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Abstract

Model based object recognition and model based pose estimation require a distance
metric to find the optimal pose and to measure the distance between the measurements
and possible models during the recognition process. When the measurements are given
in 2D (such as in orthographic and perspective projections) the commonly used dis-
tance between the 3D model features and the 20 image features is the 2D Fuclidean
distance measured in the image plane. However, this 2D distance does not, usually,
increase monotonically with the real 3D distance and thus does not really represent
the distance being measured. In this paper we propose a new scheme in which both
the optimal positioning and the evaluation of similarity between the 2D image and the
model is performed relative to the 3D distance. This distance is calculated between
the model features and a 3D predicted object which is a permissible reconstruction of
the measured object and is the “closest” to the model features.



1 Introduction

Model based object recognition and model based pose estimation are two complementary
problems that arise frequently in the vision literature (for example [8, 9, 5, 4, 12, 6]). In
model-based pose estimation the position in 3D space (translation + orientation) of a known
object is determined from the object measurements. In model-based recognition a measured
object is compared to a library of prototype models in order to find the model which is the
“closest” to the viewed object. Commonly, this process requires the estimation of the best
model positioning followed by a measure of similarity between the model and the measured
data. Both the recognition process and the pose estimation process, use some distance metric
to find the optimal pose and later to measure the distance between the measurements and

the hypothesis model.

Many applications use feature points such as maximum curvature, segment endpoints and
corners as a model description. In these applications, when measurements are given in 3D
(such as range finder or stereo data), Euclidean distance between the 3D model features and
the corresponding 31 measured features is calculated to guide the optimal pose estimation
and the recognition process [11, 8, 5, 2]. If {X!},-1. ., and {X;}i=1., are two sets of 3D
vectors representing the locations of the model-points and the measured points respectively,

then the 3D Euclidean distance between these two sets is:
Ds =Y [IT(X]) — X;|?

where T' is the rigid transformation representing the model pose. This distance metric is
reasonable since it describes the amount of 3D distortion a model has to be undergo in order
to fit the measurements. In model-based pose estimation we aim to minimize this distance

subject to the transformation 7" and in recognition tasks the minimization is performed

subject to T" and the model {X!’}.

More frequently, recognition tasks deal with measured features given in 2D (projected
images). In this case a commonly used distance between the 3D model features and the
2D image features is the 2D Euclidean distance measured in the image plane. If {m;},—1 .,
are 2D vectors representing the locations of n corresponding measurements then the 2D

Fuclidean distance is defined as:

Dy =} |UT(X) — my*



where Il is a projection operator. In this case, the measured features in the image are
compared with the model features projected onto the image plane. The minimization of
this 2D Euclidean distance is used to guide the positioning and the recognition processes
[12, 3, 14, 15, 7]. However, the problem with this 2D distance is that in most cases, this
distance does not increase monotonically with the real 3D distance and thus does not really
represent the 3D distortions the model must undergo in order to fit the measured object.
This inadequacy of the 2D distance causes imprecisions in the recognition and positioning es-
pecially when dealing with perspective projection. For example, in perspective images, a 2D
distance between a measured point and its associated projected model point can have vary-
ing values in the real 3D distance, according to the depth of these points in 3D. Therefore,
the relative contribution of this pair in the total 2D distance may differ from its contribution
in the total 3D distance. The same kind of problem arises when dealing with perturbations
in the measurements or in the model features. These perturbations influence differently the
2D distance and the 3D distance.

In this paper we propose a new scheme which, given a 2D image and a candidate model,
calculates the optimal positioning of the model and evaluates the “similarity” between the
2D image and the model. Both, the optimal positioning and the evaluation of similarity
is performed relative to the 3D distance. This distance is calculated between the model
features and a 3D predicted object which is a permissible reconstruction of the measured
object. More precisely, we calculate the minimum distortion of the model which produces a
permissible reconstruction of the measured features, where a reconstructed object is consid-
ered permissible if it does not contradict the measured data. The permissible reconstructed
object which is the “closest” to the candidate model (in terms of minimum distortion) is the

predicted object.

In this paper we describe a method that deals with recognition and pose-estimation
tasks based on 3D distance metric. In this scheme we include uncertainty both, in the
measurements and in the model features. We show that the superiority of our scheme
is mainly when the uncertainty in the model is significant. This characteristic becomes
important when modeling non-rigid objects or when dealing with uncertain models which

are used to improve recognition of a particular instance of a class defined by a general model.

The rest of this paper is organized as follows: Sections 1 and 2 propose the general

framework for dealing with noise free measurements and precise model definition. Sections



3.4, and 5 extend the proposed framework to deal with uncertain models and noisy mea-
surements. Sections 6 and 7 present the process for pose estimation and recognition. Some

simulated results are given in Section 8.

2 Definitions

A model of a 3D object is represented by a set of points:
X" ictom

where X/; = (2}, !, 2!)! is associated with the location of the i"* model point and represented

in an object-centered frame of reference (2/,y’, ).

A transformed model is the coordinates of the model points as given relative to the viewer-

centered frame of reference (x,y,z). If T denotes the rigid transformation between the

object-centered frame and the viewer-centered frame then the transformed model is de-

scribed by the collection: {X;}i=1.., , where X; = (24,9, 2)" = T(X";)

A measurement of a 3D object is a set:

{l’ni}i:l...n 5

where m; represents a measurement of the :** feature point of the object. This paper deals
with the case where the measurements are obtained from a projection of the object onto a

2D image plane. Thus, m; = (v;,w;)" is represented in the image frame of reference (v, w).

A predicted object is a set of 3D coordinates of the form:

{U;}iztom

where Uj; is an estimate of the 7t feature point of the object and represented in the viewer-
centered frame of reference (see Figure 1). The predicted object is the “closest” object to
any transformed model satisfying the image constraints. Formally, we choose such an object

{U;} which minimizes the following quantity:

€= 3 T(X) - U ! (1)
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Figure 1: General configuration of a perspective projection. The frames
(«',y',2"), (x,y,z) and (v,w) represent the object-centered, the viewer-
centered and the image frame of reference, respectively.

under the set of constraints:

project(U;) =m; foreach ¢:=1---n

) (2)

where project(U;) is the projection of U; onto the image plane and where the transformation

T is any rigid transformation.

3 The Predicted Object and the Optimal Transfor-
mation

Minimization of C' in Equation 1 requires evaluation of both, the optimal transformation
T and the “closest” predicted object {U;};—1...,. However, knowing the optimal transfor-
mation, it is straightforward to find the predicted object. In the following we elaborate on

finding the optimal transformation T with respect to any predicted object.

Denote by line(m;) the collection of points in 3D space where the feature point U; can



be located i.e. line(m;) = {V | project(V) = m;} . If the measurement is an orthographic
projection onto the plane z = 0 then line(m;) is a line parallel to the z axis and passing
through the point (mf,0)". If the measurement is a perspective projection, as depicted in
Figure 1, then this line passes through the focal point (0,0,0) and the point (m, f) where
f 1s the focal length.

If Q is a point in 3D we denote by ||Q — line(m;)||* the squared Euclidean distance between
line(m;) and the point Q.

Lemma:

If {U;} is the optimal predicted object minimizing Equation 1, then:

IT(X") —U||* = || T(X;) — line(m;)||>  for each 1 =1---n .

Proof:
By definition
IT(X'3) = line(my)||* = __min JITX) = Vi

Veline(m;
However, due to the image constraint U; € line(m;). Since U; is chosen s.t. || T(X’;) — U,|?

will be minimized, we have:

N T2 — . N 2
IT(X) = Ul = | min [ T(X') = V]|

and thus |[T(X") = Ul|* = | T(X";) = line(my)||* . O

From the lemma it is clear that the optimal transformation T can be derived as follows:

A

T = arg {meZ IT(X",) — line(mi)Hz}

After T is calculated, the second stage is to find the predicted object. The location of

each feature point is chosen so that Equation 1 is minimized, thus:

U, = arg{ min )||T(X'Z) —V||2} foreach 1=1---n .

Veline(m;




X'

Figure 2: Perspective projection of noise. Similar noise in the model
points (d and e) are projected differently onto the image plane (f and
g), depending on the distance from the focal point. Conversely: noise in
the image plane (a) can have a varying influence on the predicted object,
according to the depth of the predicted point (b and c).

4 Uncertainty in the Model and in the Measurements

In the previous section no knowledge about the measurement uncertainties and the model
uncertainties was assumed. Since we work in a noisy environment, it is important to charac-
terize these uncertainties especially when the measurements are taken following a perspective
projection. With this kind of projection, similar noise in the model points (d and e in Figure
2) are projected differently onto the image plane (f and g in Figure 2), depending on the
distance from the focal point. And conversely: noise in the image plane (a in Figure 2) can
have a varying influence on the predicted object, according to the depth of the predicted
point (b and c in Figure 2).

In this section we consider measurements and model points which are associated with

some uncertainty. That is, each measurement is now represented by a pair:

measurement(t) = (my, A;)



where m; is the actual measurement of a real value m; s.t. m; = m; + ¢;. We assume that
the noise term ¢; is of zero mean and its covariance matrix A; is known. The covariance

matrix depicts the uncertainty in the actual measurement and is mainly due to two factors:

e Uncertainty due to measurement noise (e.g. digitization, blurring and chromatic aber-

rations).

e Uncertainty dependent upon the feature detection process. For example, a detected
end-point of a line segment will have low positional uncertainty in the direction per-

pendicular to the line segment and a high uncertainty in its direction.

Similar to the measurements, we associate for each model-point a covariance matrix ¥; so

that each one of the model points is represented by a pair:
model-point (i) = (X;, )

where X; is an estimated location of the ¢ model point with a 3 X 3 covariance matrix ;.
This covariance matrix denotes the uncertainty of the estimated location X; that may arise

from three sources:

e Uncertainty due to imprecise modeling of the 3D object.

o Uncertainty due to modeling a class of 3D objects, for example, modeling a general

face.

e Uncertainty due to modeling non rigid objects such as rubber objects.

In some cases there is no knowledge about the noise in the measurements or in the
model. In such cases we associate an identical covariance matrix with each measurement or
model-point such that A; = af or ¥; = #I where I is the identity matrix and «, # are some

scalars.

When dealing with an uncertain model and noisy measurements it is clear that it is
erroneous to find a predicted object which minimizes C' of Equation 1. In this equation

all terms added in the right-hand side influence the solution equally where in our case the



influence should be inversely proportional to the uncertainty of each term. Therefore the

predicted object has to be calculated subject to a Mahalanobis distance:
C=> [(T(X)) = U)W H(T(X]) - Uy)] (3)

where W; is a 3 X 3 covariance representing the uncertainty of (7'(X?)—U;). This uncertainty
can be deduced from A; and ¥; as will be explained later on (Section 7.1). It should be noted
that even if we don’t have any a prior: knowledge about the uncertainty in the model and
in the measurements so that all A; are identical and all ¥; are identical as well, the term C
in Equation 1 is incorrect and the transformation 7' should be found subject to minimizing
Equation 3. This is true since W, in Equation 3 depends also on the depth of each point

from the image plane as can be seen in Figure 2.

5 The Mahalanobis Distance to an Uncertain Line

According to the lemma given in Section 3, {U,} in Equation 3 can be replaced by {line(m;)}.
However, in this case, these lines are uncertain since they are deduced from uncertain mea-
surements. Therefore, we are actually interested in the Mahalanobis distance (M.D.) between
the transformed model to these uncertain lines. This section elaborates the representation

of an uncertain line and the measure of the M.D. to it.

Let u be a 3 dimensional vector of random variables where E{u} = 0 and var{u} = ¥,,.
E{u} denotes the expectation value of u and var{u} = E{(u—0)"(u—10)} denotes its 3 x 3
covariance matrix. If p is some point in 3D space (with zero uncertainty) then the squared

Mahalanobis distance between p and 1 is defined as:

Assume the covariance matrix Y, is diagonal, thus there is no correlation between the

components of u:
o2 0
0
2

O-Z

Zu — 0
0
If we set o2 to be an infinite value then the contours of constant M.D. from t will be elliptic

cylinders parallel to the z axis centered at U (See Figure 3). The cross section of these



(xy) = (G )
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=

Figure 3: The Mahalanobis Distance to an uncertain line. When the
uncertain line is parallel to the z axis (i.e. the diagonal covariance matrix
Yy associated with the line has an infinite value for o2) then the contours
of constant Mahalanobis Distance will be elliptic cylinders parallel to the
z axis. The cross section of these cylinders along a plane parallel to the

(x,y) plane is composed of enclosed ellipses having length and breadth
proportional to o2 and 0'5 in the principal directions.

cylinders along a plane parallel to the (x,y) plane is composed of enclosed ellipses having
length and breadth proportional to o2 and 0'5 in the principal directions. Therefore, in this
case, the M.D. between a point p and G depends on the distance and direction of p from

a line perpendicular to the (z,y) plane and passing through the point 4. Explicitly this
distance is given by:

L~ 0 0
. . a, —p,)? (&4 —p,)’
d2 — (ll _ p)t 0 01_22/ 0 (ll . p) — ( 0_2p ) 4 ( Y Uzpy) (4)
0 0 0 v Y

We can view this distance as a M.D. from an uncertain line with some uncertainty in the

directions perpendicular to the line direction. This uncertainty is given by the covariance

matrix: ,
o 0
Zline = ( o 2 )
0 o,
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Note, that the M.D. between p to any point on this line is equal to the M.D. between p and
u as can be seen from Equation 4. This proposition is not limited to lines parallel to one of
the axes and is valid for any uncertain line. For example, consider an uncertain line passing
through point ¥ with direction represented by the unit vector Rz where R is some rotation
matrix and z is a unit vector aligned with the z axis. Assuming the uncertainty of this line
is the same as the previous one, this line can be represented by an uncertain point (v, Xy)

where its covariance matrix is as follows:

oz 0 0
Y>v=R| O 05 0 | &
0 0 o

The M.D. between point p to any point on this line is in fact the M.D. from p to the uncer-

tain point V.

In the following sections we show how to use this idea to find the optimal transformation of
a model and to find the predicted object closest to the model in the sense of 3D Euclidean
distance. The method described below fuses the information from all the measured points
and estimates the model transformation T' by incremental refinements using Kalman- fulter
[13, 16]. At each step a new uncertain line is generated from the associated measurement

and an updated solution is produced.

6 Converting the Measurements to Uncertain Lines

As stated in Section 3 the optimal transformation is calculated subject to minimizing the
distance between the transformed model and the lines {line(m;)}. These lines are in fact
uncertain lines due to the uncertainty in the measurements. Each of these lines can be
represented by a 3D point M, located on line(m;) and having a covariance matrix I';. The
point uncertainty in the direction of projection is infinite, and its uncertainty in the perpen-
dicular directions is deduced from the associated measurement uncertainty. This uncertain
3D point (uncertain line), (I\A/IZ, I;), can be considered as a 3D measurement of the 1'* trans-
formed model-point T(X;) In this section we explain how to convert the measurements into
uncertain lines and in the following section we give the algorithm for finding the optimal

transformation using this information.
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Assume that the measurements are performed on the image plane using the coordinate

system (v,w) where the k" measured point is:
measurement(k) = [y, = (0g, wy), A%,]

A% is a2x2 covariance matrix describing the uncertainty of the actual measurement (ty, wy,).
For simplicity we ommit the subscript £ at this time so that this measurement is represented
by the pair [(0,0), Ay,]. We separate our discussion into two cases: orthographic projection

and perspective projection.

Orthographic projection:

In the case where the projection is along the z-axis (orthographic) the associated uncertain

line is represented as:

o) = (. (N L)

o0

where Z is any estimate of the z coordinate.

Perspective projection:

In the case of perspective projection, the modeling of the uncertainty is more complex. As-
sume that the origin of the viewer-centered frame of reference (x,y,z) is at the focal point
as shown in Figure 4 and the focal length is equal to one. We aim to transform the measure-
ment m = (0,w) given in the image-plane coordinate system (v, w) into a representation in

the Cartesian system (x,y, z).

Considering the spherical coordinate system (r, ¢,6) (Figure 4). The vector (0, w) deter-

mines the angular coordinates (¢, 8) but leaves the value of r undetermined:

arctan(vV0? 4 w?)

v
JEr

Additionally, the uncertainty of (0,w) is transformed into a covariance matrix in the (¢,0)

o= ) (55

is the Jacobian of the transform from (v, w) to (¢, 6), and the derivative is taken

> D>
Il Il

arccos(

system as follows:

9(¢,9)

where o)
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Figure 4: A perspective projection of the point U onto the image plane
(v,w). The point can be represented in either, a Cartesian system (z,y, 2)
or a spherical system (r, ¢, 8).

at point (0,w). The Jacobian matrix is:

0(¢,0) _ ( K2 m?;z;)

(v, w) —wyp? o
where
1
K =
02+ w2+ 1
1
Y = "2 1 2
V4 4+ w

The transformation into spherical coordinates, as an intermediary stage, allows a simple

representation of the associated uncertain line:

A~

(M7F) = [(qusvé)v/\wbé’] s

where
oo 0 0
AT(;S@ = 0
o oo

and ¢ , 0, Ay are the expressions described above. 7 is unknown but an estimation of 7

will be chosen as is explained later in this section.
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In practice we are interested in representing the uncertain line in Cartesian coordinates,
thus, the representation is transformed again from the spherical coordinates to Cartesian

coordinates (x,y, z) as follows:

where

T = rsin¢cosl = rro
y = rsingsinf =rrw
Z = TCosQ ="K

and the covariance matrix is:

Agys = (%) A“’”(%)t

The Jacobian is ) B .
UKk TOUK —T0kK
Ny, z) . v .
m = | wk FwkyY  TOK
e Kk  —TrK[Y 0
where the derivative is taken at the point (7, qg, é) Here too, all values are known except for
7. Since the process that estimates the optimal transformation incrementally improves the
estimation of 7', i.e, at each step k, there exists an estimate T from the previous step, we

use this estimate to calculate an estimate of 7 at step k as follows:

=T X))

Y

where X’ is the location of the corresponding point in the model. We emphasize that the

uncertainty of this estimate, as expressed in the covariance matrix, is infinite.

7 Estimation of the Optimal Transformation

As stated, the first step in finding the predicted object is to estimate a transformation
T which optimally translates the points {(X;,Zk)} of the model onto the corresponding
uncertain lines {(Mk, I'y)}, generated from the measurements {(myg, Ag)}. The optimality

of this transformation is in the sense of minimizing Equation 3. The transformation T is a

14



vector representing a rigid 3-D transformation (rotation + orientation) of the model from its
local coordinates to the viewer coordinates. T is estimated from the generated uncertain lines
using the Kalman filter tools (K.F) . The estimation process is composed of an incremental
refinement, for which at each step & —1, there exists an estimate T#=1 of the transformation

T and a covariance matrix 0~ which represents the “quality” of this estimate:
0F-1 = E{(Tk—l . T)(Tk—l . T)t}

Given a new measurement (1mg, Ag), an associate uncertain line, {(Mk,Fk)}, is generated,
and the current estimate is updated to be T* with an associated uncertainty Q. The ac-
curacy of the estimate increases, as additional measurements are fused, i.e. QF < QF!
(=1 — OF is nonnegative definite). The process terminates as soon as no additional mea-

surements can be supplied.

7.1 The Kalman Filter for Parameter Estimation

The Kalman filter is a tool for parameter estimation from given measurements. In our case
the parameter vector to be estimated is the transformation vector T which is composed of

two components:

e The translation component, expressed by the vector ¢;
t = (to, 1y, 1) . (5)
e The rotation component, described by the quaternion q (see Appendix A) [10]:

4 = (90,9) = (g0, (17 + q25 + q3k)

The rotation quaternion should satisfy the normality constrains: qq* = ¢2 + [|q||* = 1,

where q* i1s the conjugate of q.

In practice we represent the rotation component by the vector:

_ 9
s= —
4o
from which the quaternion q can be reconstructed:

1 .
QOZﬁ ; q:(%,qOS)
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estimated-parameter
N\
(Tk1,Qk1)

time delay

Kaman-filter

VAN
My, 1) —— (-?k,Qk)
measurement box result

hk (XioM i, T)
mathematical relationship

Figure 5: The Kalman filter for static-parameter estimation; The three
inputs and the estimation output.

The vector s is a convenient representation of the rotational component; in addition to
being minimal (having 3 parameters) the rotation equation is linear in s as will be shown
later. In order to avoid singularities in the representation when ¢o = 0 we always use two

object-centered coordinate systems, simultaneously.

Considering these two components, the parameter vector to be estimated during the

filtering process is:

The Kalman filter produces an estimate T of the transformation vector, given the uncertain
lines. At each step, the filter receives three inputs and supplies a single output (see Figure

5). The inputs are:
1. An a priort estimate of the evaluated parameter vector and the uncertainty associated

with it. In our case, in the k' step, the a priori estimation will be the estimate

evaluated at the previous step T*~! and its associated covariance Q*~'. The covariance

16



matrix Q° in the initial step will be set to infinity since no a priori knowledge about

T is assumed and the choice of T does not affect the end result.

. The current measurement and its uncertainty, in our case this measurement is the
uncertain line (My, 'y) generated from actual 2D measurement (my, Ay) where My,
and its associated covariance matrix I'; is calculated as elaborated in the previous

section.

. A mathematical relationship between the evaluated parameters and the measurements.
This mathematical relationship should be linear in the evaluated parameters. In our

case the relationship is:

M = aXiq +t (6)
where l\N/Ik,Xz,E are quaternions associated with the vectors My, X}, t respectively.

Given that qq* = 1, multiplying Equation (6) by q yields:
M,q = X}, +tq .

Isolating the vector component of this quaternion equation and dividing by ¢g we obtain

the matrix equation:
hk(Xz,Mk,T) =<M, + X/k> s + (Mk — X/k) — (]3— <S>)t =0 , (7)

where s = q% as previously defined, I3 is the 3 x 3 identity matrix and <-> denotes the

matrix form of a cross product, i.e:

0 —v, vy
<v>= v, 0 —uv, ; <v>m=—<m>VvV=vXm
—vy Vg 0

The equation hg(X'y, My, T) = 0 is not linear as required in the K.F., therefore, we use
the extended Kalman filter (E.K.F.) [13, 16] which is a generalization of the Kalman
filter to non-linear systems where transition from step & — 1 to step k is performed
using a linear approximation of h; by taking the first order Taylor expansion around
( X T Mk, Tk_l). The linearization of the measurement equations for our case are given

in Appendix B.
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The output of the K.F fuser is an updated estimation of the evaluated parameters and its

associated uncertainty; in our case T* and OF respectively. The K.F. fuser is of the form:
T = (T, Q% X, S, M, T, )

Thus, at each stage k, there is no need of retaining any of the previously considered mea-
surements. Only the current estimate TF ! and its associated uncertainty Q! need be

retained. The K.F. updating equations are given in Appendix C.

The K.F. updating equations yield an unbiased estimate of T which is optimal in the

linear minimal variance criterion [1], i.e. T* minimizes

O = hmWT) | g

=1

where iLZ(T) = hz(X;, l\A/IZ', T) and W; is the covariance matrix of h (Appendix D). The value
C' in Equation 8 is in fact the same value as in Equation 3 which we aimed to minimize.
Thus, the desired solution as formulated in Sections 3 and 4 is the same solution as obtained

from the K.F. updating equations.

Since the measurement equations are linear approximations of non-linear equations the
initial solution obtained by the K.F. will not necessarily be the correct solution. This case
will happen when the linearization is around a point that is not close enough to the correct
solution. In order to reduce the influence of the linearization local iterative K.F. [13, page
349] is applied. In the iterations the constraints are relinearized around the updated solution
obtained by the K.F. and another cycle of K.F. is performed using the new version of the

linearized constraints.

Note, that the general K.F. deals with a parameter vector that is changing with time,
whereas in our case the estimated transformation, T, is static and does not change between

measurements.

8 From Predicted Objects to Recognition

After the optimal transformation T is estimated from the n measurements, the second

stage in the recognition task is to find the “similarity” between the predicted object and the
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candidate model. This “similarity” is calculated with the 3D distance, however it has to be
consider with the uncertainty of the model features and the measurements. Fortunately, there
is no need to reconstruct the predicted object in order to calculate its similarity to the model:
Given a transformation T, the M.D. between the predicted object and the transformed model
is given by C' of Equation 8 where the summation is over the n measurements. Thus, the
similarity between the predicted object and a candidate model is given by the value C
calculated for the final transformation T".

If a reconstruction of the predicted object is required, the calculation of its feature locations
is simple: We transform each model-point X; by the optimal transformation T and find
a point U; such that the sum of the M.D. to the uncertain line (I\A/Ii,Fi) and the M.D.
to the transformed model point T(XZ) is minimal. The mathematical formulation of this

reconstruction is elaborated in Appendix E. Note that if the 7" measurement is a perfect

measurement (A; is zero) then U; will be on the line line(m,).

9 Results

We tested our method by simulating a model as a collection of points. The points of the model
were chosen by random sampling in the cube [0..100]®. The model points were transformed
by a transformation T composed of a rotation s and a translation t. The model points
and the measurements were contaminated by white Gaussian noise. All model points were
contaminated by 3D noise having identical uncertainty (and diagonal covariance matrix)
and all the measurements were contaminated with 2D noise which was added to the image

plane and having identical uncertainty as well.

Graphs 6-8 show the convergence of the estimates of the rotation § and the translation t
as a function of the number of measurements. The vertical ordinate represents the squared

deviation of the estimate from the real value, i.e:
terrer = ||t — t||2 left graphs and 7" =||§; —s||* right graphs

The results shown in the graphs were averaged over 100 processes of 100 randomly generated
objects. In the graphs two cases are shown: the convergence of the estimate when 2 distance
metric is used as the minimization criterion, and the convergence when the 3D distance is
used. The variance of the noise was not given to the algorithms and it was assumed that

each measured point is contaminated by the same amount.
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Graphs 6-8 show three typical cases: Graph 6 shows a case where the noise in the model-
points is dominant (the s.t.d of the model noise was proportional to 8% of the total size of
the body where the image noise was proportional to 1%), Graph 7 shows a case where the
noise in the image is dominant (the s.t.d of the image noise was proportional to 5% of the
total size of the body where the model noise was proportional to 1%), and Grpah 8 shows
a case where the noise in the model-points is dominant (the same as in Graph 6) but the
distance of the body from the image plane is quite large (100 times the focal length) relative
to the case shown in graphs 6 (where the distance is about 10 times the focal length).

It is demonstrated that the 3D distance metric is advantageous over the 2D distance
metric when the model noise is dominant and the object is located quite close to the image
plane. In the cases where the image noise is dominant or when the object is far away from
the image plane the improvement of the estimate using the 3D distance metric is negligible.
These results are reasonable since the algorithms assume the same amount of noise for each
measurement. When the image noise is dominant this assumption is correct and the 2D
metric gives the same results as the 3D metric. If the model noise is dominant, its projection
onto the image plane is not identical for each measurement and therefore 3D metric is
essential. In the case where the object is far away from the image plane, the projection
of the model noise onto the image plane is almost identical for all the measurements and

therefore the the 2D metric is again usetul.
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Figure 6: A comparison between a 2D distance metric based algorithm and a 3D
distance metric based algorithm. Left graph: convergence of the deviation of the
translation estimate t. Right graph: convergence of the deviation of the rotation
estimate 8. In this case the s.t.d of the model noise was proportional to 8% of the
total size of the body where the image noise was proportional to 1%.
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Figure 7: A comparison between a 2D distance metric based algorithm and a 3D
distance metric based algorithm. Left graph: convergence of the deviation of the
translation estimate t. Right graph: convergence of the deviation of the rotation
estimate 8. In this case the s.t.d of the model noise was proportional to 1% of the
total size of the body where the image noise was proportional to 5%.
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Figure 8: A comparison between a 2D distance metric based algorithm and a 3D
distance metric based algorithm. Left graph: convergence of the deviation of the
translation estimate t. Right graph: convergence of the deviation of the rotation
estimate §. In this case the s.t.d of the model noise and the image noise were the
same as in graphs 6, but the distance of the body from the image plane was about
100 times the focal length.
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10 Conclusion

This paper presents a new scheme which defines a 3D distance metric between model fea-
tures and 2D measurements obtained following a projection. This 3D distance is defined
as the minimum 3D distortion the model must undergo in order to fit some permissable
reconstruction of the measurements. It was demonstrated that the proposed 3D distance
metric is usefull when the model noise is dominant and when the object is close to the image

plane.
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Appendix:

A Rotation Quaternion

A quaternion ¢ is composed of two parts - the scalar part ¢g and the vector part q:

q = (q0,9) = (g0, 1t + q2J + q3k)

If v'.v are vectors in R? such that v = Rv, when R is a rotation matrix, then the corre-

sponding expression in quaternion form is:

o0

v = qvq”
The quaternions v, v’ correspond to the vectors v,v’ respectively as follows:
v=(0,v) ; v =(0,v)

and q* is the conjugate of q;
61* = (q07 _q)
q represents a rotation of the vector v by angle § around a unit vector n where:

0 .0
qo=cos(y) ; a=sin(3)n
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so that
lal’=aq"=¢ +lall’ =1 .

B Linearization of the Measurement Equations for
the E.K.F

At the £ step there is a non-linear measurement equation: hy(X,, My, T) = 0 as written in
Equation 7. Since the K.F. deals only with linear processes we use the linear approximation

of hy by taking the first order Taylor expansion around (X;, Mk, Tk_l):

A oh N oh ~ oh A
hi(X M, T) = 0 & hy(X, M, T71) 4 57 (X = X o  r (M = M) 5 (T =T
k k
(9)
Equation 9 can be rewritten as a linear equation:
where
Zr = <ék_1> Ek_l + X; — Mk
H, = [<M; 4+ X, — 51> (<85> — 1))
me = [L— <8F1S) (M), — My) — [Is+ <85 1>](X/, — X7%)

z;, represents the new “measurement”, Hj. is the matrix denoting a linear connection between
the “measurement” and the actual transformation T. Both z, and H}j can be derived from

M , X; , T*=1. The term Nk - depicts the noise in the “measurement” z; and satisfies:

Ef{ngy =0
var{n} = [ls— <" 'S]AL[Is— <8"7IS] 4 [Io4 <8ISS [+ <8ISS =W

Notice that according to the K.F. definition it is assumed that there is no correlation between
the different measurement noise (cov{n;,n;} = 0 Vi # j). This assumption is not always
valid. When there is correlation between several measurements, we may consider these
measurements as a single measurement by grouping the measurement values into a single

vector and by combining their corresponding equations into a single vector equation.
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C The Kalman Filter Equations for Static Systems

Assume the measurement equations are as written in Equation 10. The recursive K.F. up-

dating equations for time step £ are:

state estimate update : Tk = Tk-1 4 Ki(zp — Hk'i‘k_l)
state covartance update : OF = QF — K H Q1
Kalman gain matrix : Ky, = Q"= HL(H QY HE + W)=t .

D Covariance Matrix of le

The value of h; (Equation 7) can be linearly approximated, in the '" step, by taking the
first order Taylor expansion around (X;, l\A/IZ)

oh; Oh;
where the derivatives are taken at (X;,Mz) and h; = hz(X;,l\A/IZ,T) From the above it is
clear that h; is a zero mean random process with the covariance:
IS+ SN G

hi = 0 2 hi(T) + = (X} — X)) + = (M; — M)

Wi = E{hih} = (

E Reconstruction of Predicted Object

s
t

ments. From § we can build an associated rotation matrix R [17] and an expression for the

LetT:(

) be the final transformation estimated after fusing all the available measure-

transformed model:

A

X, = RX'+i
Y = RYR

Given the transformed model-point (XZ,Z;) and the associated measured point (MZ',FZ')

(uncertain line) the predicted object is obtain by fusing these two points:
U = Xi+ KM — X))
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where K = Z;(Z;—I—Fi)_l

This equation can be obtain from the K.F. updating equations where X, is regarded as the

state vector and M, as a measurement.
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