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� Introduction

Assume we have two images I� and I� of the same scene taken from two di�erent points
of view� Image registration means warping I� towards I� in some fashion� so that the two
images will be superimposed� Correlation based registration relates to those techniques
which �nd the warping parameters from the greyscale di�erences between the two images�
The main advantage of these kind of techniques is that a correspondence between features
in the images is not required ��nding the correspondence is exponential in the number of
features�� However� the performance of correlation based algorithms will be adequate only in
the cases where the di�erence in the viewing position is relatively small and the illumination
conditions in the two images are similar �

� The Parameters to be Found

If the illumination condition is about the same in the two images and the viewing positions
are not distant from each other we can assume the following�

I��x� u� y � v� � I��x� y� �

i�e� the two images are greyscale invariant and the luminance of a physical point located at
�x� y� in image I� is the same as the luminance of the same point in image I�� which now
appears at the location �x�u� y�v�� If there are no constraints on �u� v� then for each pixel
we have�

I��x� u�x� y�� y� v�x� y�� � I��x� y�

and we obtain an under	determined system of equations
 n equations and �n unknowns� This
is a well known problem called the �aperture problem in which we have in�nite solutions
for any input� In order to make the system solvable we must constrain �u� v� according to
some apriori knowledge� intrinsic to the speci�c problem at hand�
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��� Local Parametric v�s� Global Parametric Motion Model

A possible constraint to be imposed on the solution comes from the fact that the depth of
a regular scene does not change rapidly and therefore the retinotopic motion 	 u�x� y� and
v�x� y� are �smooth functions� This is known as the regularization constraint� In this case
u�x� y� and v�x� y� are replaced by unknown parameters ux�y and vx�y describing the local
motion of a small region centered at �x� y�� This kind of motion description is called �local
parametric motion model�

An alternative possibility is to try to describe the retinotopic motion by fewer parameters�
This can be done if some assumption is made about the scene structure� Possible assumptions
that are widely used are�

� The scene is rigid�

� Known structure� i�e� the depth of each point in I� is known�

� Known parametric structure� For example� a planar scene can be described by the
equation Z � aX � bY � c where a� b and c are unknown parameters�

In these cases u � u�x� y�p� and v � v�x� y�p� where p is a parameter vector to be found�
Since p describes the entire retinotopic motion� this kind of motion description is called
�global parametric motion model� The assumptions listed above are very relevant to our
project and therefore I will concentrate on this motion model�

� Global Parametric Motion Model

��� The Rigidty Constraint

Assume a camera is translated by a translational velocity T and angular velocity R �see
Figure ��� If we assume that the scene is rigid� the motion of a �D point P � �X�Y�Z�t can
be described in the camera coordinate frame by�

�P

�t
� �T�R�P

Expanding this into components yields�

�X

�t
� �Tz �RyZ �RyY ���

�Y

�t
� �Ty �RzX �RxZ

�Z

�t
� �Tz �RxY �RyX
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Figure �� Two images taken from a moving camera�

Projecting P onto the image plane gives�

x �
fX

Z

 y �

fY

Z

The derivative of �x� y� with respect to time is then�

u � xt �
f

Z�
�XtZ �XZt�

v � yt �
f

Z�
�YtZ � Y Zt�

Substituting the derivatives from equation � yields�

�u� v�t �
�

Z�x� y�
AT �BR

where

A �

�
�f � x
� �f y

�

and

B �

�
xy�f ��f � x��f� y

�f � y��f� �xy�f �x

�
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The matrices A and B are known� It can be seen from this equation that the rigidity
constraint reduces the number of parameters to be found to � � n unknowns
 n depth
parameters Z�x� y�� and � motion parameters determining T and R�
Note�

� There is a degree of freedom in the magnitude of the translation and depth� so in fact
we can recover only � � n unknowns�

� The contribution of the camera rotation to �u� v� is independent of the depth Z�x� y��
while the contribution of the camera translation does depend on the depth�

��� Known Structure

In the case where the depth Z�x� y� is known for every pixel located at �x� y��

�u� v�t � A�T �BR

where A� � A�Z�x� y� is a known matrix� In this case there are only � unknowns to be found
	 the motion parameters�

��� Parametric Structure

Since our project deals mainly with planar scenes� the following discussion will be concentrate
on this parametric structure�

����� A Plane Under Perspective Projection

If the scene is planar� all points of this plane satisfy the equation� Z � a� bX � cY �
Dividing by aZ we get�

�

Z
�

�

a
�

bX

aZ
�

cY

aZ
which can be rewritten as�

�

Z
� �� �x� �y

and therefore�
�u� v�t � ��� �x� �y�AT�BR

In this motion model we have � unknowns to be found� Since ������� and T are coupled�
it is impossible to �nd the motion parameters from the displacement of one plane� and at
least one additional plane is required�
However� for the registration problem� it is enough to �nd the � coupled parameters which
can be written as�

u � a� � a�x� a�y � a�x
� � a�xy

v � a� � a�x� a�y � a�xy � a�y
�

This motion model is sometimes called �Pseudo Projective Model�

�



����� A Plane Under Orthographic Projection

If an object covers a small region in the �eld of view� and is far away from the camera
�relative to its diameter�� its projection can be approximated by an orthographic projection�

x � sX 
 y � sY

where s � f�Z� is a constant and Z� is the average depth of the object� Also� in this case�

u �
�x

�t
� s

�X

�t
� s��Tz �RyZ �RyY �

v �
�y

�t
� s

�Y

�t
� s��Ty �RzX �RxZ�

When dealing with a plane we get�

u � s��Tz �Ry�a� bX � cY � �RyY �

v � s��Ty �RzX �Rx�a� bX � cY ��

which can be rewritten as an a�ne transformation in the image plane�

�
u
v

�
�

�
a� a�
a� a�

� �
x
y

�
�

�
a�
a�

�

In this case there are only � parameters to be found�

� Multiresolution Estimation

In any chosen motion model �global parametric� we have�

I��x� u�x� y�p�� y� v�x� y�p�� � I��x� y� �

We aim to �nd the parameter vector p which minimizes

E �
X
x�y

J�I��x� u�x� y�p�� y� v�x� y�p��� I��x� y��

where J is some penalty function� Since I� depends non	linearly on p we have a non	linear
minimization problem at hand�
We have to choose�

� The penalty function

� The minimization technique to use�
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The following is a description of the multiresolution minimization technique� its advantages
and its limitations�

For simplicity� assume the motion model we choose consists of one parameter 	 a translation
in the x direction� In the following example two images were displaced from each other
by ��� pixels in the x direction �see Figure ��� The energy function �square penalty� as a
function of p is shown in Figure ��

E�p� � �I��x� p� y�� I��x� y��
� ���

Figure �� Two images translated from each other by ���
pixels�

It can be seen from this energy function that there is a single deep global minimum with
a narrow basin of attraction and many other local minima� An exhaustive search for the
minima is possible but it is time consuming �exponentially with the number of parameters��
Therefore we wish to expand the basin of attraction and to use some gradient minimization
from sparse samples of the parameter domain� Expansion of the basin of attraction �B�O�A�
can be done using multiscale techniques �pyramids�� Given the original image I��x� y�� we
generate several lower resolution images Ik�x� y� where the image at level k is generated from
the image at level k � � by the following manner�

Ik�x� y� � S �G � Ik���x� y�

The convolution with G is a low pass �lter and S is a sampling with a �comb function �in
general� having a sampling rate of �����

�
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Two types of pyramid are commonly used� the Gaussian pyramid and the Laplacian pyra	
mid� In the Gaussian pyramid we generate the next level by convolving the current level with
a Gaussian kernel followed by subsampling� This is equivalent to a low pass �ltering� The
s�t�d� of the Gaussian depends on the Nyquist frequency� If the subsampling rate is � � � then
we want to multiply the frequency domain with a Gaussian which attenuates the frequency
above n�u��� The Gaussian with �u � n�u�� will be appropriate� This multiplication is
equivalent to a convolution in the spatial domain with a Gaussian of �x �

�
n	u

� �n	x
n

� ��x

In the Laplacian pyramid we generate the next level by subtracting the current level of the
Gaussian pyramid from the �expanded� next level of the Gaussian pyramid� This is equiva	
lent to a band pass �ltering� The advantages and disadvantages of using each one of these
pyramids will be discussed later�

An example of the Gaussian pyramid with � levels� generated from the image of Figure �
can be seen in Figure ��

In order to �nd the translation parameter between two images� a pyramid is generated from
each of the images and an energy function Ek�p� is calculated for every pyramid levels�

Ek�p� � �Ik� �x� p� y�� Ik� �x� y��
�

This process was applied to the images of Figure �� The energy functions Ek�p� obtained
for � pyramid levels are shown in Figure ��

�



Figure �� Gaussian Pyramid with � levels�

It can be seen from these energy functions that as the level in the pyramid increases �the
resolution decreases�

� the basin of attraction expands�

� the precision in the localization of the global minimum pmin decreases�

Using this behavior the motion estimation between two images I� and I� proceeds as follows�

�� Generate two pyramids fIk�g and fIk�g� k � � � � �N where N is the highest level�

�� Find an initial solution for the motion parameters by �nding the global minimum of
EN �p�� This is done by sparsely sampling the parameter space and converging to a local
minimum in EN�p� from each sample� Among the local minima choose the parameter
of the global minimum as the initial solution�

�� Transform the parameter associated with the global minima of the current level to a
parameter associated with the lower level�

�� At the lower level	 converge to the minimum from the given initial guess�

�� Go to step � until you arrive to level ��

�
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Figure �� Five energy functions for �ve pyramid levels�

Three examples of �nding the registration parameters using the above algorithm follow� In
Figure � the pictures di�er by a shift in the x direction� In Figures � the pictures di�er by a
shift in the x and in the y directions� In the third example� Figure �� the pictures are related
to each other by an a�ne transformation� It is demonstrated that the algorithm �nds the
correct transformations in all these cases�
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Figure �� Registration for one dimensional translation�
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Figure �� Registration for two dimensional translation�

��



Figure �� Registration for a�ne tranformation�
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� Performance and Convergence Guarantee

In the previous section an important advantage of the multiresolution minimization tech	
nique was described� The ability to reduce computational time in searching for the global
minimum in the parameter space� The question which will be clari�ed in this section is
whether this is the only contribution of the multiresolution scheme� In other words� if we
have unlimited computational abilities 	 do we need the multiresolution technique�

In order to investigate this question assume a simple example where a one dimensional
function is translated at a constant velocity�

I�x� t� � I��x� pt�

In the spatio	temporal space this motion appears as slanted strips with a slope inversely
proportional to the velocity and equal to ��p �Figure ���

t

x
1/p

Figure �� spatio	temporal representation of a translated one dimensional image�

Let the spatio	temporal frequency domain of I�x�t� be �I�u�w��

�I�u�w� �
Z Z

I��x� pt� exp���i
ux�tw� dxdt

�
Z Z

I��x� pt� exp���iux exp���itw dtdx

��



�
Z

�I��u� exp
���iupt exp���iwt dt

� �I��u�
Z
exp���it
w�up� dt

� I��u�	�w � up�

This equation de�nes a one dimensional line I��u� in the frequency domain passing through
the origin and having a slope of �p� equal with its magnitude to the velocity value� This is
demonstrated by the black line in Figure ���

∆ t1/

∆ t1/ p

∆ t

u

w

-p

-p’

1/ p’

Figure ��� A moving image is represented by a slanted line in the frequency spatio	
temporal domain� with a negative slope equal to the speed� The values at this line
are equal to the static Fourier values I��u��

Assume that we want to recover the speed p by minimizing the energy function�

E�v� �
Z Z

�I�x� t�� I�x� v� t� ����dxdt ���

Expanding I�x� v� t� �� around �x� t� and taking the �rst order approximation yields�

I�x� v� t� �� � I�x� t� � vIx � It ���

��



where

Ix �
�I�x� t�

�x

 It �

�I�x� t�

�t

Substituting Equation � into Equation � yields�

E�v� �
Z Z

�vIx� It�
�dxdt �

Z Z
�v�I�x � I�t � �vIxIt�dxdt

Expressing the above equation in the frequency domain gives�

Z Z
I�xdxdt � ��
�

Z Z
u�j�I�u�w�j�dudwZ Z

I�t dxdt � ��
�
Z Z

w�j�I�u�w�j�dudwZ Z
IxItdxdt � ��
�

Z Z
uwj�I�u�w�j�dudw

Therefore the above minimization can be expressed as a minimization in the frequency
domain�

E�v� �
Z Z

�vu� w��j�I�u�w�j�dudw

Since in our case j�I�u�w�j� �� � only when w � �pu �p is the motion speed�� we get�

E�v� �
Z Z

�v � p��u�j�I�u�w�j�dudw ���

This quadratic function is plotted in Figure �� and obtains its minimum at v � p�

p
v

E(v)

Figure ��� The energy function E�v� as a function of v�
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W�l�o�g� assume that we sample the function I�x� t� every �t in order to recover the speed p
from the image sequence� Sampling the spatio	temporal domain every �t in the time space
is equivalent to convolving the frequency domain with a comb function of spacing ���t� This
replicas the frequency image along the w axis �see Figure ���� However� if the sampling rate
is lower than a certain rate� more than one replica will intersect the integration domain and
will deteriorate the energy function �see Figure ���� Simple geometry calculations shows that

1/   t∆

w

u

Figure ��� The frequency domain when sampling I�x� t� every �t�

in order to prevent this aliasing e�ect we have to eliminate all frequencies �in the spatial
domain� above ����p�t� � ���D� where D is the displacement between two consecutive
images� In other words we have to ensure that the maximum frequency in the spatial
domain umax will be�

umax �
�

�p�t
�

�

�D

As p or �t increases �i�e� the displacement between two images increases� the permitted
maximum frequency umax decreases�

Now we can understand the advantage of the multi	resolution techniques on top of the com	
putational reduction� As we go to higher levels in the pyramid representation� the maximum
spatial frequency decreases and therefore a larger displacement between images can be de	
tected� Note� however� that in order to guarantee convergence we must have enough energy
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in the frequency band ��� ����p�t���

The above study can also give us an insight about the basin of attraction �B�O�A� of the
energy function E�p� �Equation �� at each pyramid level� Since we expect to properly approx	
imate the slope in the frequency domain when umax � ���D it is clear that for a given umax

the basin of attraction will be at least �D i�e� the B�O�A will be greater or equal to ��umax�
This tells us that if no apriori informstion is given about the solution� we have to sample the
parameter space at least every ��umax in order to guarantee a conversion to the true solution�

An example of predicting the B�O�A� in di�erent frequency bands can be seen in Figures
��	��� In these examples� energy functions E�p� were calculated between two equal images
�i�e� the translation between the images is zero� after �ltering them with band pass �lters�
The original image is shown in Figure ��� This image contains ��� pixels� therefore� each �u
is equal to �������x�� If k�u � umax is the maximum frequency of this image� the B�O�A�
is predicted to be greater or equal to�

�

k�u
�

����x

k

which means ����k pixels� The energy functions for � di�erent frequency bands are shown
in Figures ��	��� The predicted B�O�A� and the calculated B�O�A� for each case are summa	
rized in the following table�

Figure no� Frequency Band Predicted B�O�A calculated B�O�A

�� ���u� ��u� ���x ���x

�� ���u� ���u� ���x ���x

�� ����u� ���u� ���x ���x

�� ����u� ���u� ���x ���x

�� ����u� ���u� ���x ���x
�� ����u� ���u� ��x ��x

�� ����u� ���u� ��x ��x

Due to the digitization behavior in the energy function we can have an error in the calculated
B�O�A� up to � pixel� Taking that into account� it can be seen from the table that the real
B�O�A� is wider or equal to the predicted B�O�A� as expected�

��



Figure ��� The original image before �ltering by a band pass �lter� This
image contains ���x��� pixels�
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Figure ��� Band pass image with frequencies ��u � u � ��u�
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Figure ��� The energy function of the above image� The calculated B�O�A
is ���
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Figure ��� Band pass image with frequencies ��u � u � ���u�
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Figure ��� The energy function of the above image� The calculated B�O�A
is �� pixels�
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Figure ��� Band pass image with frequencies ���u � u � ���u�

0

200

400

600

800

1000

1200

-60 -40 -20 0 20 40 60

u = [10,15] pixels

Figure ��� The energy function of the above image� The calculated B�O�A
is �� pixels�
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Figure ��� Band pass image with frequencies ���u � u � ���u�
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Figure ��� The energy function of the above image� The calculated B�O�A
is �� pixels�
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Figure ��� Band pass image with frequencies ���u � u � ���u�
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Figure ��� The energy function of the above image� The calculated B�O�A
is �� pixels�

��



Figure ��� Band pass image with frequencies ���u � u � ���u�
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Figure ��� The energy function of the above image� The calculated B�O�A
is � pixels�
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Figure ��� Band pass image with frequencies ���u � u � ���u�
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Figure ��� The energy function of the above image� The calculated B�O�A
is � pixels�

��



� Evaluate the Precision of an Estimation

As explained in the previous section the angle � of the energy line in the frequency domain is
equal to the negative speed �p� evaluating the angle � is equivalent to estimate the speed p�
However� since our function I�x� t� have a �nite support �or it is periodic in space and time�
the continues frequency domain is sampled at a rate of �u � ��N�x in the u direction and
at a rate of �w � ��M�t in the w direction� where N and M are the number of samples in
the spatial and in the temporal domain� respectively� Due to this digitization behavior the
precision of the slope estimation is proportional to�

����� � ��u� ��w���r� �
�

N�	x�
� �

M�	t�

w� � u�

where r is the maximim length of the energy line from the origin� It can be seen that as
u increases �lower levels in the pyramid�� the precision of the approximated slope improves�
Note that when dealing with a registration with two images then M � ��

Assume we estimate in the higher level of the pyramid a slope q which is close to the real
speed p� As stated� the approximated slope is not exact due to the quantization behavior
of the transform� If we warp the �rst image towards the second by our approximated speed
then we will still be left with a small displacement between the images which corresponds to
a slower speed p� � �p � q�� In the frequency domain this e�ect is expressed by a reduction
in the slope of the energy line from �p to �p� �grey line in Figure ���� This now allows us
to take now higher frequency images �up to ����p��t�� and to improve our estimate�

� Di�erent IlluminationConditions and Di�erent Sen�

sor Type

An important conclusion that can be made from the previous chapter is that in order to �nd
the motion parameters using any minimization technique� it is worthwhile to start with a
lower spatial resolution as possible in order to have a stable initial solution �a broad B�O�A��
However� in some cases the above conclusion is wrong� An example for such a case is a set
of images which were taken under di�erent illumination condition or by di�erent kind of
sensors� To illustrate the problem assume that two images such as in Figure � were taken
under di�erent illumination condition� To simulate such a case the greyscales of one of the
images were multimlied by a factor of ���� The energy functions Ek�p� of this case� for �
levels of the Gaussian pyramid are shown in ��� It is demonstrated that minimization at the
lowest resolution �level no� �� will fail to extract the correct registration parameters �compare
these function to the energy functions plotted in Figure ��� The reason for this phenomena
is that non	identical illumination condition causes �smearing in the low frequencies in the
spatio	temporal frequency space� Low pass �lters which focuse on these frequencies �such as
the Gaussian pyramid� magnify this e�ect and may fail to recover the angle of the energy
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line �the speed parameter�� Band pass �lters� on the other hand� such as Laplacian pyramid�
may overcome this di�culty� However� using the Laplacian pyramid reduces the stability of
the minimization due to narrowing the B�O�A of the energy functions� Energy functions for
� levels in the Laplacian are plotted in Figure ���
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Figure ��� Di�erent illumination condition� the energy function for � levels in the
Gaussian Pyramid� The higher level fails to extract the global minimum�

Even harder case is where the greyscales of the two iamges are di�erent due to di�enent kind
of sensors taking these images� In this case the corresponding greyscales of the images can
be totaly di�erent even non	monotonic� The fact that the images show the same scene is
expressed only in the hight frequencies of the images� therefore� a comparison can be made
only at these frequency levels� However� using the high frequncies will drasticly reduce the
stability of the convergence and the multiresolution scheme will not produce much more
performance� An example can be seen in the following simple case� In Figure �� two
identical images were covered by a non	monotonic greyscales� Trying to register these two
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Figure ��� Di�erent illumination condition� the energy function for � levels in the
Laplacian Pyramid� The higher level enables to extract the global minimum�

images by minimizing E�p� of the original images is hopeless� Trying to do so by the edge
information of these images �high pass �lter� is a better possibility� The Energy functions
Ek�p� for � levels in the Gaussian pyramid of the edge images are plotted in Figure ��� It
can be seen from these energy functions that the real speed parameter can be found but the
B�O�A is quite narrow and it is not expanded a lot at the higher level of the pyramid� This
results by a limited performance of the energy minimization scheme�
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Figure ��� Two Images with Non	monotonic Grey Scales�
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Figure ��� Edge images� the energy functions for � levels in the Gaussian pyramid� The
B�O�A is quite narrow at all of the levels�
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Figure ��� Di�erent illumination condition� the energy function for � levels in the
Gaussian Pyramid� The higher level fails to extract the global minimum�
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Figure ��� Di�erent illumination condition� the energy function for � levels in the
Laplacian Pyramid� The higher level enables to extract the global minimum�
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