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Abstract
A discounted-sum automaton (NDA) is a nondeterministic finite automaton with edge weights,
which values a run by the discounted sum of visited edge weights. More precisely, the weight in
the i-th position of the run is divided by λi, where the discount factor λ is a fixed rational number
greater than 1. Discounted summation is a common and useful measuring scheme, especially for
infinite sequences, which reflects the assumption that earlier weights are more important than
later weights. Determinizing automata is often essential, for example, in formal verification, where
there are polynomial algorithms for comparing two deterministic NDAs, while the equivalence
problem for NDAs is not known to be decidable. Unfortunately, however, discounted-sum auto-
mata are, in general, not determinizable: it is currently known that for every rational discount
factor 1 < λ < 2, there is an NDA with λ (denoted λ-NDA) that cannot be determinized.

We provide positive news, showing that every NDA with an integral factor is determinizable.
We also complete the picture by proving that the integers characterize exactly the discount
factors that guarantee determinizability: we show that for every rational factor λ 6∈ N, there is a
nondeterminizable λ-NDA. Finally, we prove that the class of NDAs with integral discount factors
enjoys closure under the algebraic operations min, max, addition, and subtraction, which is not
the case for general NDAs nor for deterministic NDAs. This shows that for integral discount
factors, the class of NDAs forms an attractive specification formalism in quantitative formal
verification. All our results hold equally for automata over finite words and for automata over
infinite words.
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1 Introduction

Discounting the influence of future events is a key paradigm in economics and it is studied in
game theory (e.g. [12, 1]), Markov decision processes (e.g. [10, 9]), and automata theory (e.g.
[5, 8, 2, 3, 4]). Discounted summation formalizes the concept that an immediate reward is
better than a potential one in the far-away future, as well as that a potential problem in the
future is less troubling than a current one.

A discounted-sum automaton (NDA) is a nondeterministic automaton with rational
weights on the transitions, where the value of a run is the discounted summation of the
weights along it. Each automaton has a fixed discount-factor λ, which is a rational number
bigger than 1, and the weight in the ith position of a run is divided by λi. The value of a
word is the minimal value of the automaton runs on it. Hence, an NDA realizes a function
from words to real numbers. Two automata are equivalent if they realize the same function,
namely if they assign the same value to every word.
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2 Determinizing Discounted-Sum Automata

Discounted summation is of special interest for automata over infinite words. There are
two common ways to adjust standard summation for handling infinite sequences: discounting
and limit-averaging. The latter, which relates to the input suffixes, has been studied a lot in
mean-payoff games and, more recently, in limit-average automata [2, 6]; the former, which
relates more to the input prefixes, has received comparatively little attention.

Automata are widely used in formal verification, for which automata comparison is
fundamental. Specifically, one usually considers the following three questions, ordered
from the most difficult one to the simplest one: general comparison (language inclusion),
universality, and emptiness. In the Boolean setting, where automata assign Boolean values to
the input words, the three questions, with respect to automata A and B, are whether A ⊆ B,
A = True, and A = False. In the quantitative setting, where automata assign numeric
values to the input words, the universality and emptiness questions relate to a constant
threshold, usually 0. Thus, the three questions are whether A ≤ B, A ≤ 0, and A ≥ 0.

A central problem with these quantitative automata is that only the emptiness question is
known to be solvable. For limit-average automata, the two other questions are undecidable [6].
For NDAs, it is an open question whether universality and comparison are decidable. This is
not the case with DDAs, for which all three questions have polynomial solutions [12, 1, 2].
Unfortunately, NDAs cannot, in general, be determinized. It is currently known that for
every rational discount-factor 1 < λ < 2, there is a λ-NDA that cannot be determinized [2].

It turns out, quite surprisingly, that discounting by an integral factor forms a “well behaved”
class of automata, denoted “integral NDAs”, allowing for determinization (Section 3) and
closed under the algebraic operations min, max, addition and subtraction (Section 5). The
above closure is of special interest, as neither NDAs nor DDAs are closed under the max
operation (Theorem 9). Furthermore, the integers, above 1, characterize exactly the set of
discount factors that guarantee determinizability (Section 4). That is, for every rational
factor λ 6∈ N, there is a non-determinizable λ-NDA.

The discounted summation intuitively makes NDAs more influenced by word-prefixes
than by word-suffixes, suggesting that some basic properties are shared between automata
over finite words and over infinite words. Indeed, all the above results hold for both models.
Yet, the equivalence relation between automata over infinite words is looser than the one on
finite words. That is, if two automata are equivalent with respect to finite words then they
are also equivalent with respect to infinite words, but not vice versa (Lemma 3).

The above results relate to complete automata; namely, to automata in which every
state has at least one transition over every alphabet letter. For incomplete automata or,
equivalently, for automata with ∞-weights, no discount factor can guarantee determinization
(Section 4.2).

Our determinization procedure, described in Section 3.1, is an extension of the subset
construction, keeping a “recoverable-gap” value to each element of the subset. Intuitively, the
“gap” of a state q over a finite word u stands for the extra cost of reaching q, compared to the
best possible value so far. This extra cost is multiplied, however, by λ|u|, to reflect the λ|u|
division in the value-computation of the suffixes. A gap of q over u is “recoverable” if there
is a suffix w that “recovers” it, meaning that there is an optimal run over uw that visits q
after reading u. Due to the discounting of the future, once a gap is too large, it is obviously
not recoverable. Specifically, for every λ, we have that

∑∞
i=0( 1

λi ) = 1
1− 1

λ

= λ
λ−1 ≤ 2. Hence,

our procedure only keeps gaps that are smaller than twice the maximal difference between
the automaton weights.

The determinization procedure may be used for an arbitrary λ-NDA, always providing
an equivalent λ-DDA, if terminating. Yet, it is guaranteed to terminate for a λ-NDA with
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λ ∈ N, while it might not terminate in the case that λ ∈ Q \N.
For integral NDAs, the key observation is that there might only be finitely many recov-

erable gaps (Lemma 2). More precisely, for an integral NDA A, there might be up to m
recoverable gaps, where m is the maximal difference between the weights in A, multiplied
by the minimal common divider of all weights. Accordingly, our determinization procedure
generates a DDA with up to mn states, where n is the number of states in A. We show that
this state blow-up is tight, using a rich alphabet of size exponential in the number of states
(Theorem 6). The unavoidable state blow-up for the case that the alphabet size is linear in
the number of states is left as an open problem.

For nonintegral NDAs, the key observation is that the recoverable gaps might be arbitrarily
dense (Theorem 7). Hence, the bound on the maximal value of the gaps cannot guarantee a
finite set of recoverable gaps. Different gaps have, under the appropriate setting, suffixes that
distinguish between them, implying that an equivalent deterministic automaton must have
a unique state for each recoverable-gap (Lemma 5). Therefore, an automaton that admits
infinitely many recoverable gaps cannot be determinized.

It turns out that closure under algebraic operation is also closely related to the question
of whether the set of recoverable gaps is finite. Considering the operations of addition,
subtraction, minimization, and maximization, the latter is the most problematic one, as the
value of a word is defined to be the minimal value of the automaton runs on it. For two
NDAs, A and B, one may try to construct an automaton C = max(A,B), by taking the
product of A and B, while maintaining the recoverable gaps of A’s original states, compared
to B’s original states. This approach indeed works for integral NDAs (Theorem 10). Note
that determinizability is not enough, as neither NDAs nor DDAs are closed under the
max operation. Furthermore, we show, in Theorem 9, that there are two DDAs, A and B,
such that there is no NDA C with C = max(A,B). For precluding the existence of such a
nondeterministic automaton C, we cannot make usage of Lemma 5, and thus use a more
involved, “pumping-style”, argument with respect to recoverable gaps.

Related work. Weighted automata are often handled as formal power series, mapping
words to a semiring [7]. By this view, the weight of a run is the semiring-multiplication
of the transition weights along it, while the weight of a word is the semiring-addition of
its possible run weights. For this setting, there are numerous works, including results on
determinization [11, 7]. However, discounted-sum automata do not fall into this setting, as
discounted summation cannot be described as the multiplication operation of a semiring. The
latter is required to have an identity element 1̄, such that for every element e, 1̄e = e1̄ = e.
One can check that discounted summation cannot allow for an identity element, which is,
in a sense, the core reason for its different behavior. Formal power series are generalized,
in [8], for handling discounted summation. The weight of a run is defined to be a “skewed
multiplication” of the weights along it, where this “skewing” corresponds to the discounting
operation. Yet, [8] mainly considers the equivalence between recognizable series and rational
series, and does not handle automata determinization.

Discounted Markov decision processes (e.g. [10, 9]) and discounted games (e.g. [12,
1]) generalize, in some sense, deterministic discounted-sum automata. The former adds
probabilities and the latter allows for two player choices. However, they do not cover
nondeterministic automata. One may note that nondeterminism relates to “blind games”, in
which each player cannot see the other player’s moves, whereas in standard games the players
have full information on all moves. Indeed, for a discounted-game, one can always compute an
optimal strategy [12], while a related question on nondeterministic discounted-sum automata,
of whether the value of all words is below 0, is not known to be decidable.



4 Determinizing Discounted-Sum Automata

The discounted-sum automata used in [2] are the same as ours, with only syntactic
differences – they use the discount-factor λ as a multiplying factor, rather than as a dividing
one, and define the value of a word as the maximal value of the automaton runs on it, rather
than the minimal one. The definitions are analogous, replacing λ with 1

λ and multiplying all
weights by (−1). In [2], it is shown that for every rational discount-factor 1 < λ < 2, there is
a λ-NDA that cannot be determinized. We generalize their proof approach, in Theorem 7,
extending the result to every λ ∈ Q \N.

2 Discounted-Sum Automata

We consider discounted-sum automata with rational weights and rational discount factors
over finite and infinite words.

Formally, given an alphabet Σ, a word over Σ is a finite or infinite sequence of letters in
Σ, with ε for the empty word. We denote the concatenation of a finite word u and a finite or
infinite word w by u·w, or simply by uw.

A discounted-sum automaton (NDA) is a tuple A = 〈Σ, Q, qin, δ, γ, λ〉 over a finite
alphabet Σ, with a finite set of states Q, an initial state qin ∈ Q, a transition function
δ ⊆ Q × Σ × Q, a weight function γ : δ → Q, and a discount factor 1 < λ ∈ Q. We write
λ-NDA to denote an NDA with a discount factor λ, for example 5

2 -NDA, and refer to an
“integral NDA” when λ in an integer. For an automaton A and a state q of A, we denote by
Aq the automaton that is identical to A, except for having q as its initial state.

Intuitively, {q′
∣∣ (q, σ, q′) ∈ δ} is the set of states that A may move to when it is in the

state q and reads the letter σ. The automaton may have many possible transitions for each
state and letter, and hence we say that A is nondeterministic. In the case where for every
q ∈ Q and σ ∈ Σ, we have that |{q′

∣∣ (q, σ, q′) ∈ δ}| ≤ 1, we say that A is deterministic,
denoted DDA.

In the case where for every q ∈ Q and σ ∈ Σ, we have that |{q′
∣∣ (q, σ, q′) ∈ δ}| ≥ 1, we

say that A is complete. Intuitively, a complete automaton cannot get stuck at some state. In
this paper, we only consider complete automata, except for Section 4.2, handling incomplete
automata.

A run of an automaton is a sequence of states and letters, q0, σ1, q1, σ2, q2, . . ., such that
q0 = qin and for every i, (qi, σi+1, qi+1) ∈ δ. The length of a run, denoted |r|, is n for a finite
run r = q0, σ1, q1, . . . , σn, qn, and ∞ for an infinite run.

The value of a run r is γ(r) =
∑|r|−1
i=0

γ(qi,σi+1,qi+1)
λi . The value of a word w (finite or

infinite) is A(w) = inf{γ(r)
∣∣ r is a run of A on w}. A run r of A on a word w is said to be

optimal if γ(r) = A(w). By the above definitions, an automaton A over finite words realizes
a function from Σ∗ to Q and over infinite words from Σω to R. Two automata, A and A′,
are equivalent if they realize the same function.

Next, we provide some specific definitions, to be used in the determinization construction
and in the non-determinizability proofs.

The cost of reaching a state q of an automaton A over a finite word u is cost(q, u) =
min{γ(r)

∣∣ r is a run of A on u ending in q}, where min ∅ =∞. The gap of a state q over a
finite word u is gap(q, u) = λ|u|(cost(q, u)−A(u)). Note that when A operates over infinite
words, we interpret A(u), for a finite word u, as if A was operating over finite words.

Intuitively, the gap of a state q over a word u stands for the weight that a run starting
in q should save, compared to a run starting in u’s optimal ending state, in order to make
q’s path preferable. A gap of a state q over a finite word u is said to be recoverable if
there is a suffix that makes this path optimal; that is, if there is a word w, such that
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cost(q, u) + Aq(w)
λ|u| = A(uw). The suffix w should be finite/infinite, depending on whether A

operates over finite/infinite words.
Notes on notation-conventions: The discount factor λ is often used in the literature as a

multiplying factor, rather than as a dividing factor, thus taking the role of 1
λ , compared to our

definitions. Another convention is to value a word as the maximal value of its possible runs,
rather than the minimal value; the two definitions are analogous, and can be interchanged
by multiplying all weights by (−1).

3 Determinizability of Integral Discounted-Sum Automata

In this section, we show that all complete NDAs with an integral factor are determinizable.
Formally, we provide the following result.

I Theorem 1. For every complete λ-NDA A with an integral factor λ ∈ N, there is an
equivalent complete λ-DDA with up to mn states, where m is the maximal difference between
the weights in A, multiplied by the minimal common divider of all weights, and n is the
number of states in A.

Proof. Lemmas 2-4, given in the subsections below, constitute the proof. J

Theorem 1 stands for both automata over finite words and over infinite words.
The determinization procedure extends the subset construction, by keeping a recoverable-

gap value to each element of the subset. It resembles the determinization procedure of
non-discounting sum automata over finite words [11, 7], while having two main differences:
the weight-differences between the reachable states is multiplied at every step by λ, and
differences that exceed some threshold are removed.

The procedure may be used for an arbitrary λ-NDA, always providing an equivalent
λ-DDA, if terminating. It is guaranteed to terminate for a λ-NDA with λ ∈ N, which is not
the case for λ ∈ Q \N.

The state blow-up involved in the construction is shown to be tight for a rich alphabet
of size exponential in the number of states (Theorem 6). The unavoidable blow-up for an
alphabet of size linear in the number of states is left as an open problem.

We start, in Subsection 3.1, with the determinization procedure, continue, in Subsec-
tion 3.2, with its termination and correctness proofs, and conclude, in Subsection 3.3, showing
that the involved state blow-up is tight for a rich alphabet.

3.1 The Construction

Consider an NDA A = 〈Σ, Q, qin, δ, γ, λ〉. We inductively construct an equivalent DDA
D = 〈Σ, Q′, q′in, δ′, γ′, λ〉. (An example is given in Figure 4.)

Let T be the maximal difference between the weights inA. That is, T = max{|x−y|
∣∣x, y ∈

range(γ)}. Since
∑∞
i=0( 1

λi ) = 1
1− 1

λ

= λ
λ−1 ≤ 2, we define the set G = {v

∣∣ v ∈ Q and 0 ≤
v < 2T} ∪ {∞} of possible recoverable-gaps. The ∞ element denotes a non-recoverable gap,
and behaves as the standard infinity element in the arithmetic operations that we will be
using. Note that our discounted-sum automata do not have infinite weights; it is only used
as an internal element of the construction.

A state of D extends the standard subset construction by assigning a gap to each state
of A. That is, for Q = {q1, . . . , qn}, a state q′ ∈ Q′ is a tuple 〈g1, . . . , gn〉, where gh ∈ G for
every 1 ≤ h ≤ n. Intuitively, the gap gh of a state qh stands for the extra cost of reaching
qh, compared to the best possible value so far. This extra cost is multiplied, however, by λl,
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for a finite run of length l, to reflect the λl division in the value-computation of the suffixes.
Once a gap is obviously irreducible, by being larger than or equal to 2T , it is set to be ∞.

In the case that λ ∈ N, the construction only requires finitely many elements of G, as
shown in Lemma 2 below, and thus it is guaranteed to terminate.

For simplicity, we assume that qin = q1 and extend γ with γ(〈qi, σ, qj〉) = ∞ for every
〈qi, σ, qj〉 6∈ δ. The initial state of D is q′in = 〈0,∞, . . . ,∞〉, meaning that qin is the only
relevant state and has a 0 gap.

We inductively build D via the intermediate automata Di = 〈Σ, Q′i, q′in, δ′i, γ′i, λ〉. We
start with D1, in which Q′1 = {q′in}, δ′1 = ∅ and γ′1 = ∅, and proceed from Di to Di+1, such
that Q′i ⊆ Q′i+1, δ′i ⊆ δ′i+1 and γ′i ⊆ γ′i+1. The construction is completed once Di = Di+1,
finalizing the desired deterministic automaton D = Di.

In the induction step, Di+1 extends Di by (possibly) adding, for every state q′ =
〈g1, . . . , gn〉 ∈ Q′i and letter σ ∈ Σ, a state q′′, a transition 〈q′, σ, q′′〉 and a weight
γi+1(〈q′, σ, q′′〉) = c, as follows:

For every 1 ≤ h ≤ n, ch := min{gj + γ(〈qj , σ, qh〉)
∣∣ 1 ≤ j ≤ n}

c := min
1≤h≤n

(ch)

For every 1 ≤ h ≤ n,
xh := λ(ch − c);
if xh ≥ 2T then xh :=∞

q′′ := 〈x1, . . . , xn〉
Q′i+1 := Q′i+1 ∪ q′′

δ′i+1 := δ′i+1 ∪ 〈q′, σ, q′′〉
γ′i+1(〈q′, σ, q′′〉) = c

3.2 Termination and Correctness

We prove below that the above procedure always terminates for a discount factor λ ∈ N,
while generating an automaton that is equivalent to the original one. We start with the
termination proof.

I Lemma 2. The above determinization procedure always terminates for a complete integral
λ-NDA A. The resulting deterministic automaton has up to mn states, where m is the
maximal difference between the weights in A, multiplied by the minimal common divider of
all weights, and n is the number of states in A.

Proof. The induction step of the construction, extending Di to Di+1, only depends on A,
Σ and Q′i. Furthermore, for every i ≥ 0, we have that Q′i ⊆ Q′i+1. Thus, for showing the
termination of the construction, it is enough to show that there is a general bound on the
size of the sets Q′i. We do it by showing that the inner values, g1, . . . , gn, of every state q′ of
every set Q′i are from the finite set Ḡ, defined below.

Let d ∈ N be the minimal common divider of the weights in A, and let m ∈ N be the
maximal difference between the weights, multiplied by d. That is, m = d×max{|x−y|

∣∣x, y ∈
range(γ)}. We define the set Ḡ = {λcd

∣∣ 2m
λ > c ∈ N} ∪ {∞}

We start with Q′1, which satisfies the property that the inner values, g1, . . . , gn, of
every state q′ ∈ Q′1 are from Ḡ, as Q′1 = {〈0,∞, . . . ,∞〉}. We proceed by induction on
the construction steps, assuming that Q′i satisfies the property. By the construction, an
inner value of a state q′′ of Q′i+1 is derived by four operations on elements of Ḡ: addition,
subtraction (x− y, where x ≥ y), multiplication by λ ∈ N, and minimization.
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D:

A:

〈∞, 0〉

λ = 3

〈0, 1〉〈0, 3〉

〈3, 0〉

s0 s1

〈0,∞〉

c = min(1,∞) = 1

x2 = 3(∞− 1) =∞

c1 = min(∞− 1, 0 + 1) = 1

a, 1
a, 0
b,−1

a,−2

x2 = 3(−2− (−2)) = 0
x1 = 3(1− (−2)) = 9 ;∞

a,−1

c = min(1,−2) = −2

a, 0

c1 = min(0 + 0, 3 + 1) = 0
c2 = min(0 + 1, 3− 2) = 1
c = min(0, 1) = 0
x1 = 3(0− 0) = 0
x2 = 3(1− 0) = 1

a, 0 b,−1
b,−1

c2 = min(3 + 1, 0− 2) = −2
c1 = min(3 + 0, 0 + 1) = 1

a,−2

a,−2

b, 1a, 1
b, 0

b,−1

b, 1
b, 1

c2 = min(∞+ 1, 0 +∞) =∞

x1 = 3(1− 1) = 0

Figure 1 Determinizing the 3-NDA A into the 3-DDA D. The gray bubbles detail some of the
intermediate calculations of the determinization procedure.

One may verify that applying these four operations on ∞ and numbers of the form λc
d ,

where λ, c ∈ N, results in ∞ or in a number v
d , where v ∈ N. Since the last operation in

calculating an inner value of q′′ is multiplication by λ, we have that v is divided by λ. Once
an inner value exceeds 2m

d , it is replaced with ∞. Hence, all the inner values are in Ḡ.
Having up to m possible values to the elements of an n-tuple, provides the mn upper

bound for the state space of the resulting deterministic automaton. J

Before proceeding to the correctness proof, we show that equivalence of automata over
finite words implies their equivalence over infinite words. Note that the converse need not
hold.

I Lemma 3. If two NDAs, A and B, are equivalent with respect to finite words then they
are also equivalent with respect to infinite words. The converse need not hold.

Proof. Assume, by contradiction, two NDAs, A and B, that are equivalent with respect to
finite words and not equivalent with respect to infinite words. Then there is an infinite word
w and a constant number c 6= 0, such that A(w)−B(w) = c. Let m be the maximal difference
between a weight in A and a weight in B. Since for every 1 < λ,

∑∞
i=0( 1

λi ) = 1
1− 1

λ

= λ
λ−1 ≤ 2,

it follows that the difference between the values that A and B assign to any word is smaller or
equal to 2m. Hence, the difference between the values of their runs on suffixes of w, starting
at a position p, is smaller or equal to 2m

λp .
Now, since A and B are equivalent over finite words, it follows that they have equally-

valued optimal runs over every prefix of w. Thus, after a long enough prefix, of length p such
that 2m

λp < c, the difference between the values of A’s and B’s optimal runs on w must be
smaller than c, leading to a contradiction.
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A: B:

λ = 2
Σ, 2 Σ, 0Σ, 1

Figure 2 The automata A and B are equivalent with respect to infinite words, while not equivalent
with respect to finite words.

A counter example for the converse is provided in Figure 2. J

We proceed with the correctness proof. By Lemma 3, it is enough to prove the correctness
for automata over finite words.

Note that the correctness holds for arbitrary discount factors, not only for integral ones.
For the latter, the determinization procedure is guaranteed to terminate (Lemma 2), which
is not the case in general. Yet, in all cases that the procedure terminates, it is guaranteed to
be correct.

I Lemma 4. Consider a λ-NDA A over Σ∗ and a DDA D, constructed from A as above.
Then, for every w ∈ Σ∗, A(w) = D(w).

Proof. Consider an NDA A = 〈Σ, Q, qin, δ, γ, λ〉 and the DDA D = 〈Σ, Q′, q′in, δ′, γ′, λ〉
constructed from A as above. Let T be the maximal difference between the weights in A.
That is, T = max{|x− y|

∣∣ x, y ∈ range(γ)}.
For a word w, let q′w = 〈g1, . . . , gn〉 ∈ Q′ be the last state of D’s run on w. We show by

induction on the length of the input word w that:
For every 1 ≤ h ≤ n, gh = gap(qh, w) if gap(qh, w) < 2T and ∞ otherwise.
A(w) = D(w).

The assumptions obviously hold for the initial step, where w is the empty word. As for
the induction step, we assume they hold for w and show that for every σ ∈ Σ, they hold for
w·σ. Let q′w·σ = 〈x1, . . . , xn〉 ∈ Q′ be the last state of D’s run on w·σ.

For every 1 ≤ h ≤ n, as long as gh < 2T , the value that the determinization-construction
assigns to xh, as well as the weight that is set on the transition from q′w to q′w·σ, directly follows
the gap definitions, and accordingly satisfy the required properties. Therefore, it is left to show
that if gh ≥ 2T then gap(qh, w·σ) ≥ 2T . Indeed, gap(qh, w·σ) = λi+1(cost(qh, w·σ)−A(w·σ)) >
λi+1(cost(qh, w)−A(w)− ( 1

λ

i)T ) > λ(2T − T ) = λ(T ) ≥ 2T .
J

3.3 State Complexity

For an integral NDA A, the deterministic automaton constructed as in Subsection 3.1 has
up to mn states, where m is the maximal difference between the weights in A, multiplied by
the minimal common divider of all weights, and n is the number of states in A (Lemma 2).

We show below that the above state blow-up is asymptotically tight, using a rich alphabet
of size in O(mn). For an alphabet of size linear in m and n, the unavoidable state blow-up is
left as an open problem.

A family of automata Am,n, with which we provide the lower bound, is illustrated in
Figure 3. Intuitively, the rich alphabet allows to set every gap in {0, 1, 2, . . . ,m+ 1} to each
of the n states. Two different gaps have, under the appropriate setting, two suffixes that
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distinguish between them. Hence, an equivalent deterministic automaton must have a unique
state for each recoverable-gap, yielding at least mn states.

We start by providing a sufficient condition, under which two different gaps must be asso-
ciated with two different states of a deterministic automaton. The lemma below generalizes
an argument given in [2].

I Lemma 5. Consider an NDA A for which there is an equivalent DDA D. If there is a
state q of A, finite words u and u′, and words w and z, such that:
i. A has runs on u and on u′ ending in q;
ii. gap(q, u) 6= gap(q, u′);
iii. The gaps of q over both u and u′ are recoverable with w, that is, A(uw) = cost(q, u)+A

q(w)
λ|u|

and A(u′w) = cost(q, u′) + Aq(w)
λ|u′| ; and

iv. A is indifferent to concatenating z to u and to u′, that is A(uz) = A(u) and A(u′z) =
A(u′)

then the runs of D on u and on u′ end in different states.
The words w and z should be finite for automata over finite words and infinite for

automata over infinite words. In the former case, z is redundant as it can always be ε.

Proof. Consider the above setting. Then, we have that A(uw) − A(uz) = gap(q,u)+Aq(w)
λ|u|

and A(u′w)−A(u′z) = gap(q,u′)+Aq(w)
λ|u′| . Thus,

(I) gap(q, u) = λ|u|[A(uw)−A(uz)]−Aq(w); gap(q, u′) = λ|u
′|[A(u′w)−A(u′z)]−Aq(w)

Now, assume, by contradiction, a single state p of D in which the runs of D on both u
and u′ end. Then, we have that

(II) D(uw)−D(uz) = D
p(w)
λ|u|

; D(u′w)−D(u′z) = D
p(w)
λ|u′|

Since A and D are equivalent, we may replace between [A(uw)−A(uz)] and [D(uw)−D(uz)]
as well as between [A(u′w)−A(uz′)] and [D(u′w)−D(u′z)]. Making the replacements in
equations (I) above, we get:

(I&II) gap(q, u) = λ|u|
Dp(w)
λ|u|

−Aq(w); gap(q, u′) = λ|u
′|Dp(w)
λ|u′| −A

q(w)

Therefore, gap(q, u) = gap(q, u′), leading to a contradiction.
J

We continue with the tightness proof.

I Theorem 6. For every λ,m, n ∈ N, there is a complete λ-NDA with n + 2 states and
weights in {−λm,−λm+ 1, . . . ,−1, 0, 1}, such that every equivalent DDA has at least mn

states.

Proof. For every λ,m, n ∈ N, we define the NDA A = 〈Σ, Q, qin, δ, γ, λ〉, illustrated in
Figure 3 as Am,n, where:

Σ = {〈v1, . . . vn〉
∣∣ for every 1 ≤ i ≤ n, vi ∈ {−λm,−λm+ 1, . . . ,−1, 0, 1}}

Q = {qin, q0, q1, . . . , qn}
δ = {〈qin, σ, qi〉, 〈qi, σ, qi〉

∣∣ 0 ≤ i ≤ n and σ ∈ Σ}
For every σ = 〈v1, . . . vn〉 ∈ Σ and 0 ≤ i ≤ n: γ(〈qin, σ, q0〉) = 0, γ(〈qin, σ, qi〉) = 0,
γ(〈q0, σ, q0〉) = 0 and γ(〈qi, σ, qi〉) = vi



10 Determinizing Discounted-Sum Automata

Am,n:

Σ = {‘〈v1, . . . , vn〉’
∣∣ for every 1 ≤ i ≤ n, vi ∈ weights}

q1

weights = {−λm, λm+ 1, . . . ,−1, 0, 1}
qin

q0 qn

〈v1, . . . , vn〉, vnΣ, 0 ‘〈v1, . . . , vn〉’, v1

. . .

Figure 3 The family of integral NDAs, where for every m and n, a deterministic automaton
equivalent to Am,n must have at least mn states.

Note that, for simplicity, we define the alphabet letters of Σ as tuples of numbers.
Consider a DDA D equivalent to A. We will show that there is a surjective mapping

between D’s states and the set of vectors V = {〈g1, . . . , gn〉
∣∣ for every 1 ≤ i ≤ n, 1 ≤ gi ≤

m}.
We call an n-vector of gaps, G = 〈g1, . . . , gn〉, a combined-gap, specifying the gaps of

q1, . . . , qn, respectively. Due to the rich alphabet, for every combined-gap G ∈ V , there is a
finite word uG, such that for every 1 ≤ i ≤ n, gap(qi, uG) = gi.

Every two different combined gaps, G and G′, are different in at least one dimension j of
their n-vectors. Thus, A satisfies the conditions of Lemma 5, by having u = uG, u′ = uG′ ,
z =‘〈0, . . . , 0〉’ω, and w =‘〈0, . . . 0,−λm, 0, . . . 0〉’ω, where the repeated word in w has 0 in
all dimensions except for −λm in the j’s dimension. Hence, A has two different states
corresponding to each two different vectors in V , and we are done.

J

4 Nondeterminizability of Nonintegral Discounted-Sum Automata

The discount-factor λ plays a key role in the question of whether a complete λ-NDA
is determinizable. In Section 3, we have shown that an integral factor guarantees the
automaton’s determinizabilty. In Subsection 4.1 below, we show the converse for every
nonintegral factor.

In the whole paper, except for Subsection 4.2 below, we only consider complete automata.
In Subsection 4.2, we show that once allowing incomplete automata or, equivalently, adding
infinite weights, there is a non-determinizable automaton for every discount-factor λ, including
integral ones.

4.1 Complete Automata

We show below that for every noninntegral discount factor λ, there is a complete λ-NDA
that cannot be determinized. The proof generalizes the approach taken in [2], where the case
of 1 < λ < 2 was handled.

Intuitively, for a discount factor that is not a whole number, a nondeterministic auto-
maton might have arbitrarily dense recoverable-gaps. Two different gaps have, under the
appropriate setting, two suffixes that distinguish between them (Lemma 5). Hence, an
equivalent deterministic automaton must have a unique state for each recoverable-gap, which
is impossible for infinitely many gaps.

I Theorem 7. For every nonintegral discount factor λ, there is a complete λ-NDA for which
there is no equivalent DDA (with any discount factor).
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A:

Σ = { ‘−5’, ‘−4’, ‘−2’, ‘0’, ‘2’ }

q0 q1

qin

λ = 5
2

Σ, 0

Σ, 0

‘v’, v (e.g. ‘2’, 2 )

‘v’, v

Figure 4 The non-determinizable 5
2 -NDA A.

Proof. For every 1 < λ ∈ Q \N, we define a complete λ-NDA A = 〈Σ, Q, qin, δ, γ, λ〉 and
show that A is not determinizable. Let λ = h

k , where h and k are mutually prime, and define:
Σ = {−jk

∣∣ j ∈ N and jk < h} ∪ {−h, k}
Q = {qin, q1, q2}
δ = {〈qin, σ, q1〉, 〈qin, σ, q2〉, 〈q1, σ, q1〉, 〈q2, σ, q2〉

∣∣ σ ∈ Σ}
For every σ ∈ Σ and q ∈ Q: γ(〈q, σ, q1〉) = 0 and γ(〈q, σ, q2〉) = σ

Note that, for simplicity, we define the alphabet letters of Σ as numbers. The NDA A for
λ = 5

2 is illustrated in Figure 1.
We show that A cannot be determinized by providing an infinite word w, such that q2

has a unique recoverable gap for each of w’s prefixes. By Lemma 5, such a word w implies
that A cannot be determinized.

We inductively define w, denoting its prefix of of length i by wi, as follows: the first letter
is k and the i + 1’s letter is ‘−jk’, such that 0 ≤ gap(q2, wi)hk − jk ≤ k. Intuitively, each
letter is chosen to almost compensate on the gap generated so far, by having the same value
as the gap up to a difference of k.

We show that w has the required properties, by the following steps:
1. The word w is infinite and q2 has a recoverable-gap for each of its prefixes.
2. There is no prefix of w for which q2’s gap is 0.
3. There are no two different prefixes of w for which q2 has the same gap.
Indeed:
1. Since γ(〈q2,−h, q2〉) = −h, a gap g of q2 is obviously recoverable if g ≤ h. We show by

induction on the length of w’s prefixes that for every i ≥ 1, we have that gap(q2, wi) ≤ h.
It obviously holds for the initial step, as w1 =‘k’ and gap(q2, w1) = k hk = h. Assuming
that it holds for the i’s prefix, we can choose the i+ 1’s letter to be some ‘−jk’ ∈ Σ, such
that 0 ≤ gap(wi)− jk ≤ k. Hence, we get that gap(wi+1) = (gap(wi)− jk)hk ≤ k.

2. Assume, by contradiction, a prefix of w of length n+ 1 whose recoverable-gap is 0. We
have then that:

(((kh
k
− j1k)h

k
− j2k)h

k
. . .− jnk)h

k
= 0

for some j1, . . . , jn ∈ N. Simplifying the equation, we get that

hn − j1kh
n−1 − j2k

2hn−2 − . . .− jnkn

kn−1 = 0

Therefore, hn = j1kh
n−1 + . . . + jnk

n. Now, since k divides j1kh
n−1 + . . . + jnk

n, it
follows that k divides hn, which leads to a contradiction, as h and k are mutually prime.

3. Assume, by contradiction, that q2 has the same gap x for two prefixes, n ≥ 1 steps apart.
We have then that:

((((x− j1k)h
k
− j2k)h

k
− j3k)h

k
. . .− jnk)h

k
= x
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B:

q0 q1

qin

Σ, 0

a, 0 b, 1
a, 1

Σ, 0

Figure 5 The incomplete automaton B is not determinizable with respect to any discount-factor.

for some j1, . . . , jn ∈ N. Simplifying the equation, we get that

xhn − j1kh
n − j2k

2hn−1 − . . .− jnknh
kn

= x

Thus,
xhn − xkn = j1kh

n + j2k
2hn−1 + . . .+ jnk

nh

Hence, k divides x(hn − kn). Now, since there is no prefix for which q2 has a zero gap,
it follows that k does not divide x. (Otherwise, q2 would have had a zero gap for the
prefix right after the one with x). Therefore, k divides hn − kn. But, since k divides kn,
it follows that k also divides hn, which leads to a contradiction.

J

4.2 Incomplete Automata

Once considering incomplete automata or, equivalently, automata with∞-weights, no discount
factor can guarantee determinization. The reason is that there is no threshold above which a
gap becomes irrecoverable – no matter how (finitely) bad some path is, it might eventually
be essential, in the case that the other paths get stuck.

Formally:

I Theorem 8. For every rational discount factor λ, there is an incomplete λ-NDA for which
there is no equivalent DDA (with any discount factor).

Proof. Consider the incomplete automaton B presented in Figure 5 with a discount factor
λ ∈ Q.

For every n ∈ N, we have that gap(q2, a
n) =

∑n
i=0 λ

i. Since q1 has no transition for
the letter b, it follows that all these gaps are recoverable. Hence, for every i, j ∈ N such
that i 6= j, we satisfy the conditions of Lemma 5 with u = ai, u′ = aj , z = aω and w = bω

(for automata over finite words, z = ε and w = b). Therefore, an equivalent deterministic
automaton must have infinitely many states, precluding its existence. J

5 Closure Properties

Discounted-sum automata realize a function from words to numbers. Hence, one may wish
to consider their closure under arithmetic operations. The operations are either between two
automata, having the same discount factor, as minimization and addition, or between an
automaton and a scalar, as multiplication by a positive rational number c.

We consider the class of complete NDAs, as well as two of its subclasses: DDAs and
integral NDAs.
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Class � Operation min max + − ×c ≥ 0 ×(−1)

NDAs 3 7 3 7 3 7

DDAs 7 3

Integral NDAs 3

Table 1 Closure of discounted-sum automata under arithmetic operations.

The closure properties, summarized in Table 1, turn out to be the same for automata
over finite words and over infinite-words. By arguments similar to those of Lemma 3’s proof,
it is enough to prove the positive results with respect to automata over finite words and the
negative results with respect to automata over infinite words.

Some of the positive results are straightforward, as follows.
Nondeterministic: Minimization is achieved by taking the union of the input automata,
addition by taking the product of the input automata and adding the corresponding
weights, and multiplication by a positive scalar c is achieved by multiplying all weights
by c.
Deterministic: Addition/subtraction is achieved by taking the product of the input
automata and adding/subtracting the corresponding weights. Multiplication by (positive
or negative) scalar c is achieved by multiplying all weights by c.
Discount factor ∈ N: Since these automata can always be determinized, they obviously
enjoy the closure properties of both the deterministic and non-deterministic classes.

All the negative results can be reduced to the max operation, as follows. Closure under sub-
traction implies closure under (−1)-multiplication, by subtracting the given automaton from
a constant 0 automaton. For nondeterministic automata, closure under (−1)-multiplication
implies closure under the max operation, by multiplying the original automata by (−1)
and taking their minimum. As for deterministic automata, closure under the min and max
operations are reducible to each other due to the closure under (−1)-multiplication.

It is left to show the results with respect to the max operation. We start with the classes
of deterministic and nondeterministic automata.

I Theorem 9. NDAs and DDAs are not closed under the max operation.

Proof. We prove a stronger claim, showing that there are two DDAs, A and B, defined
in Figure 6, for which there is no NDA equivalent to max(A,B). Intuitively, we show
that the recoverable-gap between A and B can be arbitrarily small, and therefore, by
pumping-arguments, an NDA for max(A,B) cannot be of a finite size.

Assume, by contradiction, an NDA C with n states equivalent to max(A,B). The value of
A over every word is obviously 0. Thus, for every infinite word w, C(w) = B(w) if B(w) > 0
and 0 otherwise.

For a finite word u, we shall refer to λ|u|B(u) as the gap of B over u, denoted gap(B, u).
Intuitively, this gap stands for the weight that B should save over a suffix z for having a
negative value over the whole word. That is, B(uz) < 0 if and only if B(z) < −gap(B, u).
Within this proof, λ is fixed to 5

2 .
A key observation is that the gap of B can be arbitrarily small. Specifically, we show

that for every natural numbers k ≥ 3 and j ≤ d 2k
5 e, there is a finite word uj,k such that

gap(B, uj,k) = 5j
2k . It goes by induction on k. For k = 3, it holds with u0,3 =‘0’, u1,3 =‘ 2

5 ’
‘− 1

2 ’ ‘−1’, and u2,3 =‘ 2
5 ’ ‘−

1
2 ’. As for the induction step, consider a number 0 ≤ j ≤ d 2k+1

5 e.
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A: B:

λ = 5
2 Σ = { ‘−1’, ‘− 1

2 ’, ‘−
1
4 ’, ‘−

1
8 ’, ‘0’, ‘

2
5 ’ }

‘v’, v (e.g. ‘−1’, −1 )Σ, 0

Figure 6 The DDAs A and B, for which there is no NDA equivalent to max(A,B).

One may verify that multiplying 2k by each of 1, 1
2 ,

1
4 ,

1
8 , and 0, provides a different reminder

when divided by 5. Hence, there is a number v ∈ {−1,− 1
2 ,−

1
4 ,−

1
8 , 0} and a natural number

j′ ≤ d 2k
5 e such that j′ = j−v2k

5 . Thus, we can have, by the induction assumption, the required
word uj,k+1, by uj,k+1 = uj′,k‘v’ , as gap(B, uj,k+1) = 5

2 (gap(B, uj′,k) + v) = 5
2 ( 5j′

2k + v) =
5
2 ( j−v2k

2k + v) = 5j
2k+1 .

By the above observation, there is a finite word u, such that 1
λ2n < gap(B, u) < 1

λn . We
define the infinite word w = u‘0’n‘−1’‘0’ω. Since a 0-weighted letter multiplies the gap by λ,
we get that 0 < gap(B, u‘0’n) < 1, and therefore B(w) < 0 and C(w) = 0.

Let r be an optimal run of C on z. Since C has only n states, there is a state q of C and
two positions |u| < p1 < p2 < |u|+ n, such that r visits q on both p1 and p2. Let w1 and w2
be the prefixes of w of lengths p1 and p2, respectively. Let z be the suffix of w after w2, that
is w = w2z. Let r1, r2 and rz be the portions of r on w1, w2 and z, respectively.

Let v1 and v2 be the values of r1 and r2, respectively, and define g1 = λp1v1 and
g2 = λp2v2. Let vz be the value of a run equivalent to rz. Since the value of r is 0, we have
that v2 + vz

λp2 = 0, and therefore, vz = −g2.
We shall reach a contradiction by showing that g1 6< g2, g1 6> g2, and g1 6= g2. Indeed:
If g1 < g2 then there is a run r′ = r1rz of C on the word w′ = w1z, whose value is
v1 + vz

λp2 = g1+vz
λp2 . However, since g1 < g2 = −vz, it follows that the value of C on w′ is

negative, which leads to a contradiction.
If g1 > g2 then there is a negative-valued run of C on the word w1‘0’2(p2−p1)z, analogously
to the previous case.
If g1 = g2 then there is a 0-valued run of C on the word w′ = w1‘0’2nz, however B(w′) > 0,
leading to a contradiction.

J

We continue with the class of automata with an integral factor.

I Theorem 10. For every λ ∈ N, the class of λ-NDAs is closed under the max operation.

Proof. Consider a discount-factor 1 < λ ∈ N and two λ-NDAs, A and B. By Theorem 1, A
and B can be determinized to equivalent λ-DDAs. Thus, we may only consider deterministic
automata. Since deterministic automata are closed under (−1)-multiplication, we may also
consider the min operation rather than the max operation.

The construction of a DDA C equivalent to min(A,B) is analogous to the determinization
construction of Section 3.1, with the difference of extending automata-product rather than
the subset-construction. Namely, we iteratively construct the product of A and B, where a
state of C contains a state of A and a state of B, together with their recoverable-gaps. That
is, for a state p of A and a state q of B, a state c of C is of the form c = 〈〈p, gp〉, 〈q, gq〉〉.
When A and B read a finite word u and reach the states p and q, respectively, we have that
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gp = λ|u|(A(u) −min(A(u),B(u))) and gq = λ|u|(B(u) −min(A(u),B(u))). Once a gap is
too large, meaning that it is bigger than twice the maximal difference between a weight in A
and a weight in B, it is changed to ∞.

The termination and correctness proofs of the above construction are analogous to the
proofs of Lemmas 2 and 4. J

6 Conclusions

Recently, there has been a considerable effort to extend formal verification from the Boolean
setting to a quantitative one. Automata theory plays a key role in formal verification,
and therefore quantitative automata, mainly limit-average automata and discounted-sum
automata, have a central role in quantitative formal verification. Yet, a bothering problem is
that among the basic automata questions underlying a verification task, namely emptiness,
universality, and inclusion, only emptiness is known to be solvable for these automata. The
other questions are either undecidable, with limit-average automata, or not known to be
decidable, with discounted-sum automata.

We showed that discounted-sum automata with an integral factor form a robust class,
having algorithms for all the above questions, closed under natural composition relations,
as min, max, addition and subtraction, and always allowing for determinization. Hence, we
find this class of integral discounted-sum automata a promising direction in the development
of formal quantitative verification.
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