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Abstract
A word automaton recognizing a language L is good for games (GFG) if its composition with any
game with winning condition L preserves the game’s winner. While all deterministic automata
are GFG, some nondeterministic automata are not. There are various other properties that are
used in the literature for defining that a nondeterministic automaton is GFG, including “history-
deterministic”, “compliant with some letter game”, “good for trees”, and “good for composition
with other automata”. The equivalence of these properties has not been formally shown.

We generalize all of these definitions to alternating automata and show their equivalence. We
further show that alternating GFG automata are as expressive as deterministic automata with the
same acceptance conditions and indices. We then show that alternating GFG automata over finite
words, and weak automata over infinite words, are not more succinct than deterministic automata,
and that determinizing Büchi and co-Büchi alternating GFG automata involves a 2Θ(n) state blow-up.
We leave open the question of whether alternating GFG automata of stronger acceptance conditions
allow for doubly-exponential succinctness compared to deterministic automata.
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1 Introduction

In general, deterministic automata have better compositional properties than nondetermin-
istic automata, making them better suited for applications such as synthesis. Unfortunately,
determinization is complicated and involves an exponential state space blow-up. Non-
deterministic automata that are good for games (GFG) have been heralded as a potential
way to combine the compositionality of deterministic automata with the conciseness of
nondeterministic ones. In this article we are interested in the question of whether the benefits
of good-for-games automata extend to alternating automata, which, in general, can be
double-exponentially more concise than deterministic automata.

The first hurdle of studying GFG alternating automata is to settle on definitions. Indeed,
for nondeterminisic automata, several GFG-type properties have been invented independently
under different names: good for games [17], good for trees [19], and history-determinism [11].

While Henzinger and Piterman introduced the idea of automata that compose well with
games, in their technical development they preferred to use a letter game such that one
player having a winning strategy in this game implies that the nondeterministic automaton
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2 Good for Games Automata

composes well with games [17]. In a similar vein, Kupferman, Safra and Vardi considered
already in 1996 a form of nondeterministic automata that resolves its nondeterminism
according to the past by looking at tree automata for derived word languages [19]; this
notion of good for trees was shown to be equivalent to the letter game [3]. Independently,
Colcombet introduced history-determinism in the setting of nondeterministic cost automata
[11], and later extended it to alternating automata [13]. He showed that history-determinism
implies that the automaton is suitable for composition with other alternating automata, a
seemingly stronger property than just compositionality with games. Although Colcombet
further developed history-determinism for cost automata, here we only consider automata
with ω-regular acceptance conditions.

As a result, in the literature there are at least five different definitions that characterize,
imply, or are implied by a nondeterministic automaton composing well with games: com-
position with games, composition with automata, composition with trees, letter games and
history-determinism. While some implications between them are proved, others are folklore,
or missing. Furthermore, these definitions do not all generalize in the same way to alternating
automata: compositionality with games and with automata are agnostic to whether the
automaton is nondeterministic, universal or alternating, and hence generalize effortlessly
to alternating automata; the letter-game and good-for-tree automata on the other hand
generalize ‘naturally’ in a way that treats nondeterminism and universality asymmetrically
and hence need be adapted to handle alternation.

In the first part of this article, we give a coherent account of good-for-gameness for
alternating automata: we generalize all the existing definitions from nondeterministic to
alternating automata, and show them be equivalent. This implies that these are also
equivalent for nondeterministic automata. While some of these equivalences were already
folklore for nondeterministic automata, others are more surprising: compositionality with
one-player games implies compositionality with two-player games and compositionality with
automata, despite games being a special case of alternating automata and single-player games
being a special case of games. We also show that in the nondeterministic case each definition
can be relaxed to an asymmetric requirement: composition with universal automata or
universal trees is already equivalent to composition with alternating automata and games.

In the second part of this article, we focus on questions of expressiveness and succinctness.
The first examples of GFG automata were built on top of deterministic automata [17],
and Colcombet conjectured that history-deterministic alternating automata with ω-regular
acceptance conditions are not more concise than deterministic ones [12]. Yet, this has
since been shown to be false: already GFG nondeterministic Büchi automata cannot be
pruned into deterministic ones [3] and co-Büchi automata can be exponentially more concise
than deterministic ones [18]. In general, nondeterministic GFG automata are in between
nondeterministic and deterministic automata, having some properties from each [4].

Whether GFG alternating automata can be double exponentially more concise than
deterministic automata is particularly interesting in the wake of quasi-polynomial algorithms
for parity games. Indeed, since 2017 when Calude et al. brought down the upper bound for
solving parity games from subexponential to quasi-polynomial [10], the automata-theoretical
aspects of solving parity games with quasi-polynomial complexity have been studied in
more depth [20, 6, 7, 16, 1, 15, 14]. In particular, Bojańczyk and Czerwiński [1], and
Czerwiński et al. [15] describe the quasi-polynomial algorithms for solving parity games
explicitly in terms of deterministic word automata that separate some word languages. A
polynomial deterministic or GFG safety separating automaton for these languages would
imply a polynomial algorithm for parity games. However, it is shown in [15] that the smallest
possible such nondeterministic automaton is quasi-polynomial. As this lower bound only
applies for nondeterministic automata, it is interesting to understand whether alternating
GFG automata could be more concise.
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As for expressiveness, we show that alternating GFG automata are as expressive as
deterministic automata with the same acceptance conditions and indices. The proof extends
the technique used in the nondeterministic setting [3], producing a deterministic automaton
by taking the product of the automaton and the two transducers that model its history-
determinism.

Regarding succinctness, we first show that GFG automata over finite words, as well as
weak automata over infinite words, are not more succinct than deterministic automata. The
proof builds on the property that minimal deterministic automata of these types have exactly
one state for each Myhill-Nerode equivalence class, and an analysis that GFG automata of
these types must also have at least one state for each such class.

We proceed to show that determinizing Büchi and co-Büchi alternating GFG automata
involves a 2θ(n) state blow-up. The proof in this case is more involved, going through two main
lemmas. The first shows that for alternating GFG Büchi automata, a history-deterministic
strategy need not remember the entire history of the transition conditions, and can do with
only remembering the prefix of the word read. The second lemma shows that the breakpoint
(Miyano-Hayashi) construction, which is used to translate an alternating Büchi automaton
into a nondeterministic one, preserves GFGness. We leave open the question of whether
alternating GFG automata of stronger acceptance conditions allow for doubly-exponential
succinctness compared to deterministic automata.

2 Preliminaries

Words and automata. An alphabet Σ is a finite nonempty set of letters, a finite (resp.
infinite) word u = u0 . . . uk ∈ Σ∗ (resp. w = w0w1 . . . ∈ Σω) is a finite (resp. infinite) sequence
of letters from Σ. A language is a set of words, and the empty word is written ε.

An alternating word automaton is A = (Σ, Q, ι, δ, α), where Σ is a finite nonempty
alphabet, Q is a finite nonempty set of states, ι ∈ Q is an initial state, δ : Q× Σ→ B+(Q)
is a transition function where B+(Q) is the set of positive boolean formulas (transition
conditions) over Q, and α is an acceptance condition, on which we elaborate below. For a
state q ∈ Q, we denote by Aq the automaton that is derived from A by setting its initial state
to q. A is nondeterministic (resp. universal) if all its transition conditions are disjunctions
(resp. conjunctions), and it is deterministic if all its transition conditions are states.

There are various acceptance conditions, defined with respect to the set of states that (a
path of) a run of A visits. Some of the acceptance conditions are defined on top of a labeling
of A’s states. In particular, the parity condition is a labeling α : Q→ Γ, where Γ is a finite
set of priorities and a path is accepting if and only if the highest priority seen infinitely often
on it is even. A Büchi condition is the special case of the parity condition where Γ = {1, 2};
states of priority 2 are called accepting and of priority 1 rejecting, and then α can be viewed
as the subset of accepting states of Q. Co-Büchi automata are dual, with Γ = {0, 1}. A weak
automaton is a Büchi automaton in which every strongly connected component of the graph
induced by the transition function consists of only accepting or only rejecting states.

In Sections 2-5, we handle automata with arbitrary ω-regular acceptance conditions, and
thus consider α to be a mapping from Q to a finite set Γ, on top of which some further
acceptance criterion is implicitly considered (as in the parity condition). In Section 6, we
focus on weak, Büchi, and co-Büchi automata, and then view α as a subset of Q.

Games. A finite Σ-arena is a finite Σ×{A,E}-labeled Kripke structure. An infinite Σ-arena
is an infinite Σ× {A,E}-labeled tree. Nodes with an A-label are said to belong to Adam;
those with an E-label are said to belong to Eve. We represent a Σ-arena as R = (V,X, VE , C),
where V is its set of nodes, X ⊆ V × V its transitions, VE ⊆ V the E-labeled nodes, V \ VE
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The synchronized-product R×A:

Diamonds are Eve’s vertices.

An {a, b}-labeled arena R: An alternating automaton A over {a, b}:

Dashed vertices: choosing the next state of A.

Solid vertices: choosing the next vertex of R.

Boxes are Adam’s vertices.
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Figure 1 An example of a product between an alternating automaton and a finite arena.

the A-labeled nodes and C : V → Σ its Σ-labeling function. We will assume that all states
have a successor. An arena might be rooted at an initial position vι ∈ V .

A play in R is an infinite path in R. A game is a Σ-arena together with a winning
condition W ⊆ Σω. A play π is said to be winning for Eve in the game if the Σ-labels along
π form a word in W . Else π is winning for Adam.

A strategy for Eve (Adam, resp.) is a function τ : V ∗ → V that maps a history v0 . . . vi,
i.e. a finite prefix of a play in R, to a successor of vi whenever vi ∈ VE (vi /∈ VE). A play
v0v1 . . . agrees with a strategy τ for Eve (Adam) if whenever vi ∈ VE (vi /∈ VE), we have
vi+1 = τ(vi). A strategy for Eve (Adam) is winning from a position v ∈ V if all plays
beginning in v that agree with it are winning for Eve (Adam). We say that a player wins the
game from a position v ∈ V if they have a winning strategy from v. If the game is rooted at
vι, we say that a player wins the game if they win from vι.

All the games we consider have ω-regular winning conditions and are therefore determined
and the winner has a finite-memory strategy [9]. Finite-memory strategies can be modeled by
transducers. Given alphabets I and O, an (I/O)-transducer is a tupleM = (I,O,M, ι, ρ, χ),
where M is a finite set of states (memories), ι ∈ M is an initial memory, ρ : M × I → M
is a deterministic transition function, and χ : M → O is an output function. The strategy
M : I∗ → O is obtained by following ρ and χ in the expected way: we first extend ρ to
words in I∗ by setting ρ(ε) = ι and ρ(u · a) = ρ(ρ(u), a), and then defineM(u) = χ(ρ(u)).

Products.

I Definition 1 (Synchronized product). The synchronized product R×A between a Σ-arena
R = (V,X, VE , C) and an alternating automaton A = (Σ, Q, ι, δ, α) with mapping α : Q→ Γ
is a Γ∪{⊥}-arena of which the states are V ×B+(Q) and the successor relation is defined by:

(v, q), for a state q of Q, has successors (v′, δ(q, C(v′))) for each successor v′ of v in R;
(v, b ∧ b′) and (v, b ∨ b′) have two successors (v, b) and (v, b′);
If R is rooted at v then the root of R×A is (v, δ(ι, C(v))).

The positions belonging to Eve are (v, b) where either b is a disjunction, or b is a state in Q
and v ∈ VE. The label of (v, b) is α(b) if b is a state of Q, and ⊥ otherwise.

An example, without labeling, of a synchronized product is given in Figure 1.



U. Boker and K. Lehtinen 5

I Definition 2 (Automata composition). Given alternating automata B = (Σ, QB, ιB, δB, β :
QB → Γ) and A = (Γ, QA, ιA, δA, α), their composition B ×A consists of the synchronized
product automaton (Σ, QB ×QA, (ιB, ιA), δ, α′), where α′(qB , qA) = α(qA) and δ((qB, qA), a)
consists of f(δB(qB , a), qA) where:

f(c ∨ c′, q) = f(c, q) ∨ f(c′, q)
f(c ∧ c′, q) = f(c, q) ∧ f(c′, q)
f(q′, q) = g(q′, δA(q, β(q′)) where

g(q, c ∨ c′) = g(q, c) ∨ g(q, c′)
g(q, c ∧ c′) = g(q, c) ∧ g(q, c′)
g(q, q′) = (q, q′).

Note that this stands for first unfolding the transition condition in B and then the transition
condition in A, and it is equivalent to the following substitution, which matches Colcombet’s
notation [13]: δB(qB, a)[q ∈ QB ← δA(qA, β(q))[p ∈ QA ← (q, p)]].

Acceptance of a word by an automaton. We define the acceptance directly in terms of
the model-checking (membership) game, which happens to be exactly the product of the
automaton with a path-like arena describing the input word. More precisely, A accepts a
word w if and only if Eve wins the model-checking game G(w,A), defined as the product
Rw ×A, where the arena Rw consists of an infinite path, of which all positions belong to
Eve (although it does not matter), and the label of the ith position is the ith letter of w.
The language of an automaton A, denoted by L(A), is the set of words that it accepts
(recognizes). Two automata are equivalent if they recognize the same language. We will refer
to the positions of the arena Rw by the suffix of w that labels the path starting there. In
particular, this gives us a finite representation of the arena for ultimately periodic words.
We further denote by Gτ (w,A) the model-checking game G(w,A) restricted to moves that
agree with the strategy τ of Adam or Eve.

3 Good for Games Automata: Five Definitions

We clarify the definitions that are used in the literature for “good for gameness”, while gen-
eralizing them from a nondeterministic to an alternating word automaton A = (Σ, Q, ι, δ, α).

Good for game composition. The first definition matches the intuition that “A is good
for playing games”. It was given in [17] for nondeterministic automata and applies as is
to alternating automata, by properly defining the synchronized product of a game and an
alternating automaton. (Definition 1.) We prove in Section 4 that it is equivalent when
speaking of only one-player finite-arena games and two-player finite/infinite-arena games.

I Definition 3 (Good for game composition). A is good for game composition if for every
[one-player] game G with a [finite] Σ-labeled arena and winning condition L(A), Eve has a
winning strategy in G if and only if she has a winning strategy in the synchronized-product
game G×A.

Compliant with the letter games. The first definition is simple to declare, but is not
convenient for technical developments. Thus, Henzinger and Piterman defined the “letter-
game”, our next definition, while independently Colcombet defined history-determinism,
which we provide afterwards. The two latter definitions are easily seen to be equivalent and
they were shown in [17] to imply the game composition definition. We are not aware of a full
proof of the other direction in the literature; we include one in this article.

In the letter-game for nondeterministic automata [17], Adam generates a word letter by
letter, and Eve has to resolve the nondeterminism “on the fly”, so that the generated run of
A is accepting if Adam generates a word in the language. It has not been generalized yet to
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the alternating setting, and there are various ways in which it can be generalized, as it is not
clear who should pick the letters and how to resolve the nondeterminism and universality. It
turns out that a generalization that works well is to consider two independent games, one
in which Eve resolves the nondeterminism while Adam picks the letters and resolves the
universality, and another in which Eve picks the letters.

I Definition 4 (Compliant with the letter games). There are two letter games, Eve’s game
and Adam’s game.
Eve’s game: A configuration is a pair (σ, b) where b ∈ B+(Q) is a transition condition

and σ ∈ Σ ∪ {ε} is a letter. (We abuse ε to also be an empty letter.) A play begins in
(σ0, b0) = (ε, ι) and consists of an infinite sequence of configurations (σ0, b0)(σ1, b1) . . ..
In a configuration (σi, bi), the game proceeds to the next configuration (σi+1, bi+1) as
follows.

If bi is a state of Q, Adam picks a letter a from Σ, having (σi+1, bi+1) = (a, δ(bi, a)).
If bi is a conjunction bi = b′ ∧ b′′, Adam chooses between (ε, b′) and (ε, b′).
If bi is a disjunction bi = b′ ∨ b′′, Eve chooses between (ε, b′) and (ε, b′).

In the limit, a play consists of an infinite sequence π = b0, b1, . . . of transition conditions
and an infinite word w consisting of the concatenation of σ0, σ1, . . .. Let ρ be the restriction
of π to transition conditions that are states of Q. Eve wins the play if either w /∈ L(A)
or ρ satisfies A’s acceptance condition.
The nondeterminism in A is compliant with the letter games if Eve wins this game.

Adam’s game is similar to Eve’s game, except that Eve chooses the letters instead of Adam,
and Adam wins if either w ∈ L(A) or ρ does not satisfy A’s acceptance condition. The
universality in A is compliant with the letter games if Adam wins this game.

A is compliant with the letter games if its nondeterminism and universality are compliant
with the letter games.

Observe that we need both games: universal automata are trivially compliant with Eve’s
letter game and nondeterministic automata are trivially compliant with Adam’s letter game.

History-determinism. A nondeterministic automaton is history-deterministic [11] if there
is a strategy1 to resolve the nondeterminism that only depends on the word read so far, i.e.,
that is uniform for all possible futures. Colcombet generalized this to alternating automata
[13] by considering such strategies for both players.

We first define how to use a strategy τ : (Σ × B+(Q))∗ → B+(Q) for playing in a
model-checking game G(w,A), as the history domains are different. Recall that in the
model-checking game G(w,A), positions consist of a suffix of w and a transition condition
of A so histories have type (Σω × B+(Q))∗. From such a history h, let h′ be the history
obtained by only keeping the first letter of the Σω component of h’s elements, that is, the
letter at the head of the current suffix. Then, we extend τ to operate over the (Σω×B+(Q))∗
domain, by defining τ(h) = τ(h′).

For convenience, we often refer to a history in (Σ× B+(Q))∗, as a pair in Σ∗ × (B+(Q))∗.

I Definition 5 (History-determinism [13]).
The nondeterminism inA is history-deterministic if there is a strategy τE : (Σ×B+(Q))∗ →
B+(Q) such that for all w ∈ L(A), τE is a winning strategy for Eve in G(w,A).
The universality in A is history-deterministic if there is a strategy τA : (Σ× B+(Q))∗ →
B+(Q) such that for all w /∈ L(A), τA is a winning strategy for Adam in G(w,A).
A is history-deterministic if its nondeterminism and universality are history-deterministic.

1 In Section 2, we formally defined a “strategy” with respect to a specific game. Here we abuse the term
“strategy” to refer to a general total function on finite words.
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Good for automata composition. The next definition comes from Colcombet’s proof
that alternating history-deterministic automata behave well with respect to composition
with other alternating automata. We shall show in Section 4 that it also implies proper
compositionality with tree automata, and that for nondeterministic automata, it is enough
to require compositionality with universal, rather than alternating, automata.

I Definition 6 (Good for automata composition [13]). A is good for automata composition
if for every alternating word (or tree) automaton B with Σ-labeled states and acceptance
condition L(A), the language of the composed automaton B×A is equal to the language of B.

Good for trees. The next definition comes from the work in [19, 3] on the power of
nondeterminism in tree automata. It states that a nondeterministic word automaton A is
good-for-trees if we can “universally expand” it to run on trees and accept the “universally
derived language” L(A)M—trees all of whose branches are in the word language of A.

Observe that every universal word automaton for a language L is trivially good for LM.
Therefore, for universal automata, we suggest that a dual definition is more interesting: its
“existential expansion to trees” accepts LO—trees in which there exists a path in L.

For an alternating automaton A, we generalize the good-for-trees notion to require that A
is good for both L(A)M and L(A)O, when expanded universally and existentially, respectively.

We first formally generalize the definition of “expansion to trees” to alternating automata.
The universal (resp. existential) expansion of A to trees is syntactically identical to A, while
its semantics is to accept a tree t if and only if Eve wins the game t×A, when t is viewed as
a game in which all nodes belong to Adam (resp. Eve).

I Definition 7 (Good for trees). A is good for trees if its universal- and existential-expansions
to trees recognize the tree languages L(A)M and L(A)O, respectively.

4 Equivalence of All Definitions

We prove in this section the equivalence of all of the definitions in the alternating setting,
as given in Section 3, which implies their equivalence also in the nondeterministic (and
universal) setting. We may therefore refer to an automaton as good-for-games (GFG) if it
satisfies any of these definitions. In some cases, we provide additional equivalences that only
apply to the nondeterministic setting.

I Theorem 8. Given an alternating automaton A, the following are equivalent:
1. A is good for game composition (Def. 3).
2. A is compliant with the letter games (Def. 4).
3. A is history-deterministic (Def. 5).
4. A is good for automata composition (Def. 6).
5. A is good for trees (Def. 7).

Proof.
Lemma 9: History-determinism ⇔ compliance with the letter games. (Def. 4 ⇔ Def. 5).
Lemma 13: Compliance with the letter games ⇒ compositionality with arbitrary games.
(Def. 4 ⇒ “strong” Def. 3).
Lemma 14: Compositionality, even with just one-player finite-arena games ⇒ compliance
with the letter games. (“weak” Def. 3 ⇒ Def. 4).
Lemma 15: Good for trees is ⇔ compositionality with one-player games.
(Def. 7 ⇔ “medium” Def. 3).
Lemma 16: Compositionality with games ⇔ compositionality with automata.
(Def. 6 ⇔ Def. 3).



8 Good for Games Automata

J

We start with the simple equivalence of history-determinism and compliance with the
letter game. (Observe that the letter-game strategies are of the same type as the strategies
that witness history-determinism: a function from (Σ× B+(Q))∗ to B+(Q).)

I Lemma 9. Consider an alternating automaton A = (Σ, Q, ι, δ, α).
A strategy τE for Eve in her letter game is winning if and only if it witnesses the
history-determinism of the nondeterminism in A.
A strategy τA for Adam in his letter game is winning if and only if it witnesses the
history-determinism of the universality in A.
An alternating automaton A is history-deterministic if and only if it is compliant with
the letter games.

Proof. For the first direction, we assume that the nondeterminism inA is history-deterministic,
witnessed by a strategy τE of Eve. Then Eve wins her letter game by following τE , since
if Adam plays a word w ∈ L(A), then the resulting play of the letter game, consisting of a
sequence π = b0, b1 . . . of transition conditions and a word w = w0, w1 . . ., induces a play in
G(w,A) that agrees with τE . Since τE witnesses the history-determinism of A, such a play
must be winning, that is, π restricted to Q must satisfy A’s acceptance condition.

Symmetrically, if the universality in A is history-deterministic, witnessed by a strategy
τA of Adam, it induces a winning strategy for him in his letter-game.

For the converse, assume that Eve wins her letter game with a strategy s. We argue that
this strategy also witnesses the history-determinism of the nondeterminism in A, namely
that Eve wins Gs(w,A) for every word w ∈ L(A).

Indeed, if a play π ∈ Gs(w,A) does not satisfy the acceptance condition of A while
w ∈ L(A), then the play in Eve’s letter game in which Adam plays w and resolves universality
as in π would both agree with s and be winning for Adam, contradicting that s is winning
for Eve. The nondeterminism of A is therefore history-deterministic.

Symmetrically, if Adam wins his letter game with strategy τA, the universality in A is
history-deterministic, witnessed by τA. Hence, if A is compliant with the letter games, it is
also history-deterministic. J

I Corollary 10. If A is history-deterministic, then there are finite-memory strategies τE and
τA to witness it.

Proof. Since the letter game is a finite ω-regular game, its winner has a finite-memory
strategy. J

The following two propositions state that “standard manipulations” of alternating auto-
mata preserve history-determinism. The dual of an automaton A, denoted by A, is derived
from A by changing every conjunction of a transition condition to a disjunction, and vice
versa, and changing the acceptance condition to reject every sequence of states (labeling)
that A accepts, and accept every sequence that A rejects.

I Proposition 11. Consider an alternating automaton A and its dual A. The nondetermin-
ism (resp. universality) of A is history-deterministic if and only if the universality (resp.
nondeterminism) of A is history-deterministic.

Proof. For every word w, the model-checking games G(w,A) and G(w,A) are the same, just
switching roles between Adam and Eve. Thus, the history-deterministic strategy for Adam
in A can serve Eve in A and vice versa. J
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I Proposition 12. Consider an alternating automaton A, and let A′ be an automaton that
is derived from A by changing some transition conditions to different, but equivalent, boolean
formulas. Then the nondeterminism/universality in A = (Σ, Q, ι, δ, α) is history-deterministic
if and only if it is history-deterministic in A′.

Proof. It is enough to show that changing any transition condition of an alternating auto-
maton A to DNF does not influence its history-determinism for Eve/Adam.

Assume that the nondeterminism in A is history-deterministic, witnessed by a strategy τ
of Eve. Let A′ be an automaton that is derived from A by changing any transition condition
b of A, for a state q and a letter a, into its DNF form b′. Let k ∈ N be the depth of alternation
between nondeterminism and universality in b.

We show that Eve has a history-deterministic strategy τ ′ for A′, by adapting τ . We call
local b-strategy a way of resolving the nondeterminism in b. First observe that for every local
b-strategy s, there is a corresponding local b′-strategy s′ that chooses the set of states that
Adam can force in k steps over b if Eve follows s; conversely for every local b′-strategy s′,
there is a corresponding local b-strategy s such that the set of states that Adam can force in
k steps over b if Eve follows s is exactly Eve’s choice in s′.

The strategy τ ′ can then be defined by replacing b-local strategies from τ with the
corresponding b′-local strategies. More precisely, for every history (u, h′) ∈ (Σ∗ × B+(Q))∗,
we have that τ ′(u, h′q) is the b′-local strategy corresponding to τ(u, hq), where h is the
sequence of transition conditions derived from h′, by replacing the b′ transitions consistent
with a b′-local strategy s′ with the b transitions consistent with the corresponding b-local
strategy s. Since the corresponding local strategies only differ in the paths taken within b
and b′, but not in the resulting states reached, τ ′ preserves Eve’s victory.

The arguments for the other direction, that is assuming that the nondeterminism in A′ is
history-deterministic, and proving that this is also the case for A, are analogous, and so are
the arguments for how to adapt a history-deterministic strategy for Adam. J

The following lemma was shown in [17] for nondeterministic automata and can be deduced
for alternating automata from Lemma 9 and the equivalence of history-determinism and
being good for composition with automata [13]. We provide a simple direct proof.

I Lemma 13. If an alternating automaton A is compliant with the letter games then it is
good for game composition.

Proof. Assume A is compliant with the letter games but that for some Σ arena G, the
game on G with winning condition L(A) and the synchronized product G×A have different
winners. If Eve wins in G, then she can combine her winning strategy τ in G and her winning
strategy τ ′ in her letter-game to win in the synchronized product G×A: she resolves the
choices in G according to τ , thus ensuring that the play in G×A follows a path of G labeled
with a word accepted by A. Then, she can resolve the nondeterminism in A according to τ ′.
Since τ ′ is winning in the letter game and all plays agreeing with τ follow a word in G that
is in L(A), all plays agreeing with the combination of τ and τ ′ are accepting.

Similarly, if Adam wins in G, his strategy in G and in his letter game combine into a
winning strategy in the product G×A. J

If A is good for infinite games, it is clearly good for finite games, which can be unfolded into
infinite games. The following lemma shows that the other direction holds too: compositionality
with finite games implies compliance with the letter games, and therefore, from the previous
lemma, composition with infinite games.

Note that this correspondence does not extend to the notion of good for small games
[6, 14]: an automaton can be good for composition with games up to a bounded size, without
being good for games.
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in Eve’s letter game on A from Figure 1:
A transducerM for Adam’s strategy

A game corresponding toM:

Transitions correspond to Eve’s choices.
States output Adam’s choices: A letter and a disjunctive clause.

All vertices belong to Adam.

v2

m0 v0
v3

v1
q1∨q2

q1∨q2

m1
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q3

q1

a

a
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q2 a
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q3

q1

q1
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Figure 2 An example of a strategy for Adam in Eve’s letter game, and the corresponding game,
as used in the proof of Lemma 14.

I Lemma 14. If an alternating automaton is good for composition with finite-arena one-
player games then it is compliant with the letter games.

Proof. Consider an alternating automaton A over the alphabet Σ. We show that if A is not
compliant with the letter games then it is not good for finite-arena one-player games. By
Proposition 12, we may assume that the transition conditions in A are in CNF.

If A is not compliant with Eve’s letter game, then since this game is ω-regular, Adam
has some finite-memory winning strategy, modeled by a transducerM. Observe that states
of M output the next moves of Adam, namely a letter and a disjunctive clause, and the
transitions ofM correspond to moves of Eve.

We translateM into a one-player Σ-labeled game with winning condition L(A), in which
all states belong to Adam: we consider every state/transition ofM as a vertex/edge of G,
take the letter output of a state as the labeling of the corresponding vertex, and ignore the
other outputs and the transition labels. (See an example in Figure 2.) We claim that A is
not good for one-player finite-arena games, since i) Adam loses G; and ii) Adam wins G × A.

Indeed, considering claim (i), a play of G corresponds to a possible path inM, which
corresponds to a possible play in Eve’s letter game that agrees withM. If there is a play of
G whose labeling is not in L(A), it follows that Eve can win her letter game againstM, by
forcing a word not in L(A), which contradicts the assumption thatM is a winning strategy.

As for claim (ii), Adam can play in the G × A game according to M: whenever in a
vertex (v, b) of G × A, where v is a vertex of G and b a transition condition of A, Adam
chooses the next vertex according to the transition in the corresponding state inM. Thus,
the generated play in G ×A corresponds to a play in Eve’s letter game that agrees withM,
which Adam is guaranteed to win.

In the case that A is not compliant with Adam’s letter game, we do the dual: Consider
the transition conditions in A to be in DNF, have a winning strategy for Eve, modeled by a
transducerM whose states output a letter and a conjunctive clause and whose transitions
correspond to Adam’s choices, and translate it to a Σ-labeled one-player game G, in which
all vertices belong to Eve. Then, for analogous reasons, Eve loses G, but wins G ×A. J

The equivalence between the ‘good for trees’ notion and being good for composition
with one-player games, follows directly from the generalized definition of ‘good for trees’
(Definition 7) and the following observation: Every one-player Σ-labeled game is built on
top of a Σ-labeled tree (its arena, in case it is infinite, or the expansion of all possible plays,
in case of a finite arena), and every Σ-labeled tree can be viewed as a one-player game by
assigning ownership of all positions to either Adam or Eve. Clearly, every Σ-labeled tree t
belongs to L(A)M if and only if Eve wins the game on t in which all nodes belong to Adam.
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I Lemma 15. An alternating automaton A is good for trees if and only if it is good for
composition with one-player games.

A finite-arena game can be viewed as an alternating automaton over a singleton alphabet,
suggesting that being good for composition with alternating automata implies being good
for composition with finite games. This is indeed the case and by Lemmas 13 and 14, it also
implies being good for infinite games. It turns out that even though alternating automata
over a non-singleton alphabet cannot be just viewed as games, the other direction also holds.

I Lemma 16. An alternating automaton A is good for game composition if and only if it is
good for automata composition.

Proof. We start with showing that being good for automata composition implies being good
for game composition. Given a game over a finite Σ-arena R = (V,X, VE , L) with initial
position ι and winning condition W ⊆ Σω, consider the automaton AR = ({a}, V, ι, δ, α) over
the alphabet {a} with acceptance condition W , where δ(v, a) =

∨
{v′|(v, v′) ∈ X} if v ∈ VE

and δ(v, a) =
∧
{v′|(v, v′) ∈ X} otherwise. AR accepts the unique word in {a}ω if and only

if Eve has a winning strategy in R from ι, because a strategy in R is exactly a run of AR
over this unique word, and it is winning if and only if the run is accepting.

Then, observing that the synchronized product R × A between a finite game and an
automaton is the special case of the synchronized product AR ×A, we conclude that if an
automaton is good for automata composition, then Eve wins R×A if and only if AR ×A is
non-empty, if and only if AR is non-empty, i.e. if and only if Eve has a winning strategy in
R. That is, A is good for finite game composition. From Lemmas 13 and 14, A is also good
for composition with infinite games.

For the other direction, assume that A is good for game composition. We show that A is
also good for automata composition. Consider an alternating automaton B with acceptance
condition L(A). Let w ∈ L(B) and consider the model-checking game G(w,B) in which
Eve has a winning strategy. Since A is good for game composition, Eve also has a winning
strategy s in G(w,B)×A. We use this strategy to build a strategy s′ for Eve in G(w,B×A).

First recall from Def. 2, that the transitions of B ×A are of the form f(c, q) ∨ f(c′, q),
f(c, q)∧f(c′, q), corresponding to choices in B, or of the form g(q, c)∨g(q, c′) or g(q, c)∧g(q, c′),
corresponding to choices in A. At a position (w, f(c, q) ∨ f(c′, q)), Eve plays as s plays
at ((w, c ∨ c′), q); at (w, g(q, c) ∨ g(q, c′)) Eve plays as s plays at ((w, c ∨ c′), q). Since the
winning condition in both games is determined by the states of A visited infinitely often,
if s is winning, so is s′. Therefore L(B × A) accepts w and L(B) ⊆ L(B × A). In the case
w /∈ L(B), Adam can similarly copy his strategy from G(w,B)×A into G(w,B ×A).

We conclude that the language of B ×A is equal to the language of B and therefore A is
good for automata composition. J

I Remark 17. We observe that compositionality with word automata also implies composi-
tionality with (symmetric, unranked) tree automata. A tree automaton is similar to a word
automaton, except that its transitions have modalities �q and ♦q instead of states. Then, the
model-checking (or membership) game of a tree and an automaton is a game, as for words,
where, in addition, the modalities �q and ♦q dictate whether the choice of successor in the
tree is given to Adam or Eve. Then, if A composes with games, it must in particular compose
with the model-checking game of t and a tree automaton B with acceptance condition L(A).
If Eve (Adam) wins the model-checking game G(t,B), she (he) also wins G(t,B)×A. Her
(his) winning strategy in this game is also a winning strategy in G(t,B ×A), so B ×A must
accept (reject) t. A therefore composes with tree-automata.

While Theorem 8 obviously holds also for nondeterministic automata, we observe that
in the absence of universality, the definitions of Section 3 can be relaxed into asymmetrical
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ones. For letter games, history-determinism, and good-for-trees, it follows directly from the
definitions, as only their ‘nondeterministic part’ applies. For composition with games and
automata, we also show that it suffices to compose with universal automata and games.

I Lemma 18. A nondeterministic automaton A is good for automata composition if and
only if it is good for composition with universal automata.

Proof. Since universal automata is a subclass of alternating automata, one direction is
immediate and we only need to show that if A is good for composition with all universal
automata, it is good for composition with all automata.

Assume that A is good for composition with universal automata. We will show that
A composes with any game G with acceptance condition L(A). Assume Eve wins in G.
Let G′ be the game induced by a positional winning strategy s for Eve in G, seen as a
universal automaton on the singleton alphabet. Since A composes with universal automata,
it composes with G′, and Eve has a winning strategy s′ in G′ ×A. Then, Eve’s strategy in
G×A consisting of using s to resolve the branching in G and s′ to resolve the nondeterminism
in A is winning. If Adam wins in G, then his winning strategy in G×A resolves the branching
in G according to a winning strategy. This forces the play to follow a word not in L(A). Eve
has no accepting run in A for such a word and therefore can not win in G×A against this
strategy. J

5 Expressiveness

For some acceptance conditions, such as weak, Büchi, and co-Büchi, alternating automata
are more expressive than deterministic ones. For other conditions, such as parity, Rabin,
Streett, and Muller, they are not. Yet, also for the latter conditions, once considering the
condition’s index, which is roughly its size, alternating automata are more expressive than
deterministic automata with the same acceptance condition and index. (More details on the
different acceptance conditions can be found, for example, in [2].)

Most acceptance conditions are preserved, together with their index, when taking the
product of an automaton A with an auxiliary memory M . In such a product, the states of
the resulting automaton are pairs (q,m) of a state q from A and a state m from M , while
the acceptance condition is defined according to the projection of the states to their A’s
component. In particular, the weak, Büchi, co-Büchi, parity, Rabin, and Streett conditions
are preserved, together with their index, under memory product, while the very-weak and
Muller conditions are not.

For showing that GFG automata are not more expressive than deterministic automata with
the same acceptance condition and index, we generalize the proof of [3] from nondeterminism
to alternation. The idea is to translate an alternating GFG automaton A to an equivalent
deterministic automaton D by taking the product of A with the transducers that model the
history-deterministic strategies of A.

I Theorem 19. Every alternating GFG automaton with acceptance condition that is pre-
served under memory-product can be translated to a deterministic automaton with the same
acceptance condition and index. In particular, this is the case for weak, co-Büchi, Büchi,
parity, Rabin, and Streett GFG alternating automata of any index.

Proof. Consider an alternating GFG automaton A = (Σ, Q, ι, δ, α). For convenience, we
may assume by Proposition 12 that A’s transition conditions are in DNF.

By Corollary 10, the history-determinism of A’s universality and nondeterminism is wit-
nessed by finite-memory strategies, modeled by transducers MA = (IA, OA,MA, ιA, ρA, χA)
and ME = (IE , OE ,ME , ιE , ρE , χE), respectively. Observe that since transition conditions
of A are in DNF, the strategyMA chooses a state of A for every letter in Σ and clause of
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states of A, while the transitions inME are made in pairs, first choosing a clause for a letter
in Σ and then updating the memory again according to Adam’s choice of a state of A.

Formally, we have that the elements of IA are pairs (a,C), where a ∈ Σ and C is a clause
of states in Q, and that elements of OA are states in Q, while elements of IE are in Σ ∪Q
and elements of OE are either clauses of states in Q or ε (when only updating the memory).

Let D = (Σ, Q′, ι′, δ′, α′) be the deterministic automaton that is the product of A
andMA, in which the universality is resolved according toMA and the nondeterminism
according to ME . That is, Q′ = Q ×MA ×ME , ι′ = (ι, ιA, ιE), α′(q, x, y) = α(q), and
for every q ∈ Q, x ∈ MA, y ∈ ME , and a ∈ Σ, we have δ′((q, x, y), a) = (q′, x′, y′), where
x′ = ρA(x, (a, χE(ρE(y, a)))), q′ = χA(x′), and y′ = ρE(ρE(y, a), q′).

Observe that A and D have the same acceptance condition and the same index, as A’s
acceptance condition is preserved under memory-product. We also have that A and D are
equivalent, since for every word w, the games G(w,A), GMA,ME

(w,A), and G(w,D) have
the same winner. J

6 Succinctness

Nondeterministic GFG automata over finite words and weak GFG automata over infinite
words can be pruned to equivalent deterministic automata [19, 23]. We show that this
remains true in the alternating setting. The succinctness of nondeterministic GFG Büchi
automata compared to deterministic ones is still an open question, having no lower bound
and a quadratic upper bound, whereas nondeterministic GFG co-Büchi automata can be
exponentially more succinct than their deterministic counterparts [18]. We show that in
the alternating setting, both Büchi and co-Büchi GFG automata are singly-exponential
more succinct than deterministic ones. We leave open the question of whether stronger
acceptance conditions can allow GFG automata to be doubly-exponential more succinct than
deterministic ones.

In this section we focus on specific classes of automata, and for brevity use three letter
acronyms in {D, N, A} × {W, B, C} × {W} when referring to them. The first letter stands
for the transition mode (deterministic, nondeterministic, alternating); the second for the
acceptance-condition (weak, Büchi, co-Büchi); and the third indicates that the automaton
runs on words. For example, DBW stands for a deterministic Büchi automaton on words.
We also use DFA, NFA, and WFA when referring to automata over finite words.

In the nondeterministic setting, the proof that GFG NFAs and GFG NWWs are not
more succinct than DFAs and DWWs, respectively, is based on two properties: i) In a
minimal DFA or DWW for a language L, there is exactly one state for every Myhill-Nerode
equivalence class of L. (Recall that finite words u and v are in the same class C when for
every word w, uw ∈ L if and only if vw ∈ L. For a class C, the language L(C) of C is
{w | ∃u ∈ C such that uw ∈ L}.); and ii) In a nondeterministic GFG automaton A that
has no redundant transitions (removing a transition will change its language or make it not
GFG), for every finite word u and states q, q′ ∈ δ(u), we have L(Aq) = L(Aq′).

For showing that GFG AFAs and AWWs are not more succinct than DFAs and DWWs,
respectively, we provide in the following lemma a variant of the above second property.

I Lemma 20. Consider a GFG alternating automaton A. Then for every class C of the
Myhill-Nerode equivalence classes of L(A), there is a state q in A, such that L(Aq) = L(C).

Proof. Let τ and η be history-deterministic strategies of A for Eve and Adam, respectively.
For every finite word u, let C(u) be the Myhill-Nerode equivalence class of u, and q(u) be the
state that A reaches when running on u along τ and η. We claim that L(Aq(u)) = L(C(u)).

Indeed, if there is a word w ∈ L(C(u)) \ L(Aq(u)) then Adam wins the model-checking
game Gτ (uw,A), by playing according to η until reaching q(u) over u and then playing
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unrestrictedly for rejecting the w suffix, contradicting the history-determinism of τ .
Analogously, if there is a word w ∈ L(Aq(u)) \L(C(u)) then Eve wins the model-checking

game Gη(uw,A), by playing according to τ until reaching q(u) over u and then playing
unrestrictedly for accepting the w suffix, contradicting the history-determinism of η. J

The insuccinctness of GFG AFAs and GFG AWWs directly follows.

I Theorem 21. For every GFG AFA or GFG AWW A, there is an equivalent DFA or
DWW A′, respectively, such that the number of states in A′ is not more than in A.

Proof. The argument below corresponds to a DWW A, and stands also for a DFA A.
By [21], a minimal DWW for a language L(A) has a single state for every Myhill-Nerode

class of L(A). By Lemma 20, A has at least one state for each such class, from which the
claim follows. J

As opposed to weak automata, minimal deterministic Büchi and co-Büchi automata do
not have the Myhill-Nerode classification, and indeed, it was shown in [18] that GFG NCWs
can be exponentially more succinct than DCWs.

We show that GFG ACWs are also only singly-exponential more succinct than DCWs.
We translate a GFG ACW A to an equivalent DCW D in four steps: i) Dualize A to a GFG
ABW B; ii) Translate B to an equivalent NBW, having an O(3n) state blow-up [22, 5], and
prove that the translation preserves GFGness; iii) Translate B to an equivalent DBW C,
having an additional quadratic state blow-up [18]; and iv) Dualize C to a DCW D.

The main difficulty is, of course, in the second step, showing that the translation of
an ABW to an NBW preserves GFGness. For proving it, we first need the following key
lemma, stating that in a GFG ABW in which the transition conditions are given in DNF,
the history-deterministic strategies can only use the current state and the prefix of the word
read so far, ignoring the history of the transition conditions.

I Lemma 22. Consider an ABW A with transition conditions in DNF and history-deterministic
nondeterminism. Then Eve has a strategy τ : Σ∗ × Q → B+(Q) (and not only a strategy
(Σ× B+(Q))∗ → B+(Q)), such that for every word w ∈ L(A), Eve wins Gτ (w,A).

Proof. Let ξ : (Σ×B+(Q))∗ → B+(Q) be a ‘standard’ history-deterministic strategy for Eve.
Observe that since the transition conditions of A are in DNF, ξ’s domain is (Σ×Q)∗, and
the run of A on w following ξ, namely Gξ(w,A), is an infinite tree, in which every node is
labeled with a state of A. A history h for ξ is thus a finite sequence of states and a finite
word. Let yearn(h) denote the number of positions in the sequence of states in h from the
last visit to α until the end of the sequence. We shall say “a history h for a word u” when
h’s word component is u, and “h ends with q” when the sequence of states in h ends in q.

We inductively construct from ξ a strategy τ : Σ∗ ×Q→ B+(Q), by choosing for every
history (u, q) ∈ Σ∗ ×Q some history h of ξ, as detailed below, and setting τ(u, q) = ξ(h).

At start, for u = ε, we set τ(ε, ι) = ξ(ε, ι). In a step in which every history of ξ for u ends
with a different state, we set τ(u, q) = ξ(h), where h is the single history that ends with q.

The challenge is in a step in which several histories of ξ for u end with the same state,
as τ can follow only one of them. We define that τ(u, q) = ξ(h), where h is a history of ξ
for u that ends with q, and yearn(h) is maximal among the histories of ξ for u that ends
in q. Every history of ξ that is not followed by τ is considered “stopped”, and in the next
iterations of constructing τ , histories of ξ with stopped prefixes will not be considered.

As ξ is a winning strategy for Eve, all paths in Gξ(w,A) are accepting. Observe that
Gτ (w,A) is a tree in which some of the paths are from Gξ(w,A) and some are not—whenever
a history is stopped in the construction of τ , a new path is created, where its prefix is of the
stopped history and the continuation follows the path it was redirected to. We will show
that, nevertheless, all paths in Gτ (w,A) are accepting.
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Assume toward contradiction a path ρ of Gτ (w,A) that is not accepting, and let k be
its last position in α. The path ρ must have been created by infinitely often redirecting it
to different histories of ξ, as otherwise there would have been a rejecting path of ξ. Now,
whenever ρ was redirected, it was to a history h, such that yearn(h) was maximal. Thus, in
particular, this history did not visit α since position k. Therefore, by König’s lemma, there
is a path π of Gξ(w,A) that does not visit α after position k, contradicting the assumption
that all paths of Gξ(w,A) are accepting. J

We continue with showing that the translation of an ABW to an NBW preserves GFGness.

I Lemma 23. Consider an ABW A for which the nondeterminism is history-deterministic.
Then the nondeterminism in the NBW A′ that is derived from A by the breakpoint (Miyano-
Hayashi) construction is also history-deterministic.

Proof. Consider an ABW A = (Σ, Q, ι, δ, α) for which the nondeterminism is history-
deterministic. We write α for Q \ α. By Proposition 12, we may assume that the transition
conditions of A are given in DNF.

The breakpoint construction [22] generates from A an equivalent NBW A′, by intuitively
maintatining a pair 〈S,O〉 of sets of states of A, where S is the set of states that are visited at
the current step of a run, and O are the states among them that “owe” a visit to α. A state
owes a visit to α if there is a path leading to it with no visit to α since the last “breakpoint”,
which is a state of A′ in which O = ∅. The accepting states of A′ are the breakpoints.

For providing the formal definition of A′, we first construct from δ and each letter a ∈ Σ,
a set ∆(a) of transition functions γ1, γ2, . . . γk, for some k ∈ N, such that each of them has
only universality and corresponds to a possible resolution of the nondeterminism in every
state of A. For example, if A has states q1, q2, and q3, and its transition function δ for the
letter a is δ(q1, a) = q1 ∧ q3 ∨ q2; δ(q2, a) = q2 ∨ q3 ∨ q1; and δ(q3, a) = q2 ∧ q3 ∨ q1, then
∆(a) is a set of twelve transition functions, where γ1(q1, a) = q1 ∧ q3; γ1(q2, a) = q2; and
γ1(q3, a) = q2 ∧ q3, etc.., corresponding to the possible ways of resolving the nondeterminism
in each of the states.

For convenience, we shall often consider a conjunctive formula over states as a set of
states, for example q1 ∧ q3 as {q1, q3}. For a set of states S ⊆ Q, a letter a, and a transition
function γ ∈ ∆(a), we define γ(S) =

⋃
q∈S γ(q, a).

Formally, the breakpoint construction [22] generates from A an equivalent NBW A′ =
(Σ, Q′, ι′, δ′, α′) as follows:

Q′ = {〈S,O〉 | O ⊆ S ⊆ Q}
ι′ = ({ι}, {ι} ∩ α)
δ′ : For a state 〈S,O〉 of B and a letter a ∈ Σ:

IfO = ∅ then δ′(〈S,O〉, a) = {〈Ŝ, Ô〉 | exists a transition function γ ∈ ∆, such that Ŝ =
γ(S, a) and Ô = γ(S, a) ∩ α}
IfO 6= ∅ then δ′(〈S,O〉, a) = {〈Ŝ, Ô〉 | exists a transition function γ ∈ ∆, such that Ŝ =
γ(S, a) and Ô = γ(O, a) ∩ α}

α′ = {(S, ∅) | S ⊆ Q}

Observe that the breakpoint construction determinizes the universality of A, while
morally keeping its nondeterminism as is. This will allow us to show that Eve can use her
history-deterministic strategy for A also for resolving the nondeterminism in A′.

At this point we need Lemma 22, guaranteeing a strategy τ : Σ∗ × Q → B+(Q) for
Eve. At each step, Eve should choose the next state in A′, according to the read prefix
u and the current state (S,O) of A′. Observe that τ assigns to every state q ∈ S a set of
states S′ = τ(u, q), following a nondeterministic choice of δ(q, u); Together, all these choices
comprise some transition function γ ∈ ∆. Thus, in resolving the nondeterminism of A′, Eve’s
strategy τ ′ is to choose the transition γ that is derived from τ .
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Since τ guarantees that all the paths in the τ -run-tree of A on a word w ∈ L(A) are
accepting, the corresponding τ ′-run of A′ on w is accepting, as infinitely often all the A-states
within A′’s states visit α. J

I Theorem 24. The translation of a GFG ABW or GFG ACW A to an equivalent DBW
or DCW, respectively, involves a 2Θ(n) state blow-up.

Proof. The lower bound follows from [18], where it is shown that determinization of GFG
NCWs is in 2Ω(n). It directly generalizes to GFG ACWs, and by dualization to GFG ABWs:
Given a GFG ACW A, we can dualize it to an ABW B, which is also GFG by Proposition 11.
Then, we can determinize B to a DBW D and dualize the latter to a DCW C equivalent to
A.

The upper bound follows from Lemma 23, getting an O(3n) state blow-up for translating
a GFG ABW to an equivalent GFG NBW, and then another quadratic state blow-up, due
to [18], from GFG NBW to DBW. For determinizing a GFG ACW, we have the same result
due to dualization and Proposition 11. J

7 Conclusions

Alternating GFG is the sum of its parts. Throughout our five definitions of GFG for
alternating automata, a common theme prevails: each definition can be divided into a
condition for nondeterminism and one for universality, and their conjunction guarantees
good-for-gameness. For example, it suffices for an automaton to compose with both universal
automata and nondeterministic automata for it to compose with alternating automata, even
alternating tree automata. In other words, GFG nondeterminism and universality cannot
interact pathologically to generate alternating automata that are not GFG, and neither can
they ensure GFGness without each being GFG independently. This should facilitate checking
GFGness, as it can be done separately for universality and nondeterminism.

Between words, trees, games, and automata. In the recent translations from alternating
parity word automata into weak automata [7, 16], the key techniques involve adapting
methods that use finite one-player games to process infinite structures that are in some
sense between words and trees, and use these to manipulate alternating automata. These
translations implicitly depend on the compositionality that enable the step from asymmetrical
one-player games, i.e. trees, to alternating automata. Studying good-for-gameness provides
us with new tools to move between words, trees, games, and automata, and better understand
how nondeterminism, universality, and alternations interact in this context.
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