�product h�g	� si
within this range�

R
�

��
	�g	� � 		x��s	x� dx �

R
Rint

	�g	� � 		x��s	x� dx

� cTA	� �
R
Rint

�	x�s	x� dx

� cTA	� �f

where the �rst equality holds since �g	� � 		x� is zero outside Rint for all � � G� This

implies that the measuring functions f�ig can be treated as compactly supported functions

whose values are zero outside the integration interval� Note� that although the function is

approximated over Rapprox it is enough to store the approximation only over Rint�
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Figure �� A function 	solid line� with a compact support Rf � a� b�� The function is

approximated 	dotted line� over a wider interval Rapprox � aapp� bapp� outside of which the

approximation might be poor� The integration of this approximation is performed over the

integration interval Rint � aint� bint�� Note that if the approximated function is x�translated

by �d to d units� the approximation is always precise within the integration interval�

Figure � shows several translations of a Gaussian having s�t�d��� 	upper row� and their

corresponding approximations using �� sets of measuring functions fsin	kx�� cos	kx�g 	lower

row�� The measuring functions are equivariant with respect to x�translation and the trans�

lations of the approximated Gaussian were calculated using the interpolation equation� The

Gaussian has a standard�deviation 	s�t�d�� of � units and the translations were performed

over a bounded range of parameters 	from � to �� units� i�e� up to � s�t�d�s�� The Gaussian is

approximated over an interval such that all translations of the Gaussian are e�ectively zero

outside this interval� In this case� the approximation interval was �� ��� since we used the

cyclic behavior of the measuring functions� As demonstrated by the �gure the real transla�

tions and the approximated translations are quite similar to each other� However� the quality

of the approximations depends on several factors�

� The number of equivariant measuring functions used to approximate the �lter kernel�

It is obvious that the larger the number of measuring functions used� the better the

approximation� Figure � shows the approximation of the same translated Gaussian�

now using only � sets of measuring functions� The de�ciency in the approximation

quality is visible�

� The support of the �lter kernel in the canonical coordinates 	where the transformation

resembles a translation�� If the support is small� a large number of measuring �lters

is required in order to obtain a reasonable approximation� This stems from the fact

that functions that are equivariant with respect to a non�compact transformation group

have in�nite support 	even if we use them as compact support functions�� Therefore� a
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large number of such measuring functions are necessary in order to compose a narrow

support �lter kernel� This is well knows in the Fourier domain where the support of

the transform is inversely proportional to the function�s support� Figure � shows the

approximations of a translated Gaussian using the same number of measuring functions

as in Figure � 	i�e� �� sets of fsin	kx�� cos	kx�g�� However� in this case the s�t�d� of

the Gaussian is � unit� The degradation in the approximations is apparent�

� The amount of transformation� The measuring functions approximate the �lter ker�

nel in its original position� 	 � cT�� Since the measuring functions are equivariant�

�g	cT�� � cTA�� i�e� the approximation cT� is precisely transformed by the interpola�

tion equation� Therefore� the function d � 	� cT� which is the di�erence between the

real kernel and its approximation� is transformed as well�

�gd � �g	 � cTA� �

As a result� the behavior of d depends solely on the characteristics of the transforma�

tion� If the conjugate transformation ensures that the energy of a transformed function

remains unchanged� the quality of the approximation 	i�e�
R
	�gd��dxdy� will be constant�

This is the case for the the transformations listed in Table ��

The constant quality of the approximation is demonstrated in Figure �� The two graphs

show the sum of squared�di�erences 	s�s�d�� between the original Gaussian and its

approximation versus various translations� The graphs show the s�s�d� for several cases�

In the right graph the s�s�d� is plotted for several Gaussians having di�erent s�t�d�

values� All of them were approximated with � harmonics� The left graph plots the

s�s�d� for di�erent numbers of harmonics� In all cases� the calculated s�s�d� is constant

for all permissible transformations� This behavior is demonstrated as well in Figure ��

which shows the s�s�d� of a Gaussian under scaling 	see Figure � for details�� Recall

that the s�s�d� values under scaling transformation e�s	e�x� y� are constant due to the

the coe
cient multiplication which compensates for the changes in the image energy�

Note� however� the di�erences between the graphs of Figure �� and those of Figure

�� First� the s�s�d� plots starts to increase at high scale factor values� This result

hints that the approximation interval that has been used is too small with respect to

high scale factor values� Expanding it will �atten the s�s�d� plots� Second� changing

the s�t�d� does not in�uence the approximation quality as it does in the translation

case� The reason for this phenomena is that changing the s�t�d� does not in�uence the

support of the function in the canonical coordinates 	lnx�� Hence� the di�erences in

the approximation are not signi�cant�

��



The necessity to bound the range of transformations does not arise if the transformation

group is compact� Rotation is an example of such a group since the rotation parameter is

bounded in �� ���� In a similar manner� a rotation of any polar separable function can be

interpolated by approximating its angular component by an equivariant space of sinusoids

in angular coordinates� This was recently proposed by Simoncelli and Farid ��� as a way of

constructing steerable wedge �lters�

Figure �� reports the error in numerically approximating translates of a Gaussian by a set

of singular vectors using the method suggested by Perona ���� The total error associated

with this scheme is less than the function approximation technique� singular vectors are

computed so as to minimize the total error
R
	�g	 � cT���dx dy d� � However� the maximum

error introduced for this technique can be higher than the above� especially for cases where a

large range of transformations is permissible� This can be seen by comparing Figure �� with

Figure �� Furthermore� in the function approximation method� the interpolation function

can be derived analytically� In Perona�s scheme� however� the interpolation function are

computed numerically� This is a critical issue in motion estimation problems� Using an

analytical interpolation equation� motion parameters can be solved analytically� In the

numerical approach� however� the motion parameters should be found using a search scheme�

The constant quality of the approximated �lter kernel is a big advantage of the function

approximation method� Using it� one can estimate the deviation of the approximation from

the original �lter kernel under any 	permissible� transformation� If a higher accuracy is

required� additional measuring functions can be added to the approximation� The disadvan�

tage of this technique is twofold� First� it cannot be applied if an equivariant measuring space

does not exist for the given transformation� Second� it may be necessary to use a large num�

ber of measuring functions in order to get a reasonable approximation� The approximation

technique described in the next subsection tries to overcome these disadvantages�
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Figure �� Upper row� Several translates of a Gaussian having s�t�d���� Lower row� The

translated Gaussians as approximated using �� sets of fsin	kx�� cos	kx�g with compact sup�

port�
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Figure �� Upper row� Several translates of a Gaussian having s�t�d���� Lower row� The

translated Gaussians as approximated using � sets of fsin	kx�� cos	kx�g with compact sup�

port�
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Figure �� Upper row� Several translates of a Gaussian having s�t�d���� Lower row� The

translated Gaussians as approximated using �� sets of fsin	kx�� cos	kx�g with compact sup�

port�

��



0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

translation distance

sq
ua

re
d 

di
ffe

re
nc

es

order=3

order=4

order=5

order=6

approximation by various harmonics

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

translation distance

sq
ua

re
d 

di
ffe

re
nc

es

sigma=3.0

sigma=5.0

sigma=7.0

sigma=9.0

approximation by 4 harmonics for various s.t.d.

Figure �� Error in approximating the Gaussian with fsin	kx�� cos	kx�g� In the left graph

�order� indicates the number of measuring functions used in the approximation� In the right

graph� �sigma� refers to the standard deviation of the Gaussian�
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Figure �� Upper row� A Gaussian with s�t�d � � and its scalings relative to the origin� The

scale factors are 	from left to right� e��
�� e��
�� �� e�
�� Lower row� The Gaussian and its

scalings as approximated with �� sets of fsin	k lnx�� cos	k lnx�g with compact support�
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Figure ��� Error in approximating the Gaussian with a set of fsin	k lnx�� cos	k lnx�g� In the

left graph �order� indicates the number of measuring functions used in the approximation�

In the right graph� �sigma� refers to the standard deviation of the Gaussian�
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Figure ��� Error in numerically approximating translates of a Gaussian by a set of singular

vectors that correspond to the nth largest singular values of the singular value decomposition�

In the left graph� �order� refers to the number of singular vectors used� In the right graph�

�sigma� represents the standard deviation of the Gaussian�
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Interpolation Approximation� In contrast with the previous method which approxi�

mates the �lter kernel with an equivariant measuring space� the following technique approx�

imates the equivariant space itself� If � is a vector of measuring functions� it is equivariant if

�Li� � Bi�� Approximating the equivariant measuring space means that the above equality

is not precise i�e� �Li� � Bi�� On one hand we aim to minimize the equivariant approxima�

tion error Espace � j�Li��Bi�j� but on the other hand we would like to minimize the kernel

function approximation Efunc � jcT��	j�� In the previous technique� Espace was zero since

we approximated 	 with a fully equivariant measuring space� In the following technique

Efunc is zero� however� the equivariance criterion is relaxed� What is the consequence of

approximating equivariant spaces Since �Li� � Bi� it follows that �gi� � eBi�i�� meaning

that the interpolation equation is now approximated and not precise�

Assume at this point that we are dealing with a one parameter transformation group g	� �

with the conjugate generator �L� We construct a vector of measuring functions as follows�

� � 		� �L	� �L�	� � � � � �Ln��	�T

Using it� the equivariant equation can be approximated�

�L� � B� where B �

�
BBBBBBB�

� �
� � � � � �

� � � �

�

�
CCCCCCCA

The approximation error stems from the nth equation where the term �Ln��	 is equated to

zero which is not necessarily true� The matrix B is in Jordan form having one n� n block

with a corresponding eigenvalue 
 � �� The interpolation equation for � is approximated

using B�

�g� � eB�� where eB� �

�
BBBBBB�

� � �
��
� � �

� � �

� �

�

�
CCCCCCA
�

The �rst equation in this system is the interpolation equation for 	� �g	� �	 � 	eB���� where

subscript � refers to the �rst entry in the vector� It is easy to see that this equation gives

the nth order Taylor expansion of �g	� �	 about � � �� Therefore� similar to the expansion�

the higher the order 	dimension of �� the better the approximation�

The situation with multi�parameter groups is analogous� The vectorial function � is

composed of the following sets of measuring functions�

S� � 	

��



S� � f�LiS�g
���

Sn�� � f�LiSn��g

and the associated Bi�s are generated accordingly� Care should be taken in the multi�

parameter as well as in the one�parameter groups that the set of generated measuring func�

tions will not include linearly dependent functions�

Figure �� shows the s�s�d� of a translated Gaussian using several of its derivatives� The

error is extremely small for translations of several units� but increases rapidly for farther

translations� Therefore� this technique is appropriate only for small transformations� In

fact� translations of a kernel function with �nite support cannot be approximated beyond

the range of support of the original function� all the derivatives outside the support vanish�

and any linear combination of these derivatives is zero� Therefore the radius of convergence of

the Taylor expansion for such a function is at most the range of the support� The Gaussians

presented in our examples are subject to the same problem due to their similarity to compact

support functions� As a result� the approximation error increases for smaller s�t�d� as shown

in Figure ���

The Gaussian and its derivatives have been widely used in computer vision� In motion

estimation� Manmatha and Oliensis ��� suggested a method for extracting the local a
ne

deformations of an image using Gaussians and its derivatives� Recently� Liu et al� ��� pro�

posed a method of estimating optical �ow using Hermite polynomials 	which are derivatives

of a Gaussian� in three dimensions� Earlier on� the usefulness of Gaussians and its derivatives

in representing local geometry have also been recognized ��� ��� ����

In the following examples� interpolation equations for the �lter kernel 	 � cos	y�G	��

were approximated� where G is a two�dimensional Gaussian� In these examples � � ���� The

interpolation equation was calculated for a ��parameter transformation including� x�scaling�

y�scaling� x�translation� y�translation and rotation� All the generators �Li applied to 	 yield

a linear sum of terms of the form fxkyl cos	y�G	��� xkylsin	y�G	��g� In these examples �

was composed of such terms up to the �rd order� All together� �� terms were used in the

measuring vector� Figures ����� show several one parameter transformation sub�groups�

Figure �� demonstrates interpolations for a two�parameter sub�group�
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Figure ��� Error in approximating the Gaussian with several of its derivatives� In the left

graph �order� indicates the highest derivative used in the approximation� In the right graph

�sigma� refers to the standard deviation of the Gaussian�

Figure ��� The function 	 � cos	x�G	���� and several of its translations as approximated

by the interpolation approximation� The translations are 	left to right� �� ����� ���� �����

and � units in the x direction�

Figure ��� The function 	 � cos	x�G	���� and several of its translations as approximated

by the interpolation approximation� The translations are 	left to right� �� ����� ���� �����

and � units in the y directions�

Figure ��� The function 	 � cos	x�G	���� and several of its scalings as approximated by the

interpolation approximation� The scale factors are 	left to right� e��
�� e��
�� �� e�
�� and

e�
� in the x coordinate�
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Figure ��� The function 	 � cos	x�G	���� and several of its scalings as approximated by the

interpolation approximation� The scale factors are 	left to right� e��
�� e��
�� �� e�
�� and

e�
� in the y coordinate�

Figure ��� The function 	 � cos	x�G	���� and several of its rotations as approximated by the

interpolation approximation� The rotations are 	left to right� ���� ���� ��� and ��� radians�

Figure ��� The function 	 � cos	x�G	���� and several of its two�parameter transformations

�gr	����gty	���	� The transformations are rotations of 	left to right� ����� ����� �� ���� ���

radians and y�translations of 	bottom up� ����� ������ �� ����� ��� units�
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� Motion Estimation using Equivariant Spaces

In our framework� the steerability problem is expressed as a forward 	or interpolation� prob�

lem where measurable features of a transformed image are interpolated from a set of features

measured in the original image� This interpolation is performed using the interpolation equa�

tion �f � A	� �f where f and the motion parameters � are known� This forward problem is

easy to solve once the interpolation equation is constructed� it only requires the substitution

of the known parameters into the interpolation equation� Motion estimation� on the other

hand� is regarded as an inverse 	or estimation� problem where the motion parameters are

estimated given measured features f and �f from the original and the transformed images�

The complexity and robustness of the estimation depends on the nature of the interpolation

matrix A	� � and in most cases requires a non�linear minimization process�

Motion estimation� in this framework� is not restricted to in�nitesimal changes between

images� we consider �nite transformations as well� However� as stated� we are dealing only

with transformations that are Lie groups� In the cases where the entire motion of the image

cannot be modeled by a transformation group� motion estimation is applied to local neigh�

borhoods of the image� The local neighborhood is commonly called the estimation window

within which the motion is assumed to be characterized by a particular transformation group�

This transformation group is the motion model of the window� For every estimation window

in the image� we try to �t motion parameters with respect to the motion model�


�� The Estimation Window

The size of the estimation window plays an important role in the estimation process� In

order to construct a �lter kernel whose support is appropriate for the estimation window�

several equivariant measuring functions are linearly composed as explained in the previous

section� If the real motion of the image is included in the motion model then the size of

the window can be expanded and a small number of equivariant measuring functions are

required for constructing the �lter kernel� However� in most cases� the actual motion of the

image is more complex than any transformation group� and the estimation window must be

small� Recall� that the smaller the window size� the larger the number of measuring functions

required�

Another decision which one should make is what transformation group to choose as the

motion model� If the group has a large number of parameters then complex motions can

be approximated by it� and accordingly� the estimation window can be expanded� However�
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the more �exible the transformation group� the more restricted its equivariant measuring

functions� For example� the equivariant measuring functions for the translation�rotation

group are the monomials fxpyqg 	see Table ��� Composing a �lter kernel with these functions

may required many measuring functions� However� this group has three degrees of freedom

and is more �exible in approximating complex motions than the translation group alone�

In Phase�based motion estimation techniques �� �� �� the translations between two im�

ages are estimated by the phase change of two quadrature pairs applied to the two images� In

practice� two equivariant measuring functions having B � diag	
� �
� are used� These mea�

suring functions have in�nite support� Since the real transformation is more complex than

simple translation� the phase�based approaches bound the support of the measuring function

by a Gaussian envelope 	estimation window� with the hope that this will not in�uence the

estimation results� However� it is impossible to contract the width of the Gaussian envelope

too much due to what is called the �window problem�� The �interpolation equation�� in

this case� translates the modulation of the measuring functions but leaves its envelope un�

changed� This� of course� adds error to the true interpolation equation which increases as we

contract the envelope� In our scheme� however� the envelope as well as the modulation are

transformed by the interpolation equation� Therefore� the window problem is not introduced

and the size of the approximation window can be adjusted as required� The price we pay for

contracting the approximation window is that many equivariant measuring functions must

be used to compose the narrow support �lter kernel�


�� Solving for the Motion Parameters

Assume that a set of �lter kernels 	i� i � �� � � � � k are chosen to �nd a one�parameter

transformation between two images� These kernels are approximated by a linear set of

equivariant measuring functions � 	possibly having limited supports� as explained in the

previous section�

	i � cTi � �

The �rst step in the motion estimation process is to apply the measuring functions to the

two images obtaining two sets of measured features�

f � h�� s	x� y�i � �f � h�� g	� �s	x� y�i �

Since the measuring functions are equivariant the measured features are related by the

interpolation equation� cTi
�f � cTi e

B�f i � �� � � � � k� Composing these equations for all the
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kernels gives a system of k equations�

C�f � CeB�f where C � c�� c�� � � � � ck�T � 	��

The motion parameter of the associated estimation window is obtained by solving for � in

this system� � In general� this is a non�linear system and some gradient minimization process

must be used� Assume that we have an initial guess � � of the motion parameter� Expanding

eB� about the initial guess gives�

eB� � eB�� � 	� � � ��BeB�� �O	� � � ���

Substituting the linear terms of this expansion into Equation � yields a linear system�

C�f � C	eB�� � 	� � � ��BeB���f

De�ning�

a
�
� C	�f � eB��f� � b

�
� CBeB��f such that a � b	� � � ��

the solution for � using standard least�squares minimization gives�

� � � � �
bTa

bTb
� 	��

This process is repeated with the current solution serving as the new guess until convergence�

However� the convergence of this process to the correct solution is not guaranteed and it

depends on the quality of the initial guess� The same solution can be applied to multi�

parameter groups as well� The multi�parameter version of Equation � is�

C�f � C!f 	��

where !
�
� !k

i��e
Bi�i� If for any X	� � the notation X� refers to X	� � �

��� the least�squares

minimization of Equation � gives�

� � �
� � 	bTb���bTa �

where in this case�

a � C	�f �!�f� and b � CB�!
�f � � � � � Bk!

�f � �
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�� Uniqueness of the Solution

In many cases� the motion parameters � � 	��� ��� � � � � �k� can not be estimated uniquely�

even theoretically� This occurs when the interpolation equation �f � A	� �f is not monotonic�

i�e� di�erent transformation parameters might give the same value for �f � As mentioned

above the interpolation matrix A is a matrix representation of the transformation group�

This means that there is a mapping � between the transformation group and the matrix

group such that

�	�g	� �� � A	� � �

If this mapping is one�to�one 	isomorphism�� the estimated transformation is unique� If the

mapping is many�to�one 	homomorphism�� the estimation is not unique and the interpreta�

tion of the multiple solutions is ambiguous� In the case of homomorphism� we must apply

heuristic considerations and choose one solution among many possible� However� the quality

of the heuristic decision will improve if we reduce the ambiguity of the solution�

For example� assume we use two equivariant measuring functions �� � 	sin	k�x�� cos	k�x��
T

to �nd the x�translation between two images� Since the B matrix associated with �� is

B �

�
� � k�

�k� �

�
A

the interpolation equation relating the measured features is�

�f � A	� �f � eB�f where eB� �

�
� cos	k�� � sin	k�� �

� sin	k�� � cos	k�� �

�
A �

The mapping from gtx	� � to A	� � is a homomorphism� The motion parameter � is de�ned

on the real line and mapped into a compact range� � � � mod ��
k�
� Therefore� in this case�

A	� � � A	� � ��n
k�

� and the solution for the motion parameter can be found up to modulus
��
k�
� However� the ambiguity of the solution can be reduced if we choose measuring functions

with lower frequencies �� � 	sin	k�x�� cos	k�x��
T where k� � k�� This indeed will broaden

the distance between two possible solutions� however� the robustness of the solution will

decrease� To see that� recall that around the correct solution� d	f
d�

� B�f� Using this equation

and assuming a small change in �f is denoted by ��f� we obtain� ��f � B�f�� � This relation

shows that the error in the approximated � for a �xed error in �f is inversely proportional to

the norm� of B� Therefore� if �� is chosen instead of ��� the ambiguity of the solution will

be reduced� but its sensitivity to noise will be more severe�

�The norm of a matrix B is �max	B
TB
 where �max refers to the highest eigen�value�

��



To overcome this trade o�� it is possible to include several frequencies in the measuring

functions and solve the entire system simultaneously� For example� in our case we compose

a larger set of measuring functions� � � 	�T
� ��

T
� �

T � It is easy to see that the interpolation

matrix for � is a result of a mapping � � ��
gcd�k� �k��

where gcd	k�� k�� stands for the greatest

common divisor of k� and k�� Of course� gcd	k�� k�� � k�� k� so the ambiguity of the solution

is reduced without deteriorating the robustness of the solution�

	 Invariants in Equivariant Feature Spaces

Consider an n�dimensional equivariant feature space F and a k�parameter transformation

group such that �f � A	� � f where � � Rk� Recall that an orbit of an image Og	s� is de�ned

by Og	s� � fg	� � s j � � Rkg which is the set of images obtained by transforming the

original image in all possible ways� Likewise� the orbit of a feature is de�ned by Og	f� �

fA	� � f j � � Rkg� For a k�dimensional group and n measuring functions� this orbit forms

a k�dimensional manifold 	or surface� in the n�dimensional feature space� Indeed� there is

a whole family of k�dimensional orbits �lling the n�dimensional feature space� one for each

class of images whose members are transformed versions of each other�

Invariant Functions� Two features in the feature space� computed from a pair of images

related by a transformation in the group� lie on the same k�dimensional manifold�� Hence�

functions of features that are constant over each manifold are invariant under the transfor�

mation� i�e� h	�f� � h	f� � c for �f � f on the same manifold� In general� determining functions

which are invariant over arbitrary families of manifolds is di
cult� However� the manifolds

in equivariant feature spaces are far from arbitrary� This is because the matrix A	� � is

actually a k�dimensional matrix group� i�e� a group whose elements are matrices and whose

composition and inverse operators are matrix multiplication and inverse respectively� As a

result� we can employ yet another theorem from Lie theory which states that a function is

invariant under a transformation group if and only if applying any in�nitesimal generator

of the group to it results in zero identically ���� In our case� this implies that a function

h	�f� � h	e�kBk � � � e��B� f� is invariant under g	� � if and only if

�Li h	�f � � Bi
�f � rh � � 	���

�Two completely dierent images could have features on the same manifold or even the same features�

The likelihood of this depends on how well the measuring space approximates both images� This is not a

problem if we can be certain that the two images will be transformed versions of each other� which is true

in several applications�
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where rh � 	 �h
� 	f�

� � � � � �h
� 	fn

�T and � � i � k� A very good review about how to solve such a

set of PDEs using di�erential forms can be found in ����

Another way to approach the problem of constructing invariants in the feature space

is through implicit representations of the feature orbits� The interpolation function �f �

A	� � f can be seen as a parametric description of the feature manifold Og	f� where � are

the parameters� An implicit representation of this manifold gives a description which is

independent of the parameters and thus invariant with respect to the transformation� The

manifold Og	f�� in this case� is represented by a set of functions fpk	�f� � �g whose variety

coincides with the manifold itself� In particular� pk	�f� � pk	f� and thus these functions are

invariant under g	� �� Actually� any function h	p�	�f�� p�	�f �� � � �� is constant over the orbit

Og	f� and therefore invariant under the transformation group as well�

There are several techniques for implicitizing parametric descriptions� For example� a set

of polynomials can be implicitized by constructing the Groebner bases of their ideal with a

particular ordering ��� The use of Groebner bases to generate invariants in computer vision

have also been recently suggested by Werman and Shashua ���� Looking at invariants

as implicit representations of manifolds also allows one to determine the total number of

independent invariants that can be generated� Since Og	f� is a k�dimensional manifold in

an n�dimensional space� n � k implicit equations are required to describe the manifold�

This corresponds to the maximum number of independent invariants that can be generated�

Note� that the space dimension� n� must be bigger or equal than k� the dimension of the

manifold embedded in it� However� if n � k� the invariants h	�f� that are constant over the

feature manifold Og	f� are constant all over the n�dimensional space� and thus uninteresting�

Therefore� generating interesting invariant for a k�dimensional group requires as least k � �

measured features�

Example �� � Consider the measuring space �	x� � 	x
�

��
� x� ��T that is equivariant under

translation such that �Ltx � � B� where

B �

�
BBB�

� � �

� � �

� � �

�
CCCA and �f �

�
BBB�

� � ��

��

� � �

� � �

�
CCCA f � A	� � f �

By Equation ��� a function h	 �f�� �f�� �f�� is invariant under translation if and only if

B �f � rh � �f�
�h

� �f�
� �f�

�h

� �f�
� ��

Since we are dealing in a one dimensional manifold in a three dimensional space� two inde�

pendent solutions exist� These are the two functions� h�	�f� � �f� and h�	�f� � �f� �f� � �
�
�f�
� �
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Actually� any function h�	h�� h�� is invariant with respect to translation� It is straightforward

to verify that h� is an invariant�

�f� �f� � �
�
�f�
� � f�	f� � �f� �

��

�� f��� �
�	f� � �f���

� f�	f� � �f� �
��

�� f��� �
�	f

�
� � � �f�

� � ��f�f��

� f�f� � �
�
f�
� �

Example �� � Let �	x� � 	cos kx� sin kx�T be a measuring space that is equivariant under

translation such that �Ltx � � B� where

B �

�
� � �k

k �

�
A �

By Equation ��� a function h	f�� f�� is invariant under translation if and only if

B �f � rh � �k �f�
�h

� �f�
� k �f�

�h

� �f�
� ��

Solving� we get h	 �f�� �f�� � h�	 �f�
� � �f�

� � for any function h�� in particular for the identity

function� Hence� we have veri�ed that the sum of squares of the inner�product of any pair

of the Fourier basis functions with a signal is invariant under translation� Furthermore� all

invariants can be written in terms of �f�
� � �f�

� �

Example �� � One of the simplest ways to construct an invariant is to construct two

closely related measuring spaces ����� using matrices Bi and �BT
i such that �Li �� � Bi ��

and �Li �� � �BT
i ��� Recall that the interpolation matrix for ����� are

A�	� � � e�kBk � � � e��B��

A�	� � � e��kB
T
k � � � e���BT

�

respectively� As a result� the inner�product of the feature vectors �f���f� corresponding to

����� is an invariant�

�fT� �f� � 	A�	� � f��T A�	� � f�

� 	e�kBk � � � e��B� f��T e��kB
T
k � � � e���BT

� f�

� fT� e
��B

T
� � � � e�kBT

k e��kB
T
k � � � e���BT

� f�

� fT� f�

where the third equality follows from the identity 	eA�T � eA
T

� This method is similar to

the technique of generating invariant kernels suggested by Segman et� al� ����

��



Numerous techniques for computing invariants on features like points and derivatives

have been proposed by researchers in the past 	e�g� ����� In general� many of these tech�

niques can be readily applied to construct invariants on equivariant feature spaces since

these spaces are �nite�dimensional� The method suggested above is very similar to the one

used by Moons et al� ��� to construct invariants on points and derivatives� Another simple

method of constructing polynomial invariants was recently proposed by Keren ��� in which

instead of seeking to determine all the possible invariants� the author describes a procedure

for symbolically deriving polynomial invariants of a given order� The method can also be

employed in this context to derive polynomial invariants over feature vectors f 	or even over

prolongations� i�e� multiple feature vectors��

Invariant Feature Detection� Invariant feature or pattern detectors are used to identify

speci�c patterns like edges and corners in an image independent of some family of image

transformations� Within the framework� image invariants are computed in two�stages�

�� A set of equivariant measuring functions is chosen so that their inner�products with

the given pattern will yield a characteristic signature that can be used to identify or

discriminate it from other patterns�

�� A su
cient number of independent invariant functions over the feature space are com�

puted so that the characteristic signature can be identi�ed regardless of the pattern

transformation�

Generating invariants in this manner has the advantage that one can construct equivariant

measuring spaces that are rich enough to fully characterize a given pattern� This is done

independent of the invariant functions which are only derived later� Since the dimension

of the feature space is �nite and relatively small� we can easily compute all the invariants

associated with the given equivariant measuring space� Furthermore� traditional point�based

techniques for computing invariance can also be used�

�
 Equivariance in Point Coordinates

Throughout this paper measured features are calculated from grey scales values of an image�

In many cases however� the available information in an image is a set of point coordinates

rather than grey�scale values� The presented framework for steerability� motion estimation�

and invariants can easily be generalized to include features measured from point coordinates�
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In order to see the connection between a signal s	x� y� and point coordinates� assume that

each point pi � 	xi� yi� is represented by a delta function located at 	xi� yi��

�i	x� y� � �	x� xi� y � yi� �

Following this representation� a �signal� is a sum of delta functions representing the entire

set of points�

s	x� y� �
X
i

�i	x� y�

The rest of the treatment is similar to the signal case in all aspects� For example� a measured

feature is calculated as follows�

h�	x� y�� s	x� y�i �
Z Z

�	x� y�s	x� y�dxdy �
Z Z

�	x� y�
X
i

�i	x� y�dxdy �
X
i

�	xi� yi� �

Using the point based �signal�� it is possible to �nd invariants and steerable functions for

a set of points undergoing some transformation� With this approach� the motion parameters

between two sets of points can be estimated without the necessity of �nding correspondence

between the sets 	i�e� mutual matching between points in the �rst image to points in the

second image�� Clearly� the correspondence problem is di
cult to solve 	having exponential

complexity�� and it is an important advantage if it is possible to avoid it� The idea of

treating point and line coordinates similar to grey scale values has already been suggested

by Manmatha ����

�� Conclusions

We have presented a common theoretical framework for steerable �lter design� motion esti�

mation and invariant feature detection based on the theory of Lie groups� Within the frame�

work� the notion of steerability is extended to arbitrary transformation groups� Furthermore�

a canonical decomposition of all �nite�dimensional steerable bases for any one�parameter and

any multi�parameter Abelian transformation group was proposed� The completeness of the

canonical decomposition implies that the steerability of any �lter with respect to such groups

depends on whether it can be described in terms of the canonical bases� Filters steerable

under various subgroups 	not necessarily Abelian� of the a
ne group were also provided�

Two methods for approximating the steerability of functions over a restricted range of trans�

formations were suggested to deal with �lters that cannot be steered exactly� In all cases�

the interpolation functions are analytic and can easily be derived�
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Motion estimation was discussed as dual to the steerability problem� In the presented

framework the so called �window problem� does not arise� therefore� the neighborhood within

which the motion parameters are calculated can be arbitrarily small� Guidelines for ensuring

the robustness and the uniqueness of the estimated solution were detailed�

Using the framework� image invariants are computed in two stages� 	�� a �nite�dimensional

equivariant measuring space is constructed� 	�� invariants over the corresponding equivariant

feature space are derived� Since invariants are computed over the �nite�dimensional feature

space� point�based techniques for computing invariants can be employed�

Finally� a common framework for steerable �lter design� motion estimation and invariant

feature detection facilitates the transfer of results between the di�erent problems more read�

ily� Indeed� the framework presented in this paper draws from the results of several di�erent

areas� The treatment of motion estimation and invariant feature detection within a common

framework may facilitate a novel integrations of the two�
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A Conjugate Generators

The conjugate generators of a group G is the set of generators f�Lig of the conjugate group

�G such that the following identity holds�

h�� g	� � si � h�g	� � �� si

The operator g is a member of the group G while �g is a member of the conjugate group
�G� The right hand side of the above equation can be derived from the left by a change of

variables which involves inverting the operator g	� �� However� since G is a Lie group� the

following theorem shows that the conjugate generators can be obtained directly from the

generators of G�

��



Theorem � �Conjugate Generators� � Let fLig be the generators of the transformation

group G� The di�erential operators f�Lig satisfying

h��Li si �
D
�Li �� s

E

are the conjugate generators of the group� i�e� are the generators of the conjugate group �G�

Proof �� Since G is a group� we can rewrite the action of g	� � on s	x� y� via the exponential

map�

h�� g	��� � � � � �k� si �
D
�� e��L� � � � e�kLk s

E
�

D
�� 	� � ��L� � � � �� e��L� � � � e�kLk s

E
�

D
	� � �� �L� � � � �� �� e��L� � � � e�kLk s

E
�

D
e��

�L� �� e��L� � � � e�kLk s
E

���

�
D
e�k

�Lk � � � e���L� �� s
E

where the substitution h�� 	Li�m si �
D
	�Li�m �� s

E
is used repeatedly� The di�erential opera�

tors f�Lig are the generators of the group e�k
�Lk � � � e�� �L� which is� by de�nition� the conjugate

group �G� Hence� f�Lig are also the conjugate generators of G� �

The conjugate generators �Li can be derived from their corresponding generators Li using

the two identities�

�� h�� c si � hc �� si for any function c in the integration variables�

��
D
�� �

�x
s
E
� �

D
�
�x

�� s
E

and� similarly�
D
�� �

�y
s
E
� �

D
�
�y

�� s
E
�

The �rst identity is obvious from the de�nition of the inner�product� The second identity

can be proven using integration by parts�

D
�� �

�x
s
E

� � R R �	x� y�	 �
�x

s	x� y�� dxdy

�
R
�	x� y�s	x� y�j�

��
dy � R R

	 �
�x

�	x� y��s	x� y� dxdy

� � R R 	 �
�x

�	x� y��s	x� y� dxdy

� �
D

�
�x

�� s
E

where the third equality holds because the signal s	x� y� is bounded�

The conjugate generators for the transformations listed in Table � follow immediately�

�� h��Ltxsi �
D
��� �

�x
s
E
�
D

�
�x
�� s

E
and hence �Ltx � �

�x
�

By the same derivation it follows that �Lty � �
�y
�

��



�� h��Lrsi � �
D
�� y �

�x
s
E
�
D
�� x �

�y
s
E
� �

D
y�� �

�x
s
E
�
D
x�� �

�y
s
E
�
D

�
�x

	y��� s
E
�
D

�
�y
	x��� s

E
and hence �Lr � y �

�x
� x �

�y

�� h��Lsxsi � �h�� si �
D
�� x �

�x
s
E

� �h�� si �
D
x�� �

�x
s
E

� �h�� si �
D

�
�x
	x��� s

E
�

�h�� si�
D
	�� x �

�x
��� s

E
�
D
x �
�x
�� s

E
and hence �Lsx � x �

�x
�

By the same derivation it follows that �Lsy � y�y�
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