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Abstract

Finding appearances of a given pattern in an image at vari-
ous locations and under various transformations, is often an
important step in Image Processing and Computer Vision
applications. The process is of very high time complexity
since a search must be performed both in the transforma-
tion domain and in the spatial domain. In this work we
present a new method for fast search in the transformation
domain. If the transformation is a group, the set of all trans-
formed patterns forms an orbit. The method is based on the
fact that under certain conditions a fast search can be ap-
plied by recursively decomposing the pattern orbit into sub-
orbits. This decomposition followed by a rejection scheme,
enables the process to quickly reject large percentages of
the transformation domain. The suggested technique is pre-
sented here using the Euclidean distance, however, it can be
applied with any distance metric.

1. Introduction
Pattern Matchingis the task of finding patterns in images.
This problem may appear in various forms. In the context of
this paper we consider the Pattern Matching problem where
a pattern may appear under different transformations (e.g.
object recognition, motion tracking etc). We refer to this
problem asGeneralized Pattern Matching. To demonstrate
the complexity of this problem, we represent a pattern as a
point in a high dimensionalpattern space(e.g. a10 × 10
pattern is represented by a point inR100). Consider a given
2D patternP of sizen = k × k and consider a set of trans-
formationsT (α) that may be applied toP , whereα is the
transformation parameter. For exampleT (α) might be the
set of all 2D rotations about the origin, withα the angle of
rotation. Denote byT (α)P , the transformationT (α) ap-
plied to patternP . The patternP and the transformed pat-
ternT (α)P are points in then-dimensional pattern space.
T (α)P for all α forms a manifold in the pattern space. If
the set of transformationsT (α) is a group, then the mani-
fold T (α)P forms anorbit inRn. In general, the number of
transformation parametersk is less thann, hence the orbit

forms ak-dimensional manifold inn-dimensional space.
We reformulate the generalized pattern matching prob-

lem as follows: letW be an image window andT (α)P the
orbit of patterns to be matched. In order to evaluate the
match between the image window and any pattern in the or-
bit, the distance betweenW and the orbitT (α)P must be
calculated. Letd(P, Q) be a distance measure between any
2 points inRn, then theorbit distanceto be evaluated is:

∆α(W,P ) = min
α
{d(W,T (α)P )} (1)

If the orbit distance is below a given threshold, the win-
dow is considered as matching the pattern, otherwise it is a
non-match.

Unfortunately, actually calculating the orbit distance is
expensive; In many cases, the orbit is highly complex in the
sense that two patterns that are close in the transformation
domain may be distant in pattern space. This complex be-
havior of the orbit, in addition to its being non-convex and
embedded in a high-dimensional space, makes the calcula-
tion of the orbit distance time consuming.

2 Previous Approaches

Several approaches were suggested to deal with such prob-
lems. In general, the complexity of search within a complex
manifold can be reduced if the manifold has a simpler struc-
ture or is of smaller dimension. There are several common
techniques implementing this strategy:
Orbit simplification : It is possible to nullify some of the
transformation parameters by making the problem invariant
to these parameters. Pre-processing of the input data and
representing it in a canonical form, is a common strategy
in this approach [1]. Nullifying some of the transforma-
tion parameters, subsequently, reduces the dimensionality
of the manifold and thus simplifies the search problem. An-
other approach is to find a function defined over the pattern
space, that is constant over some transformation parameters
and thus invariant to these parameters [6, 5]. For example,
applying a dot product between a pattern and a kernel is ro-
tation invariant if the kernel is rotationally symmetric.
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Figure 1: a) The continuous transformation groupT (α) is uniformly sampled creating a discrete orbitT (εi)P . b) If ∆2ε is a
metric, the triangular inequality can be exploited: if the distance∆2ε(W,P ) is found to be large and the distance∆2ε(P, P ′)
is small, we may deduce that∆2ε(W,P ′) is large as well.

Dimensionality reduction: Another approach attempts to
reduce the dimensionality of the pattern space. A popu-
lar example is the Wavelets (or DCT) representations where
the energy of natural patterns is concentrated in few co-
efficients, thus, reducing the dimensionality of the pattern
space [2, 8]. Another popular approach is to find a reduced
linear basis for the pattern manifold using principal com-
ponent analysis (PCA), and searching the manifold in this
reduced space [10].
Fast search: The two previous approaches try to simplify
the geometry of the problem. A totally different strategy
is to apply an exhaustive search in some of the transforma-
tion domains. This may be possible only if a fast search
technique is available. For example, it is relatively simple
to apply an exhaustive-search in the translation and scale
parameters exploited the efficiency of the pyramidal repre-
sentation and the fast implementation of convolutions.

Although some of the above methods try to reduce the
orbit complexity or its dimensionality, their performance
is limited due to intrinsic restrictions when usingnormed
spaces for representing 2D patterns. In normed spaces, a
pattern is represented by a point in a linear space and the
distance between two different patterns is defined by the
norm of their difference. This paper suggests a new tech-
nique that applies a fast search within an orbit of patterns. In
addition to the fast performance of this method, it is not lim-
ited to normed spaces and can be applied in metric spaces as
well. This opens the scope to a large variety of new metric
distances that can be designed to simplify the orbit com-
plexity [9].

3 Fast Search in Metric Space

As above, assumed(Q,S) is a distance metric defined be-
tween any 2 points inRn. This measure of similarity be-

tween two patterns may be of any form, linear or non-linear,
closed form or algorithmic. The only requirement is that it
is a metric. In order to determine whether an image win-
dow W is similar toT (α)P for any α, one must estimate
the orbit distance∆α(W,P ) as defined above (Equation 1).
In the general case, an orbit distance∆α is not a metric, as
it does not satisfy the triangular inequality. However, for a
large class of distancesd, the orbit distance∆α is a metric:

Theorem 1 If the distance measured(Q,S) is transforma-
tion invariant, i.e.

d(Q,S) = d(T (α)Q,T (α)S)

then∆α(W,P ) is a metric.

(see [3] for proof). Moreover, in such a case whered(Q,S)
is transformation invariant, it is easy to show that the point-
to-orbit distance is equivalent to the orbit-to-orbit distance:

min
α

d(Q,T (α)S) = min
α,β

d(T (β)Q,T (α)S)

which is an even stronger result, with respect to pattern
matching applications.

In this paper we restrict our approach to distances that are
transformation invariant. The metric property of the orbit
distance is used to apply fast search within the pattern orbit,
by exploiting the triangular inequality.

3.1 The Orbit Tree

The transformation groupT (α) is a continuous group since
the parameterα forms a continuous domain. In practice,
however, the transformation group is approximated by us-
ing a discrete group generated by uniformly sampling the
parameter domainα. For simplicity, and w.l.o.g, assume
T (α) is a one parameter continuous group, and let{T (εi)}
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Figure 2: Recursive decomposition of the transformation
space, obtained by recursively subdividing the orbit, creates
anOrbit Tree.

be the discrete group. Using the discrete group, an approx-
imation of∆α(W,P ) is then given by

∆ε(W,P ) = min
i
{d(W,T (εi)P )}

∆ε(W,P ) can be calculated naively, by computing
d(W,T (εi)P ) for all i. However, since distance compu-
tation may be time-consuming, run time can be improved,
given that∆ε is a metric:

Consider, again, the orbitT (iε)P . It may be divided into
2 sub-orbits:T (2εi)P andT (2εi)P ′ whereP ′ = T (ε)P
(Figure 1a). The distance∆ε(W,P ) can then be rewritten:

∆ε(W,P ) = min(∆2ε(W,P ), ∆2ε(W,P ′)) (2)

However using the fact that∆2ε is a metric, the triangular
inequality gives:

|∆2ε(W,P )−∆2ε(P, P ′)| ≤ ∆2ε(W,P ′)

Note, that∆2ε(P, P ′) can be calculated in advance, prior to
the actual search. Thus, if the distance∆2ε(W,P ) is found
to be large and the distance∆2ε(P, P ′) is small, we may
deduce that∆2ε(W,P ′) is large as well without any actual
distance calculations (Figure 1b).

In terms of pattern matching, this implies that
|∆2ε(W,P )−∆2ε(P, P ′)| forms a lower bound on all possi-
ble values ofd(W,T (2εi)P ′). If this lower bound is greater
than the predefined threshold, these distance measures need
not be computed and the patterns associated with this sub-
group may be rejected from further computation. Thus, a
speed up is obtained by evaluating only half of the distance
computations and possibly rejecting 1/2 of the transforma-
tion parameters.

This process can be further applied recursively: in order
to compute∆2ε(W,P ), the orbit{T (2εi)P} can be divided
into 2 sub-sub-orbits:{T (4εi)P} and{T (4εi)P ′′} where

P ′′ = T (2ε)P . These orbits can be further sub divided and
the process repeated until an orbit is obtained containing a
single point. These subdivisions of the original orbit can be
described in a tree structure as shown in Figure 2

The Pattern Matching process traverses the tree bottom-
up, computing lower and upper bounds on the true distances
between image window and sub-orbits of transformed pat-
terns. Branches of the tree are pruned based on the com-
puted bounds. The pruned branches represent distance com-
putations which need not be computed.

3.2 Pattern Matching Algorithm

Given an image windoww and given a patternp of the
same size. The pattern matching algorithm for determining
the similarity between the window and the pattern under a
set of possible transformations, proceeds as follows:

Pre-processing: Create the orbit-tree for patternp. Com-
pute the inter-orbit distance for each level of the tree.1

Main :
% Compute the lower (lb) and upper (ub) bounds
of the root node
[ROOT.lb,ROOT.ub] := orbitDist(ROOT,w)

% Evaluate the match
if ROOT.lb > thresh

OUTPUT := ’w does NOT matchp’
else

OUTPUT := ’w matchesp’
endif

Recursive function: [lb,ub] = orbitDist(Node,w)
% Compute lower and Upper Bound for Node

% If Node is a leaf of the tree, calculate
% the actual distance
if isLeaf(Node)

d := distance(w,Node.pattern)
Node.lb := d ; Node.ub := d
return

endif

% Node is internal
% a. Calculate left son bounds
[leftSon(Node).lb,leftSon(Node).ub] :=

orbitDist(leftSon(Node))

% if match found, return
if leftSon(Node).ub< thresh

1It can be shown that the orbit distance between every sibling nodes on
the same tree level` are constant and equals the distance from any point in
one orbit to the other orbit:∆2`ε(p, T (2`−1ε)p)- see [3]

3



330.6
772.9

372.7
772.9

422.0
772.9

372.7
822.1

497.7
772.9

422.0
848.6

646.8
772.9

497.7
922.0

772.9
772.9

646.8
898.9

∆=42.1 2 sub-orbits

∆=49.3 4 sub-orbits

∆=75.8 8 sub-orbits

∆=149.1 16 sub-orbits

∆=126.0 32 sub-orbits

Orig orbit
P=W=

Figure 3: Example of the pattern matching process using the
orbit tree. The windoww was determined to be dissimilar
to the patternp after a single distance computation.

Node.lb := leftSon(Node).lb
Node.ub := rightSon(Node).ub
return

endif

% b. Estimate right son bounds using
% the inter-orbit distance
∆ := Node.orbitDist
llb= leftSon(Node).lb ; lub= leftSon(Node).ub
rightSon(Node).lb := abs( median (llb-∆,lub-∆, 0))
rightSon(Node).ub := max(llb+∆ ,lub+∆ )

% c. If estimated bounds are inconclusive,
% recursively compute right son node.
if (rightSon(Node).lb< thresh) &

(rightSon(Node).ub> thresh)
[rightSon(Node).lb,rightSon(Node).ub] :=

orbitDist(rightSon(Node))
endif

% d. calculate current node’s lb and ub
Node.lb := min(leftSon(Node).lb,rightSon(Node).lb)
Node.ub := min(leftSon(Node).ub,rightSon(Node).ub)

The process always terminates with a matching decision
since it can be shown that at leaving every node in the tree,
necessarily both lower and upper bounds are either below
threshold or above threshold (proof by induction).

The final decision is correct, i.e. if a matching trans-
formed pattern exists at one of the leaves of the tree it will
be found since the actual distance will propagate up the tree
being the minimum upper bound value. The first leaf (in
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Figure 4: Example of the pattern matching process using the
orbit tree. The windoww was determined to be similar to a
rotated version of patternp after 8 distance calculations.

the sequence of leaves) with distance value below threshold
will necessarily be visited since otherwise this implies that
one of its ancestor nodes along the branch to the root has
had an incorrect lower bound estimated (raising the lower
bound above threshold and pruning the subtree which in-
cludes the leaf). Since the lower bound estimate is shown to
be correct, this should not happen.

The bounds estimated in Step b are explained and proven
in [3]. The lower bound estimation can be explained in that
subtracting the inter-orbit distance from the sibling’s lower
and upper bounds, forms a range in which the true distance
exists. The lower bound is then the positive value closest to
0 within this range. The expression in Step b calculates this
lower bound.

When calculating the bounds of the current node (Step
d), the minimum of the upper bounds is taken since the up-
per bound value bounds theminimumdistance ofW to any
of the transformed patterns (Equation 2)

Two examples are shown in Figures 3-4. The pattern
matching process was applied to estimate the distance be-
tween a20 × 20 image windoww and a patternp of the
same size under 2D rotations about the center at a multiple
of 360/32 degrees. In these examples, distances between
images were measured using theL2 norm, and the thresh-
old was set to 100. Figures 3 and 4 show a portion of the
traversed orbit tree which contains 32 leaves corresponding
to the 32 possible rotations. Values on the tree nodes are the
lower bound (top value) and upper bound (bottom value)
of the distance between windoww and the sub-orbit repre-
sented at the node. Encircled values at the leaves of the tree
denote distances actually computed, all other values were

4



a.

b.

c. d.

e. f.

Figure 5: Pattern Matching on a256×256 image. a) Image.
b) Scaled pattern c-f) State of the process after 1, 2, 4 and 8
distance calculations. The percentage of windows that were
rejected are 20%, 68%, 91% and 97% respectively.

deduced by propagating the bounds along the tree branches.
Dashed edges represent pruned tree branches. The inter-
orbit distances,∆, were pre-computed and are shown on
the left for each tree level. The number of sub-orbits at each
level is shown on the right. In the example of Figure 3,
a single distance evaluation was required to determine that
the image windoww is not similar to the patternp under
any of the possible 2D transformations. Note that the lower
bound values, although decreasing when ascending the tree,
are always above the threshold.

In the second example shown in Figure 4 the process was
applied using the same pattern and set of transformations as
above, however, the image windoww is more similar to
a rotated version of the patternp. Due to the low value
of the lower bounds, the distance is actually computed for
more leaves than in the previous example. However, once
the upper bound decreases below the threshold, the process

concludes that the window is similar to the transformed pat-
tern. No more distance computations are required. The up-
per bound is propagated up the tree to the root, where the
process terminates with a positive match decision.

4 Experimental Results

In order to evaluate the performance of the proposed algo-
rithm, the pattern matching scheme was used to search in a
large image for a pattern under any 2D rotation.

Figure 5a shows the original256×256 image. Figure 5b
shows a scaled version of the20× 20 pattern. The 2D rota-
tion group was sampled in 32 steps of equal rotation angle.
In the original image, several rotated patterns were planted
in various locations. All image windows were compared
with the pattern under any of the rotation transformations
using the proposed scheme. Figure 5c shows the state of
the process after a single distance computation per window.
For many of the windows this computation was enough to
determine the final outcome of pattern matching; black pix-
els represent those windows for which the process termi-
nated with a negative result, squares represent windows for
which the process terminated successfully (i.e. the pattern
was found in the window) and yellow pixels represent win-
dows that can not yet be classified and on which the process
must continue. Figures 5c-f, show the state of the process
for every image window after 1, 2, 4 and 8 distance calcu-
lations. The percentage of windows that were rejected are
20%, 68%, 91% and 97% respectively.

Figure 6 plots the percentage of remaining windows for
which the process has not yet terminated, as a function of
the number of distance calculations performed. Both Fig-
ure 5 and Figure 6 show that a very large portion of image
windows require very few distance computations. For this
example, the average number of distance computations per
pixel is 2.868 (compare with 32 computation per pixel using
the naive approach).

5 Discussion

In earlier studies, specifically inNearest Neighbor Search
problems, the idea of recursively dividing the search space
is often used together with the triangular inequality. Analo-
gous schemes, in Generalized Pattern Matching, recursively
divide the transformation space [4]. The approach sug-
gested in this paper differs from the previous approaches
in the exploitation of the notion of orbits. A naive divi-
sion of a transformation space into two subsets can impose
lower bounds by considering themaximal distance between
any point in one subset to any point in the other subset. In
the approach suggested here, division of the transformation
space is unique in that each subset forms an orbit in itself.
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Figure 6: The percentage of remaining windows as a func-
tion of the number of distance calculations performed. The
average number of distance computations per pixel is 2.868.

The fact that the inter-orbit distance is a metric, allows the
calculated lower bounds to be dependent on theminimal
rather than themaximal distance between any point in one
subset to any point in the other subset. This tightens the
lower bounds and, in turn, increases the rate of pruning of
irrelevant possibilities in the search space.

The technique suggested in this paper was presented us-
ing the Euclidean distance, however, it is not limited to
normed spaces and can be applied in metric spaces as well.
This opens the scope to a large variety of new metric dis-
tances that can be designed to simplify the orbit complex-
ity and reduce search time [9]. Figure 7 shows an exam-
ple. A 16 × 16 image was used as a pattern. The 2D ro-
tation transformation group was sampled at equal rotation
angles and applied to the pattern. Figure 7a shows the pat-
tern orbit in Euclidean space. For visualization, the orbit
was projected onto the 3 dominant directions (Eigen vec-
tors associated with the three largest Eigen values). The
segments connect between orbit points that are associated
with consecutive sampled parameter values. It can be seen
that the orbit is highly irregular, thus a search within the or-
bit is not easily simplified and sped up. Figure 7b shows the
pattern orbit in a metric space, using the following metric
distance:d(P,Q) = δ(P, Q) + δ(Q,P ) whereδ(P, Q) .=∑

x,y mini,j∈{−1,0,1}[P (x − i, y − j) − Q(x, y)]2. In this
case, the three dominant directions were calculated using
multidimensional scaling [7]. The simple and regular be-
havior of the metric orbit should reduce pattern matching
run time, e.g. by decreasing inter-orbit distance which in-
creases pruning of the orbit tree.

Generalizing the orbit decomposition to multi-parameter
transformation groups is straightforward, and can be ap-
plied in a similar manner. For ak parameter transformation
group a2k-ary tree is defined which represents a recursive
decomposition of ak dimensional discrete manifold. Re-
cursive decomposition of a non-compact group, however, is

Figure 7: Examples of pattern manifolds (see text). a) Pat-
tern orbit in Euclidean space. b) the same orbit in a metric
space.

non trivial. In this case a compact domain of transforma-
tions must be defined by bounding the range of the transfor-
mation parameters. In order to use the metric characteristics
within this bounded range, the search must be performed in
a wider range such that the group characteristic is main-
tained within the original bounded range. For more details
the reader is referred to [3].

6 Conclusion

Fast Generalized Pattern Matching was presented, which
can be applied when the distance measure is transforma-
tion invariant. The technique uses recursive decomposition
of the pattern orbit, exploiting the fact that orbit distance is
a metric. The suggested method can be applied in metric
spaces as well. This allows applications to choose from a
wide selection of possible distance metrics.
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