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Abstract

Model�based pose estimation is a process which determines the location and orien�
tation of a given object relative to a speci	c viewer� The input supplied to the process
consists of a description of the object
 generally denoted the model
 and a set of mea�
surements of the object taken by the viewer� The study of pose estimation is important
in many areas of computer vision
 such as object recognition
 object tracking
 robot nav�
igation
 motion detection
 etc� This thesis deals with similar problems of determining

from sensory data
 the exact position and orientation of a �D object represented by a
model�

The di�culty in solving pose estimation problems is mainly due to the fact that the
sensory data from which the pose should be determined is imprecise and noisy� A slight
error in measurement may have a large e�ect on the precision of the solution or may
not even allow any solution� The problem of imprecision is especially di�cult when the
measurements are 	ltered through a series of sensory and memory systems which add
noise to the data� For instance
 measurements obtained from an optical sensor is a�ected
by noise due to the camera �chromatic distortions
 imprecision in the camera model

etc��
 sampling
 digitization and imprecise processing of the raw data�

In this thesis we aim to overcome the problems of imprecision of the measured data
and to produce a precise and stable solution while maximally exploiting the available
data� We present a uniform formalism of computation in which measured data can be
of any dimension ��D
 D or �D� and under any model of projection �orthographic or
perspective�� This uniform formalism allows simple and convenient fusion of various
types of sensory data and also enables simple and e�cient fusion of constraints
 in the
case of constrained objects�

The thesis deals with two important cases of the problem of pose estimation�
The 	rst part deals with determining the pose of a rigid �D object where the sensory
data is obtained from various kinds of sensors� We deal with models consisting of a
set of feature points
 such as maximum curvature
 segment endpoints or corners� The
measurements taken on these points are noisy and can be of various dimensions� �D

D
 or �D� In the case of D or �D measurements
 the projection model can be either
orthographic or projective� This part of the thesis presents a method for fusing all these
types of measurements in order to obtain a precise and stable estimate of the object�s
pose� Unifying the di�erent types of measurements is done by associating an uncertainty
matrix with each measured feature� The uncertainty depends both on the measurement
noise and on the type of measurement� For example
 a D measurement is a projection
�perspective or orthographic� onto a D plane �as in a picture� and we regard it as a
measurement in �D with in	nite uncertainty in the direction of the projection� Therefore
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the dimensionality of the measurements is encoded in the covariance matrix� With this
paradigm we obtain a uniform mathematical formulation of the problem and can fuse
various kinds of measurements to obtain a better and stable solution� The measurement
fusion is performed using the Kalman Filter�

The second part of the thesis extends the solution described for estimating pose of
rigid objects
 to deal with articulated and constrained objects� A constrained object
is an object composed of a set of rigid components having spatial constraints between
them� An articulated object is a special case of a constrained object
 where the com�
ponents are connected at joints which allow certain degrees of freedom� These joints
impose constraints on the component locations
 since the pose of one component in�u�
ences the pose of the other� We do not limit the constraints to any single type and
allow any type of constraint including inequality constraints� In the method we sug�
gest
 both measurements and constraints are treated similarly while varying only their
associated uncertainty� The constraints are considered as perfect �measurements� with
zero uncertainty whereas the measurements themselves �the actual measurements� have
uncertainty greater than zero� In other words the actual measurements are considered
soft constraints whereas the constraints are considered strong�

The solution we suggest to solve the pose estimation problem for rigid and constrained
objects is advantageous due to the following properties�

� The generality of the method �
The main concept in our approach is the presentation of a general and uniform
formalism to compute the pose of an object where the measurements are of any
dimensionality and under any projection model �orthographic or perspective�� This
formalism allows not only a uniform approach to measurements of di�erent types

but also allows a similar approach to various types of constraints �when dealing
with constrained objects��

� Integration of information �
The uniform representation and uniform processing of all types of measurements

enables simple and e�cient fusion of information of di�erent types and from di�er�
ent sources inorder to determine the pose of an object� The fusion of di�erent types
of data is inherent in the algorithm and allows the system to produce a precise and
stable solution while optimally exhausting the available input data�

� Incremental process �
In many of the existing methods the pose of an object is evaluated using a batch
process
 i�e� all the measurements are considered simultaneously and are used in a
single vector equation� In such a process
 the correspondences between measured
points and model points must be assumed as given
 so that all the equations can
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be generated before calculating the solution� The assumption that the correspon�
dences are known
 is often not acceptable
 speci	cally in context of recognition�
The approach we adopt is in accord with the paradigm suggested in Faugeras and
Hebert �� where the pose estimation and the correspondence problems are solved
simultaneously in an incremental manner� At each stage
 the pose of the object is
estimated from the previously matched points� This estimate assists in rejecting
irrelevant correspondences in the current stage�

� Incorporating constraints into the solution �
When estimating the pose of a constrained object
 the method we suggest allows
simple and e�cient fusion of constraints into the solution� Thus
 information ob�
tained on the pose of any single component of the object
 is propagated to all other
components through the mutual constraints� In this manner
 the estimated solution
takes into account all the existing measurements and all the de	ned constraints�

� Using the Kalman Filter �
The suggested solution uses Kalman Filter �K�F�� tools and so includes the ad�
vantages associated with the K�F� such as explicitly dealing with the measurement
uncertainty
 simple updating of the solution given additional measurements
 and
easy parallelization �����
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Chapter �

Introduction

Model�based pose estimation is a process which determines the location and orientation

of a given object relative to a speci	c viewer� The input supplied to the process consists

of a description of the object
 generally denoted the model
 and a set of measurements

of the object taken by the viewer� For example
 consider a robot whose task it is to

grasp and raise a wooden block from a table� In order to accomplish its task
 the robot

must know the exact position of the block relative to its arm� Thus the robot optically

senses its surrounding including the table and the wooden block �using a CCD camera


an infrared sensor
 a range 	nder
 etc� and tries to extract the required pose information

in order to grasp the object�

The study of pose estimation is important in many other areas of computer vision


such as object recognition
 object tracking
 robot navigation
 motion detection
 etc� This

thesis deals with similar problems of determining
 from sensory data
 the exact position

and orientation of a �D object represented by a model�

This thesis deals with the following two cases�

� Finding the pose of a rigid object�

� Finding the pose of a constrained object�

A constrained object is an object composed of a set of rigid components having spatial

constraints between them� An articulated object is a special case of a constrained object


�
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where the components are connected at joints which allow certain degrees of freedom�

These joints impose constraints on the component locations
 since the pose of one com�

ponent in�uences the pose of the other� We do not limit the constraints to any single

type and allow any type of constraint including inequality constraints�

The di�culty in solving pose estimation problems is mainly due to the fact that the

sensory data from which the pose should be determined is imprecise and noisy� A slight

error in measurement may have a large e�ect on the precision of the solution or may

not even allow any solution� The problem of imprecision is especially di�cult when the

measurements are 	ltered through a series of sensory and memory systems which add

noise to the data� For instance
 measurements obtained from an optical sensor is a�ected

by noise due to the camera �chromatic distortions
 imprecision in the camera model
 etc��


sampling
 digitization and imprecise processing of the raw data� In this thesis we aim

to overcome the problems of imprecision of the measured data and to produce a precise

and stable solution while maximally exploiting the available data� We present a uniform

formalism of computation in which measured data can be of any dimension ��D
 D

or �D� and under any model of projection �orthographic or perspective�� This uniform

formalism allows simple and convenient fusion of various types of sensory data and also

enables simple and e�cient fusion of constraints
 in the case of constrained objects�

��� The Model

The object
 whose pose is to be determined
 is represented by amodel which is a set of fea�

tures and attributes describing the object� In the articulated case the object is composed

of a set of rigid components connected at joints which allow certain degrees of freedom�

These joints can be
 for example
 prismatic joints which allow relative translation be�

tween components
 or revolute joints which allow relative rotation of the components

about a point� Each object joint enforces a constraint on the position of the compo�

nents� Therefore in this case
 the model includes
 in addition to the representation of

each component
 a set of constraints which describe the mutual relationships between

the components� In fact we extend the de	nition of the problem to models that include

additional general constraints such as co�linearity or co�planarity of the model compo�

nents
 angle relationships
 etc� The constraints may also include inequality constraints
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such as limited range of distances between points or limited range of angles� We call this

kind of models constrained models�

Finding the pose of an object in space is in essence determining the possible trans�

formation that transforms the model to the pose in space from which it is observed by

the sensor� In the case where the object is rigid this transformation is composed of a

rotation followed by a translation� In the constrained case a rigid transformation should

be calculated for each one of the components�

The methods of determining pose are dependent on the manner by which the object

is represented� A wide variety of object representations have been suggested in the

literature� These can be generally divided into two main categories ���
 ����

� Shape representation�

� Feature representation�

A shape representation represents the object by a description of the general shape or

structure of the object� This representation can be divided into three groups according

to the dimensionality of the descriptors �model elements� �����

�� volumetric representation � the object is described by a set of volumetric primitives

such as constructive solid geometry ���
 octree representation ���� and generalized

cylinders �����

� surface representation � the object is described by its external surfaces either using

surface patches ���� or using a parametric description �����

�� representation by curves� the object is described by a set of representative curves�

For example
 using skeletons ���� or wire frames ����

Shape representation of an object is commonly used in computer graphics since the

appearance of the object from any given view�point
 can be easily predicted� However
 for

the purpose of pose estimation
 a more compact representation of the object is su�cient�

In this context
 shape representation is super�uous and ine�cient�
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Furthermore
 the process of comparing such a shape representation model with sen�

sory data is indirect and relatively complicated to implement�

A feature representation of an object is better suited to the task of pose determina�

tion due to its compactness� Such a representation consists of a set of features which

describe di�erent entities of the object� The types of features chosen to represent an

object can be divided into two classes�

�� local features � every entity is locally evaluated and represents a small part of

the object� Examples for local features are� corners
 maximum curvature points


in�ection points
 angles
 segments
 etc �e�g� ������

� global features � every entity is evaluated from the entire object
 for example
 the

center of mass
 the moments of inertia
 Fourier descriptors
 etc� �e�g� ���
 �����

Although global features are relatively robust to measurement noise
 determining the

pose of an object based on global features is problematic since such a representation is

sensitive to partial occlusion� Additionally
 global features are generally not invariant

under projections ���� so estimating the pose of a �D object from D sensory data is not

straight forward�

Most studies on pose estimation
 including this thesis
 focus on local feature repre�

sentations� In addition to being a compact representation
 local features are not sensitive

to partial occlusions� Furthermore
 the extraction of local features from the sensory data

is a local and relatively simple process which can easily be parallelized� However
 since

the local features are extracted from a limited part of the input
 they are sensitive to

noise� Another disadvantage is the need to 	nd an interpretation for the measurements


i�e� the need to correspond every measured feature with a feature of the model� This

problem is also known as the �correspondence problem�� In order to reduce the e�ect of

noise on the pose estimation
 a large number of local features should be used� Additional

reduction can be obtained by integration of measurements from di�erent types of sen�

sors and by carefully processing the sensory data to take into account the measurement

noise� The main theme of this thesis is to exhaust the maximum amount of information

about the pose of a measured object where its representation is given by local features�
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The correspondence problem and the ways to overcome it will be dealt with later in this

section�

��� The Sensory Data and its Uncertainty

Sensory data is obtained from measurements taken on the object� This is the source

of information from which the pose of the object should be determined� In this the�

sis we do not limit ourselves to any speci	c type of measurement nor to any speci	c

projection model and allow the data to be from di�erent types of sensors� Since the

measurements are noisy
 we will require that each measurement be associated with its

uncertainty estimate which de	nes a measure of the �inexactness� of that measurement�

If we consider the measurement as a statistical process which samples values from a spe�

ci	c distribution
 the uncertainty of the measurement is then de	ned as the variance of

the distribution or
 in the case of a multi�dimensional measurement
 as the covariance

matrix� Several studies deal with characterizing and modeling the measurement noise�

However
 in general it is di�cult to give an exact description of the noise distribution

because of the large number of noise sources and because of the complexity of the noise

model of each source� Measurements obtained from optical imaging
 for example
 are

contaminated by noise originating from chromatic aberrations
 inexact camera model


digitization
 incorrect feature extraction etc� We do not deal with noise modeling
 but

we assume a given Gaussian process with known parameters� This assumption is based

on the central limit theorem ����
 which translates to the fact that as the number of noise

sources increases
 the distribution of the total noise becomes more similar to a Gaussian

distribution� This assumption is not always consistent with reality
 since quite often there

are gross�errors which deviate from the average and which cause the Gaussian distribu�

tion to contain outliers� In Section ��� we further discuss the justi	cation in describing

the noise distribution as a Gaussian distribution�

��� The Correspondence Problem

As previously noted
 we solve the pose determination problem using local features for the

description of the object� This requires a matching between every measured feature and
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a corresponding model�feature� An important aspect of the correspondence problem is

the dimensionality of the model features vs� the dimensionality of the measured features�

The common cases are the following �����

� �D to �D correspondence� both model and measurements give the �D location of

features �measurements from range data
 stereo
 etc���

� D to �D correspondence� the model is �D while the available measurements supply

projected information in D
 such as locations in an image plane�

The D to D correspondence problem
 where both model and measurements are two

dimensional
 can be included in the D to �D correspondence problem
 since a D model

can be viewed as a planar �D model�

Regardless of the dimensionality of the model and measured features
 the matching

process is time consuming since the number of possible matches is exponential in the

number of features� Thus
 an exhausted search for the correct match is impractical�

Several methods have been suggested to reduce the cost of this search� Basri ���� classi	es

them into three groups�

� Minimal alignment methods�

� pruning the search in the correspondence space�

� pruning the search in the transformation space�

The minimal alignment methods �M�A� are based on the fact that rigid transforma�

tions can be determined by a small number of matches� For example
 in the case of

�D objects where the �D locations of feature points are measured
 three model points

and their corresponding measurements determine the rigid transformation ���� These

methods 	nd the transformation in two stages�

In the 	rst stage
 a minimal number of matches are chosen and a corresponding trans�

formation is determined� In the second stage
 a verification is performed to ensure that

the remaining model features are consistent with the measurements� If the veri	cation

fails
 i�e� the transformed model does not match the measurements
 then the whole pro�

cess is repeated� Using this method
 the correspondence problem can be calculated in
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polynomial time in the number of features rather than exponential� Examples of system

using M�A� method can be found in ��
 ��
 ����

The main problem in using M�A� is the inaccuracy of the computed �D transformation

due to the small number of matches used in the estimation process� However
 this method

can be used to obtain an initial estimate of the transformation
 which can be used as a

guide to 	nd additional consistent matches� After additional matches are accumulated


a better pose estimate can be recalculated� This paradigm is similar to the method

suggested by Faugeras at el� �
 �
 �� which will be described later�

The methods which try to prune the search in the transformation space
 choose
 from

among the set of all possible transformations
 that transformation which is consistent

with the largest number of matches� The generalized Hough transform ��� is such a search

process
 which is performed as follows� The transformations are represented in the space

of their parameters
 and the possible range of values of the parameters is quantized into

a 	nite number of bins which serve as accumulators� For every pairing between a model

feature and a measured feature
 the set of all possible transformations that align these

two features is evaluated
 and the corresponding bins in the quantized space are increased

by one vote� The transformation which received the greatest number of votes determines

the best correspondence between the model features and the measured features�

There are two main disadvantages in using this method� Since the transformation

space is of high dimensionality �� dimensions for rigid transformation in �D�
 the table

of accumulators is very large and the voting is time consuming� However
 quantizing

into larger bins will result in an imprecise transformation� An additional disadvantage

to this method is that the optimal transformation may be missed due to quantization


speci	cally when measurement noise causes the optimal transformation to be distributed

between several bins�

The methods which reduce the space of possible matches regard the correspondence

problem as a search problem in a graph� This graph de	nes a pairing between the model

features and the measured features� The basic scheme behind these methods is to prune

parts of the graph which represent impossible pairings� Faugeras �
 �
 �� and Grimson

��� follow a similar method� They represent all possible matches in an interpretation

tree �I�T��� in which every level corresponds to a measured feature
 and every node
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in that level denotes a match between the measured feature and some model feature�

Every path in the I�T�
 from root to leaf
 de	nes a full interpretation
 i�e
 de	nes for each

measurement the corresponding model feature� Both
 Grimson and Faugeras search for

a consistent path in the I�T�
 using depth 	rst search� Grimson restricts the search by

de	ning local constraints in the model
 such as limiting the range of distances and angles

between model features� Any branch of the I�T� which contradicts the local constraints is

pruned� Faugeras evaluates for every partial path the transformation which is consistent

with the matches in the path� This transformation is applied on the model features and

these are used to further restrict the remaining matches� In this paradigm the pose of

the object is solved simultaneously with the correspondence problem�

A detailed discussion of the correspondence problem is not in the scope of this thesis


however
 in this work
 we do consider the possibility of obtaining a correct interpretation

of the measured features� Thus
 the methods suggested in this thesis for solving the

pose estimation problem are incremental and enable a sequential process of matching to

be combined with the pose determination process� This approach is in accord with the

paradigm suggested by Faugeras�

��� Existing Approaches to Pose estimation

The problem of determining the pose of an object from measurements is dealt with

intensively in the area of photogrametry and computer vision� Most studies deal with

pose estimation of rigid objects and a large variety of solutions have been discussed and

can be found in the literature �for reviews see ���
 ��
 ����� Fewer studies deal with

pose estimation of constrained and articulated objects �e�g� ��
 �
 �
 �
 ��
 ��
 �����

The solutions for pose estimation
 whether for rigid or constrained objects
 di�er in the

following main aspects ����� �i� the features used in describing the object and model� �ii�

the sensor model and the type of measurements available as inputs� �iii� the parameters of

the transformation
 to be estimated� �iv� the mathematical and computational methods

used in the solution� �v� the methods of introducing constraints into the system �when

dealing with constrained objects��

The features used to describe objects and models are either global �such as Fourier
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descriptors ����
 moments of the object ����
 etc�� or local features representing small

regions or parts of the model or object �for example points
 lines
 planes etc���

The sensor model and the dimensionality of the sensed measurements vary among

the di�erent pose estimation methods� Dimensionality of the measurements is usually

assumed to be either �D or D� In the case of D measurements
 the sensor model

must include a projection model which describes the transformation of a point from

�D coordinates to D coordinates� The two most common projection models are the

perspective projection model and the orthographic projection �weak perspective� model

����� Another important di�erence between existing pose estimation methods concerns

the treatment of the uncertainty associated with a given measurement �or associated

with a sensor model�� Several methods do not deal with these uncertainties at all �e�g�

��
 �
 ����
 which is analogous to associating a uniform and isotropic uncertainty to

all the measurements� Other methods take into account the uncertainties either as a

scalar value associated with each measurement �representing an isotropic uncertainty for

each measurement� ���
 ��� or by spatial uncertainty usually represented by a covariance

matrix �which can represent both isotropic and non isotropic uncertainties� ��
 ���

The mathematical and computational methods used to solve the pose estimation

problem strongly depend on the representation chosen for the transformation to be esti�

mated� The computational methods are basically of two types� incremental methods and

batch methods� In the incremental methods
 the solution is initially estimated according

to some subset of the input measurements and then continually updated using additional

measurements �
 ��� The batch methods evaluate the solution in a single computation

by either considering all available measurements and 	nding the optimal solution under

some criterion ���
 �
 ��
 ��� or by calculating the solution using a minimal number of

measurements and then verifying that most other measurements are consistent with the

calculated solution ��
 �
 ����

Finally
 when dealing with pose estimation of constrained and articulated objects
 the

existing solutions vary in the techniques of introducing the constraints into the system�

In several solutions ��
 �
 ���
 the constraints of the model are not considered during

the estimation process though they may be veri	ed at the end of the process� In this case

the pose of each component of the object is estimated using only its measurements and no
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mutual information transfers between components� In other methods
 the constraints of

the model are eliminated by reparameterizing the model and reducing the number of the

estimated parameters to be the number of degrees of freedom of the system ���
 �
 ����

With this technique no constraints remain in the new parameterization�

For a more detailed discussion on existing pose estimation approaches see Chapter �

��� Overview of this Thesis and its Contribution

This dissertation is divided into two main parts�

The 	rst part �Chapter �� deals with determining the pose of a rigid �D object where the

sensory data is obtained from various kinds of sensors� We deal with models consisting of

a set of feature points
 such as maximum curvature
 segment endpoints or corners� The

measurements taken on these points are noisy and can be of various dimensions� �D


D
 or �D� In the case of D or �D the projection model can be either orthographic

or projective� This part of the thesis deals with a method for fusing all these types of

measurements in order to obtain a precise and stable estimate of the object�s pose� Uni�

fying the di�erent types of measurements is done by associating an uncertainty matrix

with each measured feature� Uncertainty depends both on the measurement noise and

on the type of measurement� A D measurement is a projection �perspective or ortho�

graphic� onto a D plane �as in a picture� and we regard it as a measurement in �D with

in	nite uncertainty in the direction of the projection� A �D measurement provides only

the distance from the observer to a point
 and we regard it as a �D vector with in	nite

uncertainty in its direction and 	nite variance in its length� Therefore
 the dimension�

ality of the measurements is encoded in the covariance matrix� With this paradigm we

obtain a uniform mathematical formulation of the problem and can fuse various kinds

of measurements to obtain a better and stable solution� The measurements fusion is

performed using the Kalman Filter ���
 ����

The second part of the thesis �Chapter �� extends the solution described for estimating

pose of rigid objects
 to deal with articulated and constrained objects� The constraints

between the object components can be of general types and may also include inequality

constraints� In the method we suggest
 both measurements and constraints are treated



Chapter �� Introduction ��

similarly while varying only their associated uncertainty� The constraints are considered

as perfect �measurements� with zero uncertainty whereas the measurements themselves

�the actual measurements� have uncertainty greater than zero� In other words the ac�

tual measurements are considered soft constraints whereas the constraints are considered

strong�

The solution we suggest to solve the pose estimation problem for rigid and constrained

objects is advantageous due to the following properties�

� The generality of the method �
The main concept in our approach is the presentation of a general and uniform

formalism to compute the pose of an object where the measurements are of any

dimensionality and under any projection model �orthographic or perspective�� The

uniformity in dealing with all types of measurement is possible due to the uniformity

in considering all measurements as �D measurements with a relevant �X� covariance

matrix� This formalism allows not only a uniform approach to measurements of

di�erent types
 but also allows a similar approach to various types of constraints

�when dealing with constrained objects�� The constraints are also considered as

measurements where the associated uncertainty is zero�

� Integration of information �
The uniform representation and uniform processing of all types of measurements


enables simple and e�cient fusion of information of di�erent types and from di�er�

ent sources inorder to determine the pose of an object� The fusion of di�erent types

of data is inherent in the algorithm and allows the system to produce a precise and

stable solution while optimally exhausting the available input data� Additionally


when dealing with constrained objects
 multiple constraints of di�erent types can

be simply included in the model�

� Spatial uncertainty of the measurements �
In many of the existing methods of pose estimation �see Chapter �
 the treatment

of uncertainties of the measurements is performed in a general manner by assigning

a scalar value to each measurement representing a weight proportional to the relia�

bility of the measurement� For example
 a �D measured point represented by three
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parameters p�
i � �x�i� y

�
i� z

�
i�
t and by a covariance matrix �
 is assigned a weight

wi representing the reliability of the measurement� In most cases
 this weight is

inversely proportional to trace���� When generalizing uncertainties in this manner


not all information available to the system is exploited� For example
 a measure�

ment of a point at the end of a segment has small uncertainty in the direction

perpendicular to the segment and large uncertainty in the direction parallel to the

segment� A scalar weight assigned to this measurement will have a small value even

though part of the measurement is of high certainty� The method we suggest
 deals

explicitly with the spatial uncertainty of each one of the measurements and thus

maximally exploits the information available from the measurements�

� Uncertainty of the solution �
Most of the existing methods supply as the solution
 only the values of the parame�

ters that were estimated without supplying a measure of the quality of the solution�

The method suggested in this thesis supplies
 in addition to the estimated pose


an estimate of the quality or reliability of the solution� This measure of quality

which is in�uenced by the uncertainties of the measurements can be represented as

a covariance matrix of the estimated parameters� Evaluating the quality of the so�

lution is important especially in order to sequentially fuse information from several

measurements� In this case the quality of the solution continuously increases as

additional measurements are fused �or the uncertainties decrease�� The sequential

fusion of measurements is important when no correspondences are given between

measured features and model features as described in Section ����

� Incremental process �
In many of the existing methods the pose of an object is evaluated using a batch

process
 i�e� all the measurements are considered simultaneously and are used in a

single vector equation� In such a process
 the correspondences between measured

points and model points must be assumed as given
 so that all the equations can

be generated before calculating the solution� The assumption that the correspon�

dences are known
 is often not acceptable
 speci	cally in context of recognition�

The approach we adopt is in accord with the paradigm suggested in Faugeras and

Hebert �� where the pose estimation and the correspondence problems are solved
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simultaneously in an incremental manner� At each stage
 the pose of the object is

estimated from the previously matched points� This estimate assists in rejecting

irrelevant correspondences in the current stage� Such a process requires an incre�

mental algorithm for pose estimation since solving the problem in batch mode at

every stage
 is highly time consuming� The estimation obtained from non linear

equations using an incremental process is less precise than using a batch process

�see the Cramer Rao bound in ������ However
 the advantage in the ability to

perform the matching during the estimation process
 turns the scales�

� Models with general types of constraints �
The existing pose estimation methods that deal with constrained objects are re�

stricted to deal with articulated models� They deal with constraints that are due

to prismatic or revolute joints between the model components� In our method

we are not limited to any type of constraints and can deal with all types of con�

straints including co�linearity
 co�planarity
 constant distance
 constant angle
 etc�

Additionally
 we deal with inequality constraints such as limited range of distances

between points or limited range of angles�

� Incorporating constraints into the solution �
When estimating the pose of a constrained object
 the method we suggest allows

simple and e�cient fusion of constraints into the solution� Thus
 information ob�

tained on the pose of any single component of the object
 is propagated to all other

components through the mutual constraints� In this manner
 the estimated solution

takes into account all the existing measurements and all the de	ned constraints�

Each constraint is simply treated since it is locally de	ned �i�e� each constraint

de	nes a relation between neighboring components
 independent of all other com�

ponents�� However
 its in�uence is global �in�uencing also those components which

are not directly connected�� Here too
 the constraints can be added incrementally


allowing an e�cient matching strategy�

� Using the Kalman Filter �
The suggested solution uses Kalman Filter �K�F�� tools and so includes the ad�

vantages associated with the K�F� such as explicitly dealing with the measurement
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uncertainty
 simple updating of the solution given additional measurements
 and

easy parallelization �����

��� The Organization of this Thesis

In the following section �Chapter � we give a more detailed discussion of existing work

on pose estimation of both rigid and constrained objects� Since
 most of the problems

discussed in this thesis can be expressed as parameter estimation problems
 we brie�y

review
 in Chapter �
 the topic of parameter estimation
 and describe the tools used in

this thesis� These include several versions of the Kalman 	ltering which were developed

for control of dynamic systems but are also used in this work�

In Chapter � we describe the general framework of our method of pose estimation as

applied to rigid objects� In Chapter �
 we develop the pose estimation method to deal

with constrained objects�
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Overview of Related Work

The problem of determining the pose of an object from measurements is dealt with

intensively in the area of photogrametry and computer vision� Most studies deal with pose

estimation of rigid objects and fewer studies deal with pose estimation of constrained and

articulated objects� The solutions for pose estimation
 whether for rigid or constrained

objects
 di�er in the following main aspects �����

�� The features used in describing the model�

� The sensor model and the type of measurements available as inputs�

�� The parameters of the transformation
 to be estimated�

�� The mathematical and computational methods used in the solution�

�� the methods of introducing constraints into the system �when dealing with con�

strained objects��

��� Features of the Model

Several studies deal with 	nding the pose of an object
 where the given model is described

by global features
 such as Fourier descriptors ���� or moments of the object ����� Since


in our work
 we chose to represent an object by local features
 we focus in this review on

previous studies that deal with models described by local features�

��
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In most studies that deal with local features
 the models are described by one or a

combination of the following features�

�� Points �for example in ���
 �
 ��
 ��
 �
 �
 ��
 �
 ��
 �����

� Lines or line segments �as in ���
 
 �
 �
 �����

�� Planes �for example in �
 �
 �
 �����

�� Quadrics �as in �
 �����

The most common model description to be found in the literature is that given by point

features� When dealing with point features in �D
 at least � model points and three

corresponding point measurements are required in order to determine the pose of a �D

object ���� When the measurements are taken following a projection �D measurements�


at least six model points and their corresponding measured points are required in order to

determine the pose ��
 ��
 �
 ��� However
 in order to reduce the e�ects of measurement

noise on the precision of the solution
 several studies
 including our work
 use a larger

number of points �e�g� ��
 ��
 
 ��
 ��
 ����� The advantage in using point features in

the pose estimation solution
 is the relative ease of extracting these features from images�

However
 in many cases
 	nding feature points on objects is not simple
 speci	cally when

objects consist of smooth surfaces�

Several studies on pose estimation represent the object model using line features

�for example ���
 
 �
 ����� At least three �D lines or eight D lines are required as

measurements in order to determine uniquely the pose of an object ��
 ���� The main

advantage in using line features �when the measurements are in �D� is that the estimation

of the translation and the estimation of the rotation can be easily decoupled� This is due

to the fact that the �D orientation of a measured line is independent of translation� The

drawback in using line features is that more lines are required to uniquely determine the

pose of an object�

Including surfaces and quadrics in the pose estimation process �e�g� �
 �
 �
 ����


greatly enriches the description of the object and enables description of objects having

smooth surfaces� However
 they are applicable only with �D measurements�
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Since the work presented in this presentation uses feature points
 we concentrate the

review on studies dealing with pose estimation from feature points�

��� Representation of the Transformation

The methods and algorithms for determining the transformation of an object relative to

the sensor
 is tightly linked with the transformation representation� The transformation

consists of two components� a component that describes the rotation of the object coordi�

nate frame relative to the sensor coordinates and a component that describes the relative

translation between the two coordinate frames� The translatory component is usually

described by a three dimensional vector t which gives the translation in the x
y and z

axis directions� However
 the rotational component can be described in several methods


which in�uence the choice of computational method to be used for the estimation process

����� In the following we review some representations of rotations which are common in

the literature�

Orthogonal Matrix

The most common method of representing rotation in �D is using a �x� matrix R which

represents a linear transformation in a�ne space� The matrix R is composed of � param�

eters
 however these are not linearly independent� the characteristics of a rotation matrix

which distinguishes it from any other linear transformation are that R is orthonormal

i�e�

RRt � I

�I is the identity matrix� and that det�R� � �� The orthonormality restriction
 imposes

� nonlinear constraints on the � parameters thus there are � degrees of freedom in a

rotation matrix� If p� is the coordinates of a point p which has undergone rotation then

p� � Rp�

The matrix representation which is commonly used
 is attractive mainly due to the

simplicity in dealing with �x� matrices� The main disadvantage in using this representa�

tion is the large number of parameters to be estimated and the inconvenience in dealing
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with six nonlinear constraints� Some examples of studies using this representation can

be found in ���
 �
 ��
 ��
 ����

Euler Angles

Any �D rotation can be described as a sequence of rotations by angles ��� �� �� about the

x
y and z axes respectively ����� These three angles
 called the Euler Angles
 form three

free parameters that describe any rotation transformation� Any �D rotation is uniquely

de	ned by these three angles
 except for the case where � � ��� when � and � cannot
be determined uniquely ����� It can be shown that any minimal parameterization of the

rotation group must contain points of singularity ����� Some examples of studies that

represent rotations using Euler Angles can be found in ���
 ����

Quaternions

A rotation can be described by a rotation angle � and a unit vector �n representing the

rotation axis� The unit quaternion is de	ned as four parameters�

�q � �q�� qx� qy� qz�t � �cos �
�
� sin �

�
�n�

These four parameters de	ne a rotation operator in �D according to arithmetic rules spe�

ci	c for quaternions �see Appendix B�� Representing a rotation by quaternions requires

the estimation of four parameters under a single constraint k�qk� � �� This parame�

terization forms a two to one mapping over the rotational group
 since a rotation of

angle � about the axis �n is equivalent to a rotation of angle �� about the axis ��n�
Although the mapping is two to one
 this raises no problem since the mapping is a local

homeomorphism �����

Representing rotations by quaternions is convenient
 since in addition to there being

only a single constraint
 the rotation is linear in �q� Several studies represent rotations

by quaternions
 for example �
 ��
 �
 �
 ����
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Exponential of Skew Matrices

Another method of representing a rotation R in �D is by an exponent of a skew�symmetric

matrix H�

R � eH

where the exponential of a matrix is de	ned by the series

eH � I �
H

�
�
H�


� � � �

It can be shown that if the skew�symmetric matrix H is given as�

H �

�
B� � �c b

c � �a
�b a �

�
CA

then eH represents a rotation by � � �a� � b� � c����� about the axis r � �a� b� c�t �����

Similar to the Euler Angles representation
 the representation by an exponential of a

skew�symmetric matrix is a minimal representation �having three parameters�� However


it has points of singularity and the mapping onto the rotational group is a two to one

mapping ���
 ��� Examples of studies using this representation can be found in ��
 ���

��� Dimensionality of the Measurements

The methods of pose estimation of a �D object are generally divided into two groups

according to the dimensionality of the input measurements �����

�� Methods using �D measurements�

� Methods using D measurements �taken following a projection��

In the following
 we brie�y review the principle methods in these two groups where

the object is rigid� A good review on the 	rst group can be found in ���� and on the

second group in ����� Following we review the existing methods for the constrained and

articulated case�
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��� Rigid Case� Methods for Pose Estimation from

�D Measurements

We 	rst review several closed form solutions and then we review some iterative methods�

����� Closed Form Solutions

Direct Linear Methods

The most convenient and straight forward method of evaluating the rotation R and the

translation t
 is by simply disregarding the � constraints existing on R and estimating

the � parameters of matrix R and the � parameters of t �see for example ������ Every

measured point p� supplies a set of � linear equations�

p� � Rp � t

where p is the �D model point corresponding to p�� Thus the � parameters can be

estimated from at least � linearly independent measurements �����

Although simple
 this method is not practical since it produces a true rigid trans�

formation only in the ideal cases when the measurements are free of noise ����� In the

general case
 when measurements are noisy
 this method does not give the correct solu�

tion� Furthermore
 not all information in the system is being exploited �the fact that the

transformation is rigid� thus the solution obtained is not expected to be optimal�

Methods Based on Translation Invariants

In order to 	nd rigid transformation more complex methods must be used� Several

methods approach this problem by 	rst 	nding the rotation R and then evaluating the

translation t using the estimated rotation� One method of 	nding the rotation inde�

pendently of the translation is by using directional measurements rather than locational

measurements
 since the former are invariant to translation� Directional measurements

can be obtained when the model features that are used are line primitives or planar prim�

itives� In these cases the normal of these primitives serve as directional measurements

��
 
 ���
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Another possibility is to consider the vector di�erence
 between two measured points


as a directional feature� v�
ij � p�

i � p�
j � In this case v

�
ij � Rvij where vij is the vector

di�erence between the two corresponding model points ���
 ���� A third possibility is to

describe the set of model points and the set of measured points relative to their center

of mass ���
 �
 ��
 ���� This representation is also translation invariant�

After 	nding an estimate �R for the rotational component of the transformation
 the

translation t can be easily estimated from a set of linear equations of the from� �Rpi �
p�
i � t� The disadvantage in using these methods is that any error in estimating the

rotation will induce an error in the translation estimate as well� Furthermore
 the estimate

obtained using a representation of points relative to their center of mass
 is sensitive to

partial occlusion�

Least Squares solution using Quaternions

Horn ���� represents model features and measured features relative to their center of mass

and represents rotations using quaternions� Following this method
 every measurement

supplies a quaternion equation� �vi � �q�v�
i�q

�
 where �q� is the conjugate quaternion of �q

and �vi
 �v�
i are the coordinates of the model point and the corresponding measured point

relative to their center of mass and represented in quaternion form �see Appendix B��

Horn shows that 	nding the optimal quaternion under the L�S� criterion �least squares�

and under the constraint k�qk� � �
 is equivalent to 	nding the eigen vector corresponding
to the smallest eigen value of a �x� matrix�

Grimson and Lozano�Perez ��� and Faugeras and Hebert �� follow a similar solu�

tion for estimating the rotation
 where the measure features are planes and the point

coordinates are replaced by normal vectors of the planes�

Adapted Spherical Projection Method

Blosten and Huang ���� represent the rotational component of the transformation by a

rotation axis r and an angle �� Every two di�erence vectors vij and vkl �where vij �

pi � pj� and their correspondences supply an equation over the rotation axis�

r � �v�
ij � vij�� �v�

kl � vkl�
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Thus the axis r can be estimated from � measured points and their � corresponding model

points� Following the estimation of r
 the angle � can be estimated from the Rodriguez

formula �see ������ The drawback of this method is that r is very sensitive to noise in

the measurements since it is estimated from only three measured points� Grimson and

Lozano�Perez ��� use the same technique to 	nd the rotation of planar features� In their

method
 r is evaluated for every pair of normals ��ni� �nj� and the optimal r is obtained

using clustering methods�

Least Square Solution using Singular Value Decomposition

Arun et� al� ��� use a representation of the measurements fvi�g and of the model features
fvig relative to their center of mass� In their method
 the optimal estimate of rotation
�R under the L�S� criterion is given by the minimum over

E �
X
i

kv�
i �Rvik�

subject to RRt � I� It can be shown ��� that this equation is equivalent to minimizing

E � trace�RH� where H �
P

i vi
tv�

i� Arun et� al� show that if the SVD ���� of H is

H � UV W t then the minimum of E is obtained when R � WU t�

Haralick et� al� ���� arrive at the same solution where they enforce the orthogonality

constraints on R through Lagrange Multipliers
 i�e� they minimize the following equation�

E �
X
i

kv�
i �Rvik� � k��RRt � I�k�

where � is the symmetric matrix of Lagrange Multipliers ��� � � � � ���

Least Square Solution using Orthonormal Matrices

Another method for 	nding the optimal R which minimizes E � trace�RH� �described

above� is presented by Horn et� al� ���� using a decomposition of the matrix H� If H

is non�singular it can be decomposed into a product of an orthonormal matrix W and a

symmetric matrix S�

H � WS

where S � �H tH���� and W � H�H tH������ Horn et� al� show that the optimal rotation

which minimizes E is R �W �
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����� Iterative Solutions

Iterative method using Euler Angles

Lin et� al� ���� suggest an iterative solution to 	nd the rotation where
 here too
 the

coordinates of the points are relative to the center of mass� They show that if the points

are co�planar and the rotation is normal to the plane �for example
 when the points are

on the x�y plane and the rotation is about the z axis� then the rotation angle � is given

by�

tan��� �

P
i vi � v�

iP
i vi � v�

i

This results is extended to solve for rotation in the general case� The general rotation is

represented using Euler Angles�

R � Ry���Rx���Rz���

At each step
 two of the three Euler Angles are assumed constant and the above equation

is used to 	nd the third angle� The process sequentially evaluates the three angles and

the process is repeated iteratively until the solution converges�

Iterative Weighted Least Squares

In the previously described methods
 the optimal solution was chosen under the L�S�

criterion in which the objective function f was quadratic in the residual error
 i�e� f��i� �

��i 
 where �i � k�Rpi � t � p�
i�k� The problem in using this estimator is that a small

number of outliers can pull the solution away from the true solution �����

Haralik et� al� ���� suggest a robust approach based on M�estimation� In their method


the objective function is not quadratic in the residual error but represented by the Tukey

function ����� This function gives a quadratic penalty in a given close range and constant

penalty elsewhere� The suggested algorithm is iterative� at each step a set of equations

are solved under the W�L�S� criterion �weighted least squares�
 i�e� R� t are found that

minimize�

E �
X
i

wikRpi � t� p�
ik�

where the weights wi are given by the Tukey function and dependent on the current

residuals� The process continues iteratively until the solution converges�
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��� Rigid Case� Methods for Pose Estimation from

�D Data

In contrast with the case in which �D feature points are used as measurements
 when

the input measurements are D they also depend on the sensor model �e�g� the camera

model when the measurements are taken from an image�� There are two commonly used

projection models for describing the transformation of a point from �D coordinates to

D coordinates� the perspective projection model and the orthographic projection �weak

perspective� model �����

The perspective projection model is described by a projective transformation from

P�
 which is a three dimensional projective space
 onto the two dimensional projective

space P�
 where the location coordinates in R� and in R� are given in homogeneous

coordinates� This transformation is given by�

M � �x� y� z� ��t � �u� v� w�t

whereM is a �x� matrix and where �x� y� z� ��
 �u� v� w� are the homogeneous coordinates

of the model point and the image point
 respectively� The matrixM contains � param�

eters which are dependent on the positioning of the camera with respect to the object�s

coordinates �the extrinsic parameters� and on the camera parameters �the intrinsic pa�

rameters� such as focal length
 piercing point
 scaling factor etc� ���
 ��� In this work

we assume the camera parameters are given and estimate only the extrinsic parameters

�this problem is known also as the exterior orientation problem�� Given the matrix M 


the extrinsic parameters can be derived
 i�e the rotation R and the translation t ���
 ���

In fact
 when the scaling factor and focal length are both equal to one
 the matrix M is

given as�

M �
�
R � t

�
Estimating the matrixM requires dealing with two non�linear constraints which are due

to the orthogonality of the rotation R ����� This model describes the image obtained by

a pinhole camera and is a good approximation of the image obtained by most modern

cameras �����
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The orthographic projection �weak perspective� is described by an a�ne transforma�

tion from R� to R� which includes a projection
 as follows�

 �s �R�x� y� z�t � t� � �u� v�t

where �R� t� are the rotation and translation
 s is the scaling factor and  represents

orthographic projection �i�e� the third coordinate is eliminated�� The orthographic pro�

jection model gives a good approximation of measurements taken from images only when

the size of the object is small relative to its distance from the camera ����� When this

condition is not satis	ed
 this projection model is not precise since it does not take into

consideration the perspective distortions created in the image�

����� Closed Form Solutions

In contrast with the case in which �D feature points are used
 in the case where D

data are used
 the closed form solutions which assume rigidity of the transformation are

applicable only to a limited number of measurements �see for example ����� When a

solution is to be obtained from a large number of measurements
 no closed form solution

is found so far and the methods to be found are iterative ���
 ���� When the constraints

are not considered
 the transformation can be found
 as in the �D case
 using a direct

L�S� solution for the overdetermined system of linear equations �see ���
 ��
 �� for ex�

amples using orthographic projection
 and ���
 ��� for perspective projection�� Using a

direct linear L�S� solution
 the � parameters of matrixM are estimated as independent

parameters� As in the �D methods
 these methods which do not take into account the

rigidity constraints
 will give good solutions only in the ideal case when there is no noise

in the measurements�

Several methods solve the problem analytically when few measurements are given and

when the model points are in a speci	c con	guration� Fischler and Bolles ���
 for ex�

ample
 give a closed form solution for three or four co�planar model points� They derive

the solution by 	rst evaluating the �legs� which are the lengths of the segments con�

necting the camera focal point and the �D points� From these
 they derive the extrinsic

parameters� Note that this analytic solution for a minimal number of points is given in

the context of the Random Sample Consensus �RANSAC� algorithm which recalculates
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the transformation for every three randomly chosen measurements until the calculated

transformation is compatible with a large enough number of measurements� Thus
 this

algorithm is in essence
 an iterative algorithm�

Although analytical solutions using a small number of measurements are fast and do

not require a�priori guess
 they do require predesign of the model points �for example that

the � chosen model points are coplanar�� Additionally
 since these methods are based on

a small number of points
 they are very sensitive to noise in the measurements�

����� Iterative Solutions

Most of the methods for estimating the rigid transformation given D data
 are iterative�

These methods can deal with any number of measurements and most of them 	nd the

optimal solution under the L�S� criterion using non linear L�S� techniques� Haralick et�al�

���� present three iterative methods for solving the problem�

Iterative L�S� Solution� This method assigns an initial length to each �leg� lk con�

necting the focal point with a point k� The �D coordinates of point k
 p�
k
 relative to the

camera frame of reference
 are calculated from the lengths lk and from the corresponding

D measurements given as coordinates in the image plane�

p�
k �

lk
f
�uk� vk� ��

where �uk� vk� are the coordinates in the image plane and f is the focal length� The

problem is now reduced to the pose estimation problem from �D data� Using one of

the techniques described in Section ��
 an optimal estimate for the transformation �the

rotation R and the translation t� can be found� The estimated transformation is used to

recalculate the legs flkg� The above process is repeated until the solution converges�

L�S� Adjustment by Linearization� In this method the projective matrix M de�

scribed in Section �� is rewritten so that the parameters describing the rotation are

the three Euler angles �� �� �� The dependence of the projection on these parameters is

non linear �see ������ The process is initialized by assigning initial values to the three

angles �� �� � and to the translation vector t� These initial values converge to the 	nal
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solution using Newton iterations ����� At each step correction values for the parameters

�	�� 	�� 	� and 	t� are evaluated and the process continues until the correction values

converge to zero�

Robust M	Estimation� The two iterative methods mentioned above can become more

robust by assigning appropriate weights to every equation obtained from a given mea�

surement� The solution of the equations will then be performed under the weighted L�S�

criterion� The weights assigned to each equation are not held constant but depend on

the solution obtained at the previous iteration
 i�e� they are dependent on the current

residual error f
ig�

i �Mpi � qi

whereM is the projection matrix obtained from the previous iteration� pi is the �D vector

of coordinates of the model point and qi is the D coordinates of the measurement point�

The weights that Haralick et�al� suggest are derived from the Huber objective function

or from the Tukey objective function �����

Yuan ���� suggests another iterative method for solving the exterior orientation prob�

lem� As in the 	rst method suggested by Haralick et�al� ����
 Yuan evaluates both the

rotation R and the lengths lk of the legs
 simultaneously� The lengths of the legs together

with the measurements in the image plane de	ne the �D location of a point �relative to

the camera frame of reference�� Thus
 here too
 the rotation can be decoupled from the

translation by considering the di�erence between two measurements�

p�
k � p�

j �
lk
f
�uk� vk� �� � lj

f
�uj� vj� �� � R�pk � pj�

After evaluating the rotation
 the translation can be calculated as explained in Section

����� Using this method
 the evaluation of the rotation R
 subject to the � rigidity

constraints
 requires 	nding the common roots of six quadratic equations� This is done

iteratively using the Newton Method �����

A method for decoupling the rotation from the translation
 is also suggested by Liu

et�al� ����
 for the case where the measured feature are lines� Every line is represented

in the object coordinate system by a unit vector �n de	ning the direction of the line in

�D� Thus the direction of the line in the camera coordinates is R�n� Liu et�al� show that



� Chapter �� Overview of Related Work

when the line measured in the image plane is given as� au� bv � c � � where �u� v� are

coordinates in the image plane
 then the following equality holds�

R�n � �a� b� c�t � �

Such an equation
 which is linear in the � parameters of R
 is created for every line

measurement� In order to eliminate the rotational constraints
 the rotational parameters

are represented using the three Euler angles� The above equation then becomes non

linear in the three rotational parameters� The Euler angles are evaluated under the L�S�

criterion using Newton iterations ����� This method is also applicable when the measure

features are points rather than lines since every two points de	ne a line� Using this

method at least six points or at least eight lines must be measured in order to obtain a

unique solution �����

��� Constrained Case� Methods for Pose Estima�

tion

Extensive studies can be found in the literature dealing with pose estimation of rigid

objects from measurements
 however
 little attention has been given to pose estimation

of articulated or constrained objects� Several studies can be found that deal with special

cases of constrained objects
 namely
 articulated objects having prismatic or revolute

joints
 most of them in recognition context ���
 �
 �
 �
 ��
 ��
 ����� In general
 the

existing methods dealing with this problem can be divided into two main paradigms�

�� Divide and conquer methods

The basic and naive method is to decompose the object into parts and to estimate

the pose of each part separately� Grimson ��
 �� follows this paradigm in order

to identify a family of objects which di�er in scale�factor
 stretch factor or the

angles between parts� In his study
 estimating the pose of each part separately

was followed by an assessment of the current interpretation of the parts by testing

whether the parts satisfy the constraints de	ned between them �up to a prede	ned

threshold�� Grimson uses the pose estimate of a part to limit the possible matchings

of the neighboring part
 however this estimate is not used in the pose estimation
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of the neighboring part� Shakunaga ���� follows a similar method for estimating

the orientation of a �exible body composed of parts joined together by revolute

joints� Although the simplicity of this method is attractive
 it is obvious that it

is unsatisfying from several aspects� Evaluating the pose of each part separately

may result in constraints not being satis	ed between the parts� Furthermore
 no

mutual information passes between parts and each object component is located

using only its measurements� Additional information which can be obtained from

measurements of neighboring components is not considered
 thus
 not all available

information is exploited�

� Parametric methods

It is possible to eliminate the de	ned constraints by decreasing the number of

parameters that describe the pose of the object �so that the number of free pa�

rameters equals the degrees of freedom of the object�� The remaining parameters

are estimated during the estimation process� For example
 the pose of an articu�

lated object in D having two components connected by a revolute joint
 can be

described by the translation and the orientation of each component �� parameters�

with an additional constraint due to the joint between the components �Figure ��

left�� Alternatively
 the pose of the object can be described by the translation and

orientation of one of the components and the relative angle to the second compo�

nent �� parameters� �Figure �� right�� The latter description eliminates the need

to consider a constraint during the estimation process�

Lowe ���
 �� follows this method and estimates the free parameters of the viewpoint

and of the model using Newton iterations into which additional techniques are

incorporated in order to ensure convergence� A similar method was used by Brooks

���� in the well known system ACRONYM� Mulligam et� al� ���� use the same

approach for estimating the positions of an excavator�s arms
 however
 in their work


the �ow of information about pose from one arm to the next is in one direction


thus the pose of the boom in�uences the pose of the bucket but not vice versa�

The main problem in the method of parameter reduction is the need for de	ning the

dependence of each measurement on all the free parameters during the estimation

process� The de	nition of the dependence is problematic for two reasons�
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translation
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Figure ��� Two possibilities of parameter sets for the pose
de	nition of an articulated object having a revolute joint�

First
 the complexity of this de	nition increases with the number of free param�

eters that each point is dependent on� Second
 in most cases
 as the number of

components of the object is greater
 the order of the nonlinearity of the depen�

dence equations is higher� This results in a more complex and less stable solution

especially when using iterative methods based on linear approximation of the non�

linear equations� An additional drawback of this method is the di�culty in 	nding

the correct free parameters that ensure that the model constraints are satis	ed for

any given values of these parameters� The di�culty of selecting the parameters

increases with the number of constraints and with the number of parts participat�

ing in each constraint� Therefore the existing methods deal with ad�hoc techniques

which handle common constraints such as revolute and!or prismatic joints where

the parameters reduction is simple and immediate�
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Parameter Estimation

Most of the problems discussed in this dissertation can be formalized as parameter esti�

mation problems� Parameter estimation deals with the estimation of particular unknowns

from measurements where the measurements and the unknowns are functionally related�

Generally
 these measurements are contaminated by noise� Suppose we are interested in

evaluating the parameter vector s from noisy measurements represented by the vector �z

and we are given the posterior distribution P �sj�z� which represents the probability dis�
tributed function �p�d�f�� of s given �z� The estimate �s of s is calculated such that some

criterion will be ful	lled
 i�e� �s is chosen to be optimal in a certain sense� For example


consider the estimate �s which minimizes the following expression�

Efks� �sk�j�zg �
Z ��

��
ks� �sk�P �sj�z�ds �����

The estimate �s minimizing Eq� ��� is a Bayesian Estimate which satis	es the minimum�

variance criterion and can be shown to satisfy �s � Efsj�zg for any distribution of s �����
If the estimate �s is a linear function of the measurements �z and satis	es the minimum

in Eq� ���
 then �s is called the Linear Minimum Variance Estimator of s� Other criteria

can also be used �see ���� for further reference��

��� The Kalman Filter for Linear System Models

Estimation problems in stochastic systems is widely studied in the literature ���
 ��
 ����

In stochastic systems a parameter vector s�t�
 called a state vector
 describes the behavior

��
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of the system at time t� In a general stochastic system the behavior of the system changes

with time
 thus the state vector is a dynamic parameter vector� However
 for our purposes

we deal with a degenerated case of stochastic systems where the state vector is static and

does not change with time� Therefore
 we denote the state vector by the static parameter

vector s�

The general measurement model of a static stochastic system is�

�z � f�s� � � �

where f�s� is a mathematical function of the state vector which can be measured
 �z is

the vector of actual measurements
 and � is the measurement noise
 whose covariance

is assumed known� By convention
 actual measurements are denoted with hats while

"true� measurements �without the noise vector �� are written without the hat� The

central problem in the theory of such systems is to estimate the state vector s from the

measurements� The estimate is denoted by the vector �s�

The main tool we use to estimate a state vector is the Kalman filter �K�F��� The

Kalman 	lter is a tool for estimating the state vector of a stochastic linear system from

a sequence of measurements� Here we brie�y describe the Kalman 	lter and state some

of its properties� For a complete discussion see e�g� ���
 ��
 ��

The static Kalman 	lter is based on the sequential measurement model�

�zk � Hks� �k

where this measurement is taken at time step k
 k � �� � � � �� The matrix Hk is a linear

operator relating the state vector s to the true measurement at time k� �k is the noise

vector associated with the actual measurement �zk� It is assumed that the measurement

noise is an uncorrelated zero mean vector and that its covariance matrix �k is given
 i�e


Ef�kg � � � varf�kg � �k � covf�k� �jg � � for k �� j�

Assuming that an a priori estimate of the state vector and its associated covariance

matrix
 are known from the previous time step k � ��

Efsg � �sk�� � varfsg � Ef�s� �sk����s� �sk���
tg � #k��
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the Kalman 	lter updating equations for estimating s and # are�

state estimate update � �sk � �sk�� �Kk��zk �Hk�sk���

state covariance update � #k � #k�� �KkHk#k��

Kalman gain matrix � Kk � #k��H
t
k�Hk#k��H

t
k � �k��� �

����

A variant formulation of the K�F� equations is ���

�sk � #k�H
t
k�

��
k �zk � #

��
k���sk��� �����

#k � �H t
k�

��
k Hk � #

��
k���

�� � �����

The Kalman 	lter can be abstractly described by a black box which
 at each time

step k
 receives three inputs and gives one output �see Fig� ����� The inputs are�

�� The a priori estimate input � the a priori estimate of the state vector and its

associated covariance matrix� ��sk���#k����

� The measurement input � a new measurement and an associated covariance

matrix representing the noise in the measurement� ��zk��k��

�� The measurement model input � a linear relationship between the current

measurement and the state vector�

zk � Hks

where zk stands for the real measurement s�t� �zk � zk � �k�

The output of the Kalman 	lter box is a posterior estimate of the state vector and

its associated covariance matrix� ��sk�#k�� The posterior estimation is �better� than the

a priori estimate
 i�e� #k � #k�� �if #k � #j then #j �#k is positive de	nite��

The K�F� equations yield an unbiased estimate of s which is optimal under the linear

minimal variance criterion ��� In the case where the measurement noise �k is a Gaussian

process �which is a reasonable assumption
 considering the numerous sources of noise�


the K�F� gives an estimate which is also optimal in the sense of the minimumvariance and
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Figure ���� The Kalman 	lter for static�parameter estimation�
The three inputs and the estimation output�

the maximum�likelihood criterion ��� The estimate also coincides with the conditional

expectation�

�sk � Efsj�z�� �z� � � � �zkg �

As stated before
 the general K�F� deals with a parameter vector that changes with

time
 whereas in our case the state vector s is static and does not change between

measurements� Therefore
 our case is a degenerate K�F� and we call its fusion process a

K�F� fuser since it fuses the current and the a priori information in order to obtain a

better estimate of the state vector�

Note that the estimation obtained using the K�F� equations is equivalent to that

obtained by weighted least�squares methods ���� using the optimal weight ���
k �i�e� the

expression
Pk

i���zi � His��
��
i �zi � His�t is minimal for �sk�� However in this thesis we

prefer to deal with the estimation problems in terms of the K�F� The advantages in using

the K�F� method will be described later�
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��� The Extended Kalman Filter

The standard K�F� equations are applicable to linear systems
 i�e� where the measure�

ments are linearly dependent on the state�vector� zk � Hks� In the general case
 the

measurements are functionally related to the state vector through a non�linear implicit

vectorial function�

hk�s� zk� � 


In this case we use the Extended Kalman filter �E�K�F�� process which is a general�

ization of the Kalman Filter �K�F�� to non�linear systems ���
 ���� The transition from

step k � � to step k is performed using a linear approximation of hk by taking the 	rst
order Taylor expansion around ��sk��� �zk��

hk�s� zk� � � � hk��sk��� �zk� �
�hk
�s
�s� �sk��� �

�hk
�z
�zk � �zk� �����

Equation ��� can be rewritten as a linear equation�

�zk � �Hks� ��k � �����

where

�zk � �hk��sk��� �zk� �
�hk
�s
�sk��

�Hk �
�hk
�s

��k �
�hk
�z
�zk � �zk� �

and where the derivetions are taken at the point ��sk��� �zk�� �zk represents the current

�measurement�and �Hk is the matrix denoting a linear connection between the �measure�

ment� and the state vector s� The term ��k depicts the noise in the �measurement� �zk

and satis	es�

Ef��kg � � � varf��kg � ��hk
�z
��k�

�hk
�z
�t � covf��k� ��jg � � � k �� j �

The standard K�F� updating equations can be applied to the linearized system
 as ex�

plained above�
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The linear approximation of hk produces imprecisions when linearization is performed

around a point that is not close enough to the true state vector� In order to reduce the

in�uence of the linearization local iterative K�F� ���
 ��� is applied� During the iterations

the non�linear measurement equation is relinearized around the updated state estimate

obtained from the K�F� updating equations
 and another cycle of K�F� is performed using

a new version of the linearized equation� These iterations increase the time complexity

of the solution�

��� Why Do We Use the Kalman Filter	

Although there is no computational advantage in using the K�F� over other methods such

as weighted least squares error methods
 we 	nd it advantageous to use the K�F� in this

thesis because of the following reasons�

� The K�F� takes into account
 explicitly
 the uncertainties of the measurements�

� The K�F� supplies an uncertainty associated with the resulting estimate and thus
provides an evaluation of the quality of the estimate�

� Given a new measurement
 the K�F� enables recursive updating of the estimate�

There is no need of repeating the full estimation process and there is no need of

replicating nor retaining previous measurements� Only the last estimate and its

uncertainty are required for updating�

� Methods and techniques developed for the K�F� can be used
 such as methods
dealing with non�linearities �E�K�F�� and methods for increasing numeric stability

�these methods will be described later��

� The recursive feature of the K�F� is in accord with the need of a sequential pose
estimation process when the correspondence between the model points and the

measured points is not given �see Section �����
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��� Physical Interpretation of the Kalman Filter

An additional advantage in using the K�F� is the ability to give a physical interpretation to

the solution� The physical interpretation consists of a mechanical system whose physical

solution is the solution obtained by the K�F� equations� The physical motivation stems

from two main reasons�

� The solution of the mechanical system is derived from existing physical laws� The

equality between this solution and the solution obtained from the K�F� equations


suggests that there is a basis for a natural optimality criterion in the solution of

the K�F� and that this criterion is not arbitrary�

� The mechanical system supplies us with intuition and insight on the behavior of

the system and its solution�

For example
 assume the state vector we estimate represents the location of a point

P in a two dimensional plane
 i�e� s � �x� y�� Further assume that n measurements of

the point location were obtained� f��zi��i�gi�����n where �zi is a D vector representing the

measurement value in the x�y plane and �i represents its uncertainty� We can represent

this estimation problem by an equivalent physical systemwhere eachmeasurement ��zi��i�

is represented by a spring �having length equal to zero� which pulls the point P towards

the location �zi and which has a spring constant Ki inversely proportional to �i
 i�e�

Ki � �
��
i �see Fig� ����

The solution for the physical system is that which brings the energy to a minimum�

We show that the solution resulting from the K�F� equations is equivalent to the physical

solution� The K�F� solution is the output obtained given the following three inputs�

�� the a priori estimate input � since no a priori knowledge can be assumed about

the location of point P 
 we take ��s��#�� as any initial estimate value �s� � ��x�� �y��t

and associate with it an in	nite uncertainty #��
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Figure ��� A physical system equivalent to an estimation
problem� the D pose of point P is determined by � measure�
ments� Each measurement i is represented by a zero�lengthed
spring which pulls the point P towards �zi and which has a
spring constant Ki inversely proportional to the uncertainty
of the measure�

� the measurement input � is taken as�

�
�����

�
BBBB�
�z�
�z�
���
�zn

�
CCCCA �

�
BB�
�� �

� � �

� �n

�
CCA
�
				
 � ��z���

�� the model measurement � is taken as z � Hs where H � �

n timesz �� 
I� I� � � � I��

The output obtained from the K�F� updating equations given these inputs is �see Section

�����

�sk�f� � �
nX
i

���
i �

��
nX
i

���
i �zi

#k�f� � �
nX
i

���
i �

��
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The solution to the physical system will give a location �sphy such that the sum of forces

acting on P is zero
 i�e��

F �
nX
i

Fi �
nX
i

Ki��s
phy � �zi� � �

or

�sphy � �
nX
i

Ki�
��

nX
i

Ki�zi � �
nX
i

���
i �

��
nX
i

���
i �zi � �s

k�f�

Thus
 the solution to the physical system is equivalent to the solution obtained from the

K�F� equations� If we replace the set of springs �measurements� with a single equivalent

spring having a spring constant Ktot and anchored at �sphy we obtain�

F � Ktot$s �
nX
i

Ki��s
phy � �zi �$s�

but since
Pn

i Ki��sphy � �zi� � � we have Ktot$s �
Pn

i Ki$s and then

Ktot �
nX
i

Ki �
nX
i

���
i � �#k�f����

That is
 the equivalent spring constant Ktot is inversely proportional to the uncertainty

matrix of �sk�f�� Thus the quality of the estimation obtained from the K�F� equations is

equivalent to the �strength�of the equivalent spring in the physical system� It is now

obvious that the e�ect of adding an additional measurement to the system is equivalent

to adding an additional spring to the physical system� In such cases
 the spring constant

of the equivalent spring always increases
 thus in the K�F� system #t�� � #t� Addi�

tionally
 as the number of springs in the system increases
 the e�ect of adding another

measurement
 decreases� The corresponding analogy in the K�F� system is that as more

measurements are added
 they have a smaller e�ect on the solution�

��� The Complexity of the Kalman Filter

Every application of the K�F� fuser requires an inversion of a d�dimensional matrix where

d is the dimension of the measurement vector� Practical algorithms for matrix inversion

take O�d��� The remaining matrix multiplication operations in the K�F� equations take
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O�nd�� or O�n�d� where n is the dimension of the state vector� Thus
 if d is relatively

larger than n
 the overall complexity is O�d�� and when d is small compared to n we

have an overall complexity of O�n�d�� In the case where the measurement model input is

non�linear
 local iterations are used where each iteration takes max�O�d��
O�n�d��� It can

be shown that the iterative process is equivalent to solving a set of non�linear equations

using Newton iterations where the solution at each step is evaluated using the weighted

least squares criterion� Thus the convergence rate of the iterations in the K�F� process is

equivalent to that of the Newton method which is quadratic near the solution �����

��� The Estimation Criterion

As stated in Section ��
 the measurement noise is modeled
 in this thesis
 by a Gaussian

process with known parameters� This is reasonable due to the large number of noise

sources� However
 the Gaussian model does not always give a good representation of

the measurements� in many cases the distribution is better modeled by a Gaussian�like

distribution with an additional tail�distribution �outliers� because of gross�error measure�

ments �which have large deviations from the average�� These gross�error measurements

have a large in�uence on the estimate solution especially when the solution is based on

the minimum variance criterion �which gives an estimate that has a breakdown point

�� � �% ������ Several methods have been developed to give robust solutions to this

problem ���
 �
 ���� These methods use estimators based on criteria other than the

minimum variance �such as minimum absolute value� and have been applied to pose

estimation problems� Despite the above described drawbacks
 we chose to work with a

Gaussian noise model and with the minimum variance criterion �Kalman 	lter� due to

the following reasons�

� The robust methods do not deal with the uncertainty of the measurements in an
explicit manner �using the covariance matrix�
 but combine them into a single value

�the trace of the covariance matrix� representing the quality of the contribution

of each measurement to the 	nal solution� This contraction into a single value

causes loss of information
 which in our work may have severe signi	cance in the

cases where measurements have in	nite uncertainty in one direction and a small
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uncertainty in another �this happens
 for example
 when the measurements are

taken from a projection��

� The robust methods are not easy to analyze analytically and so do not have closed�
form estimators�

� Addition of information or inclusion of a priori information to improve the solution

is easily performed using minimum variance based methods �see K�F equations�� It

is not easily done using the robust methods
 since these require re�evaluation of all

the data� Thus robust methods also require larger memory space�

� One can improve minimum variance based methods to be more robust by elimi�

nating outlier measurements by applying a goodness of 	t test� These tests will

extract those measurements whose Mahalanobis distance between prediction and

measurement value is greater than a given value �see Appendix A and Zhang �����
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Pose Estimation of Rigid Objects

��� Introduction

In model�based pose determination the position of a known object is determined from

di�erent types of surface measurements �for example� ���
 ��
 ��
 ���� Usually feature

points such as maximum curvature
 segment endpoints and corners are measured� The

aim of this chapter is to determine the correct pose of the object �location and orientation�

relative to the sensor frame of reference where the measurements are noisy� This problem

is known as absolute orientation in photogrametry and solution methods are classi	ed

into two major categories according to the type of measurements �����

�� �D to �D correspondence� both model and measurements give the �D location of

features �measurements from range data
 stereo
 etc���

� �D to D correspondence� the model is �D while the available measurements supply

projected D information
 like locations in an image plane� The projection can be

either perspective or orthographic�

In this chapter we suggest a uniform framework to compute the absolute orientation


where the measured data can be a mixture of �D
 D and �D information� Unifying

the di�erent types of measurements is done by associating an uncertainty matrix with

each measured feature� Uncertainty depends both on the measurement noise and on

the type of measurement� This representation uni	es the di�erent categories of the

��
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absolute orientation problem into a single problem that varies only in the uncertainty

values associated with the measurements� With this paradigm we obtain a uniform

mathematical formulation of the problem and can fuse di�erent kinds of measurements

to obtain a better solution� The measurements fusion is done using K�F� tools� The

algorithm we describe has the additional advantages of supplying a certainty measure of

the estimate
 enabling an e�cient matching strategy and allows simple parallelization�

��� De
nition of the Problem

A model M of a �D object consists of n model points whose locations relative to an

object�centered frame of reference is known�

ui � �xi� yi� zi�
t for each i � � � � � n

A measurement M � of a �D object consists of m measurements where the location

coordinate and the associated covariance matrix of each measurement are given in a

viewer�centered frame of reference�

��u�
j��j� for each j � � � � �m

�u�
j � is a noise�contaminated measure of the real location�vector u

�
j associated with the

jth measured point� It is possible to have more than one measurement for a single model

point�

�j � is the covariance matrix depicting the uncertainty in the sensed vector �u�
j � We

do not constrain the dimensionality of the measured data but allow it to be �D �stereo


range 	nder etc��
 D �orthographic or perspective projection� or �D �uncalibrated range

	nder��

Amatching between the modelM and the measurementM � is a collection of pairs of the

form f�i� j�g� which represents a correspondence between the ith model points and the
jth measurement� For simplicity we further denote with the same index a model point

and its matched measurement�
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Figure ���� A �D object and its transformation� A model
point location ui is represented in an object�centered frame
of reference� u�

i is its location in a viewer�centered frame of
reference� The pair ��u�

i��j� is the actual measurement of u�
i

with its associated uncertainty� T is the transformation from
the object�centered coordinates ui to the viewer�centered co�
ordinates u�

i�

The problem�

Given a modelM 
 a measurementM � and a matching as above
 estimate a transformation

T which optimally maps the coordinates ui of the model points onto the corresponding

measured locations ��u�
i��i�� The estimated transformation T describes the position of

the measured objectM � in the �D scene� The meaning of the optimality of the estimated

transformation will be given later on�

��� The Measurement Uni
cation and Its Uncer�

tainty

As previously noted
 we are given the uncertainty matrix of each and every synthesized

point feature� That is
 each extracted feature is associated with both estimated parameter
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values given in a viewer�centered frame of reference
 and an uncertainty of these values�

The uncertainty is derived from several factors�

� Uncertainty due to measurement noise �e�g� digitization
 blurring and chromatic
aberrations��

� Uncertainty dependent upon the feature detection process� For example
 a detected
end�point of a line segment will have high uncertainty in the direction of the line

and low uncertainty in the perpendicular direction�

� Uncertainty due to the lack of information caused by projections�

Modeling of the measurement noise is outside the scope of this thesis and we assume the

measurement uncertainty is given� Using the given uncertainty
 a uni	ed representation of

the measured data is constructed� In the following
 the measure uni	cation is presented�

The possible types of measurements are divided into three categories�

�D measured data�

The simplest case is that of a point q 	M � represented by the pair�

q � ��u���� �

where �u� � ��x�� �y�� �z�� is the measured location vector and � is its uncertainty�

D projected data�

When the measurements are obtained using a projection
 the measured data is described

as a measurement in �D where the uncertainty in the direction of projection is in	nite�

Assume that the measurements are performed on the image plane using the coordinate

system �v�w��

proj�q� � ���v� �w��#vw� �

where #vw is a  �  covariance matrix describing the uncertainty of the measurement
��v� �w��

In the case where the projection is along the z�axis �orthographic�
 this data is rep�

resented as�

q � ���v� �w� �z���

�
#vw �
� 


�
� �
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θ

φ
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κ

Figure ��� A perspective projection of the point u� onto an
image plane �v�w�� The point can be represented in either
 a
Cartesian system �x�� y�� z�� or a spherical system �r� �� ���

where �z� is any estimate of the z� coordinate�

In the case of a perspective projection
 the modeling of the uncertainty is a little more

complex� Assume that the origin of the viewer�centered frame of reference is at the focal

point as shown in Figure �� and the focal length is equal to one� We aim to transform

the measurement given in the image�plane coordinate system into a representation in the

Cartesian system �x�� y�� z���

Considering the spherical coordinate system �r� �� �� �Figure ���� The vector ��v� �w�

determines the angular coordinates ��� �� but leaves the value of r undetermined�

�� � arctan�
p
�v� � �w��

�� � arccos�
�vp

�v� � �w�
� �
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Additionally
 the uncertainty of ��v� �w� is translated into a covariance matrix in the ��� ��

system as follows�

��� �

�
���� ��

��v�w�

�
#vw

�
���� ��

��v�w�

�t

�

where ������
��v�w� is the Jacobian of the transform from �v�w� to ��� ��
 and the derivative is

taken at point ��v� �w�� The Jacobian matrix is�

���� ��

��v�w�
�

�
�v�� �w��
� �w�� �v��

�
�

where

 � �p
�v� � �w� � �

� � �p
�v� � �w�

�

The transformation into spherical coordinates
 as an intermediary stage
 allows a simple

representation of the measurement in �D�

q � ���r� ��� �����r��� �

where

�r�� �

�
B� 
 � �
�
� ���

�
CA

and �� 
 �� 
 ��� are the expressions described above� �r is unknown but an estimation of

�r will be chosen as is explained later in this section�

In practice we are interested in representing the measurement in Cartesian coordi�

nates
 thus
 the measurement is transformed again from the spherical coordinates to

Cartesian coordinates �x�� y�� z�� as follows�

q � ���x�� �y�� �z����xyz� �

where

�x� � �r sin �� cos �� � �z��v

�y� � �r sin �� sin �� � �z� �w

�z� � �r cos �� � �r
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and the covariance matrix is�

�xyz �

�
��x� y� z�

��r� �� ��

�
�r��

�
��x� y� z�

��r� �� ��

�t

�

The Jacobian is

��x� y� z�

��r� �� ��
�

�
B� �v �r�v� ��r �w
�w �r �w� �r�v
 ��r�� �

�
CA �

where the derivative is taken at the point ��r� ��� ���� Here too
 all values are known except

for �r� Since the solution to the location problem incrementally improves the estimation

of T 
 i�e� at step k there exists an estimate �T k�� from the previous step� We use this

estimate to calculate an estimate of �r at step k as follows�

�rk � k �T k���u�k �

where u 	 M is the location of the corresponding point in the model� We emphasize

that the uncertainty of this estimate
 as expressed in the covariance matrix
 is in	nite�

�D measured data�

In this case only distances from the observer to the object features are given while direc�

tions are unknown� An example for such a case is a hand held range 	nder� Considering

the same spherical coordinates �r� �� �� as in Figure ��
 a �D measurement determines

the value of r but leaves the angular coordinates ��� �� undetermined� Integration of a

such measurement is done in a similar fashion as in the perspective projection where in

this case the spherical covariance matrix �r�� is�

�r�� �

�
B� var�r� � �

� ���� �
� � ����

�
CA �

Note that the values ���� in this covariance matrix are associated with angles� These

values are the variance of a uniform distribution over ���� ��� In this case the values
�v� �w
 required in the calculations
 are estimated according to the previous transformation

estimate �step k����

u� � �T k���u�

�v � u�
x�u

�
z � �w � u�

y�u
�
z �
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��� Optimal Transformation and its Uncertainty

The uncertainty generated from the raw input�data is propagated into uncertainty of

the solution �i�e� estimated �D location�� Solution uncertainty denotes the belief asso�

ciated with the estimated location of the object� This uncertainty will be represented

by a covariance matrix whose dimension is equal to the degrees of freedom of the trans�

formation �� for a rigid ��D transformation�� The optimal estimate will be that which

minimizes this covariance matrix �or rather minimizes its trace�� When representing the

transformation as a � component vector
 the dependence between the estimated rotation

and estimated translation is expressed through the entries in the covariance matrix� This

dependence is not considered in methods where the process of determining the rotation

is separated from the determination of the translation ���
 �
 ��
 ���

The representation of the estimation uncertainty as a covariance matrix has the fol�

lowing advantages�

� It is a compact and e�cient representation of the information contributed by each
feature� Once the data contributed by a feature is fused into the estimation
 that

feature can be eliminated since it is of no further use� All the information is encoded

in the estimation of the transformation and its associated covariance matrix�

� It allows easy parallel or serial fusion of information from di�erent sources and from
di�erent types of measured data�

� Acquiring an additional sensed�feature to be matched
 in order to re	ne the estima�
tion
 can be done using a statistical goodness of 	t test� This test chooses between

possible matches under the rigidity constraint de	ned by the current estimate and

thus expedites the searching process in the possible�matching tree�

� The more synthesized features fused
 the greater the accuracy of the transformation
estimate� The process is such that given a new synthesized feature
 we update the

previous estimation and decrease the associated uncertainty� The measure of un�

certainty allows control over the number of required features� when the uncertainty

is su�ciently small the process can be terminated�
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����� The System De�nition

�� The variables to be estimated�

The representation of the transformation is composed of two components�

� The translation component is expressed by the vector t�

t � �tx� ty� tz�
t �

� The rotation component is described by the quaternion �q �see Appendix B�
�����

�q � �q��q� � �q�� q�i� q�j � q�k� �

The rotation quaternion satis	es the normality constrains� �q�q� � q�� � kqk� � � 

where �q� is the conjugate of �q�

In practice we represent the rotation component by the vector�

s � q

q�

from which the quaternion �q can be reconstructed�

q� �
�p

� � sts
� �q � �q�� q�s� �

The vector s is a convenient representation of the rotational component� in addition

to being minimal �having � parameters� the rotation equation is linear in s as will

be shown later� In order to avoid singularities in the representation when q� � �

we always use two di�erent object�centered coordinate systems
 simultaneously�

Considering these two components
 the parameter vector to be estimated during

the 	ltering process is�

T �

�
s

t

�
�

� The observations�

A model point is represented by a vector ui � �x� y� z�t in an object centered frame

of reference
 where the index i denotes the step of the process at which this feature

is considered �the same model point can be considered many times when there are
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several measurements of this point��

u�
i � �x

�� y�� z��t � is the real position of the point ui in the viewer centered frame

of reference�

�u�
i � is the measured position of the point u

�
i� This measurement is imprecise and

can be represented as�

�u�
i � u�

i � 
i �

where 
i is white noise satisfying�

Ef
ig � �

varf
ig � �i

covf
i� 
tjg � � �i �� j �

�� The measurement model�

A mathematical relationship between the measured vector and the estimated vector

is expressed
 for each feature i
 by a non linear quaternion equation�

�u�
i � �q�ui�q

� ��t � �����

where �ui� �u
�
i��t are quaternions associated with the vectors ui�u

�
i� t respectively�

Given that �q�q� � �
 multiplying Equation ����� by �q yields�

�u�
i�q � �q�ui � �t�q �

Isolating the vector component of this quaternion equation and dividing by q� we

get the matrix equation�

hi�ui�u
�
i�T� ��u�

i � ui� s� �u�
i � ui�� �I�� �s��t � 
 � ����

where s � q

q�
as previously de	ned
 I� is the �� � identity matrix and ��� denotes

the matrix form of a cross product
 i�e�

�v��

�
B� � �vz vy

vz � �vx
�vy vx �

�
CA � �v� u � � �u� v � v � u �
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Notice that according to the de	nition of the measurement noise
 we assume no correla�

tion between the di�erent measurement noise �covf
i� 
jg � � �i �� j�� This assumption

is not always valid� When there is correlation between several measurements
 we may

consider these measurements as a single measurement by grouping the measurement val�

ues into a single vector and by combining their corresponding equations into a single

vector equation�

����� The Estimation Control

The estimation process is composed of an incremental process
 for which at each step

k��
 there exists an estimate �Tk�� �

�
�sk��

�tk��

�
of the transformation T and a covariance

matrix #k�� which represents the �quality� of the estimate �Tk��� Given a new match

�uk� �u�
k� the current estimate is updated to be �T

k with the associated uncertainty #k�

The accuracy of the estimate increases
 as additional matches are fused
 i�e� #k � #k��

�#k�� � #k is nonnegative de	nite�� The process terminates as soon as the uncertainty

satis	es our criterion for accuracy or no additional match can be supplied ����

Fusing the information from a match with the old estimate is performed using the

Extended Kalman filter �E�K�F�� process which is a generalization of theKalman Filter

�K�F�� to non�linear systems ���
 ���� The K�F� equations are given in Section ��� The

transition from step k � � to step k is performed by using a linear approximation of the
equation hk de	ned in ����� Linearization of hk is obtained by taking the 	rst order

Taylor expansion around ��Tk��� �u�
k��

hk�uk�u
�
k�T� � � � hk�uk� �u

�
k�
�Tk��� �

�hk
�u�

k

�u�
k � �u�

k� �
�hk
�T

�T� �Tk��� �����

which yields�

��sk��� �tk���uk� �u�
k � �I�� ��sk�����u�

k� �u�
k�� ���u

�
k�uk��tk���� ���sk��� �I���T �

�����

Equation ����� can be rewritten as a linear equation�

zk � HkT� �k � �����
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where

zk � ��sk��� �tk�� � uk � �u�
k �����

Hk � ���u�
k � uk � �tk���� ���sk��� �I���

�k � �I�� ��sk�����u�
k � �u�

k� �

zk represents the new �measurement�
 Hk is the matrix denoting a linear connection

between the �measurement� and the actual transformation T� Both zk and Hk can be

derived from �u�
k 
 uk 
 �Tk��� The term �k � depicts the noise in the �measurement� zk

and satis	es�

Ef�kg � �

varf�kg � �I�� ��sk�����k�I�� ��sk����t � Wk

covf�k� �t�g � � � k �� � �

The K�F� procedure re	nes the estimate �Tk�� by fusing an additional match �uk� �u
�
k��

The process is of the form�

�Tk � f� �Tk���#k���uk� �u
�
k��k� hk�

obtaining from the K�F� updating equations� Thus
 at each stage k
 there is no need of

retaining any of the previously considered matches� Only the current estimate �Tk�� and

its associated uncertainty #k�� need be retained�

Further accuracy can be achieved in the approximated equation ����� by adding the

higher order terms derived from the Taylor expansion� Only the 	rst and the second

order terms do not vanish when expanding hk� The 	rst order terms have already been

taken into account when Equation ����� was derived
 calculating the higher order terms

which do not vanish gives�

�u�
k � �u�

k�
t ��hk
�u�

k�T
�T� �Tk��� �

�


�T� �Tk���t

��hk
�T�

�T� �Tk��� � �����

�u�
k � �u�

k�� �s� �sk��� � �s� �sk���� �t� �tk��� �

We can calculate the expectation values of these two terms� The left term is zero since

�u�
k � �u�

k� is a white process and the second term can be reconstructed from the co�

variance matrix #k��� The higher order expectation values are subtracted from the

�measurement� zk in Equation ����
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Implementing the K�F� on Equation ����� yields an unbiased estimate of T which is

optimal in the linear minimal variance criterion ��
 i�e� �Tk minimizes

C � �T� �T���#�����T� �T��t �
kX

i��

�zi �HiT�W
��
i �zi �HiT�

t �

In the case where the measurement noise � is a Gaussian process the K�F� gives an

estimate which is also optimal in the sense of maximum�likelihood criterion� In this case


the estimate coincides with the conditional expectation�

�Tk � EfTjf�u�
igi�����kg �

��� Computational Aspects of the Method

����� Stability

There are several important computational problems concerning the K�F and related to

its instability� It is well known that the K�F� process is not stable ���
 page ���� since it

involves matrix inversions which are not necessarily well�posed� This is particularly true

in our case where the measurements are obtained from projections and the eigenvalues of

�k are widely distributed� This increases the condition�number of the inverted matrix


M � Hk#k��Hk ��k making it ill�posed� Furthermore
 the imprecision due to lineariza�

tion of the non�linear equations
 may in�uence the system to give non feasible solutions�

Imprecise linear approximations often occur at the beginning of the process when lin�

earization is about a point which is not su�ciently close to the true solution� In general


most of the instability problems arise at the initial stages of the process �according to

our experience � during the 	rst ��� D��D matches�� The later stages of the process are

stable and converge nicely� Thus
 during the initial stages of the process it is important

to perform careful and exact evaluations even at the cost of additional computations�

There are several strategies that can contribute to the stability of the process�

�� Stable computation�

In order to avoid computational instabilities several variations of the K�F� are used

during the process according to the quality of information accumulated about the
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estimated vector� In general
 in order to reduce the problem of representing a wide

range of values in a limited wordlength and to improve the condition number of M

it is preferable to use the square root filter ����� With this implementation it is

assured that # will be a non�negative matrix and we double the e�ective precision

of its values �due to the limited range of values of the square root matrix�� It can

be shown that the computation using the square root 	lter is numerically stable

�see ���
 page ������

The inverse square root filter ���� uses only the #�� matrix and not #� Thus


in the early stages of the process
 when #�� is not of full rank
 the inverse square

root 	lter should be used� During these stages the state vector is represented as�

�yi � #
��
i �si �

As additional features are considered the matrix #�� becomes well conditioned and

a more reliable estimate of the transformation can be performed� At this stage we

transform the above representation to the standard representation of s by�

�si � #i�yi

and continue the process using the square root 	lter�

� Fusing information from several measurements�

Stability of the process can be increased in its early stages by considering several

measurements at once� This is done by grouping equations of a number of mea�

surements into a single vector equation� The number of features to be grouped

together should be equal or greater to the number of correspondences that con�

strain the matching to have a 	nite set of solutions� This assures that #�� is full

ranked at every step� On the other hand
 it is important not to use too many

measurements at a single step
 as this will deteriorate the linear approximation

of the non�linear equations used by the E�K�F� Therefore
 the optimal number of

measurements to be grouped should be that which is minimal
 yet still assures #��

is full ranked
 i�e�
 three points for �D or perspective projection and four points for

orthographic projection�

�� Choosing a reasonable initial estimate�

The K�F� process assumes an initial estimate �T� with uncertainty #�� This in�
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formation is not necessarily available
 and must be extracted from the data� The

importance of choosing a reasonable estimate is due to the linearization of the

equations fhig � Since the linear approximation of h� is performed around �T�
 an

unreasonable initial estimate may in�uence the approximation so that the process

will not converge to the correct solution�

Following many simulations
 it was found that even unreasonable initial estimations

do converge to the expected solution using local iterative K�F� ���
 page ���� at the

initial stages of the process� The use of local iterations is e�ective in limiting the

negative in�uence of the linear approximation and induces quick convergence �up

to � iterations in our algorithm� to a reasonable estimate� For the same reason


it is also recommended to fuse the �good� measurements �measurements with low

uncertainty� at the early stages of the process� At further stages of the process the

use of local iterations does not signi	cantly improve the transformation estimate

and can be discontinued�

In any case
 it is possible to give a crude estimate using simple techniques �for

example� ��
 ��
 ���� utilizing a small number of matched features� The initial

uncertainty #� is chosen to be a diagonal matrix with very large values
 so that the

in�uence of the initial estimate �T� on the 	nal solution is marginal�

�� Eliminating outlier measurements�

As noted in Section ���
 modeling the measurement noise as a Gaussian process in

the K�F� equations
 is not always exact due to the several possible outlier measure�

ments which may impair the solution� The matching strategy that will be described

in Section ����� can contribute to the extraction of these outlier measurements�

����� Convergence

The convergence of the estimate to the true state vector can be evaluated by studying the

qualitative behavior of the covariance matrix #� The evolution of # during the process

is given by �See Equation �����

�#t����� � H t
t���

��
t��Ht�� � �#

t��� �
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Under the assumption that H and � are constant along time
 we have�

�#���t�

�t
� �#t����� � �#t��� � H t���H

so that�

#�t� � �H t���H���

t

i�e� the convergence of # is at a rate of t�� and thus the squared deviation kT � �Ttk�
also converges like t���

����� Complexity

In our case
 the measurement z and the state vector T are of dimensions three and six

respectively
 thus
 each application of the K�F� fuser takes constant time� As previously

described �Section ����
 the local iterations are equivalent to solving a non�linear system

of equations using Newton iterations which is known for its rapid convergence� In our

case
 up to � iterations were required at the 	rst stages of the process and at further

stages local iterations were unnecessary� Therefore
 it can be said that the number of

local iterations is limited and the complexity for estimating pose
 given k measurements


is O�k�� In our application calculating the pose using ��� measurements required ��

seconds computing time on a Sun � workstation�

��� Additional Advantages

����� The Correspondence Process

Determining the matching between the measurements and the model points �i�e� deter�

mining the measurement interpretation� is a di�cult problem in itself� Up till now
 the

matching was assumed to be given� This assumption is reasonable for problems such as

hypothesis veri	cation where the pose estimation of an object serves to con	rm or reject

an interpretation hypothesis �see ��
 ��
 ����� Likewise
 in problems of motion tracking


it is often assumed that the matching is known when the object location changes little
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from frame to frame since easy tracking of features can be applied� However the as�

sumption that the matching is known
 is not acceptable in all pose estimation problems


particularly when dealing with recognition�

One of the methods suggested to solve the matching problem �
 �
 �� is to evaluate

the pose and the matching simultaneously� i�e� during the iterative process
 the pose

of the object is estimated from a partial interpretation and this pose estimate is used

to eliminate irrelevant interpretations at the next interpretation stage etc� This method

is easily applied to the estimation process we suggested� The use of the K�F� process

enables us to obtain reasonable matches during the estimation process �
 ��� at each

step i
 use the current estimate �Ti and its corresponding con	dence #i to select �good�

matches� The selection is done using goodness of 	t tests�

Given a model�feature uk
 let a candidate for a match be the measurement ��u
�
k��k��

According to this hypothesis
 �hk � hk�uk� �u�
k�
�Tk��� �Equation ���� is an independent

random variable with a normal distribution which satis	es�

Ef�hkg � �

varf�hkg � ��hk
�u�

k

��k�
�hk
�u�

k

�t � �
�hk
�T

�#k���
�hk
�T

�t � Sk �

The �goodness� of 	t between uk and �u�
k is then given by the Mahalanobis distance�

d�uk� �u
�
k� � ��hk�S

��
k �
�hk�

t � g� �Tk�#k� �

where g has a �� distribution with rank�Sk� degrees of freedom� The probability that

the match is correct is inverse to g� If g is greater than a prede	ned small value
 the

candidate match is rejected and another candidate is examined� As the process proceeds


the uncertainty # decreases and then S�� increases
 lowering the number of acceptable

matches�

An example for the matching strategy is given in Figure ���� In this 	gure u�
k denotes

the estimated position of uk based on the transformation �Tk��� The ellipse surrounding

u�
k represents the uncertainty of this estimated position due to the uncertainty of �T

k���

Two measured features �u�
�k�i

and �u�
�k�j

are candidates for a possible match and their

associated uncertainties are represented by the surrounding ellipses� According to the

situation depicted in this 	gure it is clear that �uk� �u
�
�k�j
� is a better match than �uk� �u

�
�k�i
�
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Uk

( T̂k-1
’
Σ k-1 )

kU’
^

^

U’

U’

(k)

(k)

i

j

Figure ���� u�
k is the expected position of the measured

point� �u�
�k�j

and �u�
�k�i

are candidates to be matched with

it� �u�
�k�j

is a better match than �u�
�k�i

even though the latter

is closer to u�
k
 with respect to Euclidean distance�

even though the latter match is of a shorter Euclidean distance� From this example

it can be seen that the uncertainties associated with the measured features and the

uncertainty associated with the transformation estimate supply important information

to the matching process�

In many cases a good match for the model point uk can not be found due to occlusion

or inability to obtain information about certain interest points in the image� In these

cases we synthesize an arti	cial measurement for the model point and associate it with

an in	nite uncertainty so that its in�uence on the rest of the process will be minimal�

����� Parallelization of the Process

Assume that the E�K�F� process was performed on two separate channels a and b
 using

n matches in each channel�

f�u�
igi�����n

E�K�F�� �Ta�#a

f�u�
igi�n������n

E�K�F�� �Tb�#b

Optimal fusion of the n matches will be performed as follows�

�Tab � �Ta �K� �Tb � �Ta�
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#ab � �I �K�#a

where

K � #a�#a � #b�
�� �

This result can be obtained easily from the K�F� equations if we interpret � �Ta�#a� as

an a�priori estimation of T and considered �Tb as a �new measurement� with associated

covariance matrix #b which satis	es Equation ����� such that ��

z � �T � H � I and varf�g � #b �

An extension of this method can fuse estimates obtained from a greater number of chan�

nels �requiring logm steps for m channels�� It is thus possible to decompose the K�F�

process into several channels and then fuse the obtained estimates into a single optimal

solution� This framework can also be used to fuse information from several kinds of

measured primitives
 e�g� lines and planes
 where each channel is dedicated to one kind

of primitive�

Note that in this process
 the initial estimate �T� and the initial uncertainty #�
 are

considered in each of the channels� Thus it must be ensured that #� is very large so that

the accumulated error due to repeated consideration of �T�
 can be neglected� Simulation

results of the parallel process show convergence equivalent to the serial process as will be

elaborated later on�

����� Uncertain Model Features

In this thesis we assume an exact model with no uncertainties
 but a straightforward

extension to the proposed method will allow us to include non�exact model features that

may arise from imprecise modeling of �D objects �for example when modeling faces or

other semi�elastic objects�� In this case linearization of hk�uk�u
�
k�T� �Eq ���� is performed

around ��uk� �u�
k�
�T k��� where �uk is the estimate of the model point with uncertainty

varf�ukg � �k

�The result does not dependent on which of the estimates� Ta or Tb� is chosen to be the a�priori

estimation and which is chosen to be the measurement�
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The linear approximation yields�

hk�uk�u
�
k�T� � � � hk��uk� �u

�
k�
�Tk��� �

�hk
�u�

k

�u�
k � �u�

k� �
�hk
�T

�T� �Tk��� �
�hk
�uk

�uk � �uk�

�����

which yields a linear equation as given in Eq� ��� but where

�k � �I�� ��sk�����u�
k � �u�

k�� �I�� ��sk�����uk � �uk�

and zk�Hk are the same as in Eq� ����

��� Simulation Results

We tested our paradigm by simulating a model as a collection of points� Points of the

model were chosen by randomly sampling the space ��� ������ The model points were

transformed by a transformation T composed of a rotation s and a translation t� The

measurements of the transformed points were contaminated by white Gaussian noise�

The algorithm estimates the transformation T using four types of measurements�

� �D measurements of distances from the observer�

� D measurements of the perspective projection�

� D measurements of the orthographic projection�

� �D measurements�

The algorithm assumes the correspondence between the points of the model and the

measured points is known�

A sample of results obtained by the simulations are presented in graphs ���������

Graphs ��� and ��� show the convergence of the estimates of the rotation �s and the

translation �t as a function of the number of measurements �matched points�� The vertical

ordinate represents the normalized error of the estimate�

terrori �
k�ti � tk
ktk in Graph ���

serrori �
k�si � sk
ksk in Graph ��� �
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In each of these graphs
 three cases are displayed� noise with s�t�d� of ��
 � and �� It

can be seen that the convergence rate of the estimate is quite fast in the initial stages of

the process and corresponds to a decay of rate t�� as expected �see Section ������ The

convergence rate depends on the amount of noise in the measurements
 however
 in all

cases
 following quick initial convergence further improvement of the estimate requires

an increasing number of measurements� When measurements are noise free
 convergence

to the correct solution is immediate ���� matches�� This is true also for measurements

in D as can be seen in graphs ���
���
���� and ���� ���� matches��

Graph ��� depicts the trace of the covariance matrix corresponding to the estimate �T�

EfkT� �Tk�g in comparison with the squared deviation of �T from the true transformation�
kT � �Tk�� The graph shows a high correlation between the estimate quality and the
certainty its covariance matrix describes� This behavior indicates that the algorithm

indeed exploits the supplied information�

Graphs ������� and �������� represent simulations
 similar to those described above


for the cases of orthographic and perspective projections
 respectively� Here too
 con�

vergence is quick and stable� Note
 that in the case of orthographic projection
 the

z�component of the transformation cannot be estimated and remains as a free param�

eter throughout the process� Thus
 the graphs corresponding to this case leave the

z�component out� In the case of perspective projection
 noise is added to the measure�

ments in the image plane� Gaussian noise with s�t�d of ���
 as presented in the graphs

����������
 is equal in our camera con	guration to % of the total size of the body as

observed in the image plane� This corresponds to about four pixels of error in an object

such as in Figure �����

Graphs ��������� represent simulation for integrated measurements� �D
 perspective

projection
 orthographic projection and �D data measurements are fused in a interleaved

series
 one measurement type at time� The graphs depict two cases� One case where the

s�t�d for perspective
 orthographic
 �D and �D measurements are ��
 ����
 ��� and ����

respectively
 and the other where the s�t�d are ���
 ���
 ��� and ���

Graphs ����
���� show some simulation results for the parallel process� �D uncertain

measurements
 contaminated with Gaussian noise of s�t�d of ��
 are divided into �� sets of

measurements
 � measured points each� In the 	rst step the estimated transformations
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were calculated in parallel for each of the �� sets� In the consequent steps fusion was

performed in a binary tree fashion
 were the �� sets were considered as the leaves of the

tree� Each node of the tree represents the result obtained from fusion of the data of its

ancestral leaves� In our case the tree has � levels �log ����

Graphs ����
���� compare the convergence of the serial process to that of the parallel

process
 for the same set of measurements� These graphs show the convergence of the

normalized deviation of the estimated translation and the estimated rotation
 respec�

tively� It can be seen that the parallel process converges to the same solution of the serial

process� Furthermore
 there is good correlation between convergence of the serial process

and the average of the nodes at each level of the tree
 in the parallel process�
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��� Results on Real Images

Our algorithm was applied to measurements taken from D images of an object �un�

der perspective projection�� In the following example we took images of the object at

four di�erent positions� In all images the object was placed on a planar table �see the

� pictures in Figure ����� and the real transformation between every two positions was

measured �i�e� translation distance and angle of rotation�� The algorithm was applied to

each of the given images� The measurements consisted of �� feature points� � features

were D measurements taken from the image coordinate and � features were �D mea�

surements calculated by stereo triangulation� The D measurement noise was assumed

to be a bivariate Gaussian process� The uncertainty of an image point measurement

can be calculated by 	tting a bivariate Gaussian to the local auto�correlation function

of the point image ����� The �D measurement uncertainty can be easily derived from

the image point uncertainty �for further details see ������ According to the results
 the

relative transformations between every two positions were calculated� The comparison

between the real transformation and the constructed transformation as estimated by the

algorithm is given in the following table� As can be seen
 the results obtained by our

algorithm are close to the real solution with a deviation of up to ��� cm in translation

and ���� in rotation�

True Solution Estimated Solution

pose A pose B pose C pose D pose A pose B pose C pose D

pose A ���� cm ���� cm ��� cm ��� cm ���� cm ��� cm
���� ���� ����� ���� ���� �����

pose B ��� cm ���� cm ��� cm ���� cm
����� ����� ����� ����

pose C ���� cm ���� cm
��� ����
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Figure ����� Four images of four di�erent positions of an object that
were analyzed by our method� Top�left� pose A
 top�right� pose B

bottom�left� pose C and bottom�right� pose D�

�� Rigid Objects� Conclusion

In this chapter we presented a new approach to estimating the pose of a rigid object in

space
 where no limitations are imposed on the dimensionality of the measurements and

on the type of projection� The main advantages of the suggested approach are as follows�

�� A uniform formulation for all types of measurements allowing simple and e�cient

fusion of information obtained from di�erent types of sensors�

� Considering the spatial uncertainty of each measurement
 in an explicit manner


enabling optimal exploitation of the available information from the measurements�
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�� Fusing the measurements in an incremental process
 thus easily incorporated into

the matching process which is performed by a pruning�search of the interpretation

tree� Additionally
 the quality of the matching can be estimated by using statistical

tests�

�� The process can easily be parallelized�

�� The process additionally supplies an estimation of the quality of the solution� This

quality estimate can assist in determining the number of measurements required

for estimating the pose at a given precision�

�� Uncertainties can be easily incorporated into the model� Model uncertainties are

an important tool when dealing with object classi	cation into model classes�

Simulations of the described pose estimation process
 showed quick and stable conver�

gence of the estimate to the true solution� Simulations of the parallelized process showed

similar results� Good and stable solutions were also obtained for real models and images�

The proposed paradigm suggests several extensions to be studied�

�� Many studies in computer vision deal with 	nding the motion parameters of an

object from two or more images taken at di�erent time steps� The method suggested

in this chapter can be extended to deal with this motion estimation problem by

considering one of the images as the model of the object having in	nite uncertainty

in the direction of projection� Given a sequence of images
 the uncertainty of the

model can be incrementally reduced
 where every image contributes to improving

the model and increasing its precision� This study is currently in progress �by E�

Piassetsky and M� Werman at the Hebrew University��

� The features considered in this chapter were feature points
 however a general

extension will include additional geometric features such as lines� planes
 cylinders

etc�
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Pose Estimation of Constrained

Models

��� Pose Estimation of Articulated and Constrained

Models

In the previous chapter
 in	nite uncertainty was used to fuse measurements of di�erent

types in order to determine the pose of a rigid object� In this chapter
 we describe the use

of zero uncertainty in dealing with a similar problem of evaluating the pose of articulated

and constrained objects�

An articulated object is an object composed of a set of rigid components connected at

joints which allow certain degrees of freedom� An articulated object having a prismatic

joint and a revolute joint can be seen in Figure ���� Each model joint enforces a constraint

on the position of the body�s components
 thus
 the problem of articulated objects is a

special case of the general study of constrained models� We extend the de	nition of the

problem to models that include other constraints such as co�linearity or co�planarity of

the model points
 angle relationships
 etc� The constraints may also include inequality

constraints such as limited range of distances between points or limited range of angles�

In this section we deal with pose estimation of general constrained models� As in the

previous section
 we deal here with models consisting of a set of feature points
 such as

maximum curvature
 segment endpoints or corners� The measurements taken on these

points are noisy and can be of various types�

��
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prismatic joint

revolute joint

Figure ���� An articulated object composed of rigid compo�
nents connected by two revolute joints and a single prismatic
joint�

��� Formal Description of the Problem

A constrained model M of a �D object consists of a set of rigid components

M � fCigi�����n �

Each component has its own local coordinate system and consists of a set of feature

points whose locations are�

Ci � fui�jgj�����mi
�

ui�j is a � dimensional vector
 representing the location of the j
th point in the ith com�

ponent and is given in the local coordinate system of Ci� A set of points forming a

component is rigid but the collection of components are not rigid�

A measurement M � of an articulated object is represented by a collection of noise con�

taminated measures and their uncertainties�

M � � f��u�
i�j��i�j�gi�����n 	 j�����mi

�

�u�
i�j � is a noise�contaminated measure of the real location�vector u

�
i�j
 associated with the

jth measured point of the ith component� �u�
i�j is represented in a viewer�centered frame

of reference� It is possible to have more than one measurement for a model point�

�i�j � is the covariance matrix depicting the uncertainty in the sensed vector �u�
i�j� We do
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not constrain the dimensionality of the measured data but allow it to be �D
 D or �D


as in the rigid case�

A matching between the model M and the measurement M � is a collection of pairs

of the form

matching � fui�j� ��u
�
i�j��i�j�g �

which represents the correspondence between the model points and the measured points�

For simplicity we denoted a model point and its matched measurement with the same

indices� In the 	rst part of this chapter we assume that the matching is given�

The problem �

Given a modelM a measurementM � and the matching between them
 estimate for each

component Ci a rigid transformation Ti which optimally maps its feature points onto

their measurements
 i�e�
 Ti is the parameter�vector describing the position of the com�

ponent Ci in the scene� However
 the solution fTigi�����n must satisfy a set of constraints

f�k�Tp�Tq� � � �� � �g �

which describe the relationships existing between the components� Each constraint can

involves a single model component
 such as a known location or a known orientation of

the component
 or several components like a revolute or a prismatic joint between two

components
 a known distance between components
 etc� Each constraint is expressed

by an appropriate equation
 for example
 in an articulated constraint two components


Cp and Cq
 are linked at a rotational point whose location is given by u
�
p�i in the local

coordinates of Cp
 and by u�
q�j in the local coordinates of Cq� In such a case the constraint

equation will be�

Tp�up�i� � Tq�uq�j��

where Ti is the transformation function associated with Ti�

As previously mentioned
 the model may also consist of inequality constraints of

the form ��Tp�Tq� � � �� � �� Let us assume
 for the moment
 that the constraints are

restricted to equality constraints
 and we will later describe the direct extension of these

constraints to inequality constraints�
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��� Local Constraints Method

In Chapter  �Section ��� we described two kind of existing methods for estimating the

pose of articulated objects� divide and conquer and parametric methods� In these two

kind of methods there are no direct consideration of constraints in the estimation process�

Either
 the constraints are not considered in the divide and conquer methods or they are

eliminated
 by reducing the number of estimated parameters
 in the parametric methods�

The method suggested in this paper considers both
 measurements and constraints
 in

the estimation process� The pose of the object parts is estimated to conform optimally

with the measurements while satisfying the model constraints� The method we suggest

is a general scheme which overcomes the drawbacks of the other methods�

The idea is to treat both measurements and constraints similarly while varying only

their associated uncertainty� The constraints are considered as perfect �measurements�

with zero uncertainty whereas the measurements themselves �the actual measurements�

have uncertainty greater than zero� In other words the actual measurements are con�

sidered soft constraints whereas the constraints are considered strong� The fusion of the

actual measurements and the constraints during the pose estimation process is performed

using the Kalman 	lter and it is in accord with ����

����� Physical Analogy

In Section ��� we gave some physical intuition described the analogy between the K�F�

solution and the minimum energy solution of a physical system of springs� We extend

this analogy to deal with articulate models� In this case the equivalent physical system is

composed of an object model and a collection of springs �see Figure ���� These springs

attached on one side to the model points and on the other to points in space� Here too


the springs represent the actual measurements where the spring constant denote the un�

certainty of the measurement and the anchor points in space represent the measurement

values� The solution of the physical system is that which brings the system to minimum

energy� This solution is also the solution we wish to achieve and it is the solution we will

elaborate in the following using the K�F� equations�
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Figure ��� An analogous physical system of the estimation
problem� Black points represent model points and gray circles
represent measurements�

��� Solving Constrained Systems Using K�F�

In the following
 we will describe three methods for estimating the pose of constrained

objects� the dynamic method
 the incremental method and the batch method� These

methods all use K�F� tools and are theoretically equivalent� Each method has its ad�

vantages
 making it appropriate for di�erent types of problems� In order to simplify the

description of these methods
 we 	rst present in detail the solution to these methods

for the special case of constrained models consisting of a single point in each compo�

nent� After laying out the principles and mathematical foundations
 we will describe the

extension for general constrained models�
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��� Constrained Objects Having One Point Per Com�

ponent

The simplest case of a constrained object is where each of its components consists of a

single model point� In this case the model is represented by�

M � fCkgi�����n

where each component Ck has a single model point whose location is uk� Without loss

of generality
 we choose this point to be located at the origin of the local coordinates

associated with Ck
 i�e� uk � ��� �� ��t� Measurements of the locations of the model points

are obtained� For simplicity assume n measurements are obtained
 f��u�
i��i�gi�����n
 a sin�

gle measurement for each model point
 represented in the viewer�centered coordinates�

Additionally
 assume in this case that the measurements are �D data� The latter as�

sumption is due to the inability to induce the �D position of an isolated point from a

single D measurement� The transformation of the kth component
 Tk
 is composed only

of the translation vector tk since the rotation part �qk is irrelevant for an isolated point�

Therefore
 the general position vector
 T
 to be estimated in such a case consists of the

translation vectors of all the model components�

T �

�
BBBB�
t�
t�
���
tn

�
CCCCA �

Since the model points are located at the origin of the local coordinates the translation

vector tk � �x�k� y
�
k� z

�
k�

t also describes the position of the kth point in the viewer centered

frame of reference� However
 the evaluated estimation must satisfy a set of constraints�

f�j�T� � �gj�����m �

For the speci	c case of an articulated object the constraints are�

�j�tk� tl� � ktl � tkk� � d��k�l� � �

where d�k�l� represents the constant Euclidean distance between two adjacent points
 uk

and ul
 in the object �see Figure �����
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lt,Ψ (

k l

j kt )

U U

Figure ���� An articulated object� The black points represent
model features and the segments represent constraints between
adjacent points�
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��� The Batch Approach

As stated
 enforcing the model constraints into the pose solution is done by considering

the constraints as additional arti	cial �measurements� having zero uncertainty� The zero

uncertainty of these �measurements� assures that the constraints are satis	ed in the 	nal

solution� The constraint �measurements� will be fused as one big measurement consisting

of all the constraints together �batch��

Fusion of the constraints is performed
 similar to the fusion of actual measurements


using the E�K�F� tool where the evaluated parameters is the vector T� The fusion will

be done by one step of the K�F� fuser followed by local iterations in order to reduce the

in�uence of the linearization� The inputs supplied to the K�F� fuser are the following�

� A priori estimate input�

From the actual measurements we construct an a priori estimate of the evaluated

transformations�

� �T��#�� �

�
�����

�
BBBB�
�u�
�

�u�
�
���
�u�
n

�
CCCCA �

�
BB�
�� �

� � �

� �n

�
CCA
�
				
 � ��u���� �����

which takes into consideration all the actual measurements�

� Measurement input�
From the constraint equations we construct a set of arti	cial perfect �measure�

ments� having zero uncertainty �

� Measurement model input�
The mathematical relationship between the measurements and the evaluated vector

will be a concatenation of all the linear approximations of the constraint equations�

More formally
 assume we are given the constraint �j�T� � �� We regard the measure�

ment �u� �Equation ���� as an initial approximation of T and then linearize �j�T� around

�u� obtaining�

�j�T� � � � �j��u
�� �

��j

�T
�T� �u�� �
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This equation can be rewritten as a linear equation�

zj � HjT ����

where

zj � ��j��u
�� � �

��j

�T
��u�

and Hj �
��j

�T

The matrix Hj is of dimension dim��j���n representing the linear relationship between
zj and T� Note that no random noise is added to this equation
 so zj is a perfect

�measurement�� The rest of the constraints are similarly linearized and appended to

Equation ��
 so that a vector equation is obtained�

z � HT �����

where

z �

�
BBBB�

z�
z�
���
zm

�
CCCCA and H �

�
�����
H�

H�
���

Hm

�
				
 �����

z is the �measurement� vector of size d �
P
dim��j� with an associated uncertainty

matrix of zeroes� H is a d � �n matrix that describes the mathematical relationship
between z and the evaluated vector T� In the case where there is more than a single

measurement per feature point
 these measurements and their uncertainties that were

not already considered in the a priori estimation will be appended to Equation ��� as

well�

Given the inputs described above
 the estimate forT obtained from the K�F� equations

is �����
�T � �T� � �H t�H�H t����z�H �T�� � �����

Multiplying both sides of the equation by H we obtain�

H �T � H �T� � �H�H t��H�H t����z�H �T�� � z

i�e� the obtained solution indeed satis	es the constraints as de	ned in Equation ����
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1

2

3

4
5

Figure ���� An articulated object composed of 	ve single point
components and four articulated constraints�

An example of producing the K�F� input for a simple articulated object similar to that

in Figure ��� is given in Appedix C� Some examples of this articulated object in di�erent

positions are shown in Figure ���� In these examples the measurements are represented

by rectangles having width and length proportional to the s�t�d� of the measurements�

The dotted lines connect each measurement to its associated model point�
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A

B

C
D

Figure ���� Four examples of solutions for simulated articulated object�
Joints are represented by black circle and measurements are represented
by rectangles� The width and the length of each rectangle is proportional
to the s�t�d� of the measurement� The dotted lines connect between a
measurement and its associated model point�
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Adding An Initial Guess

Using the described inputs
 the a priori estimate is based on the actual measurements�

Although these measurements supply a good a priori estimate
 in some cases
 it seems

bene	cial to allow the user a possibility of providing an initial guess based on external

knowledge� This can be helpful in obtaining a better linearization during the 	rst stages

of the process resulting in a more stable computation� Adding an initial guess is easily

obtained by slightly varying the input to the K�F� fuser�

� A priori estimate input� is taken as the a priori estimate supplied by the user and

is associated with in	nite uncertainty�

� �T��#�� �

�
�����

�
BBBB�
�t��
�t��
���
�t�n

�
CCCCA �

�
BB�

 �

� � �

� 


�
CCA
�
				


� Measurement input� is a concatenation of all the actual measurements and all the
constraints �measurements��

��z� covf�zg� �
��

z

�u�

�
�

�
� �
� �

��

where �u�
 � and z are the same as de	ned in Equations ���
 ��� above�

� Measurement model input� is de	ned in the following equation�

�z �

�
H
I

�
T

where H is de	ned in Equation ����

This calculation is general enough to include the case where T� � �u� which is the former

case where the actual measurements are taken as the a priori estimate�
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����� The Batch Approach� Computational Aspects

The Initial Guess

When dealing with the batch K�F� solution to the problem of constrained systems
 one

should note that similar to all other methods of constrained optimization ���� the batch

K�F� method may erroneously converge to a local minima� Thus
 here too the solution

depends on the initial guess
 i�e� on the a priori estimate supplied to the 	lter�

model point

constraint

measurement

a b

c
d

Figure ���� Two examples of a priori estimates �a and c� and
their corresponding solutions �b and d�� Model points are repre�
sented by black circles
 measurements and their uncertainty by
rectangles and distance constraints by bold lines� The dotted
lines connect between a measurement and its associated model
point�

We may obtain some intuition on the character of these local minima from the anal�

ogous physical system of springs described in Section ���� Initializing the springs of the
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physical system to a state close to a local minima may cause the springs system to con�

verge and stabilize at that local minima� The energy of unconstrained system of springs

�a physical system consists only of springs� does not have local minima since the energy

depends quadratically on the deformations of the springs� Therefore local minima are

due to the constraints added to the system and the chances of adding local minima to

the system
 increases with the number of constraints� However
 we emphasize that from

our experience of simulations of constrained systems
 the system does converge to the

global minima when a reasonable a priori estimate is given
 and we 	nd that its basin

of attraction is quite large�

Figure ��� display results of simulations of a constrained system
 for two a priori es�

timates� It can be shown that the a priori estimate input in�uences the 	nal solution of

the system�

Stability

Several problems may prevent the local iterations from converging or cause the solution

to oscillate about the true solution� These problems arise from two main sources which

were mentioned previously�

�� The fusion of perfect measurements with noisy measurements creates an ill�posed

matrix which must be inverted during the 	ltering process� Inversion of such ma�

trices creates computational imprecision during the process�

� The linear approximation of the non linear measurement model �which includes

the constraints� may create imprecision which can prevent convergence� This is

speci	cally true when the a priori estimate is distant from the true solution �since

linearization is done around this a priori estimate��

Regarding the fusion of perfect and noisy measurements
 several techniques are known to

deal with this problem ����� These techniques ensure the separation of perfect and noisy

measurements by transforming the parameter space� From our experience of simulated

constrained systems
 we 	nd that quite often the process oscillates about the true solu�

tion
 speci	cally when the actual measurements are distant from the true measurements�
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An example can be seen in Figure ���� This phenomenon is similar to the oscillations of a

physical system of springs about a stable state in a frictionless environment� We extend

the batch K�F� process to two types of methods which deal e�ciently with this problem�

Method I� Adding a damping force

Incorporating a damping force is a common technique in gradient�descent methods� There

is a known trade�o� between the rate of convergence and the reliability of the conver�

gence
 as a function of the damping strength added to the system� Adding a damping

force to the K�F� process is simple in the case where the a priori estimate input is a

user de	ned initial guess with an associated in	nite uncertainty �Section ����� In this

case
 the a priori estimate �T� is given a 	nite uncertainty rather than an in	nite one�

Additionally
 during the iterative process
 we continuously update the a priori estimate

input by taking the resulting estimate obtained at the previous step�
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after 0 iterations

after 1 iterations

after 2 iterations

after 3 iterations

after 4 iterations

after 5 iterations

after 6 iterations

after 7 iterations

after 8 iterations

after 9 iterations

after 10 iterations

after 11 iterations

after 12 iterations

Figure ���� An example of local oscillations around the true solution� During
the 	rst few iterations the process converges toward the real solution however
in further iterations the process oscillates around the solution but does not
converge to it�
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This method adds a damping force
 in the direction of the a priori estimate� This

is similar to convergence of a physical system containing friction� As the uncertainty

of the a priori estimate is smaller
 the damping force is larger� We should note that

Lowe ��
 ���
 in dealing with pose estimation of articulated objects using minimization

of free parameters
 also includes a damping factor to stabilize the solution� Additionally

he discusses the relation between the strength of the damping force
 and the rate and

assurance of the convergence� This relation was de	ned by Levenberg and Marquardt

���
 ��� and holds in our case as well� When the damping factor is small �i�e� the a priori

uncertainty is large�
 the process is similar to the Newton iteration
 which ensures fast

convergence but a small basin of attraction� As the damping factor increases �smaller a

priori uncertainty�
 the process is more similar to regular gradient�descent methods re�

sulting in decreasing incremental steps but increasing the basin of attraction� Marquardt

���� suggest a simple algorithm for adjusting the damping strength at each step� This

algorithm can be easily implemented in our method�

Method II� Flexibility of the constraints

In principle
 given no constraints the process converges rapidly to the measurement po�

sitions� We can bring a constrained system to a similar situation by assigning in	nite

uncertainty to the constraint �measurements�� Following this idea
 in this method
 we

initially set high uncertainty values to the constraint �measurements� and progressively

decrease the value at each iterative stage� The process continues until uncertainty zero

is reached which is the value that should be associated with the constraint �measure�

ments�� The physical analogy of this paradigm is to slowly change the sti�ness of the

physical joints in the system so that initially the joints are �exible and unrestrained�

As the process continues the joints become less �exible until 	nally become totally rigid

�zero uncertainty�� The system in such a process is in a stable state at each iterative

stage and does not produce oscillations�

Implementing these two methods gave very good results and allowed a smooth and stable

convergence of the process� No signi	cant di�erence was found between the convergence

of these two approaches� Figures ��� and ��� show examples of the convergence of a

simulated constrained system
 according to the above two methods� Figure ��� shows
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after 0 iterations

after 1 iterations

after 2 iterations

after 3 iterations

after 4 iterations

after 5 iterations

after 6 iterations

after 7 iterations

Figure ���� Adding a damping force �method I�� process conver�
gence to the solution and no oscillations occur�

convergence with adding a damping force and Figure ��� shows convergence with �exible

constraints�

Existence of a Solution

Up till now we assumed that a solution exists to the constrained system� However
 this

assumption is not always true� there are cases where the constraints con�ict with one

another and no solution exists� Furthermore
 even when no con�icts arise in the system


some cases can not be solved in the usual method� In order to analyze those cases in

which the system does not have a solution
 let us consider the implementation �described

in Section ���� where the actual measurements are supplied to the 	lter as an a priori
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after 0 iterations

after 1 iterations

after 2 iterations

after 3 iterations

after 4 iterations

after 5 iterations

Figure ���� Changing the constraints to be �exible constraints
�method II�� process convergence to the solution and no oscilla�
tions occur�

estimate input and the constraints are given as �measurements� with zero uncertainty�

In this implementation
 the K�F� equations involve inversion of the matrix� H�H t �see

Eqs� ���� The process will fail when this matrix is singular� Thus
 it is su�cient to study

the singularity cases of this matrix� H is a d��nmatrix
 � is an �n��nmatrix andH�H t

is a d� d matrix� Suppose 	rst that m � �n � d in which case Rank�H� � m
 therefore

also Rank�H�H t� � m � d � But H�H t is a d � d matrix
 therefore it is singular� In

other words
 there is no solution when the system is over�constrained �more constraint

equations than unknowns�� On the other hand
 suppose that d � m but some of the

constraints are depend on other constraints� This means that if constraint linearization

is performed at the true solution
 some rows of H will be linearly dependent on other

rows� In this case H�H t is singular since Rank�H� � d hence Rank�H�H t� � d�

The cases when H�H t can not be inverted can easily be identi	ed in the course of the
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solution process� When this happens
 we can try an additional linearization point
 since

singularity may be the result of a special con	guration of the linearization point� When

this fails and there is a reason to suspect that the constraints are not contradicting we

can attempt to 	nd a maximal set of rows in H which are linearly independent and try

to solve the resulting system�
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Complexity

The complexity of each iteration of the K�F� depends on the dimension d of the mea�

surement vector and on the dimension m � �n of the state vector �Section ����� In our

case m is proportional to the number of model points and d depends on the type of

implementation� If the measurement input consists only of constraint �measurements�

we have d �
P

i dim��i�� In the implementations which add a user de	ned a priori es�

timate to the system the measurement input also include the actual measurements
 and

then d �
P

i dim��i� � dim�T �� However
 the system must not be over�constrained
 soP
i dim��i� � dim�T �� Thus
 d � dim�T � and the upper bound of the complexity of

each iteration is O�n���

The rate of convergence �number of iterations� also depends on the implementations�

If no damping factor is added to the system
 the convergence rate of the system is

equivalent to that of the Newton iterations which is quadratic near the solution �����

When a damping factor is use to stabilize the process
 the rate of convergence decreases

as the strength of the damping increases�

Run time can be reduced if the matrix M � H�H t is not inverted at each iteration�

Instead
 one can use an approximation of M obtained from previous stages� This ap�

proach is appropriate in those implementations where the rate of convergence is low �due

to high damping factor� so the state�vector T 
 and accordingly the matrix M 
 do not

change greatly between iterations �T is the linearization point producing M��

����� The Batch Approach� Discussion

We described the batch approach for solving systems which include probabilistic measure�

ments and constraints� This method is attractive because of its simple implementation

and because of the wide variety of problems which it can solve
 including systems with

cyclic constraints and constraints depending on several model points simultaneously�

The batch method has two main disadvantages�

�� The method must assume that the matching between model points and measure�

ments is given� Thus
 this method is appropriate mainly for pose estimation as a

veri	cation process which follows an interpretation process ���
 �
 ���
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� Complexity of the method is high� The method does not exploit the fact that most

of the constraints are associated with only a few model points and that
 in practice


the constraint matrix H is very sparse�
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��� The Incremental Approach

In the incremental method
 as in the batch method
 the state�vector T is a composition

of all the pose parameters of the model points
 however in this method the actual mea�

surements and the constraint �measurements� are fused sequentially� At each step k
 the

current estimate � �Tk�#k� is updated to be � �Tk���#k��� by fusing a single measurement

��u�
k��k� or a constraint �zk� ��� The sequential fusion of the measurements is possible

due to the assumption that there is no correlation between the noise of di�erent measure�

ments �i�e� � in Eq� ��� is diagonal�� The advantage of the incremental method over the

batch method is the ability of the former to easily incorporate a matching �interpretation�

process into the estimation process
 however
 their complexity is the same�

��	�� The Measurement Interpretation

Till now
 we assumed the matching was given
 however this assumption is not reasonable

in many applications speci	cally in the context of recognition� The incremental process

can solve this problem since the interpretation process and the pose estimation process

can be performed simultaneously in a manner similar to that described for rigid objects�

Thus a partial interpretation can assist in eliminating irrelevant matches�

Suppose we want to match the measurement ��u�
i��i� with the jth model point� From

the current estimate �Tcur�#cur�
 we extract an estimate of the location uj � ��t
cur
j �#cur

j �

and evaluate the Mahanalobis distance between �tcurj and �u�
i�

	 � ��tcurj � �u�
i��#

cur
j � �i�

����tcurj � �u�
i�
t

If 	 is greater than a prede	ned threshold
 the match is rejected� The greater the number

of measurements and constraints fused prior to the match
 the more precise is the estimate

�tcurj and the elimination of irrelevant measurements is more e�ective� Therefore
 there

is great importance
 in this method
 to the order of the points being fused �matched�

since before matching the jth model point
 we would like the system to obtain as much

information as possible on the location estimate �tj so that the match veri	cation is

signi	cant� Additionally
 before fusing a non�linear constraint we would like to obtain as

much information as possible on the pose of the points associated with this constraint�
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The greater the precision of the pose estimate of these points
 the greater the quality

of the linearization of the non�linear constraint equation� Thus
 at each step of the

process the next point to be matched should be one associated with previously matched

points through constraints
 so that previous information can be exploited� The following

algorithm follows this idea�

Denote by �k �k � � � � �m� the constraints of the model and by point��k� the set of

points on which �k depends� The order of fusion of the measurements and the constraints

is obtained from the following algorithm�

�� FusedPoints � �
� ConstList � f��� � � � �mg
�� while ConstList �� � do

�a� for each ��k 	 ConstList s�t� point��k� 	 FusedPoints� do

i� fuse �k and delete �k from ConstList

�b� if there exists �k 	 ConstList s�t� �point��k� � FusedPoints� �� � do
i� fuse �k and delete �k from ConstList

ii� 	nd a set of measurements f�u�
kg that match the set of model points

�point��k�� FusedPoints�

iii� fuse the set of measurements f�u�
kg and add �point��k��FusedPoints�

to FusedPoints

�c� else select an arbitrary �k 	 ConstList and do steps i�iii in �b��

In the case where the constraint �k is non�linear
 the set of matched measurements

�u�
k are used as linearization points during the fusion of �k� Thus if the match was re�

jected
 �k must be relinearized about the new matched measurements and �k must be

fused again�

In the case where a good match for the model point uj can not be found due to

occlusion or inability to obtain information about certain interest points in the image�

In these cases we synthesize an arti	cial measurement for the model point and associate
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it with an in	nite uncertainty so that its in�uence on the rest of the process will be

minimal� This scheme can also be helpful when we want to fuse a constraint �k where

some of its associated points point��k� are unavailable�

��	�� The Incremental Approach� Computational Aspects

The computational process which follows the incremental method
 uses the K�F� fuser at

each step� The local iterations used in the batch method to improve the linear approx�

imations
 is applied in the incremental method as well� Additionally
 the incremental

method applies global iterations �see ����� which continuously repeat the full estimation

process where the linearization of the non�linear equations are performed initially about

the solution obtained at the end of the previous global iteration� The global iterations in

the incremental method have the same e�ect as the local iterations in the batch method


however the former will require fewer iterations since the additional local iterations assist

in the convergence�

Since every fusion of a single measurement requires time complexity of O�n�� �the

dimensionality d of each measurement is constant in this case�
 the complexity of a single

global iteration is
 similar to the batch method
 O�n�� �assuming the number of local

iterations is restricted��
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��� The Dynamic Approach

The dynamic method
 described in this chapter is advantageous in that it has a lower

time complexity and still allows interpretation of the measurement during the estimation

process� However
 the implementation of this method is more complicated than the

previously described methods�

In this method the evaluated vector T is decomposed into its components ftkg where
each position vector tk is evaluated separately� The idea is to consider the position vector

tk as a dynamic vector which changes during time and follows a Markovian like process�

tk  tk��  tk��  � � �

The information on position tk�� obtained from position tk is derived from the constraint

that exists between them�

Initially we describe in detail the �dynamic� solution for a chain�like model and later

on we expand the solution to deal with more general models�

��
�� Dynamic Solution for a Chain Formation Model

A chain model is a model in which every position vector tk appears in exactly two

constraints �with the exception of the two end points��

�k���tk��� tk� � �

�k�tk� tk��� � �

and each constraint �k depends on only two model points tk and tk�� �see Figure ������

In this case we use the dynamic K�F� process for estimating a dynamic parameter

vector� at each step k
 we estimate tk according to�

� The information obtained from the previous position vector tk���

� The constraint �k�� between tk�� and tk�

� The measurements �u�
k of the k

th point�
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U4
U3

U

U

U2

5

1 Ψ3 ( t3 , t 4)

Figure ����� Chain like model� Each point has no more than
two constraints�

The K�F� process for estimating a dynamic parameter vector can be described as a two�

stage�process �see Figure ������ The 	rst stage is a predictor which supplies
 at each

step k
 an a priori estimate of tk
 based on the k � � previous measurements and the
constraints existing between them� This a priori estimate will be denoted �tkjk��� The

predictor additionally supplies the uncertainty associated with �tkjk�� denoted #kjk��� The

second stage is the K�F� fuser which is similar to that described in Section ���� This

stage fuses the measurement �u�
k with the a priori estimate tkjk�� in order to obtain an

updated estimate tkjk and uncertainty #kjk �

The Predictor� Fusing the Constraints

The general K�F� predictor assumes that the dynamics of the evaluated parameters are

given explicitly �e�g� tk � F tk�� �� However
 in our case the a priori estimate of tk is

evaluated using the constraint �k���tk��� tk�� Thus
 the information that the constraint

supplies must be fused at the predictor stage� The prediction process will also be per�

formed using the K�F� fuser as follows�

We regard the measurement �u�
k as an approximation of tk and then linearize �k�� around

��tk��jk��� �u
�
k� obtaining�

��k����tk��jk��� �u
�
k� �

�
��k��

�tk��

�
�tk��jk�� �

�
��k��

�tk

�
�u�
k �

�
��k��

�tk��
�
��k��

�tk

� �
tk��

tk

�
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Figure ����� Kalman 	lter for evaluating dynamic parameters� The
predictor and the fuser�

This equation can be rewritten as a linear equation�

mk � H

�
tk��

tk

�
�����

where

mk � ��k����tk��jk��� �u
�
k� �

�
��k��

�tk��

�
�tk��jk�� �

�
��k��

�tk

�
�u�
k

and H �

�
��k��

�tk��
�
��k��

�tk

�
�

mk is regarded as the measurement input with zero uncertainty and Equation ��� is the

measurement model input� The predictor assumes

�
tk��

tk

�
as the state vector to be

estimated� The a priori estimate input given to the predictor is���
�tk��jk��

�u�
k

�
�

�
#k��jk�� �

� 

��

�
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where �tk��jk�� and #k��jk�� are the estimate and uncertainty obtained at the previous

step for tk��� The uncertainty
 associated with the a priori estimate of tk will eliminate

the in�uence of this input �the measurement �u�
k� in the 	nal solution since it will be

considered again in the fuser stage�

Inserting the a priori estimate and the �measurement� given in Equation ��� into the

K�F� updating equations
 gives an updated estimate for

�
tk��

tk

�
�

��
�t�k��jk��

�t�kjk��

�
�

�
#�
k��jk�� � � �
� � � #�

kjk��

��
� �����

The estimation �t�kjk�� and its uncertainty #
�
kjk�� which appear in Equation ��� are the

output of the predictor and serve as an a priori estimate of tk� This prediction is

produced using only the constraint �k�� and the information obtained from �tk��jk���

The next stage is to fuse the current measurement with the a priori estimate supplied

by the predictor� This will be performed by the fuser�

The Fuser� Fusing the Measurements

Given an a priori estimate of tk from the predictor
 its fusion with the kth measurement

��u�
k��k� is again performed using the K�F� fuser� Since the measurement input is a

measurement of the evaluated vector tk
 the measurement model is simply�

u�
k � Itk

where I is the identity matrix� In the case where several measurements of u�
k are given


we consider them as a single �measurement� which is a concatenation of all the measure�

ments� Similarly
 their relating equations are concatenated into a single vector equation�

The Smoother� Fusing the Future Measurements

We described how to obtain the position tk of the kth model point from the preceding

measurements f�u�
igi�����k where the measurement information propagated through the

constraints� It is obvious that the estimate �tkjk is not the 	nal estimate since subsequent
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measurements f�u�
igi�k�����n also in�uence the estimate of tk� In order to take into con�

sideration all the measurements we use the optimal smoothing �O�S� �see ����� which is

an extension of the K�F� The O�S� consists of two passes �see Figure �����

The 	rst pass �forward�pass� estimates each position vector tk
 starting from t� and end�

1 2 3 4 5

second  pass
first  pass

{t1 | 5,4,3,2} {t2 | 5,4,3}

{t1 | all} {t2 | 5,4,3,2} {t3 | 5,4,3}

{t3 | 5,4}

{t4 | 5,4}

{t4 | 5}

{t5 | all}

{t5 | 1,2,3,4}

{t4 | 1,2,3,4}{t3 | 1,2,3}

{t4 | 1,2,3}{t3 | 1,2}

{t2 | 1,2}

{t2 | 1}

Figure ���� Two passes of the optimal smoother� The pose of an
articulated model of � point�components is evaluated by a forward pass
�bold arrows� and a backward pass �dashed arrows��

ing with tn
 based on the previous measurements as described above� At this stage all

the a priori estimates supplied by the predictor are stored
 i�e� for each tk the prediction

�tforwardkjk�� is stored�

The second pass �backward�pass� performs the same estimation as the 	rst pass
 only

reversing the order of the evaluated vector
 starting from tn and ending with t�� That

is
 for each tk we obtain an a priori estimate �tbackwardkjk�� based on the measurements fol�

lowing tk
 i�e� the measurements f�u�
igi�k�����n� The 	nal estimate of tk is obtained by

fusing the two a priori estimates �from the two passes� with the current measurement

�u�
k� This can also be done using the K�F� fuser� Note
 that the result of fusing the

current measurement with anyone of the two a priori estimates already exists �from the

forward!backward passes� so only one fusion is required
 for example� fusion of �tforwardkjk

with the a priori estimate �tbackwardkjk��

In order to formulate a general algorithm to estimate the pose of an articulated object

we represent the data by a directional graph G � �V�E� whose nodes V represent the

model point and a constraint �k�� is represented by two directional edges �k � �� k� 	 V

and �k� k � �� 	 V �
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The algorithm�

�� perform two passes�

�a� forward pass � pass sequentially over the graph nodes starting from t�

ending with tn and setting for each directional edge �tk��� tk� the estimate
�tforwardkjk�� �

�b� backward pass � pass sequentially over the graph nodes starting from tn

ending with t� and setting for each edge �tk��� tk� the estimate tbackwardkjk�� �

� At the end of the two passes� At each node
 fuse all the estimates entering that
node from the directional edges with the measurement corresponding to that
node�

Formulating the algorithm as given above will help us to formulate the solution for

general structures of constrained objects
 as will be elaborated in Sections ���� and

������

As in the incremental method
 here too
 local and global iterations must be used in

order to improve the linear approximations of the constraint equations� The complexity

of each call to the K�F� fuser during the dynamic method is constant because both the

measurement vector and the state vector have bounded dimensions� Thus the complexity

of the whole algorithm for the chain case is O�n��

An example for applying the two passes for a chain object such as depicted in Figure

��� is given in Figure �����
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forward - four links

original  configuration

forward - one link

forward - two links

forward - three links

backward - one link

backward - two links

backward - three links

backward - four links

forw
ard  pass

backw
ard  pass

Figure ����� Forward pass and backward pass for a chain object� Note
that the links connect to each other only during the backward pass�
The lower right square is the 	nal solution of this con	guration�



Chapter �� Pose Estimation of Constrained Models ���

��
�� Dynamic Solution for a Tree Structured Model

Estimating the pose of a tree structured articulated object is a little more complicated

than the chain�like object� An articulated tree structured model can have more than

two constraints associated with a model point
 however
 it does not contain a cycle of

constraints �see example in Figure ������ Since the chain structure is a particular case of

U1

U2

U3

U4 U5 U6

Figure ����� A tree structured model�

a tree structure we can easily expand the method to deal with this case� Using the same

graph representation G � �V�E� for a tree structured model
 the algorithm solving this

structure is similar to that of a chain model where the two passes are now�

�� Bottom�up � which passes through the sons of a node prior to the node�

� Top�down � which passes through the parent of a node prior to the node�

The propagation of information is performed as follows�

Assume node k has m sons� k�� � � � � km and a single parent node j �Figure ������ Further

consider the measurements of a node k as internal data of that node� During the 	rst

pass
 the information propagates from the leaves up to the root of the tree� at each node

k
 the estimates of tk coming from the son nodes �tupk�k� � � �
�tupk�km are fused together �

�tupk�k�
denotes an estimate for tk produced by the son k� using the information in its sub�tree��

This information is fused with the internal data of the node and an estimate �tupj�k for the

parent node is evaluated and propagated up �see Figure ������
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Km

Uk
^ ’

t̂
up
j,k

k,kt̂
up

m

K

J

K K2K1 i

internal data

Figure ����� Propagation of information during the bottom�up pass�
information propagates from the leaves up to the root of the tree� at
each node k
 the estimates of tk coming from the son nodes ��tupk�k� 

� � � � � �m� are fused together with the internal data of the node and
then propagated an estimate �tupj�k for the parent node is evaluated and
propagated up�

In the second pass
 the information is propagated from the root to the leaves of the tree


where the information obtained from the 	rst pass is now taken into account� Node k

sends an estimate tki of its son�s position by fusing all the information entering node

k but not arriving from node ki
 i�e� the estimates �t
down
k�j ��tupk�k� � � �

�tupk�ki�� �
�tupk�ki�� � � �

�tupk�km �

This information is fused with the internal data and an estimate
 tki�k of the son node

position is obtained �see Figure ������

The propagation of information can be simply described by the following algorithm which

assigns to each directed edge �to� from� in the graph structure
 an estimate of the state

vector of node to as obtained from node from�
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Km
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^ ’

t̂ k,j
down
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t̂
down

i,

k,kt̂
up

k   k

Figure ����� Propagation of information during the top�down pass� in�
formation propagates from the root to the leaves of the tree� Node k
sends an estimate of its son node position tki by fusing all the informa�
tion entering node k but not arriving from node ki
 i�e� the estimates
�tdownk�j ��tupk�k� � � �

�tupk�ki�� �
�tupk�ki�� � � �

�tupk�km � This information is fused with the
internal data and an estimate
 tki�k of the son�s position is obtained and
propagated down�

Propagate �from� to��

�� Collect and fuse all the estimates that enter to node from but do not come
from node to�

� Fuse the estimate from step � with the internal data �measurement� of node
from�

�� Based on the estimate from step  calculate an a priori prediction of the
position of node to and set it to the edge �from� to��

Note that the above description adequately describes both the bottom�up pass and the

top�down pass� It is used in the following general algorithm which gives an estimate for

every node in the tree structure based on all the measurements and all the constraints�

The Algorithm�
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�� Perform the two passes�

�a� Bottom�up pass� traverse the graph nodes starting at the leaves and
ending with the root node� For each node i which is passed
 apply
propagate�i� j� where j is the parent node of i�

�b� Top�down pass� traverse the graph nodes starting from the root and end�
ing at the leaves� For each node i which is passed
 apply Propagate�j� i�
where j is the parent node of i�

� At the end of the two passes� At each node fuse the internal data of the node
with all the estimates entering that node from the directional edges�

It is clear that this algorithm includes the case of a chain model which is a special

case of a tree structure�

The complexity of this algorithm is O�n� by fusing the information properly� This is

done by 	rst calculating
 for each node k
 all the estimates needed for tk in a sequantial

manner� We 	rst calculate the estimates of tk given the information from the son nodes

k�
 k���k�
 k���k� etc� �as in Figures ����
 ����� producing the estimates �tk�k� 
�tk�k���k�


�tk�k���k� etc� respectively� In the same way we calculate all the estimates of tk given the

information from the nodes km
 km��km��
 km��km�� etc� producing the estimates �tk�km 


�tk�km��km�� 
 �tk�km ��km�� etc� The time complexity of this pre�processing is linear in the

number of edges in the tree and thus takes O�n�� After these estimates are calculated
 it

is obvious that each call to Propagate �k� i� takes constant time since it requires at most

two fusions of three entities� The routine Propagate is called O�n� times during the two

passes
 therefore the complexity of the whole argorithm is O�n� as stated� An example

of the information propagation in a tree structure similar to the structure depicted in

Figure ���� is given in Figure �����

��
�� Dynamic Solution for a General Structured Model

In the previous sections we dealt with a limited subset of the constrained models
 namely


those models whose constraints form a tree structure where every constraint is associated
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second  pass
first  pass

654

32

1

{t1 | 2}

{t2 | 1,3,4,5,6}

{t3 | 5}

{t6 | 1,2,3,4,5}

{t3 | 1,2}

{t1 | 3,4,5,6}

{t4 | 1,2,3,5,6}

{t3 | 4}

{t3 | 6}

{t5 | 1,2,3,4,6}

Figure ����� Two passes for a tree structured model� The bottom�
up pass is depicted by the bold arrows and the top�down pass by the
dashed arrows�

with at most two model points� Note that many real�world objects indeed fall in this

category�

In this section we describe the solution for the general constrained model where the

constraints may be associated with three or more model points and where the constraints

form any structure which may include cycles� The general case described here
 also

includes those models where each component consists of more than one point �since the

rigidity of the multi�point�component can be enforced by a set of constraints on the points

of the component�� However
 we will deal with these cases separately
 in Section ����

Denote by �k a model constraint and by Point��k� the model points associated with

this constraint� In order to estimate the pose of the model points
 we build an estimation�

graph & � �'�(� which is de	ned as follows� Every vertex of the graph �i 	 ' represents
a set of model points such that ' is a partition of the model points� Every edge �ij 	 (
in the estimation�graph represents a connection between vertices �i and �j � Every model

constraint is associated either with a vertex or with an edge of the estimation�graph� if

Point��k� � �i then �k is associated with the vertex �i and is de	ned as an internal

constraint� In this case
 �k 	 Const��i� where Const��i� is the set of internal con�
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straints associated with vertex �i� If Point��k� � ��i � �j� then �k is associated with

the edge �ij and is de	ned as a mutual constraint� The set of all mutual constraints

between vertices �i and �j is denoted Const��ij�� An example of a constrained model

and its estimation graph is presented in Figure ����� In this example �� and �
 are

internal constraints and ��
 �� are mutual constraints�

Ψ2

Ψ3

Ψ1

U1
U2

U3

U4

U5

U6

U7

Ψ1

Ψ

Ψ

2

3

Ψ4

Ψ4

U4

model-points + constraints estimation graph

U U

U1 U2 U3

6 7

U5

Figure ����� An example of a constrained model and its estimation
graph� �� and �
 are internal constraints and ��
 �� are mutual con�
straints� z

The construction of the estimation�graph will enforce each constraint to be de	ned as

either an internal constraint or a mutual constraint and no constraint will be associated

with more than two vertices �i�e� ��k ��i� �j s�t� P oint��k� � ��i � �j��� For simplicity


we describe the construction of the estimation graph as a two stage process� The 	rst

stage de	nes the vertices of the graph and the second stage introduces the constraints�

The division into two stages is for didactic purposes
 in practice
 the graph is constructed

in a single stage�
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Construction of the Estimation	Graph

First Stage � De	ning the vertices of the graph�

This stage requires two passes over the constraints of the model� In the 	rst pass an

initial de	nition of the vertices is constructed as follows�

�� ' � � � V � �
� For each constraint �i do

�a� � � Point��i�� V

�b� if � �� � then
i� add � as a new vertex of '

ii� V � V � �

The second pass merges vertices so that no constraint will depend on more than two

vertices of the graph �this pass can use algorithms for construction of equivalence classes

�����

�� For each constraint �i do

�a� if there is more than two vertices� �i� � �i�� � � � � �ik

s�t� Point��i� � �ij �� � then
exchange �i� � �i� � � � � � �ik with a new vertex �new where
�new � point��i�� � point��i�� � � � � point��ik � �

At the end of this pass
 no model constraint is associated with more than two graph

vertices� The described two passes are a simple suggestion for the arrangement of the

model points in the vertices graph� This scheme is not unique and some heuristics can

be used in order to enhance the arrangement �for example
 some vertices can be merged

to �i instead to �new so that �new and �i will contain about the same number of points��

Second Stage � Introducing the constraints into the graph�
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At this stage the constraints are associated with their graph vertices!edges�

�� ( � �
� For each constraint �i do

�a� if ��j s�t� P oint��i� � �j then add �i to const��j�

�b� else

i� 	nd �k� �j s�t� Point��i� � ��k � �j�

ii� add �kj to (

iii� add �i to const��kj�

since the number of constraints is less than �n �as discussed in Section ������
 the complex�

ity of constructing the estimation�graph is almost linear in n
 the same as the complexity

of the equivalence classes algorithm ����

Evaluation of the Estimation	Graph

In the case where the estimation�graph forms a tree
 the evaluation is similar to that

described in Section ����� Every vertex �k of the graph is considered a single point in

� � k�kk dimensional space and the state�vector associated with it is��
BB�
t�k
t�k
���

�
CCA � �tk

where tik is the position vector of a model point in �k� The internal�data of �k is the

internal estimate of �tk� This estimate will be evaluated from the measurements associated

with �tk and from the internal constraints of �k� The internal estimate is calculated using

the iterative method similar to that described in Section ���� The resulting internal�

estimation is denoted ��tintk �#int
k �� Following this initial stage
 the estimation of all state�

vectors in the graph is evaluated according to the algorithm for a tree�structured model

�as described in Section ������
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In the case where the estimation�graph contains cycles of constraints
 one of the

following two strategies can be followed�

�� Breaking the constraint cycle�

W�l�o�g� assume that �k����tk����tk� is a mutual constraint that is part of a con�

straint cycle and is the only one in Const��k���k�� The information supplied by

�k�� can be fused with the estimates of �tk and of �tk�� using a method similar to

that described for the predictor �Section ������ as follows�

The state�vector is taken as� �
�tk��

�tk

�

and the a priori estimate input is taken as���
�tintk��
�tintk

�
�

�
#int
k�� �
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��

where ��tintk���#
int
k��� and ��t

int
k �#int

k � are the internal estimates of �k�� and �k respec�

tively�

The measurement model input is equivalent to that given in Eq���� where mk will

be considered as the measurement input with zero uncertainty�

The result obtained from the K�F� fuser is an estimate of �tk�� and �tk based on the

internal estimates �tintk�� and �t
int
k of vertices �k�� and �k and based on the constraints

between them� In the rest of the process
 these estimates will be taken instead

of the internal estimates of �k�� and �k� After fusing the constraint �k�� we

disconnect the graph edge �k���k associated with this constraint� We follow this

strategy until all cycles of constraints are broken and we obtain a tree structured

graph� Following this stage we continue the estimation as elaborated for a tree

structured model� Using this strategy
 the �measurement� �k�� is considered twice�

through the information �owing from �tk�� and through the information �owing from

�tk� However
 considering the constraint �measurement� twice will not a�ect the

	nal solution since the uncertainty of this �measurement� is zero and its weight

relative to the other measurements is
 in any case
 in	nite�

� Reduction of a cycle to a single node�

In this method
 all vertices in the cycle are combined into a single vertex� The
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method of combining these vertices is similar to the method described for building

the estimation�graph where we consider the constraint�cycle as a single constraint

associated with all vertices in the cycle� All cycles in the graph are similarly reduced

until a tree�structure is obtained� An example of this reduction process is shown

in Figure ����� This process may result in a reduction of the estimation�graph into

a single vertex
 in which case the dynamic method of pose estimation is reduced to

the batch method�
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Figure ����� Reducing an estimation graph and obtaining an estima�
tion tree� Every constraint�cycle in the graph is considered as a single
constraint associated with all vertices in the cycle� Thus U�� U�� U
� U�

are merged into a single vertex and the constraints ��� ��� �
� �� are
associated with it�

Breaking all the cycles in a graph is done by calculating a spanning tree of the graph

and deleting all the extreneous edges as described above� Since the number of constraints

does not exceed �n �where n is the number of model points�
 the initial estimation graph

has no more than �n edges� Thus
 the complexity of any one of the two methods is

O�n log n� which is the complexity of 	nding a spanning tree in the graph�
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��
�� The Dynamic Approach� Computational Aspects

The complexity of a single global iteration of the dynamic method
 depends on the struc�

ture of the estimation�tree� In the extreme case where the tree forms a chain�structure

and every node represents a single model point
 the complexity is O�n�� In the other

extreme case
 where the estimation�tree is reduced to a single node
 the complexity is

similar to that of the batch method and is O�n�� �though this case is quite rare��

The complexity of constructing the estimation�graph and reducing the constraint cycles


is of order O�n log n� and so
 generally
 does not impose heavily on the overall computa�

tion time� Moreover
 the estimation�tree can be constructed o��line
 i�e� once for each

model
 prior to the beginning of the estimation process�

Thus
 in most cases
 the dynamic solution requires less computation time than other

methods and is more economic both in the number of global iterations and in the number

of operations in each iteration� We note that the improvement in the complexity is due

to a better exploitation of the sparsity of the matrix H �Eq� ����� As the matrix H

becomes less sparse
 the complexity of the dynamic solution increases and approaches

that of the batch method� More precisely
 as the estimation�graph has more nodes
 and

as the valency of the graph decreases
 the complexity of the process approaches O�n��

��
�� The Measurement Interpretation

As in the iterativemethod
 here too
 the interpretation process and the estimation process

can be performed simultaneously�

In the 	rst pass �bottom�up�
 the a priori estimate obtained for the state�vector of

node �k
 takes into account all measurements and constraints associated with the subtree

of �k� This estimate is used to eliminate irrelevant matches of the model points in �k� The

rejection and acceptance of a match is performed as described for the iterative method


however the state vector is taken as �tk rather than T �

In the second pass �top�down�
 following the fusion of all information for the estima�

tion of �tk and prior to the estimation of the �k�subtree nodes
 we perform a goodness�of�	t

test between the matched measurements and the 	nal estimates of the model points of

�k� This test will serve as the veri	cation process�
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Thus
 the interpretation process is performed during the 	rst pass �bottom�up� and

the veri	cation process is performed during the second pass �top�down��

�� Constrained Objects HavingMultiple�Point Com�

ponents

We easily extend the solution for objects having one point per component to objects

that have multiple�point components� For every component Ck
 one must estimate the

transformation �Tk which describes the pose of the component� The transformation Tk

is composed of a quaternion �qk and a translation vector tk�

The process of evaluating all the transformations fTig is similar to the three methods
previously described for models having a single point per component as following�

�� Using the batch paradigm � The solution consists of two computational phases� In

the 	rst phase the transformation �Tk is estimated for each component Ck using

the measurements associated with the points belonging to this component� In

this phase the constraints existing between the components are not taken into

consideration and the position of each component is estimated as if it was the

whole object� The pose estimation of each component is computed as explained in

Chapter �� At the end of the 	rst phase we have a set of evaluated transformations

and their uncertainties�
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In the second phase we consider � �T�#� as an a priori estimation for the transfor�

mations and we consider the set of constraints as the arti	cial �measurements��

Fusing the constraint �measurements� with the a priori estimations is done as in

the single�point component case�

� Using the incremental paradigm � The state�vector in this method is T where the

information obtained from a measurement is fused as described in Chapter � for a



Chapter �� Pose Estimation of Constrained Models ���

rigid object
 and the information obtained from a constraint is fused as described

in Section ���� The order in which the constraints are fused
 is obtained using the

algorithm given in Section ����� where the components fCkg take the place of the
model points� The order described by the algorithm
 ensures that prior to fusion of

a point in any component
 all available information from neighboring components

and mutual constraints have been exploited in order to assist in rejecting irrelevant

matches�

�� Using the dynamic method � In this method the estimation�graph is given again as

a graph & � �'�(� where each node represents a set of components �rather than

model points� and every edge �i�j 	 ( represents a constraint between components
in �i and components in �j � For each node �k
 the state�vector to be estimated is

a concatenation of the transformations of all components in �k�

�Tk �

�
BB�
T�

k

T�
k
���

�
CCA

The algorithm and the order of fusion of the constraints and measurements
 follow

the description given for the dynamic method �Section ������ but
 in this case
 com�

ponents are taken instead of points� The fusion of internal information coming from

measurements is the fusion of all measurements associated with the components of

the node� This fusion is performed as described for rigid objects �Chapter ���

In practice
 most constrained objects are composed of a small number of components


each with a relatively large number of model points and each constraint depends on

only two components� The estimation�graph of such objects will have nodes representing

a single model component� The dynamic method is most appropriate and e�cient for

evaluating the pose of these models�

Further
 in the case where every component contains several model points
 there is

no need to restrict the measurements to �D since the pose of the component can be

estimated from projections �D or �D� as described in Chapter ��



�� Chapter �� Pose Estimation of Constrained Models

���� Inequality Constraints

Inequality constraints appear in pose estimation mainly in context of recognition� These

constraints assist in rejection of inconsistent interpretations that contradict the inequal�

ities� Examples of such inequality constraints can be found in articulated models such

as scissors and robot arms that are limited in the range of feasible angles between parts�

Another example can be found in the work by Grimson ��
 �� where points are restricted

to match segments of the model by limited the range of distances between points�

The inequality constraints can be reduced to equality constraints by rewriting a given

constraint�

g�x� � �
as an equality constraint

g�x�� �� � �

where � is a new variable that is added to the state vector and is estimated during the

	ltering process� Thus
 every inequality constraint increases by one the dimensionality

of the vector to be estimated� The initial a priori uncertainty associated with the pa�

rameter � is in	nite�

���� Results

������ Simulated Data

We applied our method to estimate the pose of a D constrained model consisting of

single point components� We used the parametric modeler described in ���� which we

developed based on our techniques� The modeler enables the de	nition of constraints

graphs using the following types of constraints� co�linearity of three points
 a particular

distance between two points
 a particular distance between a point and a 	xed location


constraining a point to lie on a 	xed line and constraining a point to be on one side of

a 	xed line �inequality constraint�� It was demonstrated that the algorithm is capable
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of computing solutions to complex models� Not surprisingly
 all three of the presented

techniques gave the same solution for di�erent model con	gurations�

The following 	gures were created using this software� In the 	gures
 model points

and constraints are represented as shown in Figure ���� Figure ��� shows a tree struc�

a

b

c

d
e

f

Figure ���� An example of measurements and constraints on three
model points� The model points to be positioned are shown as full
circles� A measurement �a� is described as a rectangle positioned at the
measurement location and having width and length proportional to the
s�t�d� of the measurement� A �xed location distance constraint �d� is
visualized by a line segment with one endpoint at the 	xed location and
the other connected to the constrained point� An inter�point distance

constraint �c� is visualized by a line segment connecting the constrained
points� A three points co�linearity constraint �b� is shown by a 	xed
length line segment connected on both its ends and its middle to the
constrained points� A point on right of line constraint �e� is shown by
an arrow headed line segment connected to a model point� A point on

line constraint �f� is shown by a double headed arrow line connected to
a model point�
The connections between constraints and associated model points
 are
marked by dashed lines�

ture model having � distance constraints� These 	gures display the resulting pose of the

model
 given di�erent measurements� As can be seen
 the model constraints are conserved

independent of the measurement location and variance� Figure �� shows two examples
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Figure ���� A tree structured model having � distance constraints�
These 	gures display the resulting pose of the model
 given di�erent
measurements� As can be seen
 the model constraints are conserved
independent of the measurement location and variance�

of constrained models having a general graph structure �including a circle of constraints�

with their solutions� An example of a system containing inequality constraints is shown

in Figure ���� In these cases model points are assumed to be on the right of a certain

arrow headed line� Figure ��� shows more complex examples which include inequality

constraints�

In order to con	rm the validity of the results
 we applied the suggested methods to

several simple examples containing only two degrees of freedom� The obtained results

were compared to energy maps describing the energy of the analogous physical systems�

Figures ��� and ��� show two examples of constrained objects having two degrees of

freedom denoted � and �� The energy maps corresponding to these examples describe
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Figure ��� Two examples of constrained models having a circle of
constraints� The initial guess �left� and the 	nal solution �right��

the energy of the system for every �� � pair �Figures ��� and ��� at the bottom�� The

displays show that the solution obtained by the suggested method �marked as X in the

energy map� indeed corresponds to the minimum energy solution�
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b d

a c

Figure ���� Four examples of an object having the same measurement
con	guration with di�erent inequality constraints� A model point that
is connected to an arrow�headed line �with a dashed line� is constrained
to be to the right of this arrow� It can be seen that the arrow constraint
�pushes� the model point upward in Figures b and d� When the in�
equality constraint is not in con�ict with the apriori solution
 the 	nal
solution is not in�uenced by this constraint �Figures a and c��
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a2

b1 b2

c1 c2

d1 d2

a1

Figure ���� Some examples of articulated constrained models including inequal�
ity constraints� Four examples are shown
 the original input �measurements

constraints and model points� are shown on the left and the solution is shown
on the right�
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Figure ���� Two cases �a and b� of a constrained model with two degrees of freedom
�denoted � and ��� a�� b� � the initial guess of the solution� a�� b� � the 	nal solution� The
energy maps corresponding to each case is shown at the bottom� White values denote
low energy of the system� The black crosses mark the �� � corresponding to the 	nal
solution of a�� b�� It is seen that the 	nal solution is indeed correspond to the minimum
energy�
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Figure ���� Two cases �a and b� of a constrained model with two degrees of freedom
�denoted � and ��� a�� b� � the initial guess of the solution� a�� b� � the 	nal solution� The
energy maps corresponding to each case is shown at the bottom� White values denote
low energy of the system� The black crosses mark the �� � corresponding to the 	nal
solution of a�� b�� It is seen that the 	nal solution is indeed correspond to the minimum
energy�
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������ Real Image Data

We applied our method to estimate the position of a real articulated �D object from

D images� The articulated model used
 is a desk lamp shown in Figure ���
 having

� degrees of freedom� We consider the lamp model as a ��point model �as shown in

Figure ���� and we included the following constraints into the model�

� constant distance constraints between couples of points in the model �for example
points �� and ���

� parallel constraints between  pairs of points �between points � and �� and points
�� and ����

� co�planar constraints between � or more points �points ��
�
�� and � are con�
strained to be co�planar��
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Figure ���� A schematic diagram of a lamp model having �
points�

Measurements of the �D location of the points and the measurement uncertainty were

obtained from stereo image pairs� This data is noisy due to digitization
 inconsistent
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lighting and imprecise feature matching� The uncertainty due to noise were modeled

according to the auto�correlation of the image features ����� We estimated the pose of

the lamp components from the noisy �D measurements and the constraints using our

technique� The evaluated vector is a � � � dimensional location vector composed of the
� locations of the model points� Figures ���a and ���b show  examples of lamp images

having  di�erent positions� Figures ���c and ���d show the corresponding results as

synthetic images created from the estimated location vector� As can be seen
 there is

high correlation between the real model location and the synthesized reconstruction�

a� b�

c� d�

Figure ���� a�b� Images of a desk lamp at di�erent positions�
c�d� The corresponding result shown as a synthetic image cre�
ated from the estimated location vector�
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Additionally
 the angles �� and �� �shown in Figure ���� were physically measured

in several positions of the lamp� These values were also extracted from the pose estimate

obtained with our method� The real values and the constructed values for four typical

examples are compared in the following table�

pose A pose B pose C pose D
Real �� ���� ��� ���� ���
Values �� ���� ����� ���� ����

Reconstructed Values �� �� ���� ���� ���
Without Constraints �� ���� ����� ��� ����

Reconstructed Values �� ���� ��� ���� ���
With Constraints �� ���� ���� ���� ����

The table values show the improvement in the reconstructed angle values when the fusion

includes the constraints� The di�erence between the real angle values and the recon�

structed values decreases when fusing the constraints� The s�t�d of these di�erences is

��� for the reconstruction without fusing the constraints and ���� for the reconstruction

with constraint fusion�

The importance of propagating the pose information of each component to its neigh�

bor component
 is shown in Figures ��� and ����� Figure ��� shows several views of

a synthesized lamp reconstructed only from the �D measurements taken on the lamp

shown in Figure ���b� Figure ���� shows the same views after mutual information was

propagated between the components through the constraints� The improvement is sig�

ni	cant
 as demonstrated�

Figure ���� shows a limited part of the interpretation tree �I�T�� which is constructed

for the desk lamp interpretation� This I�T� is used for the matching process as described

in Section ������ Each node on the kth level of this I�T� represents a possible matching

between the kth model point
 as numbered in Figure ���
 and some particular measured

point� The measurements are numbered according to their real correspondence �i�e� the

true match of the kth measured point in the kthmodel point�� The score of each match is
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a� b� c�

d� e�

Figure ���� Several views of a synthesized lamp reconstructed
from the �D measurements only�

a�

b� c�

d� e�

Figure ����� Several views of a synthesized lamp reconstructed
from the �D measurements and model constraints�

shown at the appropriate node where the value is the Mahalanobis distance 	 calculated
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using the folmula given is Section ������ For each level in the I�T� we show the three best

scored nodes� The model constraints are fused during the parsing of the I�T� as described

by the algorithm in Section ������ The distance constraints between model points k and

j �denoted by dist�k� j�� are shown in the 	gure at the level at which they are fused�

As can be seen the score of the correct matches are signi	cally lower than the erroneous

matches�
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Figure ����� Results of the matching algorithm for the lamp model� A section
of the pruned matching tree is displayed� Every level of the tree corresponds to
one model point
 and each node at a particulal level correspond to a possible
match between the model point and a measured point� The score of each match
is shown at the node where the value is the Mahalanobis distance of this match�
For each level in the interpretation tree the three best scored nodes are shown�
The distantce constraints �denoted by dist�k� j�� are shown at the level at which
they are fused�
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���� Constrained Objects� Conclusion

In this chapter we described three methods for estimating the pose of the components of

a constrained model� The constraints are general and can be associated with any number

of di�erent parts of the model� The solution obtained by each of the three methods is

optimal under the minimum variance criterion� Thus
 these three methods give the same

	nal solution� The validity of the framework was shown on real and simulated images�

The suggested method has several advantages over the previous methods�

�� In any pose estimation method
 exploiting the information supplied by the measure�

ment requires a de	nition of the functional dependence between the measurement

and the estimated parameters� In the parametric methods �see Section ���
 this

dependence is not simple since it must include all the parameters on which the

measurement depends� Additionally
 the order of the nonlinearity of the depen�

dence equations increases with the number of parameters� In our method
 the

functional dependence includes only the local parameters �i�e� only the parameters

that de	ne the transformation of the measured component� since the dependence

of the measurement on other parameters is expressed through the constraints of the

model� This local dependence is simply de	ned and is not as highly nonlinear as

obtained by the parametric methods� Additionally
 there is no need to reduce the

constrained parameter space into a set of free parameters �as is performed in the

parametric methods�
 thus the de	nition of the set of parameters to be estimated


is simple�

� The information obtained on the position of a given component is propagated to

all other components of the model through the constraints between them� Thus

the estimated pose of a certain component takes into consideration all the existing

measurements and all the de	ned constraints �this is not true in the divide and

conquer methods��

�� The existing methods of pose estimation of constrained models
 deal with artic�

ulated objects and with constraints that are due to prismatic or revolute joints

between the model components� In our method we are not limited to any type
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of constraints and can deal with all types of constraints including co�linearity


co�planarity
 constant distance
 constant angle
 etc� Additionally
 we deal with

inequality constraints such as limited range of distances between points or limited

range of angles�

�� The suggested solution uses K�F� tools and so includes the advantages associated

with the K�F� such as explicitly dealing with the measurement uncertainty
 simple

updating of the solution given additional measurements
 easy parallelization
 and

the possibility of using an e�cient matching strategy�

Although we presented several strategies for 	nding an correspondence of the mea�

surements
 we concentrated
 in this dissertation
 on the problem of pose estimation of

model components and did not give rigorous discussion nor implementation of the inter�

pretation problem� Though both pose and correspondence problems are interlinked
 we

dealt with the problem of pose estimation separately in order to develop a rigorous and

e�cient technique for solving the problem�

The paradigm discussed in this work can be extended in several directions which were

not discussed in this work�

� Complex primitives � We described the method for models composed of feature
points� The method described can be extended to deal with models consisting of

more complex primitives such as segments
 lines
 planes
 etc� For every primitive

type
 one must de	ne the set of parameters describing the position of the primitive

and one must de	ne the relation between the uncertainty of these parameters and

the uncertainty of the measurements� Such an extension of our method is bene	cial

since measuring complex primitives contributes more information on the pose of

the component
 than measuring feature points�

� Flexible objects � The constraints we dealt with in this work were de	ned as �strict�
constraints
 i�e� �measurements� with zero uncertainty� Associating values greater

than zero with the uncertainty of the constraint �measurements�
 will relax the

strictness of the constraints and they will become �soft� constraints� This approach

can be used in estimating the pose of elastic objects �such as rubber objects� or
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objects with imprecise models� Imprecision in the model can arise from lack of

knowledge on the model or when de	ning a general model representing a class of

objects �such as a general model for a human skeleton��

� Hyerarchical models � In many cases it is convenient to describe the object model
hierarchically
 where primitives at higher levels represent global and prominent

features and at lower levels represent features which are more local in nature� The

hierarchy is characterized by the dependence of the primitives in the model on the

primitives at higher levels� For example
 the position of the eyes will be described

in relation to the position of the head
 and the position of the head in relation to the

position of the body� Hierarchical description of objects has been widely dealt with

in the literature ���
 ��� The hierarchical description of an object can reduce the

complexity of estimating its pose and thus its detection� global features described

at higher model levels are easier to synthesize and they supply a rough estimate

of the pose of the object� This estimate will assist in reducing the search space of

the primitives de	ned at lower model levels� Fusion of information from di�erent

hierarchical levels and de	nition of the search space of lower level primitives based

on high level information
 can be performed similar to the method described in

this work for evaluating pose of articulated objects with a tree�like structure� The

analogy is in that the relationships between primitives at di�erent levels can be

considered as mutual constraints�

We extended and implemented the ideas developed in this thesis in the directions

described below�These implementations were not described in the thesis body
 beeing

out of context
 but we brie�y review them here�

� Application to keyframe animation and inverse kinematics � Keyframe animation
deals with automatic generation of intermediate frames �denoted �inbetween� frames�

based on a set of given key�frames� Classical approaches to generating inbetween�

frames use linear interpolation of some control points in the key frames ����� This

approach fails when implemented on frames including articulated objects since the

interpolation does not necessarily conserve the object constraints ���� �see example

in Figure �����
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time
initial frameinterpolated framefinal frame

Figure ���� Linear interpolation of key frames does not conserve arm length�

The proposed method to solve this problem is to add uncertain �virtual measure�

ments� to the control points in the key�frames� The interpolation will be performed

on these virtual measurements rather than on the control points� The interpolated

measurements will be used to position the inbetween�frame objects using the pose

estimation method� Creating inbetween�frames
 with this method
 conserves the

constraints of the semi�rigid objects� The smoothness of the object motion can

be achieved by applying an additional dynamic Kalman 	lter process along the

interpolated frames which acts as a damping force�

An example of an animation sequence is shown in Figure ����� The model to be

animated consists of three control points �marked as gray circles� having � con�

straints beteen them� the two control points in the piston are constrained to lie

on a horizontal line
 the distance between them is constrained to be constant
 the

distance between the control point on the wheel and the middle control point is

also constrained to be constant and the control point on the wheel is constrained

to be at a constant distance from the center of the wheel� �Virtual measure�

ments� are associated with each control point in the 	rst �Figure ����a� and last

�Figure ����h� frames of the sequence� The �virtual measurements� �marked as

squares� are linearly interpolated between the 	rst and last frame and the control

points are positioned accordingly using the pose estimation method� Using �virtual

measurements�
 the constraints of the system are conserved� For example the �vir�

tual measurement� located on the wheel is an interpolation point �thus it moves

linearly between frames� whereas the associated control point rotates around the
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wheel
 conserving the constraint of constant distance from the center of the wheel�

a� e�

b� f�

c� g�

d� h�

Figure ����� An example of an animation sequence using �virtual mea�
surements� �see text�� The control points are marked as gray circles

and the �virtual measurements� are marked as squares� Using �virtual
measurements�
 the constraints of the system are conserved�

The animation problem is similar to the important problem of inverse kinematics

in the area of robotics ����� Given an initial and 	nal position of the gripper of a

robot arm
 the aim is to 	nd the motion of each robot component that will bring

the gripper smoothly from initial to 	nal position� This motion must satisfy the

constraints de	ned by the mechanics of the robot arm� The approach we suggest to

solve this problem follows the solution to the animation problem
 as proposed above�



Chapter �� Pose Estimation of Constrained Models ���

In this solution we set a small uncertainty to the virtual measurement associated

with the gripper and large uncertainty to the virtual measurements associated with

the other links� Therefore
 the gripper will retain the smooth trajectory whereas

the other links will relocate so that they follow a path of minimum change from

one time frame to the next�

� Application to parametric modeling � Parametric design ���� is a paradigm in which
the free parameters of a model are not determined directly by the designer� rather


a set of constraints �relations� is de	ned over parameters
 and the system automat�

ically computes the degrees of freedom and the free parameters� Parametric design

is one of the most important development in mechanical computer aided design in

the last few years and is commercially successful ����� However
 current parametric

system require full and exact speci	cation of the parameter constraints� Under�

and over�constrained models are easy to produce
 and manual correction of these

is time consuming and error prone� Current parametric systems therefore cause

over�speci	cation and over�work�

Using the proposed paradigmwe suggest a design method we call relaxed parametric

design� The method provides the designer with the capability of expressing soft

constraints
 constraints which do not have to be exactly met� Soft constraints

are used whenever the designer wishes to express a general decision or guideline


avoiding over�speci	cation� We implemented a parametric modeler based on the

proposed paradigm� This work was published is �����
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Appendix A

Probability Theory� Background

For every random variable x with a continuous distribution
 there exists a Probability

Distribution Function �p�d�f�� f�x� de	ned on �� f�x�dx is the probability that the

variable x lies in the interval �x� x� dx�
 thusZ �

��
f�x�dx � �

Similarly for a vector of random variables x � �x�� x�� � � ��t the p�d�f� is de	ned where

f�x�dx is the probability that the vector x lies in the volume interval �x� �x� dx�� �

�x�� �x� � dx���� �x�� �x� � dx���� � � � and the following is satis	ed�Z �

��
� � �

Z �

��
f�x�dx�� dx� � � � �

Z �

��
f�x�dx � �

Expectation value�

The expectation value of a vector x with p�d�f� f�x� is de	ned as�

Efxg �
Z �

��
xf�x�dx � )x

If r�x� is a function of the vector x then

Efr�x�g �
Z �

��
r�x�f�x�dx

Variance and Covariance�

the covariance matrix of two vectors is de	ned as�

covfx�yg � Ef�x� )x��y� )y�tg def
� #xy

���
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and speci	cally�

covfx�xg � varfxg � Ef�x� )x��x� )x�tg def
� #x

Given an n�dimensional vector x
 the n� n matrix #x is de	ned by its elements�

�#x�ii � Ef�xi � )xi��g def
� ��

i

�#x�ij � Ef�xi � )xi��xj � )xj�g � covfxi� xjg � �A���

��
i is the variance of the random variable xi which is in fact the second central moment of

the distribution of xi and represents the �spread� of this distribution� covfxi� xjg is the
covariance of the random variables xi and xj and is equal to zero when these variables

are independent� Thus
 if the n variables of the vector x are mutually independent
 the

covariance matrix #x will be diagonal� In any case #x is a positive
 semide	nite and

symmetric matrix that can be diagonalized by a similarity transform�

The �spread� of the distribution of x can be represented by the trace of #x�

trace�#x� �
nX
i��

��
i �

This value is invariant under any similarity transformation�

Following the de	nition of the covariance we have the following equalities�

varfx� yg � #x � #y � #xy

varfAx� bg � A#xA
t where b is a constant vector

covfx� Ax� bg � #xA
t

It can be shown ���� that if the random vector y is a non�linear function of the random

vector x
 i�e��

y � r�x� �

where Efxg � )x and varfxg � #x then the covariance #y is approximated by�

#y � J#xJ
t

where J is the Jacobian �r
�x
at the point x � )x�
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The Normal Density

A common and important probability distribution is the Normal distribution often called

the Gaussian distribution� The general multivariate normal density is de	ned as�

f�x� �
�

���
d
� k#k �

�

expf��

�x� u�t#���x� u�g �A��

where x is a d�component vector
 u is a d�component constant vector
 # is a d � d

positive semide	nite matrix and k#k is the determinant of #� This distribution is totally
determined by u and # and is usually denoted by�

f�x� � N�u�#�

It can be shown that�

u � Efxg
# � varfxg �A���

It is easily seen ���� that any linear combination of normally distributed random variables

is itself normally distributed
 i�e� if A is a n � d matrix and y � Ax is a n�component

vector
 where x � N�u�#�
 then

f�y� � N�Au� A#At�

It follows from Eq� A� that the loci of points of constant density are hyper�ellipsoids

for which the quadric form �x � u�t#���x � u� is constant� The principal axis of these

hyper�ellipsoids are given by the eigenvectors of #� The eigenvalues determine the length

of these axes� The quantity r� � �x � u�t#���x � u� is sometimes called the squared

Mahalanobis distance from x to u� Thus the contours of constant density are hyper�

ellipsoids of constant Mahalanobis distances to u� It is common to graphically describe

a bivariate normal density function by a contour of equal density having a prede	ned

Mahanalobis distance value
 such as r� � ��
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Appendix B

Rotation Quaternion

A quaternion �q is composed of two parts � the scalar part q� and the vector part q�

�q � �q��q� � �q�� q�i� q�j � q�k� �

If u
u� are vectors in �� such that u� � Ru
 when R is a rotation matrix
 then the

corresponding expression in quaternion form is �����

�u� � �q�u�q� �

The quaternions �u� �u� correspond to the vectors u
u� respectively as follows�

�u � ���u� � �u� � ���u��

and �q� is the conjugate of �q�

�q� � �q���q� �

�q represents a rotation of the vector u by angle � around a unit vector �n where�

q� � cos�
�


� � q � sin�

�


��n

so that

k�qk� � �q�q� � q�� � kqk� � � �

���
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Appendix C

Example of Batch Solution For an

Articulated Object

Assume the articulated object as illustrated in Figure ����� This object has 	ve point

components fuig�i�� and four articulated constraints f�j�T�g
j��� Each constraint is of

the form

�j�tk� tl� � ktl � tkk� � d�k�l � � �C���

representing the constant Euclidean distance existing between the linked points uk and

ul� Additionally
 assume a single measurement ��u�
k��k� for each model point uk� Lin�

earization of Equation C�� around ��u�
k� �u

�
l� yields�

�


�d�k�l � v�

k�l� � vk�ltl � vk�ltk

where

vk�l � �u
�
l � �u�

k �

Linearization of all the constraint equations and concatenating them into one vector

equation will give�

z � HT �C��

where

z �
�



�
BBB�

d���� � v�
���

d���� � v�
���

d���
 � v�
��


d���� � v�
���

�
CCCA � H �

�
����
v��� �v��� � � �
v��� � �v��� � �
� � v
�� �v
�� �
� � v��� � �v���

�
			
 � T �

�
BB�
t�
���
t�

�
CCA �

���
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Solving the illustrated example will be done by supplying the K�F� fuser with the following

inputs�

� The a priori estimate for the evaluated transformation will be��
���
�
BB�
�u�
�
���
�u�
�

�
CCA �

�
BB�
�� �

� � �

� ��

�
CCA
�
		


� The measurement input will be the vector z �of size ��� and its associated uncer�
tainty � a �� � �� zero matrix�

� The measurement model input is Equation C� as formulated above�
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