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Abstract. We solve the open problems of translating, when possible, all common
classes of nondeterministic word automata to deterministic and nondeterminis-
tic co-Büchi word automata. The handled classes include B¨uchi, parity, Rabin,
Streett and Muller automata. The translations follow a unified approach and are
all asymptotically tight.
The problem of translating Büchi automata to equivalent co-Büchi automata was
solved in [2], leaving open the problems of translating automata with richer ac-
ceptance conditions. For these classes, one cannot easily extend or use the con-
struction in [2]. In particular, going via an intermediate Büchi automaton is not
optimal and might involve a blow-up exponentially higher than the known lower
bound. Other known translations are also not optimal and involve a doubly expo-
nential blow-up.
We describe direct, simple, and asymptotically tight constructions, involving a
2
Θ(n) blow-up. The constructions are variants of the subset construction, and

allow for symbolic implementations. Beyond the theoretical importance of the
results, the new constructions have various applications,among which is an im-
proved algorithm for translating, when possible, LTL formulas to deterministic
Büchi word automata.

1 Introduction

Finite automata on infinite objectsare widely used in formal verification and synthe-
sis of nonterminating systems. The automata-theoretic approach to verification reduces
questions about systems and their specifications to automata-theoretic problems like
language containment and emptiness [10, 18]. Recent industrial-strength specification-
languages such as Sugar, ForSpec and PSL 1.01 include regular expressions and/or
automata, making automata-theory even more essential and popular [1].

There are various classes of automata, characterized by their branching mode and
acceptance condition. Each class has its advantages, disadvantages, and common us-
ages. Accordingly, an important challenge in the the study of automata on infinite ob-
jects is to provide algorithms for translating between the different classes. For most
translations, our community was able to come up with satisfactory solutions, in the
sense that the state blow-up involved in the algorithm is proved to be unavoidable. Yet,
for some translations there is still a significant gap between the best known algorithm
and the corresponding lower bound.

Among these open problems are the translations of nondeterministic automata to
equivalent deterministic and nondeterministic co-Büchiautomata (NCW and DCW),



when possible.1 In [2], we introduced theaugmented subset constructionand used it
for translating a nondeterministic Büchi automaton (NBW)to NCW and DCW, when
possible. We left open the problems of translating automatawith richer acceptance con-
ditions (parity, Rabin, Streett and Muller) to co-Büchi automata. For these classes, one
cannot easily extend or use the construction in [2], and the gap between the lower and
upper bounds is still significant (for some of the classes it is even exponential). In this
paper, we solve these problems and study the translation of nondeterministic parity
(NPW), Streett (NSW), Rabin (NRW), and Muller (NMW) word automata to NCW
and to DCW.

A straightforward approach is to translate an automaton of the richer classes via
an intermediate NBW. This approach, however, is not optimal. For example, starting
with an NSW withn states and indexk, the intermediate NBW hasn2k states, thus
the NCW would haven2k+n2

k

states, making the dependency ink doubly-exponential.
Note that the exponential blow-up in the translation of NSW or NMW to NBW cannot
be avoided [15]. A different approach is to translate the original automaton, for example
an NRW, to an equivalent DPW, which can then be translated to an equivalent DCW
over the same structure [5]. However, translating an NRW to an equivalent DPW might
be doubly exponential [4], with no matching lower bound, even for the problem of
translating to a DCW, let alone translating to NCW.

Thus, the approaches that go via intermediate automata are far from optimal, and
our goal is to find a direct translation of these stronger classes of automata to NCW and
DCW. We first show that for NSW, an equivalent NCW can be definedon top of the
augmented subset construction (the product of the originalautomaton with its subset
construction). The definition of the corresponding co-Büchi acceptance condition is
more involved in this case than in the case of translating an NBW, but the blow-up stays
the same. Thus, even though NSW are exponentially more succinct than NBW, their
translation to NCW is of exactly the same state complexity asis the one for NBW! This
immediately provides ann2n upper bound for the translation of NSW to NCW. As in
the case of translating an NBW, we can further determinize the resulting augmented
subset construction, getting a3n upper bound for the translation of NSW to DCW. Both
bounds are asymptotically tight, having matching lower bounds by the special cases of
translating NBW to NCW [2] and NCW to DCW [3]. The above good news apply also
to the parity and the generalized-Büchi acceptance conditions, as they are special cases
of the Streett condition.

For NRW and NMW, the situation is more complicated. Unfortunately, an equiva-
lent NCW cannot in general be defined on top of the augmented subset construction.
Moreover, even though the results on NSW imply a translationof NRW[1] (that is,
a nondeterministic Rabin automaton with a single pair) to NCW, one cannot hope to
proceed via a decomposition of an NRW with indexk to k NRW[1]s. Indeed, the un-
derlying NRW[1]s may not be NCW-realizable, even when the NRW is, and the same
for NMWs. We show that still, the NCW can be defined on top ofk copies of the aug-
mented subset construction, giving rise to akn2n upper bound for the translation to
NCW. Moreover, we show that when translating to an equivalent DCW, thek copies

1 The co-Büchi condition is weaker than the Büchi acceptance condition, and not allω-regular
languages are NCW-recognizable, hence the “when possible”.



can be determinized separately, while connected in a round-robin fashion, which gives
rise to ak3n blow-up. As with the other cases, the blow-up involved in thetransla-
tions is asymptotically tight. The state blow-up involved in the various translations is
summarized in Table 1 of the Section 6.

Beyond the theoretical challenge in tightening the gaps, and the fact they are re-
lated to other gaps in our knowledge [6], these translationshave immediate important
applications in formal methods. The interest in the co-Büchi condition follows from its
simplicity and its duality to the Büchi acceptance condition. The interest in the stronger
acceptance conditions follows from their richness and succinctness. In particular, stan-
dard translations of LTL to automata go via intermediate generalized Büchi automata,
which are then being translated to Büchi automata. For somealgorithms, it is possible
to give up the last step and work directly with the generalized Büchi automaton [8]. It
follows from our results that the same can be done with the algorithm of translating LTL
formulas to NCW and DCW. By the duality of the co-Büchi and B¨uchi conditions, one
can construct a DBW forψ by dualizing the DCW for¬ψ. Thus, since the translation
of LTL to NSW may be exponentially more succinct than a translation to NBW, our
construction suggests the best known translation of LTL to DBW, when exists.

An important and useful property of our constructions is thefact they have only a
one-sided error when applied to automata whose language is not NCW-recognizable.
Thus, given an automatonA, the NCWC and the DCWD we construct are always
such thatL(A) ⊆ L(C) = L(D), while L(A) = L(C) = L(D) in caseA is NCW-
recognizable. Likewise, given an LTL formulaψ, the DBWDψ we construct is always
such thatL(Dψ) ⊆ L(ψ), while L(Dψ) = L(ψ) in caseψ is DBW-recognizable. As
specified in Section 5, this enables us to extend the scope of the applications also to
specifications that are not NCW-realizable.

2 Preliminaries

Given an alphabetΣ, aword overΣ is a (possibly infinite) sequencew = w1 · w2 · · ·
of letters inΣ. For two words,x andy, we usex � y to indicate thatx is a pre-
fix of y andx ≺ y to indicate thatx is a strict prefix ofy. An automatonis a tu-
ple A = 〈Σ,Q, δ,Q0, α〉, whereΣ is the input alphabet,Q is a finite set of states,
δ : Q × Σ → 2Q is a transition function,Q0 ⊆ Q is a set of initial states, andα
is an acceptance condition. We define several acceptance conditions below. Intuitively,
δ(q, σ) is the set of states thatA may move into when it is in the stateq and it reads
the letterσ. The automatonA may have several initial states and the transition function
may specify many possible transitions for each state and letter, and hence we say that
A is nondeterministic. In the case where|Q0| = 1 and for everyq ∈ Q andσ ∈ Σ, we
have that|δ(q, σ)| ≤ 1, we say thatA is deterministic. The transition function extends
to sets of states and to finite words in the expected way, thus for a set of statesS and a
finite wordx, δ(S, x) is the set of states thatA may move into when it is in a state inS
and it readsx. Formally,δ(S, ǫ) = S andδ(S,w · σ) =

⋃
q∈δ(S,w) δ(q, σ). We abbrevi-

ateδ(Q0, x) by δ(x), thusδ(x) is the set of states thatA may visit after readingx. For
an automatonA and a stateq of A, we denote byAq the automaton that is identical to



A, except for having{q} as its set of initial states. An automaton without an acceptance
condition is called asemi-automaton.

A run r = r0, r1, · · · of A on w = w1 · w2 · · · ∈ Σω is an infinite sequence
of states such thatr0 ∈ Q0, and for everyi ≥ 0, we have thatri+1 ∈ δ(ri, wi+1).
Note that while a deterministic automaton has at most a single run on an input word,
a nondeterministic automaton may have several runs on an input word. We sometimes
refer tor as a word inQω or as a function from the set of prefixes ofw to the states of
A. Accordingly, we user(x) to denote the state thatr visits after reading the prefixx.

Acceptance is defined with respect to the setinf(r) of states that the runr visits in-
finitely often. Formally,inf(r) = {q ∈ Q | for infinitely manyi ∈ IN, we haveri =
q}. As Q is finite, it is guaranteed thatinf(r) 6= ∅. The runr is acceptingiff the set
inf(r) satisfies the acceptance conditionα.

Several acceptance conditions are studied in the literature. We consider here six:

– Büchi, whereα ⊆ Q, andr is accepting iffinf(r) ∩ α 6= ∅.
– co-Büchi, whereα ⊆ Q, andr is accepting iffinf(r) ⊆ α. Note that the definition

we use is less standard than theinf(r) ∩ α = ∅ definition; clearly,inf(r) ⊆ α iff
inf(r) ∩ (Q \ α) = ∅, thus the definitions are equivalent. We chose to go with this
variant as it better conveys the intuition that, as with the Büchi condition, a visit in
α is a “good event”.

– parity, whereα = {α1, α2, . . . , α2k} with α1 ⊂ α2 ⊂ · · · ⊂ α2k = Q, andr is
accepting if the minimal indexi for which inf(r) ∩ αi 6= ∅ is even.

– Rabin, whereα = {〈α1, β1〉, 〈α2, β2〉, . . . , 〈αk, βk〉}, with αi, βi ⊆ Q andr is
accepting iff for some1 ≤ i ≤ k, we have thatinf(r)∩αi 6= ∅ andinf(r)∩βi = ∅.

– Streett, whereα = {〈β1, α1〉, 〈β2, α2〉, . . . , 〈βk, αk〉}, with βi, αi ⊆ Q andr is
accepting iff for all1 ≤ i ≤ k, we have thatinf(r) ∩ βi = ∅ or inf(r) ∩ αi 6= ∅.

– Muller, whereα = {α1, α2, . . . , αk}, with αi ⊆ Q andr is accepting iff for some
1 ≤ i ≤ k, we have thatinf(r) = αi.

The number of sets in the parity and Muller acceptance conditions or pairs in the
Rabin and Streett acceptance conditions is called theindexof the automaton. An au-
tomaton accepts a word if it has an accepting run on it. The language of an automaton
A, denotedL(A), is the set of words thatA accepts. We also say thatA recognizesthe
languageL(A). For two automataA andA′, we say thatA andA′ areequivalentif
L(A) = L(A′).

We denote the different classes of automata by three letter acronyms in{D,N}
× {B, C, P, R, S, M} × {W}. The first letter stands for the branching mode of the au-
tomaton (deterministic or nondeterministic); the second letter stands for the acceptance-
condition type (Büchi, co-Büchi, parity, Rabin, Streett, or Muller); and the third letter
indicates that the automaton runs on words. We say that a languageL is γ-recognizable
or γ-realizableif L can be recognized by an automaton in the classγ.

Different classes of automata have different expressive power. In particular, while
NBWs recognize allω-regular languages [12], DBWs are strictly less expressivethan
NBWs, and so are DCWs [11]. In fact, a languageL is in DBW iff its complement is
in DCW. Indeed, by viewing a DBW as a DCW and switching betweenaccepting and
non-accepting states, we get an automaton for the complementing language, and vice



versa. The expressiveness superiority of the nondeterministic model over the determin-
istic one does not apply to the co-Büchi acceptance condition. There, every NCW has
an equivalent DCW [13]. As for parity, Rabin, Streett and Muller automata, both the
deterministic and nondeterministic models recognize allω-regular languages [17].

Our constructions for translating the various automata to co-Büchi automata will
use theaugmented subset construction[2], which is the product of an automaton with
its subset construction.

Definition 1 (Augmented subset construction).[2] Let A = 〈Σ,Q, δ,Q0〉 be a semi-
automaton. Theaugmented subset constructionA′ of A is the product ofA with its
subset construction. Formally,A′ = 〈Σ,Q′, δ′, Q′

0〉, where

– Q′ = Q × 2Q. That is, the states ofA′ are all the pairs〈q, E〉 whereq ∈ Q and
E ⊆ Q.

– For all 〈q, E〉 ∈ Q′ andσ ∈ Σ, we haveδ′(〈q, E〉, σ) = δ(q, σ)×{δ(E, σ)}. That
is, A′ nondeterministically followsA on itsQ-component and deterministically
follows the subset construction ofA on its2Q-component.

– Q′
0 = Q0 × {Q0}.

3 Translating to NCW

In this section we study the translation, when possible, of NPWs, NRWs, NSWs, and
NMWs to NCWs. Since the Büchi acceptance condition is a special case of these
stronger conditions, the2Ω(n) lower bound from [2] applies, and the challenge is to
come up with matching upper bounds. While nondeterministicRabin, Streett, and Muller
automata are not more expressive than nondeterministic Büchi automata, they are more
succinct: translating an NRW, NSW, and NMW withn states and indexk to an NBW,
results in an NBW withO(nk),O(n2k), andO(n2k) states, respectively [15, 16]. Note
that an NPW is a special case of both an NSW and an NRW.

A first attempt to translate NRWs, NSWs, and NMWs to NCWs is to go via interme-
diate NBWs, which can be translated to NCWs by the augmented subset construction
[2]. By the blow-ups above, however, this results in NCWs that are far from optimal.
A second attempt is to apply the augmented subset construction directly on the input
automaton, and check the possibility of defining on top of it asuitable co-Büchi accep-
tance condition.

It is not hard to see that this second attempt does not work forall automata. Consider
for example the Rabin acceptance condition. Note that the augmented subset construc-
tion does not alter a deterministic automaton. Also, DRWs are not DCW-type [7] (that
is, there is a DRWA whose language is DCW-recognizable, but still no DCW equiva-
lent toA can be defined on top of the structure ofA). It follows that there are NRWs
whose language is NCW-recognizable, but still no NCW recognizing them can be de-
fined on top of the automaton obtained by applying the augmented subset construction
on them (see Theorem 2 for a concrete example).

With this in mind, this section is a collection of good news. First, we show in Sub-
section 3.1 that NSWs (and NPWs) can be translated to NCWs on top of the augmented
subset construction. Second, while this is not valid for NRWs and NMWs, we show



in Subsection 3.2 that they can be translated to NCWs on top ofa union of copies of
the augmented subset construction. Moreover, the translation of the obtained NCWs to
equivalent DCWs does not involve an additional exponentialblow-up (see Section 4).

We first provide some basic lemmata from [2]. We start with a property relating
states of a DCW (in fact, any deterministic automaton) that are reachable via words
that lead to the same state in the subset construction of an equivalent nondeterministic
automaton.

Lemma 1. [2] Consider a nondeterministic automatonA with a transition function
δA and a DCWD with a transition functionδD such thatL(A) = L(D). Letd1 andd2
be states ofD such that there are two finite wordsx1 andx2 such thatδD(x1) = d1,
δD(x2) = d2, andδA(x1) = δA(x2). Then,L(Dd1) = L(Dd2).

For automata on finite words, if two states of the automaton have the same language,
they can be merged without changing the language of the automaton. While this is
not the case for automata on infinite words, the lemma below enables us to do take
advantage of such states.

Lemma 2. [2] Consider a DCWD = 〈Σ,D, δ,D0, α〉. Let d1 and d2 be states in
D such thatL(Dd1) = L(Dd2). For all finite wordsu and v, if δ(d1, u) = d1 and
δ(d2, v) = d2 then for all wordsw ∈ (u + v)∗ and statesd ∈ δ(d1, w) ∪ δ(d2, w), we
haveL(Dd) = L(Dd1).

The next lemma takes further advantage of DCW states recognizing the same lan-
guage.

Lemma 3. [2] Let D = 〈Σ,D, δ,D0, α〉 be a DCW. Consider a stated ∈ D. For all
nonempty finite wordsv andu, if (v∗ · u+)ω ⊆ L(Dd) and for all wordsw ∈ (v + u)∗

and statesd′ ∈ δ(d, w), we haveL(Dd′) = L(Dd), thenvω ∈ L(Dd).

3.1 From NSW to NCW

The translation of an NSW to an NCW, when exists, can be done ontop of the aug-
mented subset construction, generalizing the acceptance condition used for translating
an NBW to an NCW.

In the translation of an NBW to an NCW, we start with an NBWB and define a state
〈b, E〉 of the augmented subset construction to be co-Büchi accepting if there is some
pathp in B, taking 〈b, E〉 back to itself via a Büchi accepting state. The correctness
of the construction follows from the fact that an NCW-recognizable language is closed
under pumping such cycles. Thus, ifB accepts a word that includes a subword along
which p is read, thenB also accepts words obtained by pumping the subword along
whichp is read. In turns out that this intuition is valid also when westart with an NSW
S: a state〈s, E〉 of the augmented subset construction is co-Büchi accepting if there is
some pathp in S, taking〈s, E〉 back to itself, such thatp visitsαi or avoidβi for every
pair i in the Streett acceptance condition. This guarantees that pumpingp infinitely
often results in a run that satisfies the Streett condition, which in turn implies that an
NCW-recongnizable language is closed under such pumping.

We formalize and prove this idea below.



Theorem 1. For every NSWS with n states that is NCW-recognizable, there is an
equivalent NCWC with at mostn2n states.

Proof. Let S = 〈Σ,S, δS , S0, 〈β1, α1〉, . . . 〈βk, αk〉〉. We define the NCWC = 〈Σ,C,
δC , C0, αC〉 as the augmented subset construction ofS with the following acceptance
condition: a state is a member ofαC if it is reachable from itself along a path whose
projection onS visitsαi or avoidsβi for every1 ≤ i ≤ k.

Formally,〈s, E〉 ∈ αC if there is a finite wordz = z1z2 · · · zm of lengthm and
a sequence ofm + 1 states〈s0, E0〉 . . . 〈sm, Em〉 such that〈s0, E0〉 = 〈sm, Em〉 =
〈s, E〉, and for all0 ≤ l < m we have〈sl+1, El+1〉 ∈ δC(〈sl, El〉, zl+1), and for every
1 ≤ i ≤ k, either there is0 ≤ l < m such thatsl ∈ αi or sl 6∈ βi for all 0 ≤ l < m.
We refer toz as thewitnessfor 〈s, E〉. Note thatz may be the empty word.

We prove the equivalence ofS andC. Note that the2S-component ofC proceeds
in a deterministic manner. Therefore, each runr of S induces a single run ofC (the run
in which theS-component followsr). Likewise, each runr of C induces a single run of
S, obtained by projectingr on itsS-component.

We first prove thatL(S) ⊆ L(C). Note that this direction is always valid, even ifS
is not NCW-recognizable. Consider a wordw ∈ L(S). Let r be an accepting run ofS
onw. We prove that the runr′ induced byr is accepting. LetJ ⊆ {1, . . . , k} denote
the set of indices of acceptance-pairs whoseβ-element is visited infinitely often byr.
That is,J = {j | βj ∩ inf(r) 6= ∅}. Consider a state〈s, E〉 ∈ inf(r′). We prove that
〈s, E〉 ∈ αC . Since〈s, E〉 appears infinitely often inr′ andr is accepting, it follows
that there are two (not necessarily adjacent) occurrences of 〈s, E〉, between whichr
visitsαj for all j ∈ J and avoidsβi for all i 6∈ J . Hence, we have the required witness
for 〈s, E〉, and we are done.

We now prove thatL(C) ⊆ L(S). Consider a wordw ∈ L(C), and letr be an
accepting run ofC onw. Let J ⊆ {1, . . . , k} denote the set of indices of acceptance-
pairs whoseβ-element is visited infinitely often byr. That is,J = {j | (βj × 2S) ∩
inf(r) 6= ∅}. If J is empty then the projection ofr on itsS-component is accepting,
and we are done. Otherwise, we proceed as follows. For everyj ∈ J , let 〈sj , Ej〉 be a
state in(βj × 2S) ∩ inf(r).

By the definition ofJ , all the states〈sj , Ej〉, with j ∈ J , are visited infinitely often
in r, whereas states whoseS-component is inβi, for i 6∈ J , are visited only finitely
often in r. Accordingly, the states〈sj , Ej〉, with j ∈ J , are strongly connected via a
path that does not visitβi, for i 6∈ J . In addition, for every〈sj , Ej〉, with j ∈ J , there is
a witnesszj for the membership of〈sj , Ej〉 in αC , going from〈sj , Ej〉 back to itself via
αj and either avoidingβi or visitingαi, for every1 ≤ i ≤ k. Let 〈s, E〉 be one of these
〈sj , Ej〉 states, and letx be a prefix ofw such thatr(x) = 〈s, E〉. Then, there is a finite
word z along which there is a path from〈s, E〉 back to itself, visiting allαj for j ∈ J

and either avoidingβi or visitingαi for every1 ≤ i ≤ k. Therefore,x · zω ∈ L(S).
Recall that the language ofS is NCW-recognizable. LetD = 〈Σ,D, δD, D0, αD〉

be a DCW equivalent toS. SinceL(S) = L(D) andx · zω ∈ L(S), it follows that the
runρ of D onx · zω is accepting. SinceD is finite, there are two indices,l andm, such
that l < m, ρ(x · zl) = ρ(x · zm), and for all prefixesy of x · zω such thatx · zl � y,
we haveρ(y) ∈ αD. Let q be the state ofD such thatq = ρ(x · zl).



Consider the runη of D onw. Sincer visits 〈s, E〉 infinitely often andD is finite,
there must be a stated ∈ D and infinitely many prefixesp1, p2, . . . of w such that
for all i ≥ 1, we haver(pi) = 〈s, E〉 and η(pi) = d. We claim that the statesq
andd of D satisfy the conditions of Lemma 1 withx0 beingp1 andx1 beingx · zl.
Indeed,δD(p1) = d, δD(x · zl) = q, andδS(p1) = δS(x · zl) = E. For the latter
equivalence, recall thatδS(x) = E andδS(E, z) = E. Hence, by Lemma 1, we have
thatL(Dq) = L(Dd).

Recall the sequence of prefixesp1, p2, . . .. For all i ≥ 1, let pi+1 = pi · ti. We
now claim that for alli ≥ 1, the stated satisfies the conditions of Lemma 3 withu
beingzm−l andv beingti. The second condition is satisfied by Lemma 2. For the first
condition, consider a wordw′ ∈ (v∗ · u+)ω. We prove thatw′ ∈ L(Dd). Recall that
there is a run ofSs on v that goes back tos while avoidingβi for all i 6∈ J and there
is a run ofSs on u that goes back tos while visiting αj for all j ∈ J and either
visiting αi or avoidingβi for all i 6∈ J . (Informally,u “fixes” all the problems ofv, by
visiting αj for everyβj thatv might visit.) Recall also that for the wordp1, we have
thatr(p1) = 〈s, E〉 andη(p1) = d. Hence,p1 · w′ ∈ L(S). SinceL(S) = L(D), we
have thatp1 · w′ ∈ L(S). Therefore,w′ ∈ L(Dd).

Thus, by Lemma 3, for alli ≥ 1 we have thattωi ∈ L(Dd). SinceδD(d, ti) = d,
it follows that all the states thatD visits when it readsti from d are inαD. Note that
w = p1 · t1 · t2 · · · . Hence, sinceδD(p1) = d, the run ofD onw is accepting, thus
w ∈ L(D). SinceL(D) = L(S), it follows thatw ∈ L(S), and we are done. ⊓⊔

Two common special cases of the Streett acceptance condition are the parity and
the generalized B̈uchi acceptance conditions. In a generalized Büchi automaton with
statesQ, the acceptance condition isα = {α1, α2, . . . , αk} with αi ⊆ Q, and a runr
is accepting ifinf(r) ∩ αi 6= ∅ for all 1 ≤ i ≤ k. Theorem 1 implies that an NCW-
recognizable nondeterministic parity or generalized Büchi automaton withn states can
be translated to an NCW withn2n states, which can be defined on top of the augmented
subset construction.

3.2 From NRW and NMW to NCW

In this section we study the translation of NRWs and NMWs to NCWs, when exists.
Unfortunately, for these automata classes we cannot define an equivalent NCW on top
of the augmented subset construction. Intuitively, the keyidea of Subsection 3.1, which
is based on the ability to pump paths that satisfy the acceptance condition, is not valid
in the Rabin and the Muller acceptance conditions, as in these conditions, visiting some
“bad” states infinitely often need not be compensated by visiting some “good” ones
infinitely often. We formalize this in the example below, which consists of the fact that
DRWs are not DCW-type [7].

Theorem 2. There is an NRW and an NMW that are NCW-recognizable but an equiv-
alent NCW for them cannot be defined on top of the augmented subset construction.

Proof. Consider the NRWA appearing in Figure 1. The language ofA consists of
all words over the alphabet{0, 1} that either have finitely many0’s or have finitely



many1’s. This language is clearly NCW-recognizable, as it is the union of two NCW-
recognizable languages. SinceA is deterministic and the augmented subset construction
does not alter a deterministic automaton, it suffices to showthat there is no co-Büchi
acceptance conditionα′ that we can define on the structure ofA and get an equivalent
language. Indeed,α′ may either be∅, {q0}, {q1}, or {q0, q1}, none of which provides
the language ofA. Since every NRW has an equivalent NMW over the same structure,
the above result also applies to the NMW case. ⊓⊔

A:

α = {〈q0, q1〉, 〈q1, q0〉}
q1q0

1

1
0 0

Fig. 1.The NRWA, having no equivalent NCW on top of its augmented subset construction.

Consider an NRW or an NMWA with indexk. Our approach for translatingA to an
NCW is to decompose it tok NSWs over the same structure, and apply the augmented
subset construction on each of the components. Note that thecomponents may not
be NCW-realizable even whenA is, thus, we should carefully analyze the proof of
Theorem 1 and prove that the approach is valid.

We now formalize and prove the above approach. We start with the decomposition
of an NRW or an NMW with indexk into k NSWs over the same structure.

Lemma 4. Every NRW or NMWA with indexk is equivalent to the union ofk NSWs
over the same structure asA.

Proof. An NRWA with statesA and indexk is the union ofk NRWs with index 1 over
the same structure asA. Since a single-indexed Rabin acceptance condition{〈α1, β1〉}
is equivalent to the Streett acceptance condition{〈α1, ∅〉, 〈A, β1〉}, we are done.

An NMW A with statesA and indexk is the union ofk NMWs with index 1 over
the same structure asA. Since a single-indexed Muller acceptance condition{α1} is
equivalent to the Streett acceptance condition{〈A\α1, ∅〉}∪

⋃
s∈α1

{〈A, {s}〉}, we are
done. ⊓⊔

Next we show that a union ofk NSWs can be translated to a single NSW over their
union.

Lemma 5. Considerk NSWs,S1, . . . ,Sk, over the same structure. There is an NSWS
over the disjoint union of their structures, such thatL(S) =

⋃k

i=1 L(Si).

Proof. We obtain the Streett acceptance condition ofS by taking the union of the Streett
acceptance conditions of the NSWsS1, . . . ,Sk. Note that while the underlying NSWs
are interpreted disjunctively (that is, in order for a word to be accepted by the union,
there should be an accepting run on it in someSi), the pairs in the Streett condition
are interpreted conjunctively (that is, in order for a run tobe accepting, it has to satisfy
the constraints by all the pairs in the Streett condition). We prove that stillL(S) =



⋃k
i=1 L(Si). First, if a runr of S is an accepting run of an underlying NSWSi, then

the acceptance conditions of the other underlying NSWs are vacuously satisfied. Hence,
if a word is accepted bySi for some1 ≤ i ≤ k, thenS accepts it too. For the other
direction, if a wordw is accepted inS, then its accepting run inS is also an accepting
run of one of the underlying NSWs, thusw is in

⋃k
i=1 L(Si). ⊓⊔

Finally, we combine the translation to Streett automata with the augmented subset
construction and get the required upper bound for NRW and NMW.

Theorem 3. For every NCW-recognizable NRW or NMW withn states and indexk,
there is an equivalent NCWC with at mostkn2n states.

Proof. Consider an NRW or an NMWA with n states and indexk. By Lemmas 4 and
5, there is an NSWS whose structure consists ofk copies of the structure ofA such that
L(S) = L(A). Let C be the NCW equivalent toS, defined over the augmented subset
construction ofS, as described in Theorem 1. Note thatS hasnk states, thus a naive
application of the augmented subset construction on it results in an NCW withkn2kn

states. The key observation, which implies that we get an NCWwith only kn2n states,
is that applying the augmented subset construction onS, the deterministic component
of all the underlying NCWs is the same, and it coincides with the subset construction
applied toA. To see this, assume thatA = 〈Σ,A,A0, δ, α〉. Then,S = 〈Σ,A ×
{1, . . . , k}, A0 × {1, . . . , k}, δ′, α′〉, where for alla ∈ A, 1 ≤ j ≤ k, andσ ∈ Σ, we
have thatδ′(〈a, j〉, σ) = δ(a, σ) × {j}. Applying the augmented subset construction,
we get the product ofS and its subset construction, where the latter has a state forevery
reachable subset ofS. That is, a subsetG′ ⊆ S is a state of the subset construction if
there is a finite wordu for which δ′(u) = G′. Since for alla ∈ A, 1 ≤ j ≤ k, and
σ ∈ Σ, we have thatδ′(〈a, j〉, σ) = δ(a, σ) × {j}, it follows thatG′ is of the form
G× {j} for all 1 ≤ j ≤ k and someG ⊆ A. Hence, there are up to2|A| = 2n states in
the subset construction ofS. Thus, when we apply the augmented subset construction
onS, we end up with an NCW with onlykn2n states, and we are done. ⊓⊔

4 Translating to DCW

In a first sight, the constructions of Section 3, which translate a nondeterministic word
automaton to an NCW, are not useful for translating it to a DCW, as the determiniza-
tion of an NCW to a DCW has an exponential state blow-up. Yet, we show that the
special structure of the constructed NCW allows to determinize it without an additional
exponential blow-up. The key to our construction is the observation that the augmented
subset construction is transparent to additional applications of the subset construction.
Indeed, applying the subset construction on an NCWC with state spaceB × 2B, one
ends up in a deterministic automaton with state space{{〈q, E〉 | q ∈ E} : E ⊆ B},
which is isomorphic to2B.

The standard breakpoint construction [13] uses the subset construction as an inter-
mediate layer in translating an NCW with state spaceC to a DCW with state space
3C . Thus, the observation above suggests that applying it on our special NCWC would



not involve an additional exponential blow-up on top of the one involved in going from
some automatonA to C. As we show in Theorem 4 below, this is indeed the case.

Starting with an NSW, the determinization of the corresponding NCW is straightfor-
ward, following [13]’s construction. However, when starting with an NRW or an NMW,
thek different parts of the corresponding NCW (see Theorem 3) might cause a doubly-
exponential blowup. Fortunately, we can avoid it by determinizing each of thek parts
separately and connecting them in a round-robin fashion. Werefer to the construction
in Theorem 4 as thebreakpoint construction.

Theorem 4. For every DCW-recognizable NPW, NSW, NRW, or NMWA with n states
there is an equivalent DCWD withO(3n) states.

Proof. We start with the caseA is an NSW. The DCWD follows all the runs of the
NCW C constructed in Theorem 1. LetαC ⊆ A × 2A be the acceptance condition of
C. The DCWD accepts a word if some run ofC remains inαC from some position.2

At each state,D keeps the corresponding subset of the states ofC, and it updates it
deterministically whenever an input letter is read. In order to check that some run ofC
remains inαC from some position, the DCWD keeps track of runs that do not leave
αC . The key observation in [13] is that keeping track of such runs can be done by
maintaining the subset of states that belong to these runs.

Formally, letA = 〈Σ,A, δA, A0, αA〉. We define a functionf : 2A → 2A by
f(E) = {a | 〈a,E〉 ∈ αC}. Thus, when the subset component ofD is in stateE, it
should continue and check the membership inαC only for states inf(E). We define the
DCWD = 〈Σ,D, δD, D0, αD〉 as follows.

– D = {〈S,O〉 | S ⊆ A andO ⊆ S ∩ f(S)}.
– For all 〈S,O〉 ∈ D andσ ∈ Σ, the transition function is defined as follows.

• If O 6= ∅, thenδD(〈S,O〉, σ) = {〈δA(S, σ), δA(O, σ) ∩ f(S)〉}.
• If O = ∅, thenδD(〈S,O〉, σ) = {〈δA(S, σ), δA(S, σ) ∩ f(S)〉}.

– D0 = {〈A0, ∅〉}.
– αD = {〈S,O〉 | O 6= ∅}.

Thus, the run ofD on a wordw has to visit states in2A × {∅} only finitely often,
which holds iff some run ofC onw eventually always visitsαC . Since each state ofD
corresponds to a function fromA to the set{ “in S ∩O” , “in S \O” , “not in S”}, its
number of states is at most3|A|.

We proceed to the caseA is an NRW or an NMW. Here, by Theorem 3,A has
an equivalent NCWC with kn2n states. The NCWC is obtained by applying the aug-
mented subset construction onk copies ofA, and thus hask unconnected components,
C1, . . . , Ck that are identical up to their acceptance conditionsαC1

, . . . , αCk
.

Since thek components ofC all have the sameA × 2A structure, applying the
standard subset construction onC, one ends up with a deterministic automaton that is
isomorphic to2A. Applying the standard breakpoint construction onC, we could thus

2 Readers familiar with the construction of [13] may find it easier to view the construction here as
one that dualizes a translation of universal co-Büchi automata to deterministic Büchi automata,
going through universal Büchi word automata – these constructed by dualizing Theorem 1.



hope to obtain a deterministic automaton with only3|A| states. This construction, how-
ever, has to consider the different acceptance conditionsαi, maintaining in each state
not only a pair〈S,O〉, but a tuple〈S,O1, . . . , Ok〉, where eachOi ⊆ S corresponds to
the standard breakpoint construction with respect toαi. Such a construction, however,
involves akn blow-up.

We circumvent this blow-up by determinizing each of theCi’s separately and con-
necting the resultingDi’s in a round-robin fashion, moving fromDi to Di (mod k)+1

when the setO, which maintains the set of states in paths in whichDi avoidsαi, be-
comes empty. Now, there is1 ≤ i ≤ k such thatCi has a run that eventually gets stuck
in αi iff there is1 ≤ i ≤ k such that in the round-robin construction, the run gets stuck
in a copy that corresponds toDi in states withO 6= ∅.

Formally, for every1 ≤ i ≤ k, we define a functionfi : 2A → 2A by fi(E) =
{a | 〈a,E〉 ∈ αCi

}. We define the DCWD = 〈Σ,D, δD, D0, αD〉 as follows.

– D = {〈S,O, i〉 | S ⊆ A,O ⊆ S ∩ fi(S), andi ∈ {1, . . . k}}.
– For all 〈S,O, i〉 ∈ D andσ ∈ Σ, the transition function is defined as follows.

• If O 6= ∅, thenδD(〈S,O, i〉, σ) = {〈S′, O′, i′〉}, whereS′ = δA(S, σ), O′ =
δA(O, σ) ∩ fi(S) andi′ = i (mod k) + 1 if O′ = ∅ andi otherwise.

• If O = ∅, thenδD(〈S,O, i〉, σ) = {〈S′, O′, i′〉}, whereS′ = δA(S, σ), O′ =
δA(S, σ) ∩ fi(S) andi′ = i (mod k) + 1 if O′ = ∅ andi otherwise.

– D0 = {〈A0 of C1, ∅〉}.
– αD = {〈S,O, i〉 | O 6= ∅}.

A run of D is accepting if it gets stuck in one of the sets of accepting states. Since
the different parts ofC are unconnected, we have that a run ofC is accepting iff it gets
stuck in the accepting states of one of theCi’s. Hence, a word is accepted byC iff it is
accepted byD, and we are done.

⊓⊔

By [3], one cannot avoid the3n state blow-up for translating an NCW to a DCW.
Since this lower bound clearly holds also for the stronger conditions, we can conclude
with the following.

Theorem 5. The tight bound for the state blow-up in the translation, when possible, of
NPW, NSW, NRW and NMW to an equivalent DCW isΘ(3n).

5 Applications

The translations of nondeterministic automata to NCW and DCW are useful in various
applications, mainly in procedures that currently involvedeterminization. The idea is
to either use an NCW instead of a deterministic Büchi or parity automaton, or to use a
DBW instead of a deterministic parity automaton. We elaborated on these applications
in [2], where the starting point was NBWs. In this section we show that the starting
point for the applications can be automata with richer acceptance conditions, and that
starting with the richer acceptance conditions (and hence,with automata that may be
exponentially more succinct!), involves no extra cost.



In addition, all the applications described in [2] that involve a translation of LTL
formulas to NCWs, DCWs or DBWs, can now use an intermediate automaton of the
richer classes rather than an NBW. Here too, this can lead to an exponential saving.
Indeed, the exponential succinctness of NSW with respect toNBW [15] is proved us-
ing languages that can be described by LTL formulas of polynomial length. It follows
that there are LTL formulas whose translation to NSW would beexponentially more
succinct than their translation to NBW. Moreover, in practice, tools that translate LTL
to NBW go through intermediate generalized-Büchi automata, which are a special case
of NSW. Our results suggest that in the applications described below, one need not
blow-up the state space by going all the way to an NBW.

We first note two important features of the translations. Thefirst feature is the fact
that the constructions in Theorems 1, 3, and 4 are based on thesubset construction, have
a simple state space, are amenable to optimizations, and canbe implemented symbol-
ically [14]. The second feature has to do with the one-sided error of the construction,
when applied to automata that are not NCW-recognizable: Theorems 1, 3 and 4 guar-
antee that if the given automaton is NCW-recognizable, thenthe constructions result in
equivalent automata. As stated below, if this is not the case, then the constructions have
only a one-sided error.

Lemma 6. For an automatonA, let C be the NCW obtained by the translations of
Theorems 1 and 3, and letD be the DCW obtained fromA by applying the breakpoint
construction of Theorem 4. Then,L(A) ⊆ L(C) = L(D).

Proof. It is easy to see that the proof of theL(A) ⊆ L(C) direction in Theorems 1
and 3, as well as the equivalence ofC andD in Theorem 4, do not rely on the assumption
thatA is NCW-recognizable. ⊓⊔

Below we list the main applications. More details can be found in [2] (the descrip-
tion of the problems is the same, except that there the input or intermediate automata
are NBWs, whereas here we can handle, at the same complexity,all other acceptance
conditions).

– Deciding whether a given automaton (NSW, NPW, NRW, or NMW) isNCW-
recognizable.

– Deciding whether a given LTL formula is NCW- or DBW-recognizable.
– Translating an LTL formula to a DBW: For an LTL formulaψ, letL(ψ) denote the

set of computations satisfyingψ. Then, the following is an easy corollary of the
duality between DBW and DCW.

Lemma 7. Consider an LTL formulaψ that is DBW-recognizable. LetA¬ψ be a
nondeterministic automaton acceptingL(¬ψ), and letDψ be the DBW obtained by
dualizing the breakpoint construction ofA¬ψ. Then,L(Dψ) = L(ψ).

Note that one need not translate the LTL formula to an NBW, andcan instead
translate it to a nondeterministic generalized Büchi or even to a Streett automaton,
which are more succinct.

– Translating LTL formula to the alternation-freeµ-calculus.



Using the one-sided error.The one-sided error of the constructions suggest applications
also for specifications that are not NCW-recognizable. The translation to DBW, for
example, can be used in a decision procedure for CTL⋆ even when the path formulas
are not DBW-recognizable.

We demonstrate below how the one-sided error can be used for solving LTL synthe-
sis. Given an arbitrary LTL formulaψ, letDψ be the DBW constructed as in Lemma 7.
Lemma 6 implies thatL(Dψ) ⊆ L(ψ). The polarity of the error (that is,Dψ underap-
proximatesψ) is the helpful one. If we get a transducer that realizesDψ, we know that
it also realizesψ, and we are done. Moreover, as suggested in [9], in caseDψ is unreal-
izable, we can check, again using an approximating DBW, whether¬ψ is realizable for
the environment. Only if bothψ is unrealizable for the system and¬ψ is unrealizable
for the environment, we need precise realizability. Note that then, we can also conclude
thatψ is not in DBW.

6 Discussion

The simplicity of the co-Büchi condition and its duality tothe Büchi condition makes
it an interesting theoretical object. Its many recent applications in practice motivate
further study of it. Translating automata of rich acceptance conditions to co-Büchi au-
tomata is useful in formal verification and synthesis, yet the state blow-up that such
translations involve was a long-standing open problem. We solved the problem, and
provided asymptotically tight constructions for translating all common automata classes
to nondeterministic and deterministic co-Büchi automata.

All the constructions are extensions of the augmented subset construction and break-
point construction, which are in turn an extension of the basic subset construction. In
particular, the set of accepting states is induced by simplereachability queries in the
graph of the automaton. Hence, the constructed automata have a simple state space and
are amenable to optimizations and to symbolic implementations.

The state blow-up involved in the various translations is summarized in Table 1.

From� To NCW DCW

NBW, NPW, NSW n2n 3
n

NRW, NMW kn2n k3n

Table 1.The state blow-up involved in the translation, when possible, of a word automaton with
n states and indexk to an equivalent NCW and DCW.

Since the lower bounds for the translations are known for thespecial case of the ori-
gin automaton being an NBW, this is a “good news” paper, providing matching upper
bounds. The new translations are significantly, in some cases exponentially, better than
known translations. In particular, they show that the exponential blow-ups in the trans-
lation of NSW to NBW and of NBW to NCW are not additive. This is quite rare in the
theory of automata on infinite words. The good news is carriedover to the applications



of the translations. In particular, our results suggest that one need not go via intermedi-
ate NBWs in the translation of LTL formulas to DBWs, and that working instead with
intermediate NSWs can result in DBWs that are exponentiallysmaller.
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