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Abstract

Model based object recognition and model based pose estimation require a distance
metric to �nd the optimal pose and to measure the distance between the measurements
and possible models during the recognition process� When the measurements are given
in �D �such as in orthographic and perspective projections� the commonly used dis�
tance between the �D model features and the �D image features is the �D Euclidean
distance measured in the image plane� However	 this �D distance does not	 usually	
increase monotonically with the real �D distance and thus does not really represent
the distance being measured� In this paper we propose a new scheme in which both
the optimal positioning and the evaluation of similarity between the �D image and the
model is performed relative to the �D distance� This distance is calculated between
the model features and a �D predicted object which is a permissible reconstruction of
the measured object and is the 
closest� to the model features�
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� Introduction

Model based object recognition and model based pose estimation are two complementary

problems that arise frequently in the vision literature �for example ��� 	� 
� �� ��� �
�� In

model�based pose estimation the position in �D space �translation � orientation� of a known

object is determined from the object measurements� In model�based recognition a measured

object is compared to a library of prototype models in order to �nd the model which is the

�closest� to the viewed object� Commonly� this process requires the estimation of the best

model positioning followed by a measure of similarity between the model and the measured

data� Both the recognition process and the pose estimation process� use some distance metric

to �nd the optimal pose and later to measure the distance between the measurements and

the hypothesis model�

Many applications use feature points such as maximum curvature� segment endpoints and

corners as a model description� In these applications� when measurements are given in �D

�such as range �nder or stereo data�� Euclidean distance between the �D model features and

the corresponding �D measured features is calculated to guide the optimal pose estimation

and the recognition process ���� �� 
� �
� If fX�

igi�����n and fXigi�����n are two sets of �D

vectors representing the locations of the model�points and the measured points respectively�

then the �D Euclidean distance between these two sets is�

D� �
X
i

kT �X�

i��Xik�

where T is the rigid transformation representing the model pose� This distance metric is

reasonable since it describes the amount of �D distortion a model has to be undergo in order

to �t the measurements� In model�based pose estimation we aim to minimize this distance

subject to the transformation T and in recognition tasks the minimization is performed

subject to T and the model fX�

ig�

More frequently� recognition tasks deal with measured features given in �D �projected

images�� In this case a commonly used distance between the �D model features and the

�D image features is the �D Euclidean distance measured in the image plane� If fmigi�����n
are �D vectors representing the locations of n corresponding measurements then the �D

Euclidean distance is de�ned as�

D� �
X
i

k�T �X�

i��mik�
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where � is a projection operator� In this case� the measured features in the image are

compared with the model features projected onto the image plane� The minimization of

this �D Euclidean distance is used to guide the positioning and the recognition processes

���� �� ��� �
� �
� However� the problem with this �D distance is that in most cases� this

distance does not increase monotonically with the real �D distance and thus does not really

represent the �D distortions the model must undergo in order to �t the measured object�

This inadequacy of the �D distance causes imprecisions in the recognition and positioning es�

pecially when dealing with perspective projection� For example� in perspective images� a �D

distance between a measured point and its associated projected model point can have vary�

ing values in the real �D distance� according to the depth of these points in �D� Therefore�

the relative contribution of this pair in the total �D distance may di�er from its contribution

in the total �D distance� The same kind of problem arises when dealing with perturbations

in the measurements or in the model features� These perturbations in�uence di�erently the

�D distance and the �D distance�

In this paper we propose a new scheme which� given a �D image and a candidate model�

calculates the optimal positioning of the model and evaluates the �similarity� between the

�D image and the model� Both� the optimal positioning and the evaluation of similarity

is performed relative to the �D distance� This distance is calculated between the model

features and a �D predicted object which is a permissible reconstruction of the measured

object� More precisely� we calculate the minimum distortion of the model which produces a

permissible reconstruction of the measured features� where a reconstructed object is consid�

ered permissible if it does not contradict the measured data� The permissible reconstructed

object which is the �closest� to the candidate model �in terms of minimum distortion� is the

predicted object�

In this paper we describe a method that deals with recognition and pose�estimation

tasks based on �D distance metric� In this scheme we include uncertainty both� in the

measurements and in the model features� We show that the superiority of our scheme

is mainly when the uncertainty in the model is signi�cant� This characteristic becomes

important when modeling non�rigid objects or when dealing with uncertain models which

are used to improve recognition of a particular instance of a class de�ned by a general model�

The rest of this paper is organized as follows� Sections � and � propose the general

framework for dealing with noise free measurements and precise model de�nition� Sections
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���� and 
 extend the proposed framework to deal with uncertain models and noisy mea�

surements� Sections � and � present the process for pose estimation and recognition� Some

simulated results are given in Section ��

� De�nitions

A model of a �D object is represented by a set of points�

fX�
igi�����n �

where X�
i � �x�i� y

�

i� z
�

i�
t is associated with the location of the ith model point and represented

in an object�centered frame of reference �x�� y�� z���

A transformed model is the coordinates of the model points as given relative to the viewer�

centered frame of reference �x� y� z�� If T denotes the rigid transformation between the

object�centered frame and the viewer�centered frame then the transformed model is de�

scribed by the collection� fXigi�����n � where Xi � �xi� yi� zi�t � T �X�
i� �

A measurement of a �D object is a set�

fmigi�����n �

where mi represents a measurement of the ith feature point of the object� This paper deals

with the case where the measurements are obtained from a projection of the object onto a

�D image plane� Thus� mi � �vi� wi�t is represented in the image frame of reference �v�w��

A predicted object is a set of �D coordinates of the form�

fUigi�����n �

where Ui is an estimate of the ith feature point of the object and represented in the viewer�

centered frame of reference �see Figure ��� The predicted object is the �closest� object to

any transformed model satisfying the image constraints� Formally� we choose such an object

fUig which minimizes the following quantity�

C �
nX
i

kT�X�
i��Uik� ���
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Figure �� General con�guration of a perspective projection� The frames
�x�� y�� z��� �x� y� z� and �v�w� represent the object�centered� the viewer�
centered and the image frame of reference� respectively�

under the set of constraints�

project�Ui� � mi for each i � � � � � n � ���

where project�Ui� is the projection of Ui onto the image plane and where the transformation

T is any rigid transformation�

� The Predicted Object and the Optimal Transfor�

mation

Minimization of C in Equation � requires evaluation of both� the optimal transformation

T and the �closest� predicted object fUigi�����n� However� knowing the optimal transfor�

mation� it is straightforward to �nd the predicted object� In the following we elaborate on

�nding the optimal transformation T with respect to any predicted object�

Denote by line�mi� the collection of points in �D space where the feature point Ui can






be located i�e� line�mi� � fV j project�V� � mig � If the measurement is an orthographic

projection onto the plane z � � then line�mi� is a line parallel to the z axis and passing

through the point �mt
i� ��t� If the measurement is a perspective projection� as depicted in

Figure �� then this line passes through the focal point ��� �� �� and the point �mt
i� f� where

f is the focal length�

If Q is a point in �D we denote by kQ� line�mi�k� the squared Euclidean distance between

line�mi� and the point Q�

Lemma�

If fUig is the optimal predicted object minimizing Equation �� then�

kT�X�

i��Uik� � kT�X�

i�� line�mi�k� for each i � � � � � n �

Proof�

By de�nition

kT�X�

i�� line�mi�k� � min
V�line�mi�

kT�X�

i��Vk�

However� due to the image constraint Ui � line�mi�� Since Ui is chosen s�t� kT�X�
i��Uik�

will be minimized� we have�

kT�X�

i��Uik� � min
V�line�mi�

kT�X�

i��Vk�

and thus kT�X�
i��Uik� � kT�X�

i�� line�mi�k� � �

From the lemma it is clear that the optimal transformation �T can be derived as follows�

�T � arg

�
min
T

nX
i

kT �X�
i�� line�mi�k�

�
�

After �T is calculated� the second stage is to �nd the predicted object� The location of

each feature point is chosen so that Equation � is minimized� thus�

Ui � arg

�
min

V�line�mi�
k �T �X�

i� �Vk�
�

for each i � � � � � n �
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Figure �� Perspective projection of noise� Similar noise in the model
points �d and e� are projected di�erently onto the image plane �f and
g�� depending on the distance from the focal point� Conversely� noise in
the image plane �a� can have a varying in�uence on the predicted object�
according to the depth of the predicted point �b and c��

� Uncertainty in the Model and in the Measurements

In the previous section no knowledge about the measurement uncertainties and the model

uncertainties was assumed� Since we work in a noisy environment� it is important to charac�

terize these uncertainties especially when the measurements are taken following a perspective

projection� With this kind of projection� similar noise in the model points �d and e in Figure

�� are projected di�erently onto the image plane �f and g in Figure ��� depending on the

distance from the focal point� And conversely� noise in the image plane �a in Figure �� can

have a varying in�uence on the predicted object� according to the depth of the predicted

point �b and c in Figure ���

In this section we consider measurements and model points which are associated with

some uncertainty� That is� each measurement is now represented by a pair�

measurement�i� � � �mi��i�

�



where �mi is the actual measurement of a real value mi s�t� �mi � mi � �i� We assume that

the noise term �i is of zero mean and its covariance matrix �i is known� The covariance

matrix depicts the uncertainty in the actual measurement and is mainly due to two factors�

� Uncertainty due to measurement noise �e�g� digitization� blurring and chromatic aber�

rations��

� Uncertainty dependent upon the feature detection process� For example� a detected

end�point of a line segment will have low positional uncertainty in the direction per�

pendicular to the line segment and a high uncertainty in its direction�

Similar to the measurements� we associate for each model�point a covariance matrix �i so

that each one of the model points is represented by a pair�

model�point�i� � � �X�

i��i�

where �X�

i is an estimated location of the ith model point with a �� � covariance matrix �i�

This covariance matrix denotes the uncertainty of the estimated location �X�

i that may arise

from three sources�

� Uncertainty due to imprecise modeling of the �D object�

� Uncertainty due to modeling a class of �D objects� for example� modeling a general

face�

� Uncertainty due to modeling non rigid objects such as rubber objects�

In some cases there is no knowledge about the noise in the measurements or in the

model� In such cases we associate an identical covariance matrix with each measurement or

model�point such that �i � �I or �i � �I where I is the identity matrix and �� � are some

scalars�

When dealing with an uncertain model and noisy measurements it is clear that it is

erroneous to �nd a predicted object which minimizes C of Equation �� In this equation

all terms added in the right�hand side in�uence the solution equally where in our case the

�



in�uence should be inversely proportional to the uncertainty of each term� Therefore the

predicted object has to be calculated subject to a Mahalanobis distance�

C �
nX
i

��T �X�

i��Ui�
tW��

i �T �X�

i��Ui�
 ���

where Wi is a ��� covariance representing the uncertainty of �T �X�

i��Ui�� This uncertainty

can be deduced from �i and �i as will be explained later on �Section ����� It should be noted

that even if we don�t have any a priori knowledge about the uncertainty in the model and

in the measurements so that all �i are identical and all �i are identical as well� the term C

in Equation � is incorrect and the transformation T should be found subject to minimizing

Equation �� This is true since Wi in Equation � depends also on the depth of each point

from the image plane as can be seen in Figure ��

� The Mahalanobis Distance to an Uncertain Line

According to the lemma given in Section �� fUig in Equation � can be replaced by fline�mi�g�
However� in this case� these lines are uncertain since they are deduced from uncertain mea�

surements� Therefore� we are actually interested in the Mahalanobis distance �M�D�� between

the transformed model to these uncertain lines� This section elaborates the representation

of an uncertain line and the measure of the M�D� to it�

Let u be a � dimensional vector of random variables where Efug � �u and varfug � �u�

Efug denotes the expectation value of u and varfug � Ef�u� �u�t�u� �u�g denotes its ���

covariance matrix� If p is some point in �D space �with zero uncertainty� then the squared

Mahalanobis distance between p and �u is de�ned as�

d� � ��u� p�t���
u ��u� p�

Assume the covariance matrix �u is diagonal� thus there is no correlation between the

components of u�

�u �

�
B�

��
x � �

� ��
y �

� � ��
z

�
CA

If we set ��
z to be an in�nite value then the contours of constant M�D� from �u will be elliptic

cylinders parallel to the z axis centered at �u �See Figure ��� The cross section of these
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Figure �� The Mahalanobis Distance to an uncertain line� When the
uncertain line is parallel to the z axis �i�e� the diagonal covariance matrix
�u associated with the line has an in�nite value for ��

z� then the contours
of constant Mahalanobis Distance will be elliptic cylinders parallel to the
z axis� The cross section of these cylinders along a plane parallel to the
�x� y� plane is composed of enclosed ellipses having length and breadth
proportional to ��

x and ��
y in the principal directions�

cylinders along a plane parallel to the �x� y� plane is composed of enclosed ellipses having

length and breadth proportional to ��
x and ��

y in the principal directions� Therefore� in this

case� the M�D� between a point p and �u depends on the distance and direction of p from

a line perpendicular to the �x� y� plane and passing through the point �u� Explicitly this

distance is given by�

d� � ��u� p�t

�
BB�

�
��x

� �

� �
��y

�

� � �

�
CCA ��u� p� �

��ux � px��

��
x

�
��uy � py��

��
y

���

We can view this distance as a M�D� from an uncertain line with some uncertainty in the

directions perpendicular to the line direction� This uncertainty is given by the covariance

matrix�

�line �

�
��
x �

� ��
y

�
�

��



Note� that the M�D� between p to any point on this line is equal to the M�D� between p and

�u as can be seen from Equation �� This proposition is not limited to lines parallel to one of

the axes and is valid for any uncertain line� For example� consider an uncertain line passing

through point �v with direction represented by the unit vector R�z where R is some rotation

matrix and �z is a unit vector aligned with the z axis� Assuming the uncertainty of this line

is the same as the previous one� this line can be represented by an uncertain point ��v��v�

where its covariance matrix is as follows�

�v � R

�
B� ��

x � �
� ��

y �
� � �

�
CARt

The M�D� between point p to any point on this line is in fact the M�D� from p to the uncer�

tain point �v�

In the following sections we show how to use this idea to �nd the optimal transformation of

a model and to �nd the predicted object closest to the model in the sense of �D Euclidean

distance� The method described below fuses the information from all the measured points

and estimates the model transformation T by incremental re�nements using Kalman�filter

���� ��
� At each step a new uncertain line is generated from the associated measurement

and an updated solution is produced�

� Converting the Measurements to Uncertain Lines

As stated in Section � the optimal transformation is calculated subject to minimizing the

distance between the transformed model and the lines fline� �mi�g� These lines are in fact

uncertain lines due to the uncertainty in the measurements� Each of these lines can be

represented by a �D point �Mi located on line� �mi� and having a covariance matrix �i� The

point uncertainty in the direction of projection is in�nite� and its uncertainty in the perpen�

dicular directions is deduced from the associated measurement uncertainty� This uncertain

�D point �uncertain line�� � �Mi��i�� can be considered as a �D measurement of the ith trans�

formed model�point T � �X�

i�� In this section we explain how to convert the measurements into

uncertain lines and in the following section we give the algorithm for �nding the optimal

transformation using this information�

��



Assume that the measurements are performed on the image plane using the coordinate

system �v�w� where the kth measured point is�

measurement�k� � � �mk � ��vk� �wk���
k
vw
 �

�k
vw is a ��� covariance matrix describing the uncertainty of the actual measurement ��vk� �wk��

For simplicity we ommit the subscript k at this time so that this measurement is represented

by the pair ���v� �w���vw
� We separate our discussion into two cases� orthographic projection

and perspective projection�

Orthographic projection�

In the case where the projection is along the z�axis �orthographic� the associated uncertain

line is represented as�

� �M��� � ���v� �w� �z��

�
�vw �

� �
�


 �

where �z is any estimate of the z coordinate�

Perspective projection�

In the case of perspective projection� the modeling of the uncertainty is more complex� As�

sume that the origin of the viewer�centered frame of reference �x� y� z� is at the focal point

as shown in Figure � and the focal length is equal to one� We aim to transform the measure�

ment �m � ��v� �w� given in the image�plane coordinate system �v�w� into a representation in

the Cartesian system �x� y� z��

Considering the spherical coordinate system �r� �� �� �Figure ��� The vector ��v� �w� deter�

mines the angular coordinates ��� �� but leaves the value of r undetermined�

�� � arctan�
p

�v� � �w��

�� � arccos�
�vp

�v� � �w�
� �

Additionally� the uncertainty of ��v� �w� is transformed into a covariance matrix in the ��� ��

system as follows�

��� �

�
���� ��

��v�w�

�
�vw

�
���� ��

��v�w�

�t

�

where ������
��v�w�

is the Jacobian of the transform from �v�w� to ��� ��� and the derivative is taken

��
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Figure �� A perspective projection of the point U onto the image plane
�v�w�� The point can be represented in either� a Cartesian system �x� y� z�
or a spherical system �r� �� ���

at point ��v� �w�� The Jacobian matrix is�

���� ��

��v�w�
�

�
�v	�
 �w	�

� �w
� �v
�

�
�

where

	 � �p
�v� � �w� � �


 � �p
�v� � �w�

�

The transformation into spherical coordinates� as an intermediary stage� allows a simple

representation of the associated uncertain line�

� �M��� � ���r� ��� �����r��
 �

where

�r�� �

�
B�
� � �
�
� ���

�
CA

and �� � �� � ��� are the expressions described above� �r is unknown but an estimation of �r

will be chosen as is explained later in this section�

��



In practice we are interested in representing the uncertain line in Cartesian coordinates�

thus� the representation is transformed again from the spherical coordinates to Cartesian

coordinates �x� y� z� as follows�

� �M��� � ���x� �y� �z���xyz
 �

where

�x � �r sin �� cos �� � �r	�v

�y � �r sin �� sin �� � �r	 �w

�z � �r cos �� � �r	

and the covariance matrix is�

�xyz �

�
��x� y� z�

��r� �� ��

�
�r��

�
��x� y� z�

��r� �� ��

�t

�

The Jacobian is

��x� y� z�

��r� �� ��
�

�
B� �v	 �r�v	
 ��r �w	

�w	 �r �w	
 �r�v	
	 ��r	�
 �

�
CA �

where the derivative is taken at the point ��r� ��� ���� Here too� all values are known except for

�r� Since the process that estimates the optimal transformation incrementally improves the

estimation of T � i�e� at each step k� there exists an estimate �T k�� from the previous step� we

use this estimate to calculate an estimate of �r at step k as follows�

�rk � k �T k��� �X��k �

where �X� is the location of the corresponding point in the model� We emphasize that the

uncertainty of this estimate� as expressed in the covariance matrix� is in�nite�

� Estimation of the Optimal Transformation

As stated� the �rst step in �nding the predicted object is to estimate a transformation

T which optimally translates the points f� �X�

k��k�g of the model onto the corresponding

uncertain lines f� �Mk��k�g� generated from the measurements f� �mk��k�g� The optimality

of this transformation is in the sense of minimizing Equation �� The transformation T is a

��



vector representing a rigid ��D transformation �rotation � orientation� of the model from its

local coordinates to the viewer coordinates� T is estimated from the generated uncertain lines

using the Kalman �lter tools �K�F� � The estimation process is composed of an incremental

re�nement� for which at each step k��� there exists an estimate �Tk�� of the transformation

T and a covariance matrix �k�� which represents the �quality� of this estimate�

�k�� � Ef� �Tk�� �T�� �Tk�� �T�tg �

Given a new measurement � �mk��k�� an associate uncertain line� f� �Mk��k�g� is generated�

and the current estimate is updated to be �Tk with an associated uncertainty �k� The ac�

curacy of the estimate increases� as additional measurements are fused� i�e� �k � �k��

��k�� � �k is nonnegative de�nite�� The process terminates as soon as no additional mea�

surements can be supplied�

��� The Kalman Filter for Parameter Estimation

The Kalman �lter is a tool for parameter estimation from given measurements� In our case

the parameter vector to be estimated is the transformation vector T which is composed of

two components�

� The translation component� expressed by the vector t 

t � �tx� ty� tz�
t � �
�

� The rotation component� described by the quaternion !q �see Appendix A� ���
�

!q � �q��q� � �q�� q�i � q�j � q�k� �

The rotation quaternion should satisfy the normality constrains� !q!q� � q�� � kqk� � � �

where !q� is the conjugate of !q�

In practice we represent the rotation component by the vector�

s � q

q�

from which the quaternion !q can be reconstructed�

q� �
�p

� � sts
 !q � �q�� q�s� �

�
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Figure 
� The Kalman �lter for static�parameter estimation The three
inputs and the estimation output�

The vector s is a convenient representation of the rotational component in addition to

being minimal �having � parameters� the rotation equation is linear in s as will be shown

later� In order to avoid singularities in the representation when q� � � we always use two

object�centered coordinate systems� simultaneously�

Considering these two components� the parameter vector to be estimated during the

�ltering process is�

T �

�
s

t

�
�

The Kalman �lter produces an estimate �T of the transformation vector� given the uncertain

lines� At each step� the �lter receives three inputs and supplies a single output �see Figure


�� The inputs are�

�� An a priori estimate of the evaluated parameter vector and the uncertainty associated

with it� In our case� in the kth step� the a priori estimation will be the estimate

evaluated at the previous step �Tk�� and its associated covariance �k��� The covariance

��



matrix �� in the initial step will be set to in�nity since no a priori knowledge about

T is assumed and the choice of �T� does not a�ect the end result�

�� The current measurement and its uncertainty� in our case this measurement is the

uncertain line � �Mk��k� generated from actual �D measurement � �mk��k� where �Mk

and its associated covariance matrix �k is calculated as elaborated in the previous

section�

�� A mathematical relationship between the evaluated parameters and the measurements�

This mathematical relationship should be linear in the evaluated parameters� In our

case the relationship is�

!Mk � !q !X�

k!q� � !t � ���

where !Mk� !X�

k�!t are quaternions associated with the vectors Mk�X
�

k� t respectively�

Given that !q!q� � �� multiplying Equation ��� by !q yields�

!Mk!q � !q !X�

k � !t!q �

Isolating the vector component of this quaternion equation and dividing by q� we obtain

the matrix equation�

hk�X�

k�Mk�T� ��Mk �X�
k
 s� �Mk �X�

k�� �I�� �s
�t � � � ���

where s � q
q�

as previously de�ned� I� is the �� � identity matrix and ��
 denotes the

matrix form of a cross product� i�e�

�v
�

�
B� � �vz vy

vz � �vx
�vy vx �

�
CA  �v
m � � �m
 v � v�m �

The equation hk�X�
k�Mk�T� � � is not linear as required in the K�F�� therefore� we use

the extended Kalman filter �E�K�F�� ���� ��
 which is a generalization of the Kalman

�lter to non�linear systems where transition from step k � � to step k is performed

using a linear approximation of hk by taking the �rst order Taylor expansion around

� �X�

k�
�Mk� �Tk���� The linearization of the measurement equations for our case are given

in Appendix B�

��



The output of the K�F fuser is an updated estimation of the evaluated parameters and its

associated uncertainty in our case �Tk and �k respectively� The K�F� fuser is of the form�

�Tk � f� �Tk����k��� �X�

k��k� �Mk��k� hk� �

Thus� at each stage k� there is no need of retaining any of the previously considered mea�

surements� Only the current estimate �Tk�� and its associated uncertainty �k�� need be

retained� The K�F� updating equations are given in Appendix C�

The K�F� updating equations yield an unbiased estimate of T which is optimal in the

linear minimal variance criterion ��
� i�e� �Tk minimizes

C �
kX

i��

�hi�T�W��
i

�hti�T� � ���

where �hi�T� � hi� �X�

i�
�Mi�T� and Wi is the covariance matrix of �hi �Appendix D�� The value

C in Equation � is in fact the same value as in Equation � which we aimed to minimize�

Thus� the desired solution as formulated in Sections � and � is the same solution as obtained

from the K�F� updating equations�

Since the measurement equations are linear approximations of non�linear equations the

initial solution obtained by the K�F� will not necessarily be the correct solution� This case

will happen when the linearization is around a point that is not close enough to the correct

solution� In order to reduce the in�uence of the linearization local iterative K�F� ���� page

��	
 is applied� In the iterations the constraints are relinearized around the updated solution

obtained by the K�F� and another cycle of K�F� is performed using the new version of the

linearized constraints�

Note� that the general K�F� deals with a parameter vector that is changing with time�

whereas in our case the estimated transformation� T� is static and does not change between

measurements�

	 From Predicted Objects to Recognition

After the optimal transformation �Tn is estimated from the n measurements� the second

stage in the recognition task is to �nd the �similarity� between the predicted object and the

��



candidate model� This �similarity� is calculated with the �D distance� however it has to be

consider with the uncertainty of the model features and the measurements� Fortunately� there

is no need to reconstruct the predicted object in order to calculate its similarity to the model�

Given a transformation T� the M�D� between the predicted object and the transformed model

is given by C of Equation � where the summation is over the n measurements� Thus� the

similarity between the predicted object and a candidate model is given by the value C

calculated for the �nal transformation �Tn�

If a reconstruction of the predicted object is required� the calculation of its feature locations

is simple� We transform each model�point �X�

i by the optimal transformation �Tn and �nd

a point Ui such that the sum of the M�D� to the uncertain line � �Mi��i� and the M�D�

to the transformed model point T � �Xi� is minimal� The mathematical formulation of this

reconstruction is elaborated in Appendix E� Note that if the ith measurement is a perfect

measurement ��i is zero� then Ui will be on the line line� �mi��


 Results

We tested our method by simulating a model as a collection of points� The points of the model

were chosen by random sampling in the cube �������
�� The model points were transformed

by a transformation T composed of a rotation s and a translation t� The model points

and the measurements were contaminated by white Gaussian noise� All model points were

contaminated by �D noise having identical uncertainty �and diagonal covariance matrix�

and all the measurements were contaminated with �D noise which was added to the image

plane and having identical uncertainty as well�

Graphs ��� show the convergence of the estimates of the rotation �s and the translation �t

as a function of the number of measurements� The vertical ordinate represents the squared

deviation of the estimate from the real value� i�e�

terrori � k�ti � tk� left graphs and serrori � k�si � sk� right graphs �

The results shown in the graphs were averaged over ��� processes of ��� randomly generated

objects� In the graphs two cases are shown� the convergence of the estimate when �D distance

metric is used as the minimization criterion� and the convergence when the �D distance is

used� The variance of the noise was not given to the algorithms and it was assumed that

each measured point is contaminated by the same amount�

�	



Graphs ��� show three typical cases� Graph � shows a case where the noise in the model�

points is dominant �the s�t�d of the model noise was proportional to �" of the total size of

the body where the image noise was proportional to �"�� Graph � shows a case where the

noise in the image is dominant �the s�t�d of the image noise was proportional to 
" of the

total size of the body where the model noise was proportional to �"�� and Grpah � shows

a case where the noise in the model�points is dominant �the same as in Graph �� but the

distance of the body from the image plane is quite large ���� times the focal length� relative

to the case shown in graphs � �where the distance is about �� times the focal length��

It is demonstrated that the �D distance metric is advantageous over the �D distance

metric when the model noise is dominant and the object is located quite close to the image

plane� In the cases where the image noise is dominant or when the object is far away from

the image plane the improvement of the estimate using the �D distance metric is negligible�

These results are reasonable since the algorithms assume the same amount of noise for each

measurement� When the image noise is dominant this assumption is correct and the �D

metric gives the same results as the �D metric� If the model noise is dominant� its projection

onto the image plane is not identical for each measurement and therefore �D metric is

essential� In the case where the object is far away from the image plane� the projection

of the model noise onto the image plane is almost identical for all the measurements and

therefore the the �D metric is again useful�

��
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Figure �� A comparison between a �D distance metric based algorithm and a �D
distance metric based algorithm� Left graph� convergence of the deviation of the
translation estimate �t� Right graph� convergence of the deviation of the rotation
estimate �s� In this case the s�t�d of the model noise was proportional to �" of the
total size of the body where the image noise was proportional to �"�

3D Euclidean metric
2D Euclidean metric

3D Euclidean metric
2D Euclidean metric

0

2

4

6

8

10

0 20 40 60 80

R
.M

.S
.E

 o
f 

 t

no. of points

0

0.1

0.2

0.3

0.4

0.5

0 20 40 60 80

R
.M

.S
.E

 o
f 

 s

no. of points

Figure �� A comparison between a �D distance metric based algorithm and a �D
distance metric based algorithm� Left graph� convergence of the deviation of the
translation estimate �t� Right graph� convergence of the deviation of the rotation
estimate �s� In this case the s�t�d of the model noise was proportional to �" of the
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Figure �� A comparison between a �D distance metric based algorithm and a �D
distance metric based algorithm� Left graph� convergence of the deviation of the
translation estimate �t� Right graph� convergence of the deviation of the rotation
estimate �s� In this case the s�t�d of the model noise and the image noise were the
same as in graphs �� but the distance of the body from the image plane was about
��� times the focal length�
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�� Conclusion

This paper presents a new scheme which de�nes a �D distance metric between model fea�

tures and �D measurements obtained following a projection� This �D distance is de�ned

as the minimum �D distortion the model must undergo in order to �t some permissable

reconstruction of the measurements� It was demonstrated that the proposed �D distance

metric is usefull when the model noise is dominant and when the object is close to the image

plane�
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Appendix�

A Rotation Quaternion

A quaternion !q is composed of two parts � the scalar part q� and the vector part q�

!q � �q��q� � �q�� q�i � q�j � q�k� �

If v��v are vectors in �� such that v � Rv� when R is a rotation matrix� then the corre�

sponding expression in quaternion form is�

!v� � !q!v!q� �

The quaternions !v� !v� correspond to the vectors v�v� respectively as follows�

!v � ���v�  !v� � ���v��

and !q� is the conjugate of !q 

!q� � �q���q� �

!q represents a rotation of the vector v by angle � around a unit vector �n where�

q� � cos�
�

�
�  q � sin�

�

�
��n

��



so that

k!qk� � !q!q� � q�� � kqk� � � �

B Linearization of the Measurement Equations for

the E
K
F

At the kth step there is a non�linear measurement equation� hk�X�

k�Mk�T� � � as written in

Equation �� Since the K�F� deals only with linear processes we use the linear approximation

of hk by taking the �rst order Taylor expansion around � �X�

k�
�Mk� �Tk����

hk�X
�

k�Mk�T� � � 	 hk� �X�

k�
�Mk� �Tk����

�hk
X�

k

�X�

k� �X�

k��
�hk
Mk

�Mk� �Mk��
�hk
T

�T� �Tk���

�	�

Equation 	 can be rewritten as a linear equation�

zk � HkT� �k � ����

where

zk � ��sk��
 �tk�� � �X�

k � �Mk

Hk � �� �Mk � �X�

k � �tk��
� ���sk��
 �I��

�k � �I�� ��sk��

�Mk � �Mk�� �I�� ��sk��

�X�

k � �X�
k� �

zk represents the new �measurement�� Hk is the matrix denoting a linear connection between

the �measurement� and the actual transformation T� Both zk and Hk can be derived from

�Mk � �X�

k � �Tk��� The term �k � depicts the noise in the �measurement� zk and satis�es�

Ef�kg � �

varf�kg � �I�� ��sk��

�k�I�� ��sk��

t � �I�� ��sk��

�k�I�� ��sk��

t � Wk �

Notice that according to the K�F� de�nition it is assumed that there is no correlation between

the di�erent measurement noise �covf�i� �jg � � 
i �� j�� This assumption is not always

valid� When there is correlation between several measurements� we may consider these

measurements as a single measurement by grouping the measurement values into a single

vector and by combining their corresponding equations into a single vector equation�

��



C The Kalman Filter Equations for Static Systems

Assume the measurement equations are as written in Equation ��� The recursive K�F� up�

dating equations for time step k are�

state estimate update � �Tk � �Tk�� � Kk�zk �Hk
�Tk���

state covariance update � �k � �k�� �KkHk�k��

Kalman gain matrix � Kk � �k��H t
k�Hk�k��H t

k � Wk��� �

D Covariance Matrix of �hi

The value of hi �Equation �� can be linearly approximated� in the ith step� by taking the

�rst order Taylor expansion around � �X�

i�
�Mi��

hi � � 	 �hi�T� �
�hi
X�

i

�X�

i � �X�

i� �
�hi
Mi

�Mi � �Mi�

where the derivatives are taken at � �X�

i�
�Mi� and �hi � hi� �X�

i�
�Mi�T�� From the above it is

clear that �hi is a zero mean random process with the covariance�

Wi � Ef�hi�htig � �
�hi
X�

i

��i�
�hi
X�

i

�t � �
�hi
Mi

��i�
�hi
Mi

�t �

E Reconstruction of Predicted Object

Let �T �

�
�s
�t

�
be the �nal transformation estimated after fusing all the available measure�

ments� From �s we can build an associated rotation matrix �R ���
 and an expression for the

transformed model�

�Xi � �R �X �

i � �t

��

i � �R�i
�Rt

Given the transformed model�point � �Xi���

i� and the associated measured point � �Mi��i�

�uncertain line� the predicted object is obtain by fusing these two points�

Ui � �Xi � K� �Mi � �Xi�

�




where K � ��

i��
�

i � �i�
��

This equation can be obtain from the K�F� updating equations where �Xi is regarded as the

state vector and �Mi as a measurement�
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