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What’s Decidable About Causally Consistent Shared
Memory?
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While causal consistency is one of the most fundamental consistency models weaker than sequential con-
sistency, the decidability of safety verification for (finite-state) concurrent programs running under causally
consistent shared memories is still unclear. In this article, we establish the decidability of this problem for
two standard and well-studied variants of causal consistency. To do so, for each variant, we develop an equiv-
alent “lossy” operational semantics, whose states track possible futures, rather than more standard semantics
that record the history of the execution. We show that these semantics constitute well-structured transition
systems, thus enabling decidable verification. Based on a key observation, which we call the “shared-memory
causality principle,” the two novel semantics may also be of independent use in the investigation of weakly
consistent models and their verification. Interestingly, our results are in contrast to the undecidability of this
problem under the Release/Acquire fragment of the C/C++11 memory model, which forms another variant of
causally consistent memory that, in terms of allowed outcomes, lies strictly between the two models studied
here. Nevertheless, we show that all these three variants coincide for write/write-race-free programs, which
implies the decidability of verification for such programs under Release/Acquire.

CCS Concepts: • Software and its engineering → Software verification; Concurrent programming

languages; • Theory of computation → Concurrency; Logic and verification; Program verification;
• Information systems → Distributed database transactions;

Additional Key Words and Phrases: Weak memory models, causal consistency, release/acquire, shared-

memory, concurrency, verification, decidability, well-structured transition systems

ACM Reference format:

Ori Lahav and Udi Boker. 2022. What’s Decidable About Causally Consistent Shared Memory?. ACM Trans.

Program. Lang. Syst. 44, 2, Article 8 (April 2022), 55 pages.
https://doi.org/10.1145/3505273

1 INTRODUCTION

Causal consistency is one of the most fundamental consistency models weaker than sequential
consistency, which is especially common and well studied in distributed data stores (see, e.g., Ref-
erences [44, 57]). Roughly speaking, by allowing nodes to disagree on the relative order of some
operations, and requiring global consensus only on the order of “causally related” operations, un-
like sequential consistency, causal consistency allows scalable, partition-tolerant and available
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implementations, and is considered as an “optimal tradeoff between user-perceived correctness
and coordination overhead” [57]. Nowadays, causal consistency also plays a central role in shared
memory multithreaded programming. For instance, the Release/Acquire fragment (RA) of the
C/C++11 standard [15, 27, 28], which specifies the guarantees C and C++ ensure for their widely
used memory_order_release and memory_order_acquire synchronization accesses, is a form
of causal consistency. In addition, multiprocessor architectures like POWER, which is not “multi-
copy atomic” (it allows different threads to detect stores of another thread at different times), pro-
vide barriers that can be used to ensure causal consistency, and are cheaper than the barriers
needed for ensuring sequential consistency [10, 36, 50].

Despite their centrality, until recently not much was known about the safety verification prob-
lem under causal consistency models. That is: Can we automatically verify that a given program
satisfies a certain safety specification (e.g., it never crashes) when it runs under a causally consis-
tent memory? When the program’s data domain is bounded, this verification problem is trivially
decidable under sequential consistency (SC). Indeed, such a program can be represented as a
finite-state transition system; the SC memory constitutes another finite-state system; and their
synchronization is easily expressible as a finite-state system as well. However, if the memory does
not ensure sequential consistency but rather provides weaker consistency guarantees, causal con-
sistency, in particular, then the decidability of the safety verification problem becomes completely
unclear.

The challenge arises since causally consistent memories are inherently infinite-state. In these
models threads may generally read from an unbounded past, and whether or not a thread can
read some value depends on the arbitrarily long execution history. More technically speaking,
by “operationalizing” the declarative (a.k.a. axiomatic) formulations of causal consistency, one
obtains infinite-state machines where each state records the (partially ordered) unbounded
execution history that led to this state (either explicitly or implicitly using, e.g., timestamps).
A more concrete evidence for this verification challenge is provided by the reduction of Atig
et al. [12] from reachability in lossy FIFO channel machines to safety verification under x86-TSO
semantics. This reduction straightforwardly applies to causally consistent models, which implies
a tough non-primitive recursive lower bound on the safety verification problem under causal
consistency. In fact, recently, Abdulla et al. [2] proved that for the RA fragment of C/C++11 this
verification problem is undecidable.

The main contribution of this article is a novel operational semantics for two causally consistent
models that is equivalent to their original semantics and allows us to establish the decidability of
safety verification for these models. The two models, called Strong Release/Acquire (SRA) and
Weak Release/Acquire (WRA), are standard well-studied variants of causal consistency. The
SRA model is the causal consistency model employed in distributed data stores as defined in [19].
As shown in [36] it also precisely captures the guarantees provided by the POWER architecture
for programs compiled from the C/C++’s RA fragment. In turn, the WRA model provides the most
minimal guarantees required from a model to satisfy causal consistency, it is equivalent to the
model called CC studied in [17], and it was considered as a useful candidate for shared-memory
concurrency semantics [31, 34].1

The key idea in the new semantics for the SRA or WRA memory models is that, instead of
keeping track of the execution past (a.k.a. history) in the system’s states as often done in weakly
consistent models, we maintain the possible execution future. Concretely, the states of the new
memory systems record the potential of each thread that prescribes what sequences of opera-
tions the thread may perform. Thus, read transitions are simple—they deterministically consume a
prefix of the potential. The complexity is left to write transitions that non-deterministically “set the

1We refer the reader to Section 3.1 for a detailed discussion on the relation between SRA and WRA to other models.
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future”: what the thread will read from the executed write and when. This requires us to identify
how to increase the potentials of the threads when a write is performed in a way that is defined
solely in terms of the threads’ potentials before the write, and is both sound (sufficiently con-
strained to ensure only causally consistent behaviors) and complete (sufficiently free to allow every
causally consistent behavior). To do so, we identify a key property that characterizes causal consis-
tency in terms of the threads’ potentials, which we call the shared-memory causality principle (see
Section 5). We prove the correspondence of our semantics to SRA’s and WRA’s original formula-
tions using simulation arguments (forward simulation for one direction and backward simulation
for the converse). We believe that the framework of potential-based semantics may be applicable
for other variants of causal consistency and also beyond the context of causal consistency.

Decidability of verification in the new semantics follows by using the framework of well-
structured transition systems [1, 8, 25]. Intuitively speaking, this framework allows one to estab-
lish decidability of control state reachability under infinite-state “lossy” systems, where (i) states
may non-deterministically forget some information they include, and (ii) the relation determining
whether one state is obtained from another by losing information constitutes a well-quasi-ordering.
When states consist of execution histories, this approach cannot be applied. First, in many cases
forgetting information from an execution history results in strictly weaker constraints that allow
outcomes that cannot be obtained without losing the information. Second, execution histories are
only partially ordered and embedding between (general) partial orders is not a well-quasi-ordering.
However, the potential-based semantics, that tracks possible futures easily lends itself to verifica-
tion in this framework. It is naturally “lossy”: losing some parts of a possible potential never allows
for additional behaviors. In addition, unlike histories, potentials are represented using total orders
(lists of future actions), whose embedding relation (based on the ordinary subsequence relation) is
a well-quasi-ordering.

Interestingly, the RA model, which induces an undecidable verification problem [2], is placed in
between WRA and SRA—the behaviors allowed under SRA are a subset of those allowed by RA,
which are a subset of those allowed by WRA. Thus, if one is specifically interested in verification
under RA, then our results provide both an over-approximation (successful verification under WRA

implies safety under RA) and an under-approximation (a bug under SRA implies a bug under RA).
Furthermore, we show that RA, SRA, and WRA coincide on write/write-race-free programs, and
hence, we obtain the decidability of safety verification also under RA for this large and widely
used class of programs (see Section 3.2).

Outline. The rest of this article is organized as follows. In Section 2, we define the safety verifi-
cation problem under general declarative models. In Section 3, we present the WRA, RA, and SRA

declarative models and prove that they coincide for write/write-race-free programs. In Section 4,
we present operational presentations of these models and define their induced reachability prob-
lem. In Sections 5 and 6, we introduce our novel operational lossy semantics of SRA and WRA

based on the “shared-memory causality principle” (starting with SRA, since its semantics is sim-
pler). In Section 7, we establish the correspondence of the lossy systems to the original semantics.
In Section 8, we show how the lossy systems are used to decide the safety verification problem.
In Section 9, we survey related work. We conclude and discuss several avenues for future work in
Section 10. Appendix A presents the full proofs of the equivalence results sketched in Section 7.

To establish confidence, we have formalized the equivalence proofs in the Coq proof assistant.
Claims that were proved in Coq are marked with a symbol, and the formalization is available at
https://www.cs.tau.ac.il/~orilahav/papers/causal_verification/.

Differences with the conference version of this article. This article is an extension and a continu-
ation of the conference paper [35]. The latter studied only the SRA model and naturally skipped
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Fig. 1. Domains, metavariables, and programming language syntax.

most of the proofs. In turn, in this article, we show that the potential technique is more widely
applicable, by extending it to the much weaker WRA model. Thus, interestingly, we “surround”
the RA model whose verification problem is undecidable with two models, one stronger and one
weaker, and for both of which, we establish the decidability of verification. We also include more
examples, detailed discussions, proof outlines, and full proofs.

2 PRELIMINARIES: SAFETY VERIFICATION UNDER DECLARATIVE MODELS

In this section, we describe the safety verification problem for finite-state concurrent programs
running under a (general) declarative memory model. For this matter, we introduce a toy pro-
gramming language and the interpretation of its programs as transition systems (Section 2.1) and
present the generic framework of declarative shared-memory semantics using execution graphs
(Section 2.2).

2.1 Programming Language

Let Val ⊆ N, Loc ⊆ {x, y, ...}, Reg ⊆ {a, b, ...}, and Tid ⊆ {T1, T2, ...} be finite sets of values,
(shared) memory locations, register names, and thread identifiers, respectively. Figure 1 presents
our toy programming language. Its expressions are constructed from registers (local variables) and
values. Instructions include assignments and conditional branching, as well as memory operations.
Intuitively speaking, an assignment r := e assigns the value of e to register r (involving no memory
access); if e goto n sets the program counter to n iff the value of e is not 0; a “write” x := e stores
the value of e in x ; a “read” r := x loads the value of x to register r ; r := FADD(x , e) atomically
increments x by the value of e and loads the old value of x to r ; r := XCHG(x , e) atomically swaps x
to the value of e and loads the old value of x to r ; and r := CAS(x , eR, eW) atomically loads the value
of x to r , compares it to the value of eR, and if the two values are equal, replaces the value of x by
the value of eW.

A sequential program S is a function from a finite subset of N = {0, 1, 2, ...} (possible values
of the program counter) to instructions. We denote by SProg the set of all sequential programs.
A (concurrent) program P is a top-level parallel composition of sequential programs, defined as
a mapping from Tid of thread identifiers to SProg. In our examples, we often write sequential
programs as sequences of instructions delimited by line breaks, use “‖” for parallel composition,
ignore threads that are mapped to the empty sequential program and refer to the program threads
as T1, T2, ... following their left-to-right order in the program listing (see, e.g., Example 3.3 on
page 9).

Sequential and concurrent programs induce labeled transition systems.

Labeled transition systems. A labeled transition system (LTS) A over an alphabet Σ is a triple
〈Q,Q0,T 〉, where Q is a set of states, Q0 ⊆ Q is the set of initial states, and T ⊆ Q × Σ × Q is a
set of transitions. We denote by A.Q, A.Q0 and A.T the three components of an LTS A; write

σ
−→A

for the relation {〈q,q′〉 | 〈q,σ ,q′〉 ∈ A.T} and −→A for
⋃

σ ∈Σ
σ
−→A. A state q ∈ A.Q is reachable in

A if q0 −→∗
A
q for some q0 ∈ A.Q0. A sequence σ1, ... ,σn is a trace of A if q0

σ1
−−→A · · ·

σn

−−→A q for
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Fig. 2. Transitions of LTS induced by a sequential program S ∈ SProg.

some q0 ∈ A.Q0 and q ∈ A.Q. The set of predecessors of a set S ⊆ A.Q w.r.t. a symbol σ ∈ Σ, denoted

by predσ
A(S), is given by {q ∈ A.Q | ∃q′ ∈ S . q

σ
−→A q′}. The set of predecessors of a set S ⊆ A.Q,

denoted by predA(S), is given by
⋃

σ ∈Σ predσ
A(S).

For sequential programs the alphabet Σ is the set of labels (extended with ε for silent transitions),
as defined next.

Definition 2.1. A label is either R(x ,vR) (read label), W(x ,vW) (write label) or RMW(x ,vR,vW) (read-
modify-write label), where x ∈ Loc and vR,vW ∈ Val. We denote by Lab the set of all labels. The
functions typ, loc, valR, and valW return (when applicable) the type (R/W/RMW), location, read
value, and written value, respectively, of a given label l ∈ Lab.

A sequential program S ∈ SProg induces an LTS over Lab ∪ {ε}. Its states are pairs s = 〈pc,ϕ〉
where pc ∈ N (called program counter) and ϕ : Reg → Val (called local store, and extended to
expressions in the obvious way). Its only initial state is 〈0, λr ∈ Reg. 0〉 and its transitions are given
in Figure 2, following the informal description above. Note that at this level, the loaded values are
not restricted whatsoever, so that, in particular, a read instruction in S induces |Val| transitions
with different read values. The execution of a sequential program S terminates when pc reaches
a value that is not in the domain of S . In the sequel, we identify sequential programs with their
induced LTSs (when writing, e.g., S .Q and −→S for a sequential program S).

In turn, a concurrent program P is identified with an LTS over the alphabet Tid × (Lab ∪ {ε}).
Its states are functions, denoted by p, assigning a state in P(τ ).Q to every τ ∈ Tid; its initial states
set is {p | ∀τ . p(τ ) ∈ P(τ ).Q0}; and its transitions are “interleaved transitions” of P ’s components,
given by

l ∈ Lab p(τ )
l
−→P (τ ) 〈pc,ϕ〉

p
τ ,l
−−→ p[τ �→ 〈pc,ϕ〉]

p(τ )
ε
−→P (τ ) 〈pc,ϕ〉

p
τ ,ε
−−→ p[τ �→ 〈pc,ϕ〉]

2.2 Declarative Memory Models and their Reachability Problem

A declarative memory model is formulated as a collection of constraints on execution graphs,
which determine the consistent execution graphs—the ones allowed by the model. Each execution
graph describes a (partially ordered) history of a particular program run. Next, we present the
general notions used to assign such semantics to concurrent programs. First, we define execution
graphs, starting with their nodes, called events.

Definition 2.2. An event is a triple e = 〈τ ,n, l〉, where τ ∈ Tid is a thread identifier, n ∈ N is
a serial number and l ∈ Lab is a label (of the form R(x ,vR), W(x ,vW) or RMW(x ,vR,vW), as defined
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in Definition 2.1). The function tid returns the thread identifier of an event. The functions typ,
loc, valR and valW are lifted to events in the obvious way. We denote by E the set of all events,
and use R,W,RMW for its subsets: R � {e | typ(e) ∈ {R, RMW}}, W � {e | typ(e) ∈ {W, RMW}} and
RMW � R ∩ W. Sub/superscripts are used to restrict these sets to certain location (e.g., Wx =

{w ∈ W | loc(w) = x}) and/or thread identifier (e.g., Eτ = {e ∈ E | tid(e) = τ }).

Our representation of events induces a partial order < on them: events of the same thread are
ordered according to their serial numbers (i.e., 〈τ1,n1, l1〉 < 〈τ2,n2, l2〉 iff τ1 = τ2 and n1 < n2).
In turn, an execution graph consists of a set of events, a reads-from mapping that determines the
write event from which each read event reads its value, and a modification order (a.k.a. coherence
order or store order) that totally orders the writes to each location.2

Definition 2.3. A relation rf is a reads-from relation for a set E of events if the following hold:

• If 〈w, r 〉 ∈ rf , then w ∈ E ∩ W, r ∈ E ∩ R, loc(w) = loc(r ) and valW(w) = valR(r ).
• If 〈w1, r 〉, 〈w2, r 〉 ∈ rf , then w1 = w2 (that is, rf −1 = {〈r ,w〉 | 〈w, r 〉 ∈ rf } is functional).
• ∀r ∈ E ∩ R. ∃w . 〈w, r 〉 ∈ rf (each read event reads from some write event).

Definition 2.4. A relation mo is a modification order for a set E of events if mo is a disjoint union
of relations {mox }x ∈Loc where each mox is a strict total order on E ∩ Wx .

Definition 2.5. An execution graph is a triple G = 〈E, rf ,mo〉 where E is a finite set of events, rf
is a reads-from relation for E and mo is a modification order for E. We denote by EGraph the set of
all execution graphs. The components ofG are denoted byG .E,G .rf andG .mo. The program order
inG, denoted byG .po, is the restriction of < toG .E (i.e.,G .po � {〈e1, e2〉 ∈ E × E | e1 < e2}). For a
set E ⊆ E, we write G .E for G .E ∩ E (e.g., G .Wx = G .E ∩ Wx ).

The next definition is used to associate execution graphs to programs. Multiple examples below
(e.g., on pages 9 and 10) illustrate execution graphs of different programs.

Notation 2.6. For a set E of events, thread identifier τ ∈ Tid and label l ∈ Lab, NextEvent(E,τ , l)
denotes the event given by 〈τ , 1 +max({n ∈ N | ∃l ′ ∈ Lab. 〈τ ,n, l ′〉 ∈ E}), l〉.

Definition 2.7. An execution graphG is generated by a program P with final state p if 〈p0,G0〉 →
∗

〈p,G〉 for some p0 ∈ P .Q0, where G0 denotes the empty execution graph (given by G0 � 〈∅, ∅, ∅〉)
and → is defined by

p
τ ,l
−−→P p ′ E ′ = E ∪ {NextEvent(E,τ , l)}

rf ⊆ rf ′ mo ⊆ mo′

〈p, 〈E, rf ,mo〉〉 → 〈p ′, 〈E ′, rf ′,mo′〉〉

p
τ ,ε
−−→P p ′

〈p,G〉 → 〈p ′,G〉

The rf and mo components are arbitrary at this stage, except for the fact that they have to satisfy
the conditions of Definitions 2.3 and 2.4 (so that 〈E, rf ,mo〉 at each step is indeed an execution
graph).3 Restrictions on rf and mo are determined by the particular model at hand (see Section 3).

Definition 2.8. A declarative model X is a set of execution graphs. We often refer to the elements
of X as X-consistent execution graphs.

2To define the WRA model below, we do not need the modification order. Nevertheless, for uniformity, we include it in the
general definition.
3Since rf must be an inverse of a function from E ∩R (by Definition 2.3) and we require rf ⊆ rf ′ at each step, we can only
generate graphs G with G .po ∪ G .rf being acyclic. This suffices for the purpose of this article, but will require certain
generalization if applied for other weak memory models.
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Then, reachable program states under a declarative model are formally defined as follows.

Definition 2.9. A state p of a concurrent program P is reachable under a declarative model X if
some X-consistent execution graph is generated by P with final state p.

In turn, for a declarative model X, the X reachability problem asks whether for a given concurrent
program P and “bad state” p ∈ P .Q, we have that p is reachable under X. Unfolding the definitions,
this is equivalent to asking whether the state p is reachable in the transition system induced by
the given program P via a program trace 〈τ1, l1〉, ...,〈τn , ln〉 and some graph that is generated by
this trace according to Definition 2.7 is X-consistent.

3 DECLARATIVE CAUSALLY CONSISTENT MEMORY MODELS

In this section, we formulate the three variants of causal consistency discussed in this article as
declarative models: WRA, RA, and SRA. Our presentation generally follows [34]. Figure 3 illustrates
the different consistency constraints described below, and Table 1 summarizes the constraints of
each model.

After presenting the models and various examples, in Section 3.1, we discuss alternative formula-
tions from the literature that result in models that are similar or equivalent to the ones presented
here; and in Section 3.2, we establish a race freedom guarantee showing that the three models
coincide for write-write-race free programs.

To formulate constraints on execution graphs, we use several additional notations.

Notation 3.1 (Relations). Given a relation R, dom(R) denotes its domain; R? and R+ denote its
reflexive and transitive closures; and R−1 denotes its inverse. The (left) composition of relations
R1,R2 is denoted by R1 ; R2. We denote by [A] the identity relation on a set A, and so [A] ; R ; [B] =
R ∩ (A × B).

The causal consistency models are based on the following basic derived “happens-before”
relation:

G .hb � (G .po ∪G .rf)+.

The happens-before relation captures the “causality relation” in execution graphs. It is the smallest
transitive relation that contains the program order (po) and the reads-from (rf) relations. We note
that every read synchronizes with the write it reads from (rf ⊆ hb), in contrast to more elaborate
models like RC11 [40], where only certain reads-from edges induce synchronization. Causality
is assumed to be a partial order, and accordingly, the first fundamental condition in all causal
consistency models is

G .hb is irreflexive. (irr-hb)

In particular, this condition forbids so-called “load-buffering” behaviors [46], which are allowed
in weaker models that aim to support write-after-read reorderings (and unless restricted appropri-
ately lead to the infamous “out-of-thin-air” problem [14, 30]).

The next condition requires that the modification order mo “agrees” with the causality order.
There are two natural ways to formally state this property. The first, followed by the RA model,
requires a local agreement:

G .mo ; G .hb is irreflexive. (write-coherence)

Thus, hb orders two writes to the same location, then mo must follow the same order. (Recall that,
by definition, mo orders every pair of distinct writes to the same location.) A stronger condition,
followed by SRA, requires a global agreement:

(G .hb ∪G .mo)+ is irreflexive. (strong-write-coherence)
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Note that (hb ∪ mo)-cycles involving only one location are already disallowed by write-coherence

(using the fact that mo is total on writes to the same location). But, strong-write-coherence imposes
constraints on the relation between [Wx ] ; mo ; [Wx ] and [Wy ] ; mo ; [Wy ] also for x � y (see the
2+2W program in Example 3.6 below). In turn, in WRA, the modification order mo plays no role,
and imposing either write-coherence or strong-write-coherence (or none of them) has no effect on
the outcomes allowed under WRA.

The next condition intuitively requires that “a thread cannot read a value when it is aware of a
later value written to the same location”. There is more than one way to precisely interpret this
requirement: what do “aware” and “later” mean? The three models agree on the interpretation of
“aware”, identifying a thread τ being aware of some write event w with hb from w to (some event
of) τ . They do, however, differ in their interpretation of one write being “later” than another. RA

and SRA employ the modification order mo for this purpose. Thus, RA and SRA require that

G .mo ; G .hb ; G .rf−1 is irreflexive. (read-coherence)

Indeed, if a read event r reads from a write event w1, while being aware of an mo-later write event
w2 to the same location, then we have 〈w1,w2〉 ∈ mo, 〈w2, r 〉 ∈ hb and 〈r ,w1〉 ∈ rf−1.

WRA imposes a weaker condition by using hb to decide whether a write is “later” than another
write to the same location, thus only partially ordering the writes. To state WRA’s formal condition,
it is convenient to use a per-location restriction of the happens-before relation:

G .hb|loc � {〈e1, e2〉 ∈ G .hb | loc(e1) = loc(e2)}.

Using hb|loc, the condition of WRA is given by

G .hb|loc ; [W] ; G .hb ; G .rf−1 is irreflexive. (weak-read-coherence)

Again, if a read event r reads from a write event w1, while being aware of an hb-later write event
w2 to the same location, then we have 〈w1,w2〉 ∈ hb|loc ; [W], 〈w2, r 〉 ∈ hb and 〈r ,w1〉 ∈ rf−1. Note
that write-coherence (or its stronger variant—strong-write-coherence) implies that [W] ; hb|loc ;
[W] ⊆ mo, and so weak-read-coherence is implied by read-coherence, and thus it holds in RA and
SRA.

Finally, an additional condition ensures the “atomicity” of RMWs (without such condition an
RMW would be nothing more than a read followed by a write). In RA and SRA, RMWs can only
read from their immediate mo-predecessors:

G .mo ; G .mo ; G .rf−1 is irreflexive. (atomicity)

Thus, an RMW event e is reading from a write event w , then no write event can intervene mo-
between w and e .4 In WRA, mo is immaterial, and one only requires that different RMW events
never read from the same write event. Formally:

∀〈w1, e1〉, 〈w2, e2〉 ∈ G .rf ; [RMW]. w1 = w2 =⇒ e1 = e2. (weak-atomicity)

(That is,G .rf ; [RMW] is a partial function.) This simple condition suffices for implementing lock
acquisitions using RMWs in WRA, as well as for implementing fences using RMWs to an otherwise-
unused location (see Example 3.9). To see that atomicity implies weak-atomicity (in the presence
of write-coherence or strong-write-coherence), assume a violation of weak-atomicity, and note
that since mo must order the two RMWs and write-coherence (or strong-write-coherence) dictates
that mo ; rf is irreflexive, it entails a violation of atomicity.

4Note that because of the domain restrictions on rf and mo, only RMW events can have both an incoming rf edge and an
incoming mo edge, so atomicity can be equivalently stated as G .mo ; G .mo ; [RMW] ; G .rf−1 is irreflexive.
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Fig. 3. Illustration of forbidden patterns in the causally consistent models.

Table 1. The Constraints Used in Each Model

WRA irr-hb weak-read-coherence weak-atomicity

RA irr-hb write-coherence read-coherence atomicity

SRA strong-write-coherence read-coherence atomicity

Figure 3 illustrates the different constrains, and Table 1 lists the constraints of each model.
Since write-coherence and read-coherence together imply weak-read-coherence; write-coherence

and atomicity together imply weak-atomicity; and strong-write-coherence implies both irr-hb and
write-coherence, the following proposition trivially holds.

Proposition 3.2. SRA-consistency implies RA-consistency, which in turn implies WRA-
consistency.

Consequently, we clearly have that all states of a program P that are reachable under SRA

are also reachable under RA; and all states of P reachable under RA are also reachable un-
der WRA. The converses of the claims in Proposition 3.2 do not hold in general (see exam-
ples below), but, as we show in Section 3.2, they do hold for the class of write/write-race-free
programs.

Next, we list some examples to demonstrate the different models (some of which are revisited
in the sequel). Most of the examples are well-known litmus tests. To simplify the presentation,
instead of referring to reachable program states, we consider possible program outcomes assigning
final values to (some) registers. An outcome O : Reg ⇀ Val is allowed for a program under a
declarative model X if some state in which the registers have their values in O and the program
counters have their maximal values is reachable under X (see Definition 2.9). We use program
comment annotations (“//”) to denote particular outcomes.

Remark 1. To simplify our presentation, we require explicit initialization of memory locations
and adapt well-known examples to include explicit initialization. Reading from an uninitialized
location blocks the thread. (For example, only the initial execution graph G0 is generated by a
program consisting of a single thread that reads from some location, without previously writing to
it.) This is only a presentation matter: one may always achieve implicit initialization by augmenting
the program with an additional thread that sets each variable to its initial value, and then signals
all other threads (using an additional flag) to start running.

Example 3.3 (Store Buffering). The following program outcome is allowed by all three causal
consistency models. The justifying execution graph is presented on the right.
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The rf edges are forced because of the
read values, whereas the mo edges in RA

and SRA are forced due to write-coherence

and strong-write-coherence. It can be eas-
ily verified that the execution graph is SRA-
consistent, and thus it is also RA-consistent
and WRA-consistent. (SB)

Example 3.4 (Message Passing). Causal consistency models support “flag-based” synchroniza-
tion (which makes them useful in shared-memory concurrent programs). That is, the following
outcome is disallowed under each of the models defined above.

An execution graph for this outcome must
have rf edges as depicted on the right. How-
ever, we have hb|loc from W(x, 0) to W(x, 1), hb
from W(x, 1) to R(x, 0) and rf from W(x, 0) to
R(x, 0). Hence, weak-read-coherence does not
hold, and the execution graph is not WRA-
consistent.

(MP)

Note that po and rf edges equally contribute to hb in causal consistency. Hence, for the same
reason the following outcome is disallowed as well:

(MP-trans)

Example 3.5 (Independent Reads of Independent Writes). A main difference between the causal
consistency models and the x86-TSO model [48] is that the former are non-multi-copy-atomic: a
write by some thread could become visible to some other threads before becoming visible to all
other threads. Thus, unlike x86-TSO, the three causal consistency models allow the following out-
come, in which T2 observes W(x, 1) but not W(y, 1), while T3 observes W(y, 1) but not W(x, 1). The
justifying execution graph appears on the right:

(IRIW)

Example 3.6. The following example, adapted from [58], demonstrates the fact that the local
agreement between mo and hb required in RA is indeed weaker than the global agreement required
by SRA:

(2+2W)

An execution graph for this outcome must have rf and mo edges as depicted above (to satisfy
read-coherence), and it contains a (hb∪ mo)-cycle, which is allowed by RA and disallowed by SRA.

Example 3.7. Unlike RA and SRA, WRA does not provide “sequential-consistency-per-
location”—even programs with a single location may exhibit non-sequentially-consistent behav-
iors. For instance, this happens in the following programs:
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(WW) (Oscillating) (SF)

Interestingly, WRA validates a particular form of the store forwarding optimization that applies
when a certain read is preceded (in program order) by a write to the same location and there
are no writes between these two operations. In this case, the compiler may eliminate the read by
assuming that it reads the value written by the write. This optimization, performed by certain
Java compilers (see [24, Section 2.2]), is particularly applicable when pointers are involved, e.g.,
x := 1; a := ∗p; b := x can be optimized to x := 1; a := ∗p; b := 1 without any pointer analysis (that
is, without knowing whether p points to x or not). The (SF) example above shows that it is an
unsound optimization for RA and SRA—the annotated outcome is disallowed under these models,
but if we apply the above optimization, we may replace b := x by b := 1, and the get a = 2 and
b = 1 even under SC. We note that the standard store forwarding that only applies when the read
immediately follows the write (with no operations in between) is sound in all three models.

Example 3.8. For implementing locks using RMWs it is crucial that two different RMWs never
read from the same write. This is enforced directly in WRA, and follows from atomicity in RA and
SRA. Indeed, in the following example, any (total) mo order of the three events cannot place the
write of 0 as the immediate predecessor of both RMWs:

(2RMW)

Example 3.9. RMWs to an otherwise-unused (unique) location can be used as fences. Indeed, the
consistency constraints (of any of the models) imply that if, except for the initialization write event,
all write events to some location x in G are RMWs then hb must totally order G .Wx . For example,
placing such fences forbids the weak outcome of the SB program (Example 3.3). An execution
graph for this outcome must have the edges as depicted on the right, and any choice of the two
missing rf edges (to the two RMW events) will violate some condition of WRA:

(SB+RMWs)

3.1 Alternative Formulations

Our presentation follows C/C++11’s mathematical formalization [15, 40], where the RA model
above is the fragment of the C/C++11 model consisting of release stores, acquire reads and acquire-
release RMWs. In turn, SRA is a strengthening of RA proposed in [36], whereas WRA is a natural
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weakening of RA that is a fragment of the weak RC11 model proposed in [31], and is sufficiently
strong for the race-freedom result (Theorem 3.12 below) to hold. The WRA and SRA models appear
in the literature in multiple disguises, especially as correctness criteria for distributed data stores:

POWER. As proved in [36], SRA precisely coincides with the POWER model of [10] (which
was validated by extensive testing against real hardware), when the latter is restricted to pro-
grams that result from compiling C/C++11 programs in the release/acquire fragment, using the
standard compilation scheme [45] (that is, placing lwsync before every store and ctrl+isync
after every load). While POWER’s plain instructions result in a model that does not provide
causal consistency guarantees, this compilation scheme ensures that POWER provides causal
consistency, and the observation of [36] this form of causal consistency precisely matches
SRA.

Causal Convergence. Ignoring RMWs, the SRA model is equivalent to the causal convergence
model, denoted by CCv, of [17] (when the latter is applied to the standard sequential specification
of a key-value store supporting read and write operations), as well as to the causal consistency
model of [44] when restricted to single-instruction transactions. These models are formulated in
[19, 21] in terms of visibility (vis) and arbitration (ar ) relations. For example, the graph on the left
for the IRIW program (Example 3.5) is captured in these terms by the graph on the right (where
the dotted arrow is used for the visibility relation and circled numbers denote the arbitration
order):

One direction of the correspondence between our formulation of SRA and the alternative one
formulated in terms of vis and ar follows by setting vis = hb and taking ar to be some total order
extending hb ∪ mo. For the converse, one takes rf to relate each read r with the ar -maximal write
to the same location that is vis-before r , and sets mo =

⋃
x ∈Loc[Wx ] ; ar ; [Wx ]. Furthermore, our

program order (po) corresponds to session order (so), and SRA’s consistency ensures strong session
guarantees (so ⊆ vis) [54].

RMWs in distributed databases require expensive global coordination. A naive implementa-
tion of RMWs as transactions that read and write from/to the same location does not guarantee
atomicity, as it allows the lost update anomaly (e.g., it will allow the outcome in Example 3.8). In the
particular case when a certain location is only accessed by RMWs, its accesses are totally ordered
by hb, which corresponds to marking of certain transactions as serializable, as in the Red-Blue
model of [16, 43].

Basic Causal Consistency. WRA (without RMWs) is equivalent to a basic causal consistency
model called CC in [17], when CC is applied to the standard sequential specification of a key-
value store supporting read and write operations. The CC model requires the existence of a partial
“causal” order S such that for every read event r , the restriction of S on dom(S ; [{r }]) can be ex-
tended to a total order in which the value written by the last write to loc(r ) is valR(r ). This
condition is equivalent to the constraints of WRA.

Parallel-Snapshot-Isolation. Parallel snapshot isolation (PSI) is a standard transactional con-
sistency model used in databases and distributed systems that offers scalability and availability
in large-scale geo-replicated systems [11, 16, 20, 49, 52]. When restricted to single-instruction
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transactions, PSI is captured by strengthening read-coherence to require:

(strong-read-coherence)

Example 3.10. The following behavior is allowed by SRA but disallowed by PSI:

(WW-MP)

An execution graph for this outcome must have rf and mo edges as depicted above (to satisfy
read-coherence), and it violates strong-read-coherence.

It can be shown that when all store instructions are implemented using atomic exchanges (im-
plementing x := e as _ := XCHG(x , e)), SRA precisely captures PSI. Hence, our decidability result
for SRA entails the decidability for PSI with single-instruction transactions, via a simple reduction
substituting all stores in a given program by atomic exchanges that do not use the values being
exchanged. For instance, if we use in the above example c := XCHG(y, 2) instead of y := 2, then the
mo edge between the two writes to y would become an rf edge (and the second write would be la-
beled with RMW(y, 1, 2)), so the annotated outcome would violate read-coherence and be forbidden
also under SRA.

3.2 Write/Write-Race Freedom Guarantee

Following Proposition 3.2, we have that WRA is weaker than RA, which is weaker than SRA. The
examples above show that these relations are strict: the annotated behaviors of the programs in
Example 3.7 are allowed by WRA but not by RA; and the annotated behavior of the 2+2W program
in Example 3.6 is allowed by RA but not by SRA. We note that in all these examples, the programs
exhibit write/write races, namely, two different threads write to the same location with no happens-
before relation between the conflicting writes. Roughly speaking, since the difference between the
models concerns the mo relation, only a write/write race might expose the gap between them. In
this section, we formally prove this fact by showing that the three models coincide on write/write-
race-free programs. We note that the vast majority of concurrent algorithms we know of do not
employ write/write races (in fact, it is rather hard to locate ones that do), which makes the next
theorem widely applicable.5

Inspired by DRF models and results [9, 14, 40], which ensure SC semantics for programs that
are data-race-free under SC-semantics, we show that write/write-race freedom of all SRA-consistent
execution graphs of a given program suffices for the established correspondence. This allows pro-
grammers to adhere to a safe programming discipline (that is, avoid write/write races, e.g., using
locks) without even understanding the two weaker models, WRA and RA. Indeed, to establish the
premise of the following theorem, one only needs to know the SRA-consistency predicate.

Definition 3.11. An execution graph G is write/write-race free if for every w1,w2 ∈ G .W with
loc(w1) = loc(w2), we have w1 = w2, 〈w1,w2〉 ∈ G .hb or 〈w2,w1〉 ∈ G .hb.

5This fact was previously utilized in [31, Section 5] that provided an improved bounded model checking algorithm for
write/write-race free programs, and identified that (sound but incomplete) separation-logic-based program logics for RA

are essentially making a similar simplification, and do not support reasoning about concurrent writes.
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Theorem 3.12. Let P be a concurrent program such that every SRA-consistent execution graph
that is generated by P is write/write-race free. Then, the sets of states of P that are reachable under
(1) SRA, (2) RA and (3) WRA all coincide.

Proof. Using Proposition 3.2, it suffices to show that every state of P that is reachable under
WRA is also reachable under SRA.

We call an execution graph G SRA-pre-consistent if some execution graph G ′ with G ′.E = G .E
and G ′.rf = G .rf (but possibly G ′.mo � G .mo) is SRA-consistent. Let G be the set of all WRA-
consistent but not SRA-pre-consistent execution graphs that are generated by P . To show that
every state of P that is reachable under WRA is also reachable under SRA, it suffices to show that
G is empty.

Suppose otherwise and let G be a minimal element in G, in the sense that every proper G .hb-
prefix of G is not in G (where a proper G .hb-prefix of G is any execution graph of the form
〈Ep , [Ep ] ; G .rf ; [Ep ], [Ep ] ; G .mo ; [Ep ]〉 for some Ep � G .E such that dom(G .hb ; [Ep ]) ⊆ Ep ).
Note that G cannot be empty, since the empty execution graph G0 is trivially SRA-pre-consistent.

Let e be some G .hb-maximal event in G .E, and let E ′ = G .E \ {e}. The min-
imality of G ensures that the restriction of G to E ′ (namely, the execution graph
〈E ′, [E ′] ; G .rf ; [E ′], [E ′] ; G .mo ; [E ′]〉) is SRA-pre-consistent. Let mo′ be a modification order
for E ′ such that G ′ = 〈E ′, [E ′] ; G .rf ; [E ′],mo′〉 is SRA-consistent. Note that our assumption
on P ensures that G ′ is write/write-race free, thus using strong-write-coherence, it follows that
mo′ ⊆ G ′.hb|loc ⊆ G .hb|loc.

We consider the possible types of e . In each case, we define a modification order m̂o for G .E
and show that Ĝ = 〈G .E,G .rf, m̂o〉 is SRA-consistent, which contradicts the fact that G is not
SRA-pre-consistent.

• typ(e) = R: We define m̂o = mo′. Then, Ĝ satisfies strong-write-coherence, as a (Ĝ .hb∪ m̂o)-
cycle would have implied a cycle inG .hb∪mo′ ⊆ G .hb, which cannot exist, sinceG satisfies
irr-hb. In addition, Ĝ satisfies atomicity, since its violation does not involve read events,
and would have occurred also in G ′. Assume toward contradiction that Ĝ does not satisfy
read-coherence. Since e is G .hb-maximal, there exist w1,w2 ∈ E ′ such that 〈w1,w2〉 ∈ mo′,
〈w2, e〉 ∈ G .hb and 〈w1, e〉 ∈ G .rf. It follows that 〈w1,w2〉 ∈ G .hb|loc, and so G does not
satisfy weak-read-coherence, which contradicts the fact that G is WRA-consistent.

• typ(e) = W: We define m̂o = mo′ ∪ (G .Wx × {e}) where x = loc(e). It is easy to see that Ĝ is
SRA-consistent.

• typ(e) = RMW: Let x = loc(e) and let w ∈ G .W such that 〈w, e〉 ∈ G .rf. We define m̂o =
mo′ ∪ (W × {e}) ∪ ({e} × (G .Wx \W )) whereW = {w ′ ∈ G .Wx | 〈w ′,w〉 ∈ mo′?}.
Assume toward contradiction that Ĝ is not SRA-consistent. At least one of the following
hold:
– strong-write-coherence is not satisfied by Ĝ: Then, sinceG ′ is SRA-consistent, there exists
w ′ ∈ E ′ such that 〈e,w ′〉 ∈ m̂o and 〈w ′, e〉 ∈ G .hb. Hence, we have 〈w,w ′〉 ∈ mo′ ⊆

G .hb|loc, and since 〈w, e〉 ∈ G .rf, this contradicts the fact that G satisfies weak-read-

coherence.
– read-coherence is not satisfied by Ĝ: Then, since G ′ is SRA-consistent, there exist w ′ ∈ E ′

such that 〈w,w ′〉 ∈ m̂o and 〈w ′, e〉 ∈ G .hb. It follows that 〈w,w ′〉 ∈ G .hb|loc, which again
contradicts the fact that G satisfies weak-read-coherence.

– atomicity is not satisfied by Ĝ: Then, sinceG ′ is SRA-consistent, it follows that there exist
w ′ ∈ E ′.W and u ∈ E ′.RMW, such that 〈w ′, e〉, 〈e,u〉 ∈ m̂o and 〈w ′,u〉 ∈ G .rf. The con-
struction of m̂o ensures that 〈w ′,w〉 ∈ mo′? and 〈w,u〉 ∈ mo′. Hence, 〈w ′,w〉 ∈ G .hb|?loc
and 〈w,u〉 ∈ G .hb|loc. Now, if 〈w ′,w〉 ∈ G .hb|loc, then again we obtain a contradiction to
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the fact thatG satisfies weak-read-coherence. Otherwise, we have w ′ = w . Thus, we have
both 〈w, e〉 ∈ G .rf and 〈w,u〉 ∈ G .rf (where e � u, since u ∈ E ′), which contradicts the
fact that the G satisfies weak-atomicity. �

4 AN OPERATIONAL LOOK AT CAUSAL CONSISTENCY AND ITS INDUCED
REACHABILITY PROBLEM

While the above formulations of the casual consistency models are declarative, it is straightforward
to “operationalize” these definitions. Indeed, for the models above, instead of first generating a
program execution graph (using Definition 2.7) and a posteriori checking its consistency, one may
impose consistency at each step during an incremental construction of the execution graph. This
results in equivalent operational presentations, which are easier to relate to the alternative lossy
semantics we define below. In this section, we present such operational reformulations of the
declarative semantics above, formulating them as memory systems.6 We will reuse this operational
framework for the lossy semantics (Sections 5 and 6).

Definition 4.1. A memory system is a (possibly infinite) LTS over the alphabet (Tid × Lab) ∪ {ε}.

The alphabet symbols of the memory system are either pairs in Tid×Lab, representing the thread
identifier and the label of the performed operation, or ε for internal (silent) memory actions.

Example 4.2 (Sequential Consistency as a Memory System). The most well-known memory sys-
tem is the one of sequential consistency, denoted here by SC. This memory system simply tracks
the most recent value written to each location (or ⊥ for uninitialized locations). Formally, it is
defined by SC.Q � Loc → (Val ∪ {⊥}), SC.Q0 � {λx ∈ Loc.⊥} and −→SC is given by

write
μ ′ = μ[x �→ vW]

μ
τ ,W(x,vW)
−−−−−−−→SC μ ′

read
μ(x) = vR

μ
τ ,R(x,vR)
−−−−−−−→SC μ

rmw
μ(x) = vR μ ′ = μ[x �→ vW]

μ
τ ,RMW(x,vR,vW)
−−−−−−−−−−−→SC μ ′

Note that SC is oblivious to the thread that takes the action (we have μ
τ ,l
−−→SC μ ′ iff μ

π ,l
−−→SC μ ′),

and it has no silent transitions.

By synchronizing a program and a memory system, we obtain a concurrent system:

Definition 4.3. A program P and a memory system M form a concurrent system, denoted by
P ‖ M . It is an LTS over (Tid × (Lab ∪ {ε})) ∪ {ε} whose set of states is P .Q ×M .Q; its initial states
set is P .Q0 ×M .Q0; and its transitions are “synchronized transitions” of P and M , given by

l ∈ Lab p
τ ,l
−−→P p ′

m
τ ,l
−−→M m′

〈p,m〉
τ ,l
−−→P ‖M 〈p ′,m′〉

p
τ ,ε
−−→P p ′

〈p,m〉
τ ,ε
−−→P ‖M 〈p ′,m〉

m
ε
−→M m′

〈p,m〉
ε
−→P ‖M 〈p,m′〉

To relate a declarative model X and a memory system M , we use the following definitions.

Definition 4.4. A state p of a concurrent program P is reachable under a memory system M if
〈p,m〉 is reachable in P ‖ M for somem ∈ M .Q.

Definition 4.5. A memory system M characterizes a declarative model X if for every concurrent
program P , the set of program states that are reachable under X (see Definition 2.9) coincides with
the set of program states that are reachable under M .

6A similar construction appears in [10] for hardware memory models and the resulting memory systems are called “Inter-
mediate Machines.”
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Next, we present the memory systems opWRA, opRA, and opSRA that characterize the respec-
tive declarative model. (The opRA memory system is defined here for the completeness of the
presentation, but it is not used in the sequel.) The states of these systems are execution graphs
capturing (partially ordered) histories of executed actions, and the only initial state is G0 (recall
that G0 denotes the empty execution graph 〈∅, ∅, ∅〉). Formally, M .Q � EGraph and M .Q0 � {G0}

for M ∈ {opWRA, opRA, opSRA}. Before providing the transitions, we refer the reader to Fig-
ure 4 on page 22, which illustrates a run of opSRA (or opRA, opWRA) for the SB program from
Example 3.3.

Remark 2. Following [31], our formulation of the memory systems below does not directly refer
to the consistency predicates, but rather articulate necessary and sufficient conditions that ensure
that the target state is a consistent execution graph provided the consistency of the source state.
It is possible to take a step further and develop an equivalent semantics with more economical
states that may feel “more operational” and intuitive. Indeed, for the systems below, it suffices to
maintain a partially ordered set of write events, together with a mapping of which writes each
thread is already aware of (the “observed writes set” of [23]). When the writes to each location
are totally ordered (as in RA and SRA), this can be implemented using timestamps, messages and
thread views, as was done, e.g., in [29] for RA.

Weak Release/Acquire. The transitions of opWRA are given by

write
e = NextEvent(G .E, τ , W(x, vW))

G′.E = G .E ∪ {e }
G′.rf = G .rf

G
τ ,W(x,vW)
−−−−−−−−→opWRA G′

read
e = NextEvent(G .E, τ , R(x, vR))

G′.E = G .E ∪ {e }
G′.rf = G .rf ∪ {〈w, e 〉 }

w ∈ G .Wx valW(w ) = vR

w � dom(G .hb |loc ; [W] ; G .hb? ; [Eτ ])

G
τ ,R(x,vR)
−−−−−−−−→opWRA G′

rmw
e = NextEvent(G .E, τ , RMW(x, vR, vW))

G′.E = G .E ∪ {e }
G′.rf = G .rf ∪ {〈w, e 〉 }

w ∈ G .Wx valW(w ) = vR

w � dom(G .hb |loc ; [W] ; G .hb? ; [Eτ ])
w � dom(G .rf ; [RMW])

G
τ ,RMW(x,vR,vW)
−−−−−−−−−−−−→opWRA G′

A write step simply adds a corresponding fresh write event to the graph placed in the end of the
thread executing the write. A read step adds a corresponding fresh read event and justifies it with
a reads-from edge. Its sourcew must be a write event to the same location (w ∈ G .Wx ), writing the
value being read (valW(w) = v), and the thread executing the read must not be aware of an hb-later
write to the same location (w � dom(G .hb|loc ; [W] ; G .hb? ; [Eτ ])). An rmw step is similar to a
read step (adding an RMW event), with the additional condition onw : it should not be read by any
RMW event in the current execution graph (w � dom(G .rf ; [RMW])). We note that the write
step in opWRA is deterministic, while the read and rmw steps are non-deterministic—often more
than one write can be chosen as the source of the new rf edges.

Theorem 4.6. opWRA characterizes WRA.

Proof. Given a WRA-consistent execution graph G, one obtains a run of opWRA by following
any total order extending G .hb. The preconditions required by each step follow directly from the
fact that G is WRA-consistent. For the converse, it suffices to note that all reachable states of
opWRA are WRA-consistent execution graphs. Hence, if 〈p,G〉 is reachable in P ‖ opWRA, then
G is a WRA-consistent execution graph that is generated by P with final state p. �

Remark 3. Instead of requiring w � dom(G .rf ; [RMW]) in the rmw step, we may equivalently
require that {e ∈ RMW | 〈w, e〉 ∈ G .rf} ⊆ Eτ (namely, if w is read by an RMW event, then that
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RMW event is in thread τ ). Indeed, w � dom(G .rf ; [RMW]) trivially implies this condition. Con-
versely, if this condition holds, then since w � dom(G .hb|loc ; [W] ; G .hb? ; [Eτ ]), we cannot have
w ∈ dom(G .rf ; [RMW]). While this reformulation is an unnecessary complication at this stage,
it plays a key role in the alternative lossy semantics for WRA in Section 6.

Release/Acquire. To handle modification order (mo) updates in transitions of opRA, we use the
following notation:

Notation 4.7. Given a relation R that contains a total order on a set A, a subset Abefore ⊆ A that
is downward closed (dom(R ; [Abefore]) ⊆ Abefore) and an element b � A, AddAfter(R,A,Abefore,b)
denotes the extension ofR obtained by placingb after all elements inAbefore and before all elements
of A \Abefore (formally, AddAfter(R,A,Abefore,b) � R ∪ (Abefore × {b}) ∪ ({b} × (A \Abefore))).

The transitions of opRA are given by

write
e = NextEvent(G .E,τ , W(x ,vW))

G ′.E = G .E ∪ {e}
G ′.rf = G .rf

G ′.mo = AddAfter(G .mo,G .Wx ,W , e)
dom(G .mo ; [W ]) ⊆W ⊆ G .Wx

w = max G .moW

w � dom(G .mo ; G .hb? ; [Eτ ])

w � dom(G .rf ; [RMW])

G
τ ,W(x,vW)
−−−−−−−−→opRA G ′

read
e = NextEvent(G .E,τ , R(x ,vR))

G ′.E = G .E ∪ {e}
G ′.rf = G .rf ∪ {〈w, e〉}

G ′.mo = G .mo

w ∈ G .Wx valW(w) = vR
w � dom(G .mo ; G .hb? ; [Eτ ])

G
τ ,R(x,vR)
−−−−−−−−→opRA G ′

rmw
e = NextEvent(G .E,τ , RMW(x ,vR,vW))

G ′.E = G .E ∪ {e}
G ′.rf = G .rf ∪ {〈w, e〉}

G ′.mo = AddAfter(G .mo,G .Wx ,W , e)

W = {w ′ ∈ G .Wx | 〈w ′,w〉 ∈ G .mo?}

w ∈ G .Wx valW(w) = vR
w � dom(G .mo ; G .hb? ; [Eτ ])

w � dom(G .rf ; [RMW])

G
τ ,RMW(x,vR,vW)
−−−−−−−−−−−−−→opRA G ′

The write step adds a corresponding fresh write event e to the graph (placed after all events of
thread τ ) and extends mo to order the freshly added event w.r.t. all previously added writes to the
same location. The extension of mo must respect write-coherence (“local agreement” between mo
and hb). Thus, all of e’s successors in the new mo order cannot be events of which thread τ is aware.
Equivalently, e should be placed as the immediate successor of some event w = maxG .moW , such
that thread τ is not aware of any mo-successors of w (w � dom(G .mo ; G .hb? ; [Eτ ])). In addition,
for the extension of mo to respect atomicity, the new write e should not intervene between an
RMW event and its reads-from source (which, according to atomicity, must be its immediate mo-
predecessor). Hence,w cannot be read by an RMW event (w � dom(G .rf ; [RMW])). We note that
for the very first write to each location, we must haveW = ∅, in which case we assume that the two
conditions on w (w � dom(G .mo ; G .hb? ; [Eτ ]) and w � dom(G .rf ; [RMW])) hold by definition.

A read step by thread τ adds a corresponding fresh read event and justifies it with a reads-from
edge. This is exactly as in opWRA, but to capture later writes, instead of using G .hb|loc (as per
read-coherence), we now use mo (as per weak-read-coherence).

An rmw step is a combination of read and write. To respect atomicity, it forces the reads-from
source of the freshly added RMW event to be its immediate predecessor in the extended mo.

Theorem 4.8. opRA characterizes RA.

Proof. The proof proceeds exactly as the proof for WRA (Theorem 4.6). Given an RA-consistent
execution graph G, one obtains a run of opRA by following any total order extension of G .hb.
The preconditions required by each step follow directly from the fact that G is RA-consistent.
For the converse, it suffices to note that all reachable states of opRA are RA-consistent execution
graphs. Hence, if 〈p,G〉 is reachable in P ‖ opRA, then G is a RA-consistent execution graph that
is generated by P with final state p. �
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Strong Release/Acquire. The transitions of opSRA are given by
write
e = NextEvent(G .E,τ , W(x ,vW))

G ′.E = G .E ∪ {e}
G ′.rf = G .rf

G ′.mo = G .mo ∪ (G .Wx × {e})

G
τ ,W(x,vW)
−−−−−−−−→opSRA G ′

read
e = NextEvent(G .E,τ , R(x ,vR))

G ′.E = G .E ∪ {e}
G ′.rf = G .rf ∪ {〈w, e〉}

G ′.mo = G .mo
w ∈ G .Wx valW(w) = vR
w � dom(G .mo ; G .hb? ; [Eτ ])

G
τ ,R(x,vR)
−−−−−−−−→opSRA G ′

rmw
e = NextEvent(G .E,τ , RMW(x ,vR,vW))

G ′.E = G .E ∪ {e}
G ′.rf = G .rf ∪ {〈w, e〉}

G ′.mo = G .mo ∪ (G .Wx × {e})
w ∈ G .Wx valW(w) = vR

w � dom(G .mo)

G
τ ,RMW(x,vR,vW)
−−−−−−−−−−−−−→opSRA G ′

A write step by thread τ adds a fresh write event e placed after all events of thread τ and
extends mo to order e after all existing writes to the same location. The read is identical to the
read step of opRA. The rmw is also similar to the rmw step of opRA, but it must pick w to be the
mo-maximal write to the relevant location in the current execution graph. We note that the write
and rmw steps in opSRA are deterministic, while the read step is non-deterministic.

This semantics exploits the fact that hb ∪ mo is acyclic in SRA-consistent execution graphs
(“global agreement” between mo and hb, as per strong-write-coherence). Hence, to generate an
SRA-consistent execution graph in a run of an operational semantics, we can follow a total order
extending hb ∪ mo, which guarantees that writes are executed following their mo-order. In turn,
since RMWs should read from their immediate mo-predecessor, we require that RMWs read from
the current mo-maximal write. Accordingly, the next theorem is proved as for WRA and RA, using
G .hb ∪G .mo instead of G .hb when traversing an SRA-consistent execution graph G.

Theorem 4.9. opSRA characterizes SRA.

4.1 The Reachability Problem for Memory Systems

When an operational semantics for a declarative model X is available (in the form of a memory
system as defined above), the X reachability problem (formulated in Section 2.2) can be stated in
more standard terms.

Proposition 4.10. If a memory system M characterizes a declarative model X, then the X reacha-
bility problem is equivalent to the problem given by:

Input: a concurrent program P and a “bad state” p ∈ P .Q.
Question: is p reachable under M (i.e., by Definition 4.4, is p reachable in the concurrent system

P ‖ M for somem ∈ M .Q)?

For the causal models defined above, as mentioned in the introduction to this article, the chal-
lenge in solving this problem stems from the fact that P ‖ M is an infinite transition system (since
opWRA, opRA and opSRA are all infinite state). This is in contrast to P ‖ SC (see Definition 4.2),
which is a finite system of size polynomial in the size of P (since SC is of size quadratic in the
number of locations and values), thus inducing a PSPACE-complete reachability problem [32].

The reduction of Atig et al. [12] from reachability in lossy FIFO channel machines to reachability
under the ×86-TSO model holds without any change for WRA, RA, and SRA.

Theorem 4.11. For X ∈ {WRA,RA, SRA}, the X reachability is non-primitive-recursive.

In fact, it was recently shown that RA reachability is undecidable via a delicate reduction from
Post correspondence problem [2]. The rest of this article is devoted to establishing decidability
for SRA and WRA. To do so, we use the framework of well-structured transition systems (see
Section 8.1 for a brief reminder). We note that we are unable to directly use opSRA and opWRA in
this framework. Roughly speaking, the challenges here stem from: (i) losing parts of the state (the
current execution graph) may allow for behaviors that were not allowed without losing this part
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(e.g., if we discard a write event, then we may read overwritten writes); and (ii) naive ordering
of partial orders via their induced embedding relation is not a well-quasi order. In the sequel, we
overcome these challenges by introducing alternative memory systems for SRA and WRA that are
still infinite, but fit well in the framework of well-structured transition systems.

5 MAKING STRONG RELEASE/ACQUIRE LOSSY: THE loSRA MEMORY SYSTEM

In this section, we introduce an alternative memory system, which we call loSRA (for “lossy-SRA”).
Later, we will establish the equivalence of loSRA to opSRA, and show how loSRA is used to decide
the reachability problem in the framework of well-structured transition systems. We begin with
an intuitive discussion to motivate our definitions, and later spell out the formal details.

A memory state of loSRA maintains for each thread a set of “option lists,” called the potential
of the thread, where each (read) option o contains a location loc(o), a value val(o) and two other
components that are explained below. Each option list stands for a sequence of possible future
reads of the thread, listing the values that it may read in the order that it may read them. For
example, the list o1 · o2 allows the thread to read val(o1) from location loc(o1) and then val(o2)

from location loc(o2). These lists do not ascribe mandatory continuations, but rather possible
futures (hence, options). In the beginning, the empty list is assigned to all threads—before any
write is executed, no reads are possible (recall that we assume explicit initialization, see Remark 1).
In addition, the semantics is designed so that option lists are “lossy,” allowing a non-deterministic
step that removes arbitrary options from the lists.

The option lists in the potentials dictate the possible read steps threads can take: for a thread τ
to read v from x , an option o with val(o) = v and loc(o) = x must be the first in each of τ ’s lists.
Then, to progress to the next option in the list, the thread may consume these options, and discard
the first element from each of its lists.

A write step is more involved, encapsulating the requirements of opSRA. First, since opSRA

performs write events following their mo-order, when a thread writes to x , it cannot later read the
value of x from a write that was already performed (this would violate read-coherence in terms of
SRA). Accordingly, we do not allow a thread to write to x if some read option o with loc(o) = x
appears in its potential. Second, when a thread performs a write of v to x , it allows future reads
from this write. That is, new read options o with loc(o) = x and val(o) = v may be added to
every list of every thread. This makes the write step in loSRA (unlike the one of opSRA) non-
deterministic—the writer essentially has to “guess” which threads will read from the new write
and when.

But, where in the lists should we allow to add such options? The following examples demon-
strate two possible cases. We write in them ov

x for a read option of value v from location x .

Example 5.1. Consider the IRIW program with its (SRA-allowed) outcome in Example 3.5.
Clearly, the first step may only be a write by T1 or T4. Suppose, w.l.o.g., that T1 begins. Since
T3 reads 0 from x, an option o0

x should be added in the lists of T3. Now, before reading 0 from x, T3

has to read 1 from y. Hence, when T4 writes 1 to y, an option o1
y should be placed before o0

x in the
lists of T3.

Example 5.2. Consider the MP program with its outcome in Example 3.4. It is forbidden under
SRA, and so we need to avoid the following scenario: First, T1 writes 0 to x and adds a corresponding
option o0

x to the (initially empty) list of T2, and then writes 1 to x without adding any option to
any list (no thread reads 1 from x in this program outcome). Then, T1 further writes 1 to y and
adds a corresponding option o1

y in the list of T1 placed before o0
x. Finally, T2 may run: read 1 from y

(consuming o1
y) and then 0 from x (consuming o0

x).
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How can we resolve the tension between the two examples? The restriction we impose on the
positions of the added read options is based on the following key observation7:

Shared-memory causality principle: After thread π reads from a certain write executed by thread
τ , thread π can perform a sequence of operations only if thread τ could perform the same sequence
immediately after it executed the write.

Indeed, if thread τ has just performed a writew , then after thread π reads fromw , it “synchronizes”
with τ and it is thus confined by the sequences of reads that τ may perform. (Note that the converse
does not hold: thread τ may be able to read values that thread π cannot read anymore, since thread
π may be already aware of later writes to other locations.) Hence, to allow the addition of a read
option o in certain positions of a list L of some thread π , we require a justification: the suffix of
L after the first occurrence of o should be a subsequence of an option list of the writing thread τ .
This guarantees that after π reads from a write w of τ , it will not be able to read something that
τ could not read at the time that it wrote w . (Revisiting Example 5.2, the read option o1

y cannot be
placed before o0

x, because T1 cannot have o0
x in its lists at the point of writing 1 to y.)

Example 5.3. We revisit Example 5.1 and show how the weak outcome of the IRIW program (see
Example 3.5) is obtained in the lossy SRA machine loSRA. One possible way to obtain this outcome
is depicted as follows8:

{ϵ} {ϵ} {ϵ} {ϵ}
T1

−−−−→
W(x,0)

{ϵ} {ϵ} {o0
x} {o0

x}
T1

−−−−→
W(x,1)

{ϵ}{o1
x}{o

0
x}{o

0
x}

T4
−−−−→
W(y,0)

{ϵ}{o1
xo

0
y}{o

0
x}{o

0
x}

T4
−−−−→
W(y,1)

{ϵ}{o1
xo

0
y}{o

1
yo

0
x}{o

0
x}

T2
−−−−→
R(x,1)

{ϵ}{o0
y}{o

1
yo

0
x}{o

0
x}

T2
−−−−→
R(y,0)

{ϵ}{ϵ}{o1
yo

0
x}{o

0
x}

T3
−−−−→
R(y,1)

{ϵ}{ϵ}{o0
x}{o

0
x}

T3
−−−−→
R(x,0)

{ϵ}{ϵ}{ϵ}{o0
x}.

Initially, all potentials are empty. Then, T1 performs its write x := 0 and adds new options in the
list of T3 and T4 (the first will be used later, since we want T3 to read 0 from x, and the second will
be needed as a justification for y := 1 by T4). Then, T1 completes its code by executing x := 1 and
adding a read option in T2’s list. Now, T4 performs its two writes: y := 0 adds a read option in the
end of T2’s list, and y := 1 adds a read option in the beginning of T3’s list. The latter adds a read
option before existing ones (o1

y is positioned before o0
x), and thus requires a justification: T4 (the

writing thread) should itself have the option o0
x at this stage. Indeed, o0

x appears in the potential of
T4 (it was added by T1). Finally, we can execute all reads, each consumes the corresponding read
option. In the end, o0

x is left in the potential of T4, which has no effect (and it is possible to remove
it by taking a non-deterministic step that loses some parts of the potentials).

Now, since the potential of thread τ is used both for (i) dictating future reads of τ , and (ii) justi-
fying placement of read options that are generated by τ ’s write steps, we may need more than one
option list for each thread. We also allow to discard existing lists in silent moves of the memory
system. This is demonstrated in the following example.

Example 5.4. Consider the following program, whose annotated outcome is allowed under SRA:

x := 0
x := 1
a1 := z //1
a2 := y //0

y := 0
y := 1
b1 := x //1
b2 := z //0

z := 0
z := 1
c1 := y //1
c2 := x //0

d1 := x //1
d2 := y //1
d3 := z //0

e1 := y //1
e2 := z //1
e3 := x //0

f1 := z //1
f2 := x //1
f3 := y //0

✓ SRA

7A weaker observation, which only considers single reads, was essential for the soundness of OGRA—an Owicki Gries
logic for RA introduced in [38].
8We adopt the · ‖ ... ‖ · notation to denote the states of the lossy system. For example, B1 ‖ B2 ‖ B3 ‖ B4 denotes a
mapping from Tid that assigns Bi to Ti for 1 ≤ i ≤ 4 and {ϵ } to all other threads in Tid.

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 2, Article 8. Publication date: April 2022.



What’s Decidable About Causally Consistent Shared Memory? 8:21

Suppose that it can be obtained by the memory system outlined above when it is restricted to
one option list per thread (i.e., singleton potentials). Suppose, w.l.o.g., that z := 1 is the last write
performed in the execution. Later, T3 has to read 1 from y and 0 from x. Hence, its option list must
include o1

y and o0
x in this order. In addition, a read option o1

z should be placed in T6’s list before
o1
x · o

0
y. The justification for it requires o1

x · o
0
y to be a subsequence of T3’s list. This implies that T3’s

list should contain some interleaving of o1
y · o

0
x and o1

x · o
0
y. But, no such interleaving is a possible

future for T3 (and thus cannot be generated by loSRA): reading o1
y does not allow T3 to read o0

y

later; and reading o1
x does not allow T3 to read o0

x later. By allowing more than one option list per
thread, we can have o1

y · o
0
x and o1

x · o
0
y as two separate lists in the potential of T3—both are possible

continuations for it after z := 1. Then, after executing z := 1 and placing a new read option o1
z

before o1
x ·o

0
y in the potential of T6 using the list o1

x ·o
0
y as a justification, T3 may “lose” the justifying

list o1
x · o

0
y, and choose to continue with o1

y · o
0
x for its own reads.

Another complication arises due to the fact that read options do not uniquely identify write
events in the execution graph (this is unavoidable—for the decision procedure, we need the alpha-
bet of read options to be finite):

Example 5.5. Consider the following program:

x := 0
x := 1
z := 1

y := 0
y := 1
z := 1

a := z //1
w := 1
b := x //0

c := w //1
d := y //0

✗ SRA (2MP)

Its annotated outcome is disallowed under SRA. Indeed, since T3 reads x = 0 after z = 1, the read
of z must read from the write of T2. But then, after reading w = 1 (from T3) T4 cannot read y = 0.
However, the semantics described so far allows this outcome as in the following snippet:

{ϵ} {ϵ} {ϵ} {ϵ}
T1

−−−−→
W(x,0)

T1
−−−−→
W(x,1)

T2
−−−−→
W(y,0)

T2
−−−−→
W(y,1)

T1
−−−−→
W(z,1)

{o0
y} {o0

x} {o0
x,o

1
zo

0
y} {o0

y}
T2

−−−−→
W(z,1)

{o0
y} {o0

x} {o1
zo

0
x,o

1
zo

0
y} {o0

y}
T3

−−−−→
R(z,1)

{o0
y} {o0

x} {o0
x,o

0
y} {o0

y}
T3

−−−−→
W(w,1)

{o0
y} {o0

x} {o0
x,o

0
y} {o1

wo
0
y} ...

What went wrong? The problem arises when T3 reads 1 from z. At this point it has two possible
futures, o1

zo
0
x and o1

zo
0
y. Since read options, consisting of location and value, do not uniquely identify

writes, it may read 1 from z, and remain with both o0
x and o0

y. Now, it uses one of these options to
justify the position of o1

w in the list of T4, and the other for its own read. However, in a single run
of opSRA, when reading 1 from z, T3 must pick which write event to read from, and then, either it
cannot read x = 0 or it cannot read y = 0.

To remedy this problem, we make read options to be more informative. Together with location
and value, read options also include the thread identifier that performed the write. When a thread
writes, it adds options with its own thread identifier in the different lists. For a thread τ to read v
from x , a read option o with val(o) = v and loc(o) = x and some unique writing thread identifier
must be the first in every option list of τ . In this example, the two o1

z options will carry different
thread identifiers, which forces T3 to discard one of its lists before reading.

Even with thread identifiers, read options do not uniquely identify write events. Nevertheless,
as our proof shows, the ambiguity inside the writing thread does not harm the adequacy of the
semantics. Roughly speaking, it can be resolved by picking the po-earliest write event, as reading
from it enforces the weakest constraints for the rest of the run.

Finally, RMWs behave like an atomic combination of a read and a write, with a slight adaptation
of the above semantics. Recall that in opSRA, an RMW may only read from the mo-maximal write
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Fig. 4. Illustration of runs of opSRA (top) and loSRA (bottom) for the SB program (Example 3.3). In opSRA’s

states (execution graphs), events of T1 are on the left and of T2 on the right. In loSRA’s states (a potential for

each thread), the potential of T1 is at the top and of T2 at the bottom. In this simple example, all option lists

consist of at most one option and all potentials are singletons.

to the relevant location. To achieve this in loSRA, we include an additional flag in read options
whose value is either R or RMW. Intuitively, an RMW value means that the read option is set to read
from the mo-maximal write. Accordingly, an rmw step may only consume read options marked as
RMW. Since write steps to x replace the mo-maximal write to x in the execution graph, they may
choose to mark any of the added read options as RMW, but they can only execute when no existing
read option (of any thread) from location x is marked as an RMW.

Next, we turn to the formal definitions.

Notation 5.6 (Sequences). We use ϵ to denote the empty sequence. The length of a sequence s is
denoted by |s | (in particular |ϵ | = 0). We often identify a sequence s over Σ with its underlying
function in {1, ...,|s |} → Σ, and write s(k) for the symbol at position 1 ≤ k ≤ |s | in s . We write
σ ∈ s if the symbol σ appears in s , that is if s(k) = σ for some 1 ≤ k ≤ |s |. We use “·” for
the concatenation of sequences, and lift it to concatenation of sets S1 and S2 of sequences in the
obvious way (S1 · S2 � {s1 · s2 | s1 ∈ S1, s2 ∈ S2}). We identify symbols with sequences of length 1
or their singletons when needed (e.g., in expressions like σ · S for σ ∈ Σ and a set S of sequences
over Σ).

Definition 5.7. Read options, option lists and potentials are defined as follows:

(1) A read option is a quadruple o = OR(τ ,x ,v,u), where τ ∈ Tid, x ∈ Loc, v ∈ Val and u ∈

{R, RMW}. The functions tid, loc, val and rmw return the thread identifier (τ ), location (x ),
value (v), and RMW flag (u) of a given read option.

(2) An option list L is a sequence of read options.
(3) A potential B is a finite non-empty set of option lists.

We define an ordering on option lists, which extends to potentials and to mappings of potentials
to threads.

Definition 5.8. The (overloaded) relation � is defined by:

(1) on option lists: L � L′ if L is a (not necessarily contiguous) subsequence of L′;
(2) on potentials: B � B′ if ∀L ∈ B. ∃L′ ∈ B′. L � L′ (a.k.a. “Hoare ordering”);
(3) on functions from Tid to the set of potentials: B � B′ if B(τ ) � B′(τ ) for every τ ∈ Tid.

The loSRA memory system is formally defined (in the setting of Definition 4.1) as follows.
Figure 4 illustrates a run of loSRA for the SB program (Example 3.3) alongside with a corresponding
run of opSRA.
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Fig. 5. Illustration of loSRA’s write step, as defined in Definition 5.9. Two read options OR(T1, x, 4, R) are

added to the option list L′ of thread T2 in B′, constructed from the list L of T2 and justified by the list L̂ of

T1 in B. Observe that L̂ = L1 · L2, L = L0 · L1 · L2 and L′ = L0 · OR(T1, x, 4, R) · L1 · OR(T1, x, 4, R) · L2, where

L0 = OR(T1, x, 0, R), L1 = OR(T2, y, 3, R) OR(T1, y, 0, R) and L2 = OR(T2, y, 1, RMW).

Definition 5.9. loSRA is defined by: loSRA.Q is the set of functions B assigning a potential to
every τ ∈ Tid; loSRA.Q0 = {λτ ∈ Tid. {ϵ}};9 and the transitions are as follows:

write
∀π ∈ Tid,L′ ∈ B′(π ). ∃n ≥ 0,u1,...,un ,L0,...,Ln .

L′ = L0 · OR(τ ,x ,vW,u1) · L1 · ... · OR(τ ,x ,vW,un ) · Ln

∧ L0 · ... · Ln ∈ B(π ) ∧ L1 · ... · Ln ∈ B(τ )
∧ ∀o ∈ L1 · ... · Ln . loc(o) � x
∧ ∀o ∈ L0. loc(o) = x =⇒ π � τ ∧ rmw(o) = R

B
τ ,W(x,vW)
−−−−−−−−→loSRA B′

rmw
loc(o) = x val(o) = vR

rmw(o) = RMW
B = Bmid[τ �→ o · Bmid(τ )]

Bmid
τ ,W(x,vW)
−−−−−−−−→loSRA B′

B
τ ,RMW(x,vR,vW)
−−−−−−−−−−−−−→loSRA B′

read
loc(o) = x val(o) = vR B = B′[τ �→ o · B′(τ )]

B
τ ,R(x,vR)
−−−−−−−−→loSRA B′

lower
B′ � B

B
ε
−→loSRA B′

The definition of the write step generally follows the intuitive explanation above. (See an illus-
tration in Figure 5.) Every option list of thread π (L′ ∈ B′(π )) after a write transition by thread
τ is obtained by adding n ≥ 0 read options (OR(τ ,x ,vW,u1), ...,OR(τ ,x ,vW,un)) of the current write
to an existing list L of thread π (L = L0 · ... · Ln ∈ B(π )), provided that: (i) the suffix of the ex-
isting list right after the position of the first added option is an option list of the writing thread
(L1 ·...·Ln ∈ B(τ )); (ii) the list L′ cannot have other read options from location x after the first added
read option (∀o ∈ L1 · ... · Ln . loc(o) � x ); (iii) before the first added read option (i.e., in L0) thread
τ should not have other read options from x (that is, if π = τ , then the list L′ cannot have any
read options from x besides of the newly added ones), and other threads may have read options
from x , but these options cannot be RMW options (∀o ∈ L0. loc(o) = x =⇒ π � τ ∧ rmw(o) = R).
When n = 0 (no new options are added to some list), we assume that the conditions involving
L1, ...,Ln vacuously hold, and thus we only require L′ = L0 ∈ B(π ) (the list is left intact) and
∀o ∈ L0. loc(o) = x =⇒ π � τ ∧ rmw(o) = R. Note that since the universal quantification is
on lists of the new state, the step allows to “duplicate” lists before modifying them, as well as to
“discard” complete lists (as often useful when a certain list is needed only as a justification for po-
sitioning a read option; see, e.g., Example 5.5). We also note that several RMW options can be added,
but only one of them may be later fulfilled.

Remark 4. Our formal write step insists on having a justification in the form of a complete
option list of the writing thread (L1 · ... · Ln ∈ B(τ )). It suffices, however, for the suffix after the

9To achieve implicit initialization of all locations to 0, one should take loSRA.Q0 to consist of all functions assigning to
each thread sequences consisting of read options of the form OR(T0, x, 0, u) where T0 is a distinguished thread identifier
that is not used in programs (corresponds to the initializing thread, see Remark 1).
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first added read option to be a subsequence of some list of the writing thread ({L1 · ... · Ln} � B(τ )).
Indeed, this less restrictive step is derivable by combining a lower step and a write step. For
π = τ (adding read options in the lists of the thread that performed the write), this means that
no justification is needed (since L0 · ... · Ln ∈ B(τ ) implies {L1 · ... · Ln} � B(τ )). Similarly, no
justification is required for placing read options in the end of existing lists (since {ϵ} � B(τ )
always holds).

The read step requires that the first option in all lists in the executing thread’s potential are
the same read option o, and allows the thread to read the value of o from the location of o, while
consuming o from all these lists. Note that, by definition, the potential B′(τ ) is non-empty, and
so the set B(τ ) as defined in the step is non-empty. When all options are consumed, τ ’s potential
consists of a single empty list.

Remark 5. Our formal read step always discards the first option from the lists, which was used
to justify the read. An alternative semantics that keeps the lists unchanged in read steps (allowing
to discard the first option using the lower step) would be equivalent. Indeed, the write step that
added the consumed option could always add multiple identical consecutive read options.

The rmw step is an atomic sequencing of read and write to the same location. The read part
can only be performed provided that the first option in all lists is marked with RMW.

The lower transition allows to remove read options, as well as full option lists, at any point. It
also allows to add new lists, provided that each new list is “at most as powerful” as some existing
list (as used in Remark 4). Intuitively, lower can only reduce the possible traces, while it allows
us to show that loSRA is a well-structured transition system.

Example 5.10. Consider the 2+2W program with its (SRA-disallowed) outcome in Example 3.6.
To see that this outcome cannot be obtained by loSRA, consider the last write executed in a run of
this program. Suppose, w.l.o.g., that it is y := 2 by T1. After executing this write, T1 cannot have
any other read options of location y in its lists. Hence, a read option of the form OR(_, y, 1, _) should
be added to T1’s potential after T1 executed y := 2. This contradicts our assumption that y := 2
was the last executed write.

Example 5.11. Consider the 2RMW program with its (SRA-disallowed) outcome in Example 3.8.
To try to obtain this outcome in loSRA, the x := 0 by T1 must add a read option OR(T1, x, 0, RMW)
in both its own list and in a list of T2. But, the execution of the first RMW, which consumes one
of these options, cannot proceed if there is another option marked with RMW. Hence, the second
RMW cannot read 0, and this outcome cannot be obtained by loSRA.

We conclude with the equivalence of opSRA and loSRA. We postpone its proof to Section 7, after
we introduce a similar system for WRA.

Theorem 5.12. For every program P , the set of program states that are reachable under opSRA

coincides with the set of program states that are reachable under loSRA.

6 MAKING WEAK RELEASE/ACQUIRE LOSSY: THE loWRA MEMORY SYSTEM

As we did for SRA, we introduce an alternative memory system, which we call loWRA (for “lossy-
WRA”), that is equivalent to opWRA. Like loSRA, the loWRA memory system is based on thread
potentials, where machine states record information on what can be done from now on, rather than
on what was done until now, as in opSRA and opWRA. The causality constraints are maintained
by adhering to the “shared-memory causality principle” (see Section 5), thus requiring appropriate
justifications for the positioning of added read options in other threads’ lists. However, as we
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explain below loWRA requires a key change w.r.t. loSRA that has to do with what thread potentials
consist of.

The first observation about loWRA is that it must allow existing read options from location x to
appear in the potential of thread τ after τ writes to x . Indeed, this is necessary for allowing certain
outcomes that loSRA forbids (e.g., Examples 3.6 and 3.7). Intuitively speaking, the fact that thread τ
writes to x should not restrict the thread from later reading from a write that was executed before
τ ’s write, as long as τ is not already aware of the other write at the point of writing. This is in
contrast to SRA, where writes can be executed following their mo order, and thus writing to some
location makes the thread aware of the latest write.

We further observe that simply allowing read options from x in write steps to x as mentioned
above would make the semantics overly weak. First, if τ writes to x and adds read options o1, ...,on

in one of its own lists, then it should not write again to x before consuming (or discarding) each
of o1, ...,on . Indeed, if τ writes to x again, then the second write is aware (via po ⊆ hb) of the first
one, and reading from the first one after executing the second would violate weak-read-coherence.
Second, if o1, ...,on are added in a list of another thread π , then after consuming o1 but before
consuming on thread π should not write to x . Indeed, performing the read specified by o1 will
make thread π aware of the writew associated with o2, ...,on . When π writes to x , its write will be
hb-after w , and reading again from w will violate weak-read-coherence.

Thus, we need to put certain limitations on the ability to write to a location x that are related to
the read options from x in the potentials. The key idea is that such restrictions can be supported by
setting the potentials of loWRA to include write options in addition to read options. Write options
take the form OW(x) where x ∈ Loc. In the initial states, all lists consist solely of write options
(to some locations), which reflect the initial possible continuations of each thread. Then, when τ
writes to x , it (1) has to discard all of its lists that do not begin with OW(x), and consume the OW(x)
option from the head of each of its remaining lists; (2) cannot place read options in its own lists
after some OW(x) option; and (3) cannot place new read options in other threads’ lists in a way
that will make some OW(x) option appear between two of the added read options. The “shared-
memory causality principle” now applies not only to read options but also to write options: If
τ has just performed a write w , then after π reads from w , it “synchronizes” with τ , and so its
continuations (sequences of both reads and writes) should all be possible continuations of τ . In
fact, as our correspondence proofs show, enforcing the “shared-memory causality principle” and
conditions (1)–(3) above suffices to precisely capture WRA.

Example 6.1. The annotated outcome of the WW program in Example 3.7 can be obtained with
the following run (using subscripts and superscripts for locations and values while eliding the
other components of read options):

{OW(x)} {OW(x)}
T1

−−−−−→
W(x,1)

{ϵ} {OW(x) · o
1
x}

T2
−−−−−→
W(x,2)

{o2
x} {o1

x}
T1

−−−−−→
R(x,2)

{ϵ} {o1
x}

T2
−−−−−→
R(x,1)

{ϵ} {ϵ}.

We start with an OW(x) option for both threads. Then, T1 executes its write: consumes its OW(x),
and adds a read option in the end of T2’s list. Now, T2 executes its write: consumes its OW(x) and
adds a read option in the end of T1’s list. Finally, both threads perform their reads by consuming
the read options from their potentials. Justifications for the writes trivially exist (essentially, no
justification is needed for placing a read option in the end of some list). Note that to obtain this
behavior it is crucial to weaken the condition of loSRA: some thread (T2 in this example) has to
write to location x while it has already an option to read from x in its potential.
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Example 6.2. The annotated outcome of the oscillating program in Example 3.7 can be obtained
with the following (prefix of) run (using subscripts and superscripts as above):

{OW(x)} {ϵ} {OW(x)}
T1

−−−−−→
W(x,1)

{ϵ} {o1
x · o

1
x} {OW(x) · o

1
x}

T3
−−−−−→
W(x,2)

{ϵ} {o1
x · o

2
x · o

1
x} {o1

x}
T2

−−−−−→
R(x,1)

...

We start with an OW(x) option for T1 and T3. Then, T1 executes its write: consumes its OW(x), and
adds two read options to T2 and one to T3. Now, T3 executes its write: consumes its OW(x) and adds
in the list of T2 a read option in between the two options that were added by T1. This is justified,
since (after consuming OW(x)) T3 has o1

x in its list. Finally, T2 can run and perform the three reads.

Example 6.3. We demonstrate why loWRA disallows the annotated outcome of the MP-trans
program in Example 3.4. The first executed operation must be x := 0 by T1. Since T3 reads 0 from
x, a corresponding read option o0

x has to be added to lists of T3. Then, since T3 will read 1 from x
(which is written by T2) before it reads 0, when T2 executes x := 1, a read option o1

x has to be added
to lists of T3 and be placed before o0

x. The semantics of loWRA requires a justification for placing
o1
x before o0

x: a list of T2 that contains OW(x) and somewhere after it o0
x. Hence, when T1 executes

x := 0, the read option o0
x should also be added to the lists of T2 after OW(x). Now, since T2 reads 1

from y before it executes x := 1, when T1 executes y := 1, a read option o1
y has to be added to lists

of T2, and be placed before OW(x) (which precedes o0
x). In turn, this requires a justification in the

form of a list of T1 that contains OW(x) that precedes o0
x. Therefore, when T1 executes x := 0, the

read option o0
x should also be added to the lists of T1, somewhere after OW(x), which is disallowed

by loWRA.

Finally, RMWs in loWRA are handled differently than in loSRA. Indeed, all we have in WRA is
that two RMWs never read from the same event, and thus we cannot require, as required in loSRA,
that after executing a write, no RMW will read from a write that was executed earlier. Naively,
WRA’s weak-atomicity constraint could be supported by adding at most one option marked with
RMW when performing a write. This is in contrast, however, with the “shared-memory causality
principle”: If we decide to give thread π an RMW-option, then later when it reads from a write
of thread τ , it may still be able to perform an RMW, while thread τ never had such option. To
resolve this mismatch, we utilize the observation in Remark 3, and slightly modify loWRA’s read
options. Instead of marking read options with RMW flags, we instrument them with RMW thread
identifiers, denoting the (unique) thread that may consume this option when executing an RMW.
When a thread writes, it picks an arbitrary but unique thread identifier to include in this field of
its added options; reads ignore this field; and RMWs by thread τ can only consume read options
whose RMW thread identifier is τ . Now, in the above scenario, instead of saying that π has some
option that τ has not, we will have that both threads have the same option, which is a conditional
option to perform an RMW if their identifier matches the RMW thread identifier of the option.
This allows us to maintain the “shared-memory causality principle.”

We turn to the formal definitions. Some notions (e.g., read optionsg) overlap with these of
Section 5. To improve readability, we use the same terms, and the ambiguity is resolved by the
context.

Definition 6.4. An option o is either OR(τ ,x ,v,πRMW) (read option) or OW(x) (write option), where
τ ,πRMW ∈ Tid, x ∈ Loc and v ∈ Val. The functions typ, tid, loc, val, and rmw-tid return (when
applicable) the type (R/W), thread identifier (τ ), location (x ), value (v), and RMW thread identifier
(πRMW) of a given option.

Option lists (which now include both read and write options) and potentials, as well as the �

ordering, are defined as in Definitions 5.7 and 5.8 (using Definition 6.4 instead of loSRA’s read
options).
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Definition 6.5. The memory system loWRA is defined by: loWRA.Q is the set of functions B

assigning a potential to every τ ∈ Tid; loWRA.Q0 = {B | ∀τ ∈ Tid,L ∈ B(τ ),o ∈ L. typ(o) = W};
and the transitions are as follows:

write
o = OR(τ ,x ,v,πRMW)

∀π ∈ Tid,L′ ∈ B′(π ). ∃n ≥ 0,L0,...,Ln .

L′ = L0 · o · L1 · ... · o · Ln ∧ OW(x) · L1 · ... · Ln ∈ B(τ )
∧ (π = τ =⇒ OW(x) · L0 · ... · Ln ∈ B(τ ) ∧ OW(x) � L0 · ... · Ln−1)

∧ (π � τ =⇒ L0 · ... · Ln ∈ B(π ) ∧ OW(x) � L1 · ... · Ln−1)

B
τ ,W(x,vW)
−−−−−−−−→loWRA B′

rmw
loc(o) = x val(o) = vR

rmw-tid(o) = τ
B = Bmid[τ �→ o · Bmid(τ )]

Bmid
τ ,W(x,vW)
−−−−−−−−→loWRA B′

B
τ ,RMW(x,vR,vW)
−−−−−−−−−−−−−→loWRA B′

read
loc(o) = x val(o) = vR B = B′[τ �→ o · B′(τ )]

B
τ ,R(x,vR)
−−−−−−−−→loWRA B′

lower
B′ � B

B
ε
−→loWRA B′

The read, rmw, and lower steps are as in loSRA (except for the precondition rmw-tid(o) = τ
instead of rmw(o) = RMW in the rmw step).

The write step follows the intuitive explanation above. Keeping in mind that the writing thread
consumes a write option to the written location, every option list after the write transition
is obtained from some previous list (OW(x) · L0 · ... · Ln ∈ B(τ ) for the writing thread and
L0 · ... · Ln ∈ B(π ) for other threads), with the addition of n ≥ 0 read options of the current
write (all with the same RMW thread identifier), provided that: (1) the suffix of the existing list
right after the position of the first added read option is an option list (after consuming the first
write option) of the writing thread (OW(x) ·L1 ·...·Ln ∈ B(τ )); (2) for the writing thread, the prefix of
the existing list (after consuming the first write option) before the position of the last added read
option cannot have options to write to x (OW(x) � L0 · ... · Ln−1); and (3) for the other threads, the
part of the existing list between the first and the last positions of the added read options cannot
have options to write to x (OW(x) � L1 · ... · Ln−1). When n = 0 for some π ∈ Tid and L′ ∈ B′(π )
(no new options are added to some list), we only require OW(x) · L

′ ∈ B(τ ) if π = τ , and L′ ∈ B(π )
otherwise.

We conclude with the equivalence of opWRA and loWRA. The proof is given in the next section,
together with the proof of the corresponding theorem for SRA (Theorem 5.12).

Theorem 6.6. For every program P , the set of program states that are reachable under opWRA

coincides with the set of program states that are reachable under loWRA.

7 EQUIVALENCE OF loSRA AND opSRA AND OF loWRA AND opWRA

In this section, we establish the equivalence of loSRA and opSRA (Theorem 5.12) and of loWRA

and opWRA (Theorem 6.6). We use the same approach for both SRA and WRA, while having
some different technical arguments for each. Here, we provide the approach and proof sketch,
while detailing the full proofs in Appendix A. Whenever possible, we speak of opXRA and loXRA,
standing for both opSRA and opWRA, and for both loSRA and loWRA, respectively.

To establish the equivalence of loXRA and opXRA, we define a simulation � ⊆ loXRA.Q ×

opXRA.Q, formalizing the intuitive relation between loXRA’s potentials and opXRA’s execution
graphs. For defining �, we first define a “write list” linking the read options in an option list L to
write events in an execution graph G. For loWRA, a write list also has write options that need to
be identical to the write options in L; and we also assume a mapping tidRMW : W → Tid relating
every write event to the unique thread that may read from it in an RMW event.
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Definition 7.1. A write list is a sequence of write events and write options. LetG be an execution
graph, L an option list and tidRMW : W → Tid. A write list W is a 〈G,L〉-write-list (for SRA) or a
〈G,L, tidRMW〉-write-list (for WRA) if |L| = |W | and the following hold for every 1 ≤ k ≤ |W |:

• If typ(L(k)) = R (i.e., L(k) is a read option), then the following hold:
– W (k) ∈ G .W.
– tid(W (k)) = tid(L(k)), loc(W (k)) = loc(L(k)) and valW(W (k)) = val(L(k)).
– for SRA: If rmw(L(k)) = RMW, thenW (k) � dom(G .mo).
– for WRA: tidRMW(W (k)) = rmw-tid(L(k)).

• If typ(L(k)) = W (i.e., L(k) is a write option), thenW (k) = L(k) (relevant only for WRA).

The following notion of 〈G,τ 〉-consistency of a write list W intuitively means that XRA-
consistency is satisfied by the extension of the execution graph G with a sequence of reads and
writes of thread τ obtained by followingW : For an elementw ∈W that is inG .W, the correspond-
ing extension of G is a read event reading from w , and for an element ofW of the form OW(x), the
extension of G is a write event to x (writing an arbitrary value).

Ensuring this consistency depends on the constraints of XRA and is thus different for SRA and
WRA. For SRA, we should ensure that τ is not already aware of some write that is mo-later than
some write ofW , and that after reading from a write w1 ofW , thread τ will not become aware of
some write that is mo-later than some write w2 that appears after w1 inW . Formally:

Definition 7.2. A write list W is 〈G,τ 〉-consistent for SRA if for every 1 ≤ k ≤ |W |, we have
W (k) � dom(G .mo ; G .hb? ; [Eτ ∪ {W (j) | 1 ≤ j < k}]).

For WRA, we should ensure that (1) τ is not already aware of some write that is hb|loc-later than
some write ofW ; (2) after reading from a write w1 ofW , τ will not become aware of some write
that is hb|loc-later than some writew2 that appears afterw1 inW ; (3) if τ is already aware of some
writew to x , then it cannot write to x and then read fromw ; and (4) if τ is becoming aware of some
writew to x by reading from a write (not necessarily to x ), then it cannot later write to x and then
read from w . In the following definition, the first two properties are covered by condition C1, and
the third and fourth by conditions C2 and C3, respectively:

Definition 7.3. A write listW is 〈G,τ 〉-consistent for WRA if for every 1 ≤ k ≤ |W | withW (k) ∈
E:

C1 W (k) � dom(G .hb|loc ; [W] ; G .hb? ; [Eτ ∪ {W (j) | 1 ≤ j < k}]).
C2 IfW (i) = OW(loc(W (k))) for some i < k , thenW (k) � dom(G .hb? ; [Eτ ]).
C3 For every j < k , ifW (i) = OW(loc(W (k))) for some j < i < k , then 〈W (k),W (j)〉 � G .hb?.

Now, � relates an loXRA state B with an execution graph G if each option list in B has an
appropriate write list. For loWRA, we require in addition the existence of a mapping tidRMW : W →

Tid relating every write event to the unique thread that may read from it in an RMW event, and
enforce that tidRMW matches the execution graphG (the last requirement in the following definition).

Definition 7.4. A state B ∈ loXRA.Q matches an execution graph G, denoted by B � G, if:

• For SRA: for every τ ∈ Tid and L ∈ B(τ ), there exists a 〈G,τ 〉-consistent 〈G,L〉-write-list.
• For WRA: there exists a function tidRMW : W → Tid, such that the following hold:

– For every τ ∈ Tid and L ∈ B(τ ), there exists a 〈G,τ 〉-consistent 〈G,L, tidRMW〉-write-list.
– For every 〈w, e〉 ∈ G .rf ; [RMW], we have tid(e) = tidRMW(w).

Equipped with these definitions, we show that every trace of opXRA is a trace of loXRA, and vice
versa. In one direction, we will show a forward simulation from loXRA to opXRA and for the other
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direction a backward simulation. Notice that ε-transitions (using lower) do not affect reachability
of program states, and thus the trace equivalence ignores ε-transitions.

Definition 7.5. Two traces are equivalent if their restrictions to non ε-transitions are equal.

The next theorem encompasses the right-to-left direction of both Theorems 5.12 and 6.6.

Lemma 7.6. For every trace of loXRA there is an equivalent trace of opXRA.

Proof sketch. We show that � constitutes a forward simulation relation from loXRA to opXRA.
First, the initial states clearly match: For SRA: we clearly have (λτ ∈ Tid. {ϵ}) �G0. For WRA: for
every B ∈ loWRA.Q0, we have B � G0, since (using any function tidRMW : W → Tid) for every
τ ∈ Tid and L ∈ B(τ ), L itself, having only write options, is a 〈G,τ 〉-consistent 〈G,L, tidRMW〉-write-
list, regardless of what G is.

Now, suppose that B � G and B
τ ,l
−−→loXRA B′ for some τ ∈ Tid and l ∈ Lab.

We show that there existsG ′ such that B′ �G ′ andG
τ ,l
−−→opXRA G ′ (as depicted

on the right).
Unfolding Definition 7.4:

• For SRA: For every π ∈ Tid and L ∈ B(π ), letW〈π ,L〉 be a 〈G,π 〉-consistent 〈G,L〉-write-list.
• For WRA: Let tidRMW : W → Tid be a function satisfying the conditions of Definition 7.4, and

for every π ∈ Tid and L ∈ B(π ), letW〈π ,L〉 be a 〈G,π 〉-consistent 〈G,L, tidRMW〉-write-list.

Consider the possible cases:

• write step, l = W(x ,vW): We obtain G ′ by extending G with the appropriate write event w .
Then, using the write lists that exist for G, we construct the required write lists for G ′. For
this matter, let π ∈ Tid and L′ ∈ B′(π ). Let L be the option list in B(π ) from which L′ is
constructed by adding new read options; and Ljustify be the option list in B(τ ) that justifies
the positioning of the new read options in L′. A write listW ′ for L′ is constructed as follows
(we informally identify read options with their indices in the corresponding list, but the
intention should be clear):
– The new read options OR(τ ,x ,vW, _) in L′ (added by loXRA’s write step) are all mapped by
W ′ to w (the new write event in G ′).

– Every read option o in L′ that appears before the first added read option OR(τ ,x ,vW, _) is
mapped byW ′ to the same write it is mapped to byW〈π ,L〉 .

– Every other read optiono in L′ is mapped byW ′ to the po-maximal write between the write
event that o is mapped to byW〈π ,L〉 and the write event that o is mapped to byW〈τ ,Ljustify 〉 .
Here, we use the fact that both W〈π ,L〉 and W〈τ ,Ljustify 〉 map o to a write event in G of the
same thread (which is tid(o)). Hence, the two mentioned writes are ordered by po. This
construction ensures that both corresponding writes inW〈π ,L〉 and inW〈τ ,Ljustify 〉 have mo
(in SRA) or hb|loc (in WRA) to the write event thatW ′ maps o to.

Now, it is possible to show that any violation of consistency ofW ′ (Definitions 7.2 and 7.3)
entails a violation of consistency ofW〈π ,L〉 or ofW〈τ ,Ljustify 〉 . (For WRA, we use the function
tidRMW[w �→ πRMW] where πRMW is the RMW thread identifier of the read options added in the
step.) This establishes the required simulation invariant and shows that B′ � G ′.

• read step, l = R(x ,vR): We obtain the graph G ′ by extending G with the appropriate read
event r . As r ’s reads-from source in G ′, we have multiple candidates: each option list L in
τ ’s potential in B has to start with OR(η,x ,vR, _) for some (unique) η ∈ Tid, which is mapped
by the write listW〈τ ,L〉 to some write event wL of thread η writing vR to x . Among all these
writes, we pick the po-minimal one as the reads-from source of r inG ′. Using the consistency
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of the write lists forG (in particular, condition C1 for WRA), we show that opXRA can indeed
take the read step from G to G ′. In turn, write lists for G ′ are obtained from those for G in
the straightforward way (since no read options are added in this step). Their consistency is
again derived from the consistency of theW〈τ ,L〉 lists forG. Intuitively speaking, picking the
po-minimal write as the reads-from source of r in G ′, imposes on τ the weakest constraints
in G ′, and allows us to prove the consistency of the new write lists.

• rmw step, l = RMW(x ,vR,vW): This case is handled by carefully combining the write and
read steps. We note that for SRA, each option list L in τ ’s potential has to start with
OR(_,x ,vR, RMW), and thus, all these options are mapped by the corresponding write lists
to the mo-maximal write event to x in G. This ensures that opSRA can take the RMW
step.

In turn, for WRA, we have to show that the reads-from source of the new RMW event
in G ′ is not already read by another RMW. Here, we use the fact that each option list L
in τ ’s potential has to start with OR(_,x ,vR,τ ). Thus, the first write event in each of the
corresponding write lists is mapped by tidRMW to τ , which means that it is read by RMWs
only by thread τ . Together with C1, this implies that none of these write events is read by
an RMW event, and so, opWRA can take the RMW step (see also Remark 3).

Finally, for handling the lower step, suppose that B �G and B
ε
−→loXRA B′. To see that B′ �G,

we adapt the write lists that exist for B to “skip” on all indices that were removed by the lower
transition. That is, if f is an increasing function such that L′(k) = L(f (k))where L′ ∈ B′(τ ) and L ∈

B(τ ), we derive a write listW ′ for L′ from the write listW〈τ ,L〉 by setting:W ′ = λk .W〈τ ,L〉(f (k)).
Then, the required properties ofW ′ follow from the corresponding properties ofW . �

For the converses (left-to-right direction of both Theorems 5.12 and 6.6), we favor backward
simulation, since loXRA requires to “guess” the future, and without knowing the target state, we
cannot construct the next step.

Lemma 7.7. For every trace of opXRA there is an equivalent trace of loXRA.

Proof sketch. We show that �−1 constitutes a backward simulation from opXRA to loXRA.10

The two first requirements of a backward simulation clearly hold for �: (1) �−1 is total, as for every
state G of opXRA, we have (λτ ∈ Tid. {ϵ}) �G. (2) Consider a state B of loXRA, such that B �G0.
By the definition of �, it should be possible to link every read option of B to some write event of
G0. Since there are no events inG0, there cannot be read options in B, implying that B ∈ loXRA.Q0.

We move to the third requirement. Suppose thatG
τ ,l
−−→opXRA G ′ and B′ �G ′.

We construct a state B such that B
τ ,l
−−→loXRA B′ and B �G (depicted on the

right).
Unfolding Definition 7.4:

• For SRA: For every π ∈ Tid and L′ ∈ B′(π ), letW ′
〈π ,L′ 〉

be a 〈G ′,π 〉-consistent 〈G,L′〉-write-
list.

• For WRA: Let tidRMW : W → Tid be a function satisfying the conditions of Definition 7.4, and
for every π ∈ Tid and L′ ∈ B′(π ), letW ′

〈π ,L′ 〉
be a 〈G ′,π 〉-consistent 〈G ′,L′, tidRMW〉-write-list.

10Recall that a backward simulation from an LTS A to an LTS B is a relation R ⊆ A.Q × B .Q such that (1) R is total (for

every q ∈ A.Q, we have 〈q, p 〉 ∈ R for some p ∈ B .Q); (2) if 〈q, p 〉 ∈ R and q ∈ A.Q0, then p ∈ B .Q0; and (3) if q
σ

−→A q′

and 〈q′, p′ 〉 ∈ R , then there exists p ∈ B .Q such that p
σ

−→B p′ and 〈q, p 〉 ∈ R .
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Consider the possible cases:

• write step, l = W(x ,vW): Let w be the write event that is added in thread τ when opXRA

moves from G to G ′. We obtain B by:
– Removing from every option list L′ ∈ B′(π ) of every thread π the read options that corre-

spond to the write event w inW ′
〈π ,L′ 〉

.

– Adding to B(τ ) “justifying lists”: For every list L′ ∈ B′(π ) of every thread π , we add to
B(τ ) a list L that is obtained from L′ by taking its suffix from the first read option that
corresponds tow inW ′

〈π ,L′ 〉
, and removing from L all read options that correspond tow in

W ′
〈π ,L′ 〉

.

– For WRA: we also add a write option OW(x) in the beginning of every option list of τ .
Using the correlation between every option list L′ and the write listW ′

〈π ,L′ 〉
, we are able to

show that B
τ ,l
−−→loXRA B′. It remains to show that B � G, namely, that for every thread π

and option list L ∈ B(π ), there exists an appropriate write-listW . Since every list L ∈ B(π )
is obtained from some list L′ ∈ B′(π ), as described above, we can constructW , by removing
fromW ′

〈π ,L′ 〉
the write events that correspond to the read options that where removed from

L′ in the process of generating L. (For WRA, we also add a write option OW(x) in the beginning
ofW , in case that π = τ .)

• read step, l = R(x ,vR): Let r be the read event that is added in thread τ when opXRA

moves from G to G ′, and w be the write event from which r reads (i.e., G ′.rf = G .rf ∪

{〈w, r 〉}). Let o be the read option given by o � OR(tid(w),x ,vR, R) for SRA and o �
OR(tid(w),x ,vR, tidRMW(w)) for WRA. We obtain B by adding o in the beginning of every

option list L′ ∈ B′(τ ) of the reading thread τ . By definition, we have B
τ ,l
−−→loXRA B′.

We show that B �G. For every thread π that is not the reading thread τ , we have that the
option lists in B(π ) are exactly the same as the lists in B′(π ), and we can thus use for them
the same write lists as we have for B′(π ). Now, every option list L ∈ B(τ ) of the reading
thread τ is obtained from some option list L′ ∈ B′(τ ). We define an appropriate write list
W , by addingw at the beginning of the write listW ′

〈τ ,L′ 〉
. Following the preconditions of the

read step in opXRA, we are able to show that these write lists are indeed consistent.
• rmw step, l = RMW(x ,vR,vW): This case combines the proofs given for the read and write cases.

In particular, since we consider backward simulation, we obtain B by first manipulating B′

into an intermediate state B′′ according to the write case, and then manipulating B′′ into
B according to the read step. Observe, however, that the condition for performing the rmw
step requires from B more than the condition for performing the read step: the first read
option in all option lists of B should have the RMW flag for SRA and the same RMW-thread
identifier for WRA. We generate B to meet these requirements by changing the added read
option o, as defined above for the read step, to have the RMW flag for SRA and the thread
τ as the RMW-thread identifier for WRA (since we add the same read option to all lists of B,
they share the same RMW-thread identifier).

The write lists that witness B �G are also defined by first generating, as in the write case,
the write lists that are consistent with respect to B′′ and from them, as in the read case, the
write lists that are consistent with respect to B. �

8 DECIDABILITY OF THE REACHABILITY PROBLEMS UNDER SRA AND WRA

In this section, we solve the reachability problems under SRA and WRA using the framework of
well-structured transition systems. As in Section 7, whenever possible we speak of XRA, standing
for both SRA and WRA.
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Given the equivalence between XRA and opXRA (Theorems 4.9 and 4.6) and Proposition 4.10,
the reachability problem under the declarative XRA model is reduced to reachability under opXRA.
In turn, given the equivalence between opXRA and loXRA (Theorems 5.12 and 6.6), to show the
decidability of the reachability problem under XRA, it suffices to establish the decidability of reach-
ability under loXRA. That is, for a concurrent program P and a “bad state”p ∈ P .Q, we need to check
whether p is reachable (see Definition 4.4) under the memory system loXRA.

To show the decidability of this problem, we use the framework of well-structured transition
systems. More precisely, we reduce reachability under loXRA to coverability in a well-structured
transition system that meets the conditions ensuring that coverability is decidable.

We start in Section 8.1 with preliminaries on well-structured transition systems, continue in
Section 8.2 with reformulation of the write step, which will be useful in Section 8.3, where we
conclude with showing that loXRA is indeed a well-structured transition system that admits the
required properties.

8.1 Preliminaries on Well-structured Transition Systems

We recall the relevant definitions and propositions about well-structured transition systems. We
refer the reader to [8, 25, 51] for a more detailed exposition.

A well-quasi-ordering (wqo) on a set S is a reflexive and transitive relation � on S such that for
every infinite sequence s1, s2, ... of elements of S , we have si � sj for some i < j. In a context
of a set S and a wqo � on S , the upward closure of a set U ⊆ S , denoted by ↑U , is given by
{s ∈ S | ∃u ∈ U . u � s}; a set U ⊆ S is called upward closed if U = ↑U ; and a set B ⊆ U is called a
basis ofU ifU = ↑B. The properties of a wqo ensure that every upward closed set has a finite basis.

A well-structured transition system (WSTS) is an LTS A equipped with a wqo � on A.Q that
is compatible withA, that is: If q1 −→A q2 and q1 � q3, then there exists q4 ∈ A.Q such that q3 −→

∗
A
q4

and q2 � q4. The coverability problem for 〈A,�〉 asks whether an input state q ∈ A.Q is coverable,
namely: Is some state q′ with q � q′ reachable in A?

Coverability is decidable (see, e.g., [8, 25]) for a WSTS 〈A,�〉 provided that � is decidable and
the following hold:

(i) Effective initialization: There exists an algorithm that accepts a state q ∈ A.Q and decides
whether ↑{q} ∩A.Q0 = ∅.

(ii) Effective pred-basis: There exists an algorithm that accepts a state q ∈ A.Q and returns a finite
basis of ↑predA(↑{q}).

Roughly speaking, these conditions ensure that (1) backward reachability analysis from q will
converge to a fixed point; (2) each step in its calculation is effective; and (3) we can check whether
the fixed point contains an initial state.

8.2 Backwards Formulation of the write Step

The following alternative formulation of the write step is convenient to use in our proofs. This
formulation “works backwards”—choosing read options to omit from the target state for reaching
the source state. Each such possibility is an “index choice”:

Definition 8.1. An index choice for a state B′ ∈ loXRA.Q is a function P assigning a set P(π ,L′) ⊆
{1, ...,|L′ |} to every π ∈ Tid and L′ ∈ B′(π ). An index choice P for B′ supports a 〈τ , W(x ,vW)〉-step,
denoted by P |=XRA 〈τ , W(x ,vW)〉, if the following hold for some (unique) πRMW ∈ Tid (in the case of
WRA) and every π ∈ Tid and L′ ∈ B′(π ):

• For every k ∈ P(π ,L′):
– For SRA: L′(k) ∈ {OR(τ ,x ,vW, R), OR(τ ,x ,vW, RMW)}.
– For WRA: L′(k) = OR(τ ,x ,vW,πRMW).
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• For every k ∈ {1, ...,|L′ |} \ P(π ,L′):
– For SRA: loc(L′(k)) � x whenever at least one of the following hold:
∗ k > p for some p ∈ P(π ,L′).
∗ π = τ .
∗ rmw(L′(k)) = RMW.

– For WRA: L′(k) � OW(x) whenever at least one of the following hold:
∗ p1 < k < p2 for some p1,p2 ∈ P(π ,L′).
∗ π = τ and k < p for some p ∈ P(π ,L′).

The first condition requires that each read option included in the index choice corresponds to
a write by thread τ to location x of value vW, and for WRA all the read options should also share
the same RMW thread identifier. The second condition requires that, besides the positions in the
index choice (i.e., for options that existed before the write step): For SRA—the location x does not
appear in any list after the first position in P(π ,L′); the location x does not appear at all in lists
of thread τ ; and options to read from x are not RMW options. For WRA—there are no write options
to x between two positions in the index choice, and for lists of thread τ there are also no write
options to x before the first position in the index choice.

To formulate the justification requirement, we use the following notations:

Notation 8.2 (List Filters). For a list L and a set P ⊆ {1, ...,|L|} of positions in L, we define:

• L \ P is the list derived from L by removing from it the positions in P . The mapping of the
positions of L that are not in P to their matching positions in L \ P is denoted by Map〈L,P 〉

(formally, Map〈L,P 〉 � λk ∈ {1, ...,|L|} \ P . k − |{j ∈ P | j < k}|).
• L \\ P further removes from L the positions before the first position in P , namely, returns

the list L \ (P ∪ {1, ...,min(P) − 1}) (undefined if P = ∅). The mapping of the positions of L
that are not in P and not before the first position in P to their matching positions in L \\ P
is denoted by MMap〈L,P 〉 (formally, MMap〈L,P 〉 � λk ∈ {min(P), ...,|L|} \ P . Map〈L,P 〉(k) −
min(P) + 1).

For example, for the option list of loSRA (used in Figure 5),

L′ = OR(T1, x, 0, R) OR(T1, x, 4, R) OR(T2, y, 3, R) OR(T1, y, 0, R) OR(T1, x, 4, R) OR(T2, y, 1, RMW),

and for P = {2, 5}, we have

• L′ \ P = OR(T1, x, 0, R) OR(T2, y, 3, R) OR(T1, y, 0, R) OR(T2, y, 1, RMW),
• Map〈L′,P 〉 = [1 �→ 1; 3 �→ 2; 4 �→ 3; 6 �→ 4],
• L′ \\ P = OR(T2, y, 3, R) OR(T1, y, 0, R) OR(T2, y, 1, RMW),
• MMap〈L′,P 〉 = [3 �→ 1; 4 �→ 2; 6 �→ 3].

Definition 8.3. The source of B′ w.r.t. a thread τ and an index choice P for B′, denoted by
src(B′,τ ,P), is given by

src(B′,τ ,P) � λπ ∈ Tid.

⎧⎪⎪⎪⎨⎪⎪⎪⎩
{L′ \ P(π ,L′) | L′ ∈ B′(π )} π � τ
{L′ \ P(τ ,L′) | L′ ∈ B′(τ )} ∪ π = τ

{L′ \\ P(η,L′) | η ∈ Tid,L′ ∈ B′(η) such that P(η,L′) � ∅}.

The following proposition follows directly from our definitions:

Proposition 8.4. B
τ ,W(x,vW)
−−−−−−−→loXRA B′ iff the following hold for some index choice P for B′:

• P |=XRA 〈τ , W(x ,vW)〉.
• src(B′,τ ,P)(π ) ⊆ B(π ) for every π ∈ Tid \ {τ }.
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• For SRA: src(B′,τ ,P)(τ ) ⊆ B(τ ).
• For WRA: OW(x) · src(B′,τ ,P)(τ ) ⊆ B(τ ).

8.3 loXRA as a WSTS

We continue with showing that concurrent systems with loXRA serving as the memory system are
well-structured transition systems that satisfy the above requirements.

The � ordering on the states of loXRA (see Definition 5.8) is clearly decidable and also forms a
wqo. Indeed, by Higman’s lemma [26], � is a wqo on the set of all option lists. In turn, its lifting to
potentials (which are finite by definition) is a wqo on the set of all potentials (see [51]). Finally, by
Dickson’s lemma [22], the pointwise lifting of � to functions assigning a potential to every τ ∈ Tid

(i.e., states of loXRA) is also a wqo.
Now, let P be a program. The � ordering is naturally lifted to states of the concurrent system

P ‖ loXRA (that is, pairs 〈p,B〉 ∈ P .Q× loXRA.Q; see Definition 4.3) by defining 〈p,B〉 � 〈p ′,B′〉 iff
p = p ′ and B � B′. We show next that P ‖ loXRA equipped with � is indeed a WSTS that admits
the required conditions for having a decidable coverability problem.

Lemma 8.5. 〈P ‖ loXRA,�〉 is a WSTS that admits effective initialization and effective pred-basis.
Proof.

• � is compatible with P ‖ loXRA: First, since P .Q is (by definition) finite and � is a wqo
on loXRA.Q, we have that � is a wqo on (P ‖ loXRA).Q. Second, since lower is explicitly
included in loXRA, � is trivially compatible with P ‖ loXRA. Indeed, given q1 = 〈p1,B1〉,
q2 = 〈p2,B2〉 and q3 = 〈p3,B3〉 such that q1 −→P ‖loXRA q2 and q1 � q3 (so p1 = p3), for

q4 = q2, we have q3 −→
∗
P ‖loXRA

q4 (since B3
ε
−→loXRA B1 using the lower step) and q2 � q4.

• Effective initialization: P ‖ loXRA trivially admits effective initialization. Indeed, the states
〈p,B〉 for which ↑{〈p,B〉} ∩ (P ‖ loXRA).Q0 � ∅ are exactly the initial states themselves—
P .Q0 × loXRA.Q0.

• Effective pred-basis: To prove that P ‖ loXRA has effective pred-basis, it suffices to show
how to calculate a finite basis Qα of ↑predα

loXRA(↑{B
′}) for each α of the form 〈τ , W(x ,vW)〉,

〈τ , R(x ,vR)〉, 〈τ , RMW(x ,vR,vW)〉 or ε . Then, a finite basis of ↑predα
P ‖loXRA

(↑{〈p ′,B′〉}) is given

by predα
P ({p

′
})×Qα forα � ε ; and by {p ′}×Qα forα = ε (silent memory step). In addition, for

a silent program step, a finite basis of ↑pred
〈τ ,ε 〉
P ‖loXRA

(↑{〈p ′,B′〉}) is given by pred
〈τ ,ε 〉
P

({p ′}) ×

{B′}.
Silent memory step. The set of predecessors of B′ with respect to a silent memory step

(i.e., using lower) is very simple—it contains any state B such that B′ � B. Thus, {B′} is
a finite basis of ↑predε

loXRA({B
′}).

Read. We split the handling of loSRA and loWRA.
– For loSRA: A predecessor B of B′ with respect to a read step B is similar

to B′, except for having in each option list of τ an additional first read op-
tion o with loc(o) = x and val(o) = vR. Hence, for α = 〈τ , R(x ,vR)〉,
the set {B′[τ �→ OR(τW,x ,vR,u) · B

′(τ )] | τW ∈ Tid,u ∈ {R, RMW}} is a finite basis of
↑predα

loSRA({B
′}). It is also a basis of ↑predα

loSRA(↑{B
′}): For a state B′′ with B′ � B′′,

a corresponding read option OR(τW,x ,vR,u) appears in the lists of τ in predα
loSRA({B

′′})

before some additional read options, ensuring that predα
loSRA({B

′}) � predα
loSRA({B

′′}).
– For loWRA: The calculation is almost the same as for loSRA, with the only difference

that for α = 〈τ , R(x ,vR)〉, the set {B′[τ �→ OR(τW,x ,vR,πRMW) · B
′(τ )] | τW,πRMW ∈ Tid} is a

finite basis of ↑pred
〈τ ,R(x,vR)〉

loWRA
({B′}).

Write. We construct the basis of the predecessors w.r.t. a write step by considering all
(finitely many) possibilities of omitting read options from lists of B′, using Proposition 8.4
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and the following technical lemma, which shows that if B′ � B′′ then for every source
state src(B′′,τ ,P′′) of B′′ there exists a source state src(B′,τ ,P′) of B′, such that
src(B′,τ ,P′) � src(B′′,τ ,P′′).

Lemma 8.6. Let P′′ be an index choice for B′′ ∈ loXRA.Q such that P′′ |=XRA 〈τ , W(x ,vW)〉.
If B′ � B′′, then src(B′,τ ,P′) � src(B′′,τ ,P′′) for some index choice P′ for B′ such that
P′ |=XRA 〈τ , W(x ,vW)〉.

Proof. Since B′ � B′′, for every π ∈ Tid, there exists a function Fπ : B′(π ) → B′′(π )
such that for every L′ ∈ B′(π ), we have L′ � Fπ (L

′), witnessed by a strictly increasing
function f 〈π ,L′ 〉 : {1, ...,|L′ |} → {1, ...,|Fπ (L

′)|}, such that L′(k) = (Fπ (L
′))(f 〈π ,L′ 〉(k)) for

every k ∈ {1, ...,|L′ |}.
We define P′ to be the positions in P′′ that originated in B′, according to the f 〈π ,L′ 〉

functions. That is,

P′ � λπ ∈ Tid,L′ ∈ B′(π ). {k ∈ {1, ...,|L′ |} | f 〈π ,L′ 〉(k) ∈ P′′(π , Fπ (L
′))}.

It is easy to verify that P′ supports a 〈τ , W(x ,vW)〉-step. Let B′
0 = src(B′,τ ,P′). We show

that B′
0 � src(B′′,τ ,P′′).

Recall that for every thread π ∈ Tid, we have that every list L′0 ∈ B′
0(π ) is equal to L′ \

P′(π ,L′) (or, respectively, to L′ \\ P′(η,L′)) for some list L′ of B′(π ) (respectively, for some
list L′ of B′(η) for some η ∈ Tid with P′(η,L′) � ∅). Hence, we can define a function
Hπ : B′

0(π ) → src(B′′,τ ,P′′)(π ), by setting Hπ (L
′
0) = Fπ (L

′) \ P′′(π , Fπ (L
′)). Observe

that for every L′0 ∈ B′
0(π ), we have L′0 � Hπ (L

′
0), witnessed by the function h 〈π ,L′

0 〉
:

{1, ...,|L′0 |} → {1, ...,|Hπ (L
′
0)|} that adapts f 〈π ,L′ 〉 to the positions of L′0 that originated

from L′. Namely, for every k ∈ {1, ...,|L′0 |}, the value of h 〈π ,L′
0 〉
(k) is the position in Hπ (L

′
0)

that corresponds (according to P′′) to the position in Fπ (L
′) that is the value of f 〈π ,L′ 〉 on

the position in L′ that corresponds (according to P′) to k . Formally,

h 〈π ,L′
0 〉
(k) � Map〈Fπ (L′),P′′(π ,Fπ (L′))〉(f 〈π ,L′ 〉(Map−1

〈L′,P′(π ,L′)〉(k))).

(Respectively, we define Hπ (L
′
0) = Fη(L

′) \\ P′′(η, Fη(L
′))), witnessed analogously.) �

By Proposition 8.4 and Lemma 8.6, we get a finite basis of ↑pred
〈τ ,W(x,vW)〉

loXRA
(↑{B′}), given by:

– For SRA: {src(B′,τ ,P) |P ∈ SSRA(B
′,τ ,x ,vW)},

– For WRA: {src(B′,τ ,P)[τ �→ OW(x) · src(B′,τ ,P)(τ )] |P ∈ SWRA(B
′,τ ,x ,vW)},

where: SXRA(B
′,τ ,x ,vW) = {P | P is an index choice for B′ such that P |=XRA

〈τ , W(x ,vW)〉}. Indeed, Proposition 8.4 provides the direct correspondence between the

source states and predecessor states of B′; the left upward closure of ↑pred
〈τ ,W(x,vW)〉

loXRA
(↑{B′})

preserves the equivalence, since a finite basis refers by definition to an upward closed set;
and Lemma 8.6 shows that the equivalence holds also with the right upward closure: If
B′ � B′′, then for every source state src(B′′,τ ,P′′) of B′′ there exists a source state
src(B′,τ ,P′) of B′, such that src(B′,τ ,P′) � src(B′′,τ ,P′′).

RMW. The predecessor with respect to an RMW step intuitively combines the predecessors
with respect to the read and write steps. By Proposition 8.4 and Lemma 8.6, we get that the

following is a finite basis of ↑pred
〈τ ,RMW(x,vR,vW)〉

loXRA
(↑{B′}):

– For SRA: {src(B′,τ ,P)[τ �→ OR(τW,x ,vR, RMW) · src(B′,τ ,P)(τ )] | P ∈ SSRA(B
′,τ ,

x ,vW)},
– For WRA: {src(B′,τ ,P)[τ �→ OR(τW,x ,vR,τ ) ·OW(x) · src(B′,τ ,P)(τ )] | P ∈ SWRA(B

′,τ ,
x ,vW)},

where: SXRA(B
′,τ ,x ,vW) = {P | P is an index choice for B′ such that P |=XRA

〈τ , W(x ,vW)〉}. �
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It is now easy to establish the decidability of reachability under loSRA and under loWRA.

Theorem 8.7 (loSRA and loWRA Reachability). Given a program P and a state p ∈ P .Q, it is
decidable to check whether p is reachable (see Definition 4.4) under the memory systems loSRA and
loWRA.

Proof. Since the first component (the program state) in �-ordered pairs of P ‖ loXRA’s states is
equal, reachability under loXRA is reduced to coverability in P ‖ loXRA w.r.t. � (a.k.a. control-state
reachability), which is decidable by Lemma 8.5 and the results of [8]. �

Corollary 8.8. The SRA and WRA reachability problems are decidable.

Proof. Directly follows from Theorems 4.9 and 5.12 (for SRA) or Theorems 4.6 and 6.6 (for
WRA), as well as Proposition 4.10 and Theorem 8.7. �

Corollary 8.9 (RA Race-free Reachability). Given a program P such that every SRA-
consistent execution graph that is generated by P is write/write-race free (see Definition 3.11), and
a state p ∈ P .Q, it is decidable to check whether p is reachable under RA.

Proof. Directly follows from Theorem 3.12 and Corollary 8.8. �

9 RELATED WORK

Decidability results. The reachability problem was previously investigated for the total store

ordering (TSO) model of ×86 multiprocessors. TSO is a multi-copy-atomic model stronger than
any of the models studied here (in particular it disallows the weak behavior of the IRIW program
in Example 3.5). Atig et al. [12, 13] established the decidability of the problem (and a non-primitive
recursive lower bound) by reducing it to (and from) reachability in lossy channel systems. Since
causal consistency models are not multi-copy atomic and they lack any notion of a global map-
ping from locations to values, the idea behind their reduction to reachability in lossy channel
system cannot be applied for the models studied here. Notably, unlike TSO and other (less real-
istic) models studied in [13], the models studied in the current article cannot be fully explained
by program transformations (instruction reordering and merging) [39]. However, the reduction of
[12] from reachability in lossy channel systems to reachability under TSO, which establishes the
non-primitive recursive lower bound, applies as is to the causal models.

More recently, Abdulla et al. [4] greatly simplified the previous proofs for TSO (and demon-
strated much better practical running times on certain benchmarks) by developing and utilizing a
“load-buffer” semantics for TSO. Load-buffers are roughly similar to our potential lists, but while
load buffers are FIFO queues, our lists necessarily allow the insertion of future reads at different
positions, subject to certain (novel) conditions ensuring that causal consistency is not violated. In
addition, while the “load-buffer” semantics for TSO includes a global machine memory, our causal
consistency semantics are, roughly speaking, based on point-to-point communication, allowing
our “shared-memory causality principle” to govern the interactions between threads. Finally, our
semantics employs more than one option list per thread, while the “load-buffer” semantics for TSO
has exactly one buffer of reads per thread.

Undecidability results. Abdulla et al. [2] proved the undecidability of safety verification under
RA using a reduction from Post correspondence problem. More recently, in [5] the reachabil-
ity problem was shown to be undecidable for the relaxed fragment of PS 2.0 (a version of the
promising semantics) [41], and in [3] undecidability was established for the full POWER model
as well.
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Causal consistency and its related verification problems. Different causally consistent shared-
memory models, their verification problems and approaches to address these problems were re-
cently outlined in [34], where the problems we resolve here were left open. Operational “message-
passing” semantics for SRA was developed in [36], but it is inadequate for our purposes, since
making it “lossy” would affect its allowed outcomes. Verification of programs under causal con-
sistency (especially under RA) has received considerable amount of attention in recent years. The
different approaches include (non-automated) program logics [23, 29, 38, 55, 56], (bounded) model
checking [2, 6, 31, 42] and robustness verification [18, 37, 47]. The latter reduces the verification
problem to the verification under sequential consistency and the verification of the program’s
robustness against causal consistency. Thus, this approach cannot work for programs that meet
their safety specification but still exhibit non-sequentially-consistent behaviors. Finally, the prob-
lem asking whether a given implementation provides causal consistency guarantees was studied in
[17]. It is, however, completely independent from verification of client programs assuming causal
consistency, as we study here.

10 CONCLUSION AND FUTURE WORK

We have established the decidability of reachability under two main causal consistency models,
SRA and WRA. To do so, we developed novel operational semantics for the two models that
are based on the notion of thread potentials and meet the requirements for decidability of the
framework of well-structured transition systems. Besides the theoretical interest, Abdulla et al.
[4] demonstrate that similar verification procedures (also of non-primitive recursive complexity)
may be actually practical for challenging (even though naturally quite small) algorithms and syn-
chronization mechanisms. We plan to explore this in the future.

In contrast to our results, reachability is undecidable under RA, the C/C++11’s causal consistency
model [2]. Intuitively, this stems from the fact that RA requires one to maintain mo separately from
the execution order, while SRA allows the execution of writes following hb ∪ mo, and WRA does
not use mo at all. More concretely, to support RA, the condition of loSRA that ensures that writes
to each location x cannot execute when there are options to read x in the thread’s potential has
to be weakened (see Example 5.10). In turn, the conditions of loWRA are too weak, as they, in
particular, do not ensure that all threads observe the writes to each location x in a way that is
consistent across all threads (see Example 6.1). Finding alternative conditions on the write steps
that will capture conditions closer to those of RA (either from above, like SRA, or from below, like
WRA) is rather delicate and left to future work. In particular, we note that while the undecidability
of RA implies that no similar WSTS can be developed for RA, the existing reduction that shows
undecidability crucially relies on RMWs, and the decidability of RA without RMW operations is
(to the best of our knowledge) still open.

We note that since SRA, RA, and WRA coincide on write/write-race-free programs, and
write/write-race freedom can be checked under SRA (Theorem 3.12), our result allows the ver-
ification of safety properties under RA for this class of programs. Concurrent separation log-
ics [29, 55, 56], designed for verification under RA, are also essentially limited to reason only about
write/write-race-free programs and stateless model checking is significantly simpler with this as-
sumption (see [31, Section 5 and Remark 3]). We also note that it is straightforward to support
C/C++11’s non-atomics, with “catch-fire” semantics (i.e., data races are errors) in addition to re-
lease/acquire accesses and sequentially consistent fences (which are modeled as RMWs as in Exam-
ple 3.9). Indeed, as demonstrated in [29], it suffices to check for data races assuming RA semantics.
Supporting other features of C/C++11, such as relaxed and sequentially consistent accesses, is left
to future work.
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We believe that the potential-based semantics—both specifically for SRA and WRA and as a
general idea for operational semantics—may be of independent interest in the development of ver-
ification techniques for programs running under weak consistency, including program logics and
model-checking techniques. In particular, we are interested in developing abstraction techniques,
as was done for TSO and similar buffer-based models (see, e.g., [33, 53]). Other directions for future
work include handling other variants of causally consistent shared-memory (see, e.g., [17]), sup-
porting transactions (to enable, e.g., full verification of client programs under PSI, see Section 3.1)
and studying verification of parametrized programs under causal consistency (which is decidable
for TSO [4, 7]).

APPENDIX

A FULL EQUIVALENCE PROOFS

In this Appendix, we provide full proofs of Lemmas 7.7 and 7.6, first for SRA and then for WRA.
Our proofs assume the alternative definition of loXRA’s write steps that is given in Proposition 8.4.

A.1 Equivalence of loSRA and opSRA

Lemma A.1. For every trace of loSRA there is an equivalent trace of opSRA.

Proof. As described in Section 7, we show that � constitutes a forward simulation relation

from loSRA to opSRA. We detail here the simulation step. Suppose that B � G and B
τ ,l
−−→loSRA B′

for some τ ∈ Tid and l ∈ Lab. We show that there exists G ′ such that B′ � G ′ and G
τ ,l
−−→opSRA G ′.

Consider the possible cases:

• write step, l = W(x ,vW):
Let w = NextEvent(G .E,τ , l). Let G ′ be the execution graph defined by G ′.E = G .E ∪ {w},

G ′.rf = G .rf and G ′.mo = G .mo ∪ (G .Wx × {w}). By definition, we have G
τ ,l
−−→opSRA G ′.

We show that B′ �G ′. By Proposition 8.4, since B
τ ,l
−−→loSRA B′, there exists an index choice

P for B′ such that P |=SRA 〈τ , W(x ,vW)〉. and src(B′,τ ,P)(π ) ⊆ B(π ) for every π ∈ Tid.
Let π ∈ Tid and L′ ∈ B′(π ). We construct a 〈G ′,π 〉-consistent 〈G ′,L′〉-write-list W ′. Let
P � P(π ,L′), L � L′ \ P , f � Map〈L′,P 〉 , Lτ � L′ \\ P and fτ � MMap〈L′,P 〉 (the last two are
only defined if P � ∅).

Since B � G, there exist a 〈G,π 〉-consistent 〈G,L〉-write-list W , and a 〈G,τ 〉-consistent
〈G,Lτ 〉-write-listWτ . We defineW ′ as follows:

W ′ � λk ∈ {1, ...,|L′ |}.

⎧⎪⎪⎪⎨⎪⎪⎪⎩
w k ∈ P

W (f (k)) k < min(P)

maxG .mo{W (f (k)),Wτ (fτ (k))} otherwise.

It is easy to see thatW ′ is a 〈G ′,L′〉-write-list. In particular, to show that rmw(L′(k)) = RMW
implies W ′(k) � dom(G ′.mo), we use the fact that P |=SRA 〈τ , W(x ,vW)〉, and so for every
k ∈ {1, ...,|L′ |} \ P , we have that rmw(L′(k)) = RMW implies loc(L′(k)) � x .

We show thatW ′ is 〈G ′,π 〉-consistent.
Let 1 ≤ k ≤ |L′ |. We prove thatW ′(k) � dom(G ′.mo ; G ′.hb? ; [Eπ ∪ {W ′(j) | 1 ≤ j < k}]).

Suppose otherwise. First, note that we cannot have k ∈ P , since w is a maximal element
in G ′.mo. Let wπ = W (f (k)) and wτ = Wτ (fτ (k)) (the latter is only defined if k > min(P)).
Consider the two possible cases:
– W ′(k) ∈ dom(G ′.mo ; G ′.hb? ; [Eπ ]): The definition of W ′ ensures that 〈wπ ,W

′(k)〉 ∈

G ′.mo?, and so wπ ∈ dom(G ′.mo ; G ′.hb? ; [Eπ ]). From the 〈G,π 〉-consistency of W , we
know thatwπ � dom(G .mo ; G .hb? ; [Eπ ]), and therefore it must be the case that π = τ and
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〈wπ ,w〉 ∈ G ′.mo. Hence, loc(wπ ) = x , and so loc(L′(k)) = x , which contradicts the fact
that P |=SRA 〈τ , W(x ,vW)〉.

– 〈W ′(k),W ′(j)〉 ∈ G ′.mo ; G ′.hb? for some 1 ≤ j < k . Consider the two possible cases:
∗ W ′(j) = w : In this case, we must have k > min(P), and so W ′(k) = maxG .mo{wπ ,wτ }.

Hence, we have 〈wτ ,W
′(k)〉 ∈ G .mo?, and so 〈wτ ,w〉 ∈ G ′.mo ; G ′.hb?. Now, if 〈wτ ,w〉 ∈

G ′.mo ; G ′.hb, then we also have wτ ∈ dom(G .mo ; G .hb? ; [Eτ ]), which contradicts the
fact thatWτ is 〈G,τ 〉-consistent. Therefore, we have 〈wτ ,w〉 ∈ G ′.mo. Hence, loc(wτ ) =

x , and so loc(L′(k)) = x , which contradicts the fact that P |=SRA 〈τ , W(x ,vW)〉.
∗ W ′(j) � w : In this case, we must have 〈W ′(k),W ′(j)〉 ∈ G .mo ; G .hb?. The definition of
W ′ ensures that 〈wπ ,W

′(k)〉 ∈ G .mo?, and so 〈wπ ,W
′(j)〉 ∈ G .mo ; G .hb?. Now, sinceW

is 〈G,π 〉-consistent, we cannot have W ′(j) =W (f (j)). Hence, j > min(P) and W ′(j) =
Wτ (fτ (j)). Let w ′

τ =Wτ (fτ (j)). It follows that k > min(P), and so 〈wτ ,W
′(k)〉 ∈ G .mo?.

Hence, we have 〈wτ ,w
′
τ 〉 ∈ G .mo ; G .hb?. This contradicts the fact that Wτ is 〈G,τ 〉-

consistent.
• read step, l = R(x ,vR):

By definition, since B
τ ,l
−−→loSRA B′, there exists a read option o with loc(o) = x and val(o) =

vR such that B(τ ) = o · B′(τ ). Since B �G, for every L ∈ B(τ ) there exists a 〈G,τ 〉-consistent
〈G,L〉-write-listWL . LetA = {WL(1) | L ∈ B(τ )}. Since B(τ ) is non-empty, we know thatA is
not empty. Since eachWL is a 〈G,L〉-write-list, we have that tid(w) = tid(o) for everyw ∈ A.
Hence, G .po totally orders A. Let w = minG .poA and let Lmin ∈ B(τ ) such that w =WLmin (1).
Let r = NextEvent(G .E,τ , l) and let G ′ be the execution graph given by G ′.E = G .E ∪ {r },
G ′.rf = G .rf ∪ {〈w, r〉} and G ′.mo = G .mo.

We show that G
τ ,l
−−→opSRA G ′. By definition, it suffices to show the following:

– w ∈ G .Wx and valW(w) = vR: We have w =WLmin (1), and sinceWLmin is a 〈G,Lmin〉-write-
list, we have that w ∈ G .W, loc(w) = loc(WLmin (1)) = loc(Lmin(1)) = loc(o) = x and
valW(w) = valW(WLmin (1)) = val(Lmin(1)) = val(o) = vR.

– w � dom(G .mo ; G .hb? ; [Eτ ]): SinceWLmin is 〈G,τ 〉-consistent andw =WLmin (1), we cannot
have w ∈ dom(G .mo ; G .hb? ; [Eτ ]).

It remains to show that B′ �G ′. Let π ∈ Tid and L′ ∈ B′(π ). We define a 〈G ′,π 〉-consistent
〈G ′,L′〉-write-list. Consider two cases:

– π � τ : By definition, since B
τ ,l
−−→loSRA B′, we have L′ ∈ B(π ). Since B � G, there exists

a 〈G,π 〉-consistent 〈G,L′〉-write-listW . It is easy to see thatW is a 〈G ′,L′〉-write-list. We
show thatW is also 〈G ′,π 〉-consistent. Let 1 ≤ k ≤ |L′ |.

Suppose by contradiction thatW (k) ∈ dom(G ′.mo ; G ′.hb? ; [Eπ ∪ {W (j) | 1 ≤ j < k}]).
It follows thatW (k) ∈ dom(G .mo ; G .hb? ; [Eπ ∪ {W (j) | 1 ≤ j < k}]). This contradicts the
fact thatW is 〈G,π 〉-consistent.

– π = τ : Let L = o · L′. Then, L ∈ B(τ ). Let W ′ = λk ∈ {1, ...,|L′ |}. WL(1 + k). It is easy
to see that W ′ is a 〈G ′,L′〉-write-list. We show that W ′ is 〈G ′,τ 〉-consistent. Suppose by
contradiction thatW ′(k) ∈ dom(G ′.mo ; G ′.hb? ; [Eτ ∪ {W ′(j) | 1 ≤ j < k}]).

Now, ifW ′(k) ∈ dom(G .mo ; G .hb? ; [Eτ ∪ {W ′(j) | 1 ≤ j < k}]), it follows that

WL(1 + k) ∈ dom(G .mo ; G .hb? ; [Eτ ∪ {WL(1 + j) | 1 ≤ j < k}]),

which contradicts the fact thatWL is 〈G,τ 〉-consistent. Hence, we must have 〈W ′(k),w〉 ∈

G .mo ; G .hb?. Since L(1) = o, the definition ofw ensures that 〈w,WL(1)〉 ∈ G .po?. It follows
that 〈WL(1 + k),WL(1)〉 ∈ G .mo ; G .hb?, which again contradicts the fact thatWL is 〈G,τ 〉-
consistent.
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• rmw step, l = RMW(x ,vR,vW):
This case is handled by carefully combining the write and read steps. By definition, since

B
τ ,l
−−→loSRA B′, there exists a read option o with loc(o) = x , val(o) = vR and rmw(o) =

RMW such that L(1) = o for every L ∈ B(τ ). Since B � G, for every L ∈ B(τ ) there exists
a 〈G,τ 〉-consistent 〈G,L〉-write-list WL . Moreover, since rmw(o) = RMW, we have WL(1) =
maxG .moG .Wx for every L ∈ B(τ ).

Let w = maxG .moG .Wx , e = NextEvent(G .E,τ , l) and G ′ be the execution graph given by
G ′.E = G .E ∪ {e}, G ′.rf = G .rf ∪ {〈w, e〉} and G ′.mo = G .mo ∪ (G .Wx × {e}).

For showing that G
τ ,l
−−→opSRA G ′, it suffices, by definition, to show that valW(w) = vR.

Indeed, since B(τ ) is (by definition) non-empty, we can take some L ∈ B(τ ). We have w =
WL(1), and sinceWL is a 〈G,L〉-write-list, we have that valW(w) = valW(WL(1)) = val(L(1)) =
val(o) = vR.

It remains to show that B′�G ′. Using Proposition 8.4, since B
τ ,l
−−→loSRA B′, we know that

there exists an index choice P for B′ such that P |=SRA 〈τ , W(x ,vW)〉, src(B′,τ ,P)(π ) ⊆ B(π )
for every π ∈ Tid \ {τ } and o · src(B′,τ ,P)(τ ) ⊆ B(τ ).

Let π ∈ Tid and L′ ∈ B′(π ). We construct a 〈G ′,π 〉-consistent 〈G ′,L′〉-write-listW ′. Let
P � P(π ,L′) and (Lτ and fτ and are only defined if P � ∅):

L �

{
L′ \ P π � τ
o · (L′ \ P) π = τ

f �

{
Map〈L′,P 〉 π � τ
λk ∈ {1, ...,|L′ |} \ P . Map〈L′,P 〉(k) + 1 π = τ

Lτ � o · L′ \\ P fτ � λk ∈ {min(P), ...,|L′ |} \ P . MMap〈L′,P 〉(k) + 1.

Since B � G, there exist a 〈G,π 〉-consistent 〈G,L〉-write-list W , and a 〈G,τ 〉-consistent
〈G,Lτ 〉-write-listWτ . We defineW ′ as follows:

W ′ � λk ∈ {1, ...,|L′ |}.

⎧⎪⎪⎪⎨⎪⎪⎪⎩
e k ∈ P

W (f (k)) k < min(P)

maxG .mo{W (f (k)),Wτ (fτ (k))} otherwise.

It is easy to see thatW ′ is a 〈G ′,L′〉-write-list. In particular, to show that rmw(L′(k)) = RMW
implies W ′(k) � dom(G ′.mo), we use the fact that P |=SRA 〈τ , W(x ,vW)〉, and so for every
k ∈ {1, ...,|L′ |} \ P , we have that rmw(L′(k)) = RMW implies loc(L′(k)) � x .

We show thatW ′ is 〈G ′,π 〉-consistent.
Let 1 ≤ k ≤ |L′ |. We prove thatW ′(k) � dom(G ′.mo ; G ′.hb? ; [Eπ ∪ {W ′(j) | 1 ≤ j < k}]).

Suppose otherwise. First, note that we cannot have k ∈ P , since e is a maximal element in
G ′.mo. Let wπ = W (f (k)) and wτ = Wτ (fτ (k)) (the latter is only defined if k > min(P)).
Consider the two possible cases:
– W ′(k) ∈ dom(G ′.mo ; G ′.hb? ; [Eπ ]): The definition of W ′ ensures that 〈wπ ,W

′(k)〉 ∈

G ′.mo?, and so wπ ∈ dom(G ′.mo ; G ′.hb? ; [Eπ ]). From the 〈G,π 〉-consistency of W , we
know thatwπ � dom(G .mo ; G .hb? ; [Eπ ]), and therefore it must be the case that 〈wπ , e〉 ∈
G ′.mo ; (G .hb ; G ′.rf)? and π = τ . Since P |=SRA 〈τ , W(x ,vW)〉, we have loc(L′(k)) � x , and
so loc(wπ ) � x . Hence, 〈wπ , e〉 � G ′.mo, and so we have 〈wπ , e〉 ∈ G .mo ; G .hb ; G ′.rf,
namely, 〈wπ ,w〉 ∈ G .mo ; G .hb. However,W (1) = w , contradicting the 〈G,π 〉-consistency
ofW .

– 〈W ′(k),W ′(j)〉 ∈ G ′.mo ; G ′.hb? for some 1 ≤ j < k . Consider the two possible cases:
∗ W ′(j) = e: In this case, we must have k > min(P), and so W ′(k) = maxG .mo{wπ ,wτ }.

There are three possibilities:
· W ′(k) = w : Then loc(wτ ) = loc(L′(k)) = x , which contradicts the fact that P |=SRA

〈τ , W(x ,vW)〉.
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· 〈W ′(k),w〉 ∈ G ′.mo ; G ′.hb?: This contradicts the 〈G,τ 〉-consistency ofWτ , asWτ (1) =
w and 〈wτ ,W

′(k)〉 ∈ G ′.mo?, implying that 〈wτ ,Wτ (1)〉 ∈ G .mo ; G .hb?.
· 〈W ′(k), e〉 ∈ G ′.mo ; G ′.hb? ; G ′.po: This also contradicts the 〈G,τ 〉-consistency ofWτ ,

as we get that wτ ∈ dom(G .mo ; G .hb? ; [Eτ ]).
∗ W ′(j) � e: In this case, we must have 〈W ′(k),W ′(j)〉 ∈ G .mo ; G .hb?. The definition of
W ′ ensures that 〈wπ ,W

′(k)〉 ∈ G .mo?, and so 〈wπ ,W
′(j)〉 ∈ G .mo ; G .hb?. Now, since

W is 〈G,π 〉-consistent, we cannot have W ′(j) = W (f (j)). Let w ′
τ = Wτ (fτ (j)). Hence,

j > min(P) and W ′(j) = w ′
τ . It follows that k > min(P), and so 〈wτ ,W

′(k)〉 ∈ G .mo?.
Hence, we have 〈wτ ,w

′
τ 〉 ∈ G .mo ; G .hb?. This contradicts the fact that Wτ is 〈G,τ 〉-

consistent.

Finally, for handling the lower step, suppose that B � G and B
ε
−→loSRA B′. We show that

B′ � G. Let τ ∈ Tid and L′ ∈ B′(τ ). We define a 〈G,τ 〉-consistent 〈G,L′〉-write-list W ′. By def-

inition, since B
ε
−→loSRA B′, there exists L ∈ B(τ ) such that L′ � L. Let f : {1, ...,|L′ |} → N

be an increasing function such that L′(k) = L(f (k)) for every k ∈ dom(f ). Since B � G, there
exists a 〈G,τ 〉-consistent 〈G,L〉-write-list W . Let W ′ = λk ∈ {1, ...,|L′ |}. W (f (k)). It is easy to
see that W ′ is a 〈G,L′〉-write-list. We show that W ′ is 〈G,τ 〉-consistent. Let 1 ≤ k ≤ |L′ |. Sup-
pose by contradiction thatW ′(k) ∈ dom(G .mo ; G .hb? ; [Eτ ∪ {W ′(j) | 1 ≤ j < k}]). It follows that
W (f (k)) ∈ dom(G .mo ; G .hb? ; [Eτ ∪ {W (f (j)) | 1 ≤ j < k}]). This contradicts the fact that W is
〈G,τ 〉-consistent. �

Lemma A.2. For every trace of opSRA there is an equivalent trace of loSRA.

Proof. As described in Section 7, we show that �−1 constitutes a backward simulation from

opSRA to loSRA. We detail here the simulation step. Suppose that G
τ ,l
−−→opSRA G ′ and B′ � G ′.

We construct a state B such that B
τ ,l
−−→loSRA B′ and B � G (depicted on the right). Consider the

possible cases:

• write step, l = W(x ,vW):

Let w = NextEvent(G .E,τ , l). SinceG
τ ,l
−−→opSRA G ′, we haveG ′.E = G .E∪ {w},G ′.rf = G .rf

and G ′.mo = G .mo ∪ (G .Wx × {w}). Since B′ � G ′, for every π ∈ Tid and L′ ∈ B′(π ) there
exists a 〈G ′,π 〉-consistent 〈G ′,L′〉-write-list W ′

〈π ,L′ 〉
. Let P be the index choice for B′ that

assigns the set of “new” positions in B′:

P � λπ ∈ Tid,L′ ∈ B′(π ). {1 ≤ k ≤ |L′ | |W ′
〈π ,L′ 〉(k) = w}.

Then, we define B � src(B′,τ ,P).

By Proposition 8.4, to show that B
τ ,l
−−→loSRA B′, it suffices to prove that P |=SRA

〈τ , W(x ,vW)〉. Thus, we show that the following hold for every π ∈ Tid and L′ ∈ B′(π ),
where P = P(π ,L′) andW ′ =W ′

〈π ,L′ 〉
:

– Let k ∈ P . To see that L′(k) ∈ {OR(τ ,x ,vW, R), OR(τ ,x ,vW, RMW)}, note that since k ∈ P ,
we have W ′(k) = w , and since W ′ is a 〈G ′,L′〉-write-list, we must have τ = tid(w) =

tid(L′(k)), x = loc(w) = loc(L′(k)) = x and vW = valW(w) = valW(L
′(k)).

– Let k ∈ {m + 1, ...,|L′ |} \ P where m = min(P). We show that loc(L′(k)) � x . Suppose
otherwise. Let w ′ = W ′(k). Since k � P , we have w ′ � w . Hence, since G ′.mo = G .mo ∪

(G .Wx × {w}), we have 〈w ′,w〉 ∈ G ′.mo. Thus, 〈w ′,W ′(m)〉 ∈ G ′.mo ; G ′.hb?. Since k > m,
this contradicts the fact thatW ′ is 〈G ′,π 〉-consistent.

– Suppose that π = τ and let k ∈ {1, ...,|L′ |} \ P . We show that loc(L′(k)) � x .
Suppose otherwise. Let w ′ = W ′(k). Since k � P , we have w ′ � w . Hence, since
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G ′.mo = G .mo ∪ (G .Wx × {w}), we have 〈w ′,w〉 ∈ G ′.mo. Thus, we have w ′ ∈

dom(G ′.mo ; G ′.hb? ; [Eτ ]), which contradicts the fact thatW ′ is 〈G ′,τ 〉-consistent.
– Let k ∈ {1, ...,|L′ |} \ P , such that loc(L′(k)) = x . We show that rmw(L′(k)) = R. Let
w ′ =W ′(k). Since k � P , we have w ′ � w . Since G ′.mo = G .mo ∪ (G .Wx × {w}), it follows
that 〈w ′,w〉 ∈ G ′.mo. However, sinceW ′ is a 〈G ′,L′〉-write-list, if rmw(L′(k)) = RMW, then
we must have w ′ = maxG′.moG

′.Wx , reaching a contradiction.
It remains to show that B � G. Let π ∈ Tid and L ∈ B(π ). We show that there exists a

〈G,π 〉-consistent 〈G,L〉-write-listW . Following the construction of B, one of the following
holds:
– L = L′ \ P(π ,L′) for some L′ ∈ B′(π ). Let P = P(π ,L′),W ′ =W ′

〈π ,L′ 〉
and f = Map−1

〈L′,P 〉
.

We define W = λk ∈ {1, ...,|L|}. W ′(f (k)). Using the fact that W ′ is a 〈G ′,L′〉-write-list,
it is easy to see that W is a 〈G,L〉-write-list. (In particular, note that rmw(L(k)) � RMW
whenever loc(L(k)) = x .)

It remains to show that W is 〈G,π 〉-consistent, namely, to prove that for every k , we
have W (k) � dom(G .mo ; G .hb? ; [Eπ ∪ {W (j) | 1 ≤ j < k}]). Indeed, in the case that we
have W (k) ∈ dom(G .mo ; G .hb? ; [Eπ ]), since G .mo ⊆ G ′.mo and G .hb ⊆ G ′.hb, it follows
that W ′(f (k)) ∈ dom(G ′.mo ; G ′.hb? ; [Eπ ]), which contradicts the 〈G ′,π 〉-consistency
of W ′. Analogously, if W (k) ∈ dom(G .mo ; G .hb? ; {W (j) | 1 ≤ j < k}), then since f is
an increasing function, we haveW ′(f (k)) ∈ dom(G ′.mo ; G ′.hb? ; {W ′(f (j)) | 1 ≤ j < k}),
which contradicts the 〈G ′,π 〉-consistency ofW ′.

– π = τ and L = L′ \\ P(η,L′) for some η ∈ Tid and L′ ∈ B′(η) such that P(η,L′) �
∅. Let P = P(η,L′), m = min(P), W ′ = W ′

〈η,L′ 〉
and f = MMap−1

〈L′,P 〉
. We define

W = λk ∈ {1, ...,|L|}. W ′(f (k)). Using the fact that W ′ is a 〈G ′,L′〉-write-list, it is
easy to see that W is a 〈G,L〉-write-list. (In particular, note that rmw(L(k)) � RMW when-
ever loc(L(k)) = x .) It remains to show that W is 〈G,τ 〉-consistent, namely, that for
every k we have W (k) � dom(G .mo ; G .hb? ; [Eτ ∪ {W (j) | 1 ≤ j < k}]). Indeed, since
f is increasing, if we have W (k) ∈ dom(G .mo ; G .hb? ; [{W (j) | 1 ≤ j < k}]) for some
k , then we also have that W ′(f (k)) ∈ dom(G ′.mo ; G ′.hb? ; [{W ′(j) | 1 ≤ j < f (k)}]),
which contradicts the 〈G ′,η〉-consistency ofW ′. Now, ifW (k) ∈ dom(G .mo ; G .hb? ; [Eτ ]),
then since w = maxG′.poG

′.Eτ , we have that 〈W ′(f (k)),w〉 ∈ G ′.mo ; G ′.hb?. How-
ever, we have W ′(m) = w and f (k) > m, from which it follows that W ′(f (k)) ∈

dom(G ′.mo ; G ′.hb? ; [{W ′(j) | 1 ≤ j < f (k)}]), which contradicts the 〈G ′,η〉-consistency
ofW ′.

• read step, l = R(x ,vR):

Let r = NextEvent(G .E,τ , l). SinceG
τ ,l
−−→opSRA G ′, we haveG ′.E = G .E∪ {r },G ′.rf = G .rf∪

{〈w, r〉} and G ′.mo = G .mo, for some write event w ∈ G .Wx such that valW(w) = vR and
w � dom(G .mo ; G .hb? ; [Eτ ]).

Let o be the read option given by o � OR(tid(w),x ,vR, R). We define B by

B � λπ ∈ Tid.

{
o · B′(τ ) π = τ ,

B′(π ) π � τ .

By definition, B
τ ,l
−−→loSRA B′.

We show next that B � G. For a thread π � τ and an option list L ∈ B(π ), observe
that L ∈ B′(π ), and since B′ � G ′, there is a 〈G ′,π 〉-consistent 〈G ′,L〉-write-list W ′. Since
G .mo ⊆ G ′.mo and G .hb ⊆ G ′.hb,W ′ is also 〈G,π 〉-consistent 〈G,L〉-write-list.

Consider an option list L ∈ B(τ ). Let L′ ∈ B′(τ ) such that L = o · L′. Since B′ � G ′,
there is a 〈G ′,τ 〉-consistent 〈G ′,L′〉-write-list W ′. Define W � w · W ′. Using the fact
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that W ′ is a 〈G ′,L′〉-write-list, it is easy to see that W is a 〈G,L〉-write-list. It is left
to show that W is 〈G,τ 〉-consistent. For this matter, let 1 ≤ k ≤ |L|. We prove that
W (k) � dom(G .mo ; G .hb? ; [Eτ ∪ {W (j) | 1 ≤ j < k}]). Suppose otherwise. Consider the two
possible cases:
– k = 1. Thenw ∈ dom(G .mo ; G .hb? ; [Eτ ]), which contradicts the properties ofw as stated

above.
– k > 1. Observe that W (k) = W ′(k − 1). If W (k) ∈

dom(G .mo ; G .hb? ; [Eτ ∪ {W (j) | 2 ≤ j < k}]), then W ′(k − 1) ∈

dom(G ′.mo ; G ′.hb? ; [Eτ ∪ {W ′(j) | 1 ≤ j < k − 1}]), contradicting the 〈G ′,τ 〉-
consistency of W ′. Thus, 〈W (k),W (1)〉 ∈ G .mo ; G .hb?. Yet, W (1) = w , r ∈ Eτ and
〈w, r 〉 ∈ G ′.rf. Hence, W ′(k − 1) ∈ dom(G ′.mo ; G ′.hb? ; [Eτ ]), contradicting the
〈G ′,τ 〉-consistency ofW ′.

• rmw step, l = RMW(x ,vR,vW):
This case combines the proofs given for the read and write cases. Let e = NextEvent(G .E,τ , l).

Since G
τ ,l
−−→opSRA G ′, we have G ′.E = G .E ∪ {e}, G ′.mo = G .mo ∪ (G .Wx × {e}), G ′.rf =

G .rf∪ {〈w, e〉} and valW(w) = vR, wherew = maxG .mo Wx . Since B′ �G ′, for every π ∈ Tid

and L′ ∈ B′(π ) there exists a 〈G ′,π 〉-consistent 〈G ′,L′〉-write-listW ′
〈π ,L′ 〉

.

Let P be the index choice for B′ that assigns the set of “new” positions in B′:

P � λπ ∈ Tid,L′ ∈ B′(π ). {1 ≤ k ≤ |L′ | |W ′
〈π ,L′ 〉(k) = e}.

Then, we define

B � λπ ∈ Tid.

{
o · src(B′,τ ,P)(τ ) π = τ ,

src(B′,τ ,P)(π ) π � τ ,

where o is the read option given by o � OR(tid(w),x ,vR, RMW).

The arguments for why B
τ ,l
−−→loSRA B′ are analogous to those of the write case. Using Propo-

sition 8.4, to show that B
τ ,l
−−→loSRA B′, it suffices to prove that P |=SRA 〈τ , W(x ,vW)〉. This is

done exactly as in the write case.
It remains to show that B � G. Let π ∈ Tid and L ∈ B(π ). We show that there exists a

〈G,π 〉-consistent 〈G,L〉-write-listW . Following the construction of B, one of the following
holds:
– L = L′ \ P(π ,L′) for some L′ ∈ B′(π ). This case is exactly the same as the analogous case

in the write step.
– π = τ and L = o · (L′ \ P(τ ,L′)) for some L′ ∈ B′(τ ). Let P = P(τ ,L′),W ′ =W ′

〈τ ,L′ 〉
and

f = λk ∈ {2, ...,|L|}. Map−1
〈L′,P 〉

(k − 1). We define

W � λk ∈ {1, ...,|L|}.

{
w k = 1,

W ′(f (k)) k > 1.

Using the fact that W ′ is a 〈G ′,L′〉-write-list and that w = maxG .mo Wx , it is easy to see
thatW is a 〈G,L〉-write-list. (In particular, note that for k > 1, rmw(L(k)) � RMW whenever
loc(L(k)) = x .) It remains to show that W is 〈G,τ 〉-consistent, namely, to prove that
for every k ∈ {1, ...,|L|}, we have W (k) � dom(G .mo ; G .hb? ; [Eτ ∪ {W (j) | 1 ≤ j < k}]).
For k = 1, this is trivial, since W (1) = w = maxG .mo Wx . Let k ∈ {2, ...,|L|}. If W (k) ∈

dom(G .mo ; G .hb? ; [Eτ ]), then sinceG .mo ⊆ G ′.mo andG .hb ⊆ G ′.hb, we haveW ′(f (k)) ∈
dom(G ′.mo ; G ′.hb? ; [Eτ ]), which contradicts the 〈G ′,τ 〉-consistency ofW ′. Analogously,
if 〈W (k),W (j)〉 ∈ G .mo ; G .hb? for 2 ≤ j < k, then 〈W ′(f (k)),W ′(f (j))〉 ∈ G ′.mo ; G ′.hb?,
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and since f is an increasing function this contradicts the 〈G ′,τ 〉-consistency ofW ′. Now,
if 〈W (k),W (1)〉 ∈ G .mo ; G .hb?, then since W (1) = w , G ′.E = G .E ∪ {e} and G ′.rf =
G .rf∪ {〈w, e〉}, we haveW ′(f (k)) ∈ dom(G ′.mo ; G ′.hb? ; [G ′.Eτ ]), which contradicts the
〈G ′,τ 〉-consistency ofW ′.

– π = τ and L = o · (L′ \\ P(η,L′)) for some η ∈ Tid and L′ ∈ B′(η). Let P = P(η,L′),
m = min(P),W ′ =W ′

〈η,L′ 〉
and f = λk ∈ {2, ...,|L|}. MMap−1

〈L′,P 〉
(k − 1).

We define

W � λk ∈ {1, ...,|L|}.

{
w k = 1,

W ′(f (k)) k > 1.

As above, W is a 〈G,L〉-write-list, and we show that it is 〈G,τ 〉-consistent. Namely, we
prove thatW (k) � dom(G .mo ; G .hb? ; [Eτ ∪ {W (j) | 1 ≤ j < k}]) for every k ∈ {1, ...,|L|}.
Again, for k = 1, this is trivial, since W (1) = w = maxG .mo Wx . Let k ∈ {2, ...,|L|}. If
〈W (k),W (j)〉 ∈ G .mo ; G .hb? for 2 ≤ j < k , then 〈W ′(f (k)),W ′(f (j))〉 ∈ G ′.mo ; G ′.hb?,
and since f is an increasing function this contradicts the 〈G ′,η〉-consistency ofW ′. Now,
if 〈W (k),W (1)〉 ∈ G .mo ; G .hb?, then since W (1) = w and 〈w, e〉 ∈ G ′.rf, we have
〈W ′(f (k)), e〉 ∈ G ′.mo ; G ′.hb?. However, W ′(m) = e and f (k) > m together imply that
we haveW ′(f (k)) ∈ dom(G ′.mo ; G ′.hb? ; [{W ′(j) | 1 ≤ j < f (k)}]), which contradicts the
〈G ′,η〉-consistency ofW ′.

Last, if W (k) ∈ dom(G .mo ; G .hb? ; [Eτ ]), then 〈W ′(f (k)), e〉 ∈ G ′.mo ; G ′.hb? (since
e = maxG′.poG

′.Eτ ). However,W ′(m) = e and f (k) > m, implying that

W ′(f (k)) ∈ dom(G ′.mo ; G ′.hb? ; [{W ′(j) | 1 ≤ j < f (k)}]),

which contradicts the 〈G ′,η〉-consistency ofW ′. �

A.2 Equivalence of loWRA and opWRA

Lemma A.3. For every trace of loWRA there is an equivalent trace of opWRA.

Proof. As described in Section 7, we show that � constitutes a forward simulation relation from

loWRA to opWRA. We detail here the simulation step. Suppose that B �G and B
τ ,l
−−→loWRA B′. Let

tidRMW : W → Tid that satisfies the conditions of Definition 7.4. We show that there exists G ′ such

that B′ � G ′ and G
τ ,l
−−→opWRA G ′. Consider the possible cases11:

• l = W(x ,vW): Let w = NextEvent(G .E,τ , l). Let G ′ be the execution graph defined by G ′.E =

G .E ∪ {w} and G ′.rf = G .rf. By definition, we have G
τ ,l
−−→opWRA G ′.

We show that B′ � G ′. First, since B
τ ,l
−−→loWRA B′, by Proposition 8.4, there exists an

index choice P for B′ such that P |=WRA 〈τ , W(x ,vW)〉, src(B′,τ ,P)(π ) ⊆ B(π ) for every
π ∈ Tid \ {τ } and OW(x) · src(B′,τ ,P)(τ ) ⊆ B(τ ). Since P |=WRA 〈τ , W(x ,vW)〉, there exists
πRMW ∈ Tid, such that L′(k) = OR(τ ,x ,vW,πRMW) for every π ∈ Tid, L′ ∈ B′(π ) and k ∈ P(π ,L′).
(If P(π ,L′) = ∅ for every π ∈ Tid and L′ ∈ B′(π ), then πRMW is arbitrary.)

Let tid ′
RMW = tidRMW[w �→ πRMW]. Sincew � G ′.rf, we vacuously have tid(e) = tid ′

RMW(w) for
every 〈w, e〉 ∈ G ′.rf ; [RMW]. It follows that for every 〈w ′, e〉 ∈ G ′.rf ; [RMW], we have
tid(e) = tid ′

RMW(w).
We show that for every π ∈ Tid and L′ ∈ B′(π ), there exists a 〈G ′,π 〉-consistent

〈G ′,L′, tid ′
RMW〉-write-list. Let π ∈ Tid and L′ ∈ B′(π ). We construct a 〈G ′,π 〉-consistent

11In WRA, the mo-component is immaterial and can be defined arbitrarily, so we ignore this component in this proof. To
reduce the amount of duplication, when possible, we refer to the corresponding case in the proof for SRA. To do that one
should replace mo in the proof for SRA with [W] ; hb |loc ; [W] in the current proof.
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〈G ′,L′, tid ′
RMW〉-write-listW ′. Let P � P(π ,L′) and (Lτ and fτ are only defined if P � ∅):

L �

{
L′ \ P π � τ
OW(x) · (L

′ \ P) π = τ
f �

{
Map〈L′,P 〉 π � τ
λk ∈ {1, ...,|L′ |} \ P . Map〈L′,P 〉(k) + 1 π = τ

Lτ � OW(x) · L
′ \\ P fτ � λk ∈ {min(P), ...,|L′ |} \ P . MMap〈L′,P 〉(k) + 1.

Then, by definition, we have L ∈ B(π ) and Lτ ∈ B(τ ). Let W be a 〈G,π 〉-consistent
〈G,L, tidRMW〉-write-list, andWτ be a 〈G,τ 〉-consistent 〈G,Lτ , tidRMW〉-write-list. Note that for
every k > min(P) with k � P and typ(L′(k)) = R, we have tid(W (f (k))) = tid(L(f (k))) =
tid(Lτ (fτ (k))) = tid(Wτ (fτ (k)), and soG .hb must order the two write events,W (f (k)) and
Wτ (fτ (k)).

We defineW ′ as follows:

W ′ � λk ∈ {1, ...,|L′ |}.

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
L′(k) typ(L′(k)) = W

w typ(L′(k)) = R ∧ k ∈ P

W (f (k)) typ(L′(k)) = R ∧ k < min(P)

maxG .hb{W (f (k)),Wτ (fτ (k))} otherwise.

It is easy to see thatW ′ is a 〈G ′,L′, tid ′
RMW〉-write-list. We show thatW ′ is 〈G ′,π 〉-consistent.

Let 1 ≤ k ≤ |L′ | such that W ′(k) ∈ E. Let y = loc(W ′(k)), wπ = W (f (k)) and wτ =

Wτ (fτ (k)) (the latter is only defined if k > min(P)). We prove that each of the conditions in
Definition 7.3 holds:

(C1) The proof is exactly as for SRA. We note that if π = τ , then we cannot have 〈wπ ,w〉 ∈

G ′.hb|loc. Indeed, otherwise, we have wπ ∈ dom(G .hb? ; [Eτ ]), and since W (1) = L(1) =
OW(x) = OW(loc(wπ )), this contradicts the fact that W is 〈G,τ 〉-consistent. Similarly, we
cannot have 〈wτ ,w〉 ∈ G ′.hb|loc. Indeed, otherwise, we havewτ ∈ dom(G .hb? ; [Eτ ]), and
since Wτ (1) = Lτ (1) = OW(x) = OW(loc(wτ )), this contradicts the fact that Wτ is 〈G,τ 〉-
consistent.

(C2) Suppose by contradiction that there exists i < k with W ′(i) = OW(y) but W ′(k) ∈

dom(G ′.hb? ; [Eπ ]). Note that the definition of W ′ ensures that W ′(i) = L′(i) = OW(y),
and sinceW is a 〈G,L, tidRMW〉-write-list, it follows thatW (f (i)) = OW(y). Consider the two
possible cases:
∗ W ′(k) = w : In this case, we must have y = x , π = τ and i < max(P(τ ,L′)). Since
P |=WRA 〈τ , W(x ,vW)〉, we cannot have L′(i) = OW(x).

∗ W ′(k) � w : In this case, the definition of W ′ ensures that 〈wπ ,W
′(k)〉 ∈ G ′.hb|?loc,

and so wπ ∈ dom(G ′.hb? ; [Eπ ]). Since wπ � w (as wπ ∈ G .E), it follows that wπ ∈

dom(G .hb? ; [Eπ ]). Since W (f (i)) = OW(y), this contradicts the fact that W is 〈G,π 〉-
consistent.

(C3) Suppose by contradiction that there exists j < i < k with W ′(i) = OW(y) but
〈W ′(k),W ′(j)〉 ∈ G ′.hb?. Note that the definition ofW ′ ensures thatW ′(i) = L′(i) = OW(y),
and sinceW is a 〈G,L, tidRMW〉-write-list, it follows thatW (f (i)) = OW(y). In addition, since
Wτ is 〈G,Lτ , tidRMW〉-write-list, it follows thatWτ (fτ (i)) = OW(y) if i > min(P). Consider the
possible cases:
∗ W ′(k) = w : In this case, we must have y = x andW ′(j) = w . It follows that k, j ∈ P , and

since P |=WRA 〈τ , W(x ,vW)〉, we cannot have L′(i) = OW(x).
∗ W ′(k) � w and W ′(j) = w : In this case, we must have i,k > min(P), and so W ′(k) =

maxG .hb{wπ ,wτ } andWτ (fτ (i)) = OW(y). Hence, we have 〈wτ ,W
′(k)〉 ∈ G .hb|?loc, and so

〈wτ ,w〉 ∈ G ′.hb?. Since wτ � w (as wτ ∈ G .E), it follows that wτ ∈ dom(G .hb? ; [Eτ ]).
SinceWτ (fτ (i)) = OW(y), this contradicts the fact thatWτ is 〈G,τ 〉-consistent.
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∗ W ′(k) � w andW ′(j) � w : In this case, we must have 〈W ′(k),W ′(j)〉 ∈ G .hb?. Let w j
π =

W (f (j)) and w j
τ =Wτ (fτ (j)) (the latter is only defined if j > min(P)). Our construction

ensures that one of the following holds:
· W ′(j) = w j

π : Since W ′(k) � w , the definition of W ′ ensures that 〈wπ ,W
′(k)〉 ∈

G ′.hb|?loc, and so 〈wπ ,w
j
π 〉 ∈ G .hb?. This contradicts the fact that W is 〈G,π 〉-

consistent.
· W ′(j) = w j

τ : In this case, we have j > min(P), and so k > min(P). Since W ′(k) � w ,
the definition of W ′ ensures that 〈wτ ,W

′(k)〉 ∈ G ′.hb|?loc, and so 〈wτ ,w
j
τ 〉 ∈ G .hb?.

This contradicts the fact thatWτ is 〈G,τ 〉-consistent.
• l = R(x ,vR):

By definition, since B
τ ,l
−−→loWRA B′, there exists a read option o with loc(o) = x and val(o) =

vR such that B(τ ) = o · B′(τ ). For every L ∈ B(τ ), letWL be a 〈G,τ 〉-consistent 〈G,L, tidRMW〉-
write-list. LetA = {WL(1) | L ∈ B(τ )}. Since B(τ ) is non-empty, we know thatA is not empty.
Since each WL is a 〈G,L, tidRMW〉-write-list, we have that tid(w) = tid(o) for every w ∈ A.
Hence, G .po totally orders A. Let w = minG .poA and let Lmin ∈ B(τ ) such that w =WLmin (1).
Let r = NextEvent(G .E,τ , l) and letG ′ be the execution graph given byG ′.E = G .E∪ {r } and
G ′.rf = G .rf ∪ {〈w, r〉}.

Now, G
τ ,l
−−→opWRA G ′ follows exactly as in the proof for SRA. It remains to show that

B′ � G ′. We use the same tidRMW mapping and show that for every π ∈ Tid and L′ ∈ B′(π ),
there exists a 〈G ′,π 〉-consistent 〈G ′,L′, tidRMW〉-write-list. Let π ∈ Tid and L′ ∈ B′(π ). We
define a 〈G ′,π 〉-consistent 〈G ′,L′, tidRMW〉-write-list. Consider two cases:

– π � τ : By definition, sinceB
τ ,l
−−→loWRA B′, we haveL′ ∈ B(π ). LetW be a 〈G,π 〉-consistent

〈G,L′, tidRMW〉-write-list. It is easy to see thatW is also a 〈G ′,L′, tidRMW〉-write-list. It remains
to show thatW is 〈G ′,π 〉-consistent. Condition C1 follows exactly as for SRA. To see that
conditions C2 and C3 hold as well, note that if we have W (k) ∈ dom(G ′.hb? ; [Eπ ]) or
〈W (k),W (j)〉 ∈ G ′.hb?, then the same holds in G. Therefore, the 〈G ′,π 〉-consistency ofW
directly follows from its 〈G,π 〉-consistency.

– π = τ : Let L = o · L′. Then, L ∈ B(τ ). Let W ′ = λk ∈ {1, ...,|L′ |}. WL(1 + k). It is easy
to see that W ′ is a 〈G ′,L′, tidRMW〉-write-list. We show that W ′ is 〈G ′,τ 〉-consistent. Let
1 ≤ k ≤ |W ′ | such that W ′(k) ∈ E. Condition C1 follows exactly as for SRA. We prove
conditions C2 and C3.

(C2) Suppose by contradiction that there exists i < k with W ′(i) = OW(loc(W
′(k))) (and

so, WL(1 + i) = OW(loc(WL(1 + k)))) but W ′(k) ∈ dom(G ′.hb? ; [Eτ ]). If W ′(k) ∈

dom(G .hb? ; [Eτ ]), thenWL(1 + k) ∈ dom(G .hb? ; [Eτ ]), which contradicts the fact that
WL is 〈G,τ 〉-consistent. Hence, we must have 〈W ′(k),w〉 ∈ G .hb?. Since L(1) = o, the def-
inition of w ensures that 〈w,WL(1)〉 ∈ G .po?. It follows that 〈WL(1 + k),WL(1)〉 ∈ G .hb
whileWL(1 + i) = OW(loc(WL(1 + k))) where i < k . Again, this contradicts the fact that
WL is 〈G,τ 〉-consistent.

(C3) Suppose by contradiction that there exists j < i < k withW ′(i) = OW(loc(W
′(k))) (and

so, WL(1 + i) = OW(loc(WL(1 + k)))) but 〈W ′(k),W ′(j)〉 ∈ G ′.hb?. In this case, since
W ′(j) ∈ W, we must have 〈W ′(k),W ′(j)〉 ∈ G .hb?. Hence, 〈WL(1 + k)),WL(1 + j)〉 ∈

G .hb?, which contradicts the fact thatWL is 〈G,τ 〉-consistent.
• l = RMW(x ,vR,vW):

First, B
τ ,l
−−→loWRA B′ provides us with the following:

(1) There exists a read option o with loc(o) = x , val(o) = vR and rmw-tid(o) = τ such that
L(1) = o for every L ∈ B(τ ).
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(2) By Proposition 8.4, there exists an index choice P for B′ such that P |=WRA 〈τ , W(x ,vW)〉,
src(B′,τ ,P)(π ) ⊆ B(π ) for every π ∈ Tid \ {τ } and o · OW(x) · src(B′,τ ,P)(τ ) ⊆ B(τ ).

For every L ∈ B(τ ), let WL be a 〈G,τ 〉-consistent 〈G,L, tidRMW〉-write-list. Let A =

{WL(1) | L ∈ B(τ )}. Since B(τ ) is non-empty, we know that A is not empty. Since each
WL is a 〈G,L, tidRMW〉-write-list, we have that tid(w) = tid(o) for every w ∈ A. Hence,
G .po totally orders A. Let w = minG .poA and let Lmin ∈ B(τ ) such that w = WLmin (1). Let
e = NextEvent(G .E,τ , l) and let G ′ be the execution graph given by G ′.E = G .E ∪ {e} and
G ′.rf = G .rf ∪ {〈w, e〉}.
Note that w =WLmin (1), and sinceWLmin is a 〈G,Lmin, tidRMW〉-write-list, we have that:
– w ∈ G .W.
– loc(w) = loc(WLmin (1)) = loc(Lmin(1)) = loc(o) = x .
– valW(w) = valW(WLmin (1)) = val(Lmin(1)) = val(o) = vR.
– tidRMW(w) = tidRMW(WLmin (1)) = rmw-tid(Lmin(1)) = τ .

Then, to show that G
τ ,l
−−→opWRA G ′, it suffices, by definition, to show the following:

– w � dom(G .hb|loc ; [W] ; G .hb? ; [Eτ ]): SinceWLmin is 〈G,τ 〉-consistent and w =WLmin (1),
we cannot have w ∈ dom(G .hb|loc ; [W] ; G .hb? ; [Eτ ]).

– w � dom(G .rf ; [RMW]): Suppose otherwise, and let e ′ ∈ RMW such that 〈w, e ′〉 ∈ G .rf.
Then, since tidRMW(w) = τ , the second condition for WRA in Definition 7.4 ensures that
tid(e) = τ . Hence, w ∈ dom(G .rf ; [RMW ∩ Eτ ]) ⊆ dom(G .hb|loc ; [W] ; G .hb? ; [Eτ ]),
which contradicts the previous item.

It remains to show that B′ � G ′. Since P |=WRA 〈τ , W(x ,vW)〉, there exists πRMW ∈ Tid, such
that L′(k) = OR(τ ,x ,vW,πRMW) for every π ∈ Tid, L′ ∈ B′(π ) and k ∈ P(π ,L′).

Let tid ′
RMW = tidRMW[w �→ πRMW]. Since e � G ′.rf, we vacuously have tid(e ′) = tid ′

RMW(e)
for every 〈e, e ′〉 ∈ G ′.rf ; [RMW]. In addition, we have tid(e) = τ = tidRMW(w) = tid ′

RMW(w).
Since w is the unique event such that 〈w, e〉 ∈ G ′.rf, it follows that for every 〈w ′, e ′〉 ∈

G ′.rf ; [RMW], we have tid(e ′) = tid ′
RMW(w

′).
We show that for every π ∈ Tid and L′ ∈ B′(π ), there exists a 〈G ′,π 〉-consistent

〈G ′,L′, tid ′
RMW〉-write-list. Let π ∈ Tid and L′ ∈ B′(π ). We construct a 〈G ′,π 〉-consistent

〈G ′,L′, tid ′
RMW〉-write-listW ′. Let P � P(π ,L′) and (Lτ and fτ are only defined if P � ∅):

L �

{
L′ \ P π � τ
o · OW(x) · (L

′ \ P) π = τ
f �

{
Map〈L′,P 〉 π � τ
λk ∈ {1, ...,|L′ |} \ P . Map〈L′,P 〉(k) + 2 π = τ

Lτ � o · OW(x) · L
′ \\ P fτ � λk ∈ {min(P), ...,|L′ |} \ P . MMap〈L′,P 〉(k) + 2.

Then, by definition, we have L ∈ B(π ) and Lτ ∈ B(τ ). Let W be a 〈G,π 〉-consistent
〈G,L, tidRMW〉-write-list, andWτ be a 〈G,τ 〉-consistent 〈G,Lτ , tidRMW〉-write-list. Note that for
every k > min(P) with k � P and typ(L′(k)) = R, we have tid(W (f (k))) = tid(L(f (k))) =
tid(Lτ (fτ (k))) = tid(Wτ (fτ (k)), and soG .hb must order the two write events,W (f (k)) and
Wτ (fτ (k)). We defineW ′ as follows:

W ′ � λk ∈ {1, ...,|L′ |}.

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
L′(k) typ(L′(k)) = W

e typ(L′(k)) = R ∧ k ∈ P

W (f (k)) typ(L′(k)) = R ∧ k < min(P)

maxG .hb{W (f (k)),Wτ (fτ (k))} otherwise.

It is easy to see thatW ′ is a 〈G ′,L′, tid ′
RMW〉-write-list. We show thatW ′ is 〈G ′,π 〉-consistent.

Let 1 ≤ k ≤ |L′ | such that W ′(k) ∈ E. Let y = loc(W ′(k)), wπ = W (f (k)) and
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wτ =Wτ (fτ (k)) (the latter is only defined if k > min(P)). We prove that each of the condi-
tions in Definition 7.3 holds:

(C1) We prove thatW ′(k) � dom(G ′.hb|loc ; [W] ; G ′.hb? ; [Eπ ∪ {W ′(j) | 1 ≤ j < k}]). Suppose
otherwise. First, note that we cannot have k ∈ P , since e is a maximal element in G ′.hb.
Consider the two possible cases:
– W ′(k) ∈ dom(G ′.hb|loc ; [W] ; G ′.hb? ; [Eπ ]): The definition of W ′ ensures that we have
〈wπ ,W

′(k)〉 ∈ G ′.hb|?loc, and so wπ ∈ dom(G ′.hb|loc ; [W] ; G ′.hb? ; [Eπ ]). Since W is
〈G,π 〉-consistent, we have that wπ � dom(G .hb|loc ; [W] ; G .hb? ; [Eπ ]), and therefore
it must be the case that 〈wπ , e〉 ∈ G ′.hb|loc ; [W] ; (G .hb ; G ′.rf)? and π = τ . Now, if
wπ ∈ dom(G .hb? ; [Eτ ]), then since π = τ , we have W (2) = L(2) = OW(x) = OW(loc(wπ )),
and we obtain a contradiction to the fact thatW is 〈G,τ 〉-consistent. Otherwise, we have
〈wπ ,w〉 ∈ G ′.hb|loc ; [W] ; G .hb. Since π = τ , we have L(1) = o, and the definition of w
ensures that 〈w,W (1)〉 ∈ G .po?. It follows that 〈wπ ,W (1)〉 ∈ G .hb|loc ; [W] ; G .hb?, which
again contradicts the fact thatW is 〈G,τ 〉-consistent.

– 〈W ′(k),W ′(j)〉 ∈ G ′.hb|loc ; [W] ; G ′.hb? for some 1 ≤ j < k . Consider the two possible
cases:
∗ W ′(j) = e: In this case, we must have k > min(P), and so W ′(k) = maxG .hb{wπ ,wτ }.

Hence, we have 〈wτ ,W
′(k)〉 ∈ G .hb|?loc. There are four possibilities:

· W ′(k) = w : In this case, we have 〈wτ ,w〉 ∈ G .hb|?loc. Since Lτ (1) = o, the definition of
w ensures that 〈w,Wτ (1)〉 ∈ G .po?. Hence, 〈wτ ,Wτ (1)〉 ∈ G .hb?. Since Lτ (2) = OW(x) =
OW(loc(Wτ (fτ (k)))), we obtain a contradiction to the fact thatWτ is 〈G,τ 〉-consistent.

· 〈W ′(k),w〉 ∈ G ′.hb|loc ; [W] ; G ′.hb?: This contradicts the 〈G,τ 〉-consistency of Wτ ,
as 〈w,Wτ (1)〉 ∈ G .po? and 〈wτ ,W

′(k)〉 ∈ G ′.hb|?loc, implying that 〈wτ ,Wτ (1)〉 ∈

G .hb|loc ; [W] ; G .hb?.
· 〈W ′(k), e〉 ∈ G ′.hb|loc ; [W];G ′.hb?;G ′.po: This also contradicts the 〈G,τ 〉-consistency

ofWτ , as we get that wτ ∈ dom(G .hb|loc ; [W] ; G .hb? ; [Eτ ]).
· y = x and 〈W ′(k), e〉 ∈ G ′.hb ; G ′.po: In this case, we have 〈wτ , e〉 ∈ G ′.hb|?loc ;
G ′.hb ; G ′.po, and so wτ ∈ dom(G .hb? ; [Eτ ]). But, since Wτ (2) = Lτ (2) = OW(x) =
OW(loc(wτ )), we obtain a contradiction to the fact thatWτ is 〈G,τ 〉-consistent.

∗ W ′(j) � e: This case is proved exactly as the corresponding case in the proof for SRA.
(C2) Suppose by contradiction that there exists i < k with W ′(i) = OW(y) but W ′(k) ∈

dom(G ′.hb? ; [Eπ ]). Note that the definition of W ′ ensures that W ′(i) = L′(i) = OW(y), and
sinceW is a 〈G,L, tidRMW〉-write-list, it follows thatW (f (i)) = OW(y). Consider the two possi-
ble cases:
– W ′(k) = e: In this case, we must have y = x , π = τ and i < max(P(τ ,L′)). Since P |=WRA

〈τ , W(x ,vW)〉, we cannot have L′(i) = OW(x).
– W ′(k) � e: In this case, the definition of W ′ ensures that 〈wπ ,W

′(k)〉 ∈ G ′.hb|?loc,
and so wπ ∈ dom(G ′.hb? ; [Eπ ]). Since wπ � e (as wπ ∈ G .E), it follows that wπ ∈

dom(G .hb? ; [Eπ ]). Since W (f (i)) = OW(y), this contradicts the fact that W is 〈G,π 〉-
consistent.

(C3) Suppose by contradiction that there exists j < i < k withW ′(i) = OW(y) but 〈W ′(k),W ′(j)〉 ∈
G ′.hb?. Note that the definition of W ′ ensures that W ′(i) = L′(i) = OW(y), and since W is a
〈G,L, tidRMW〉-write-list, it follows thatW (f (i)) = OW(y). In addition, sinceWτ is 〈G,Lτ , tidRMW〉-
write-list, it follows thatWτ (fτ (i)) = OW(y) if i > min(P). Consider the possible cases:
– W ′(k) = e: In this case, we must have y = x and W ′(j) = e . It follows that k, j ∈ P , and

since P |=WRA 〈τ , W(x ,vW)〉, we cannot have L′(i) = OW(x).
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– W ′(k) � e and W ′(j) = e: In this case, we must have i,k > min(P), and so W ′(k) =
maxG .hb{wπ ,wτ } and Wτ (fτ (i)) = OW(y). Hence, we have 〈wτ ,W

′(k)〉 ∈ G .hb|?loc, and so
〈wτ , e〉 ∈ G ′.hb?. Sincewτ � e (aswτ ∈ G .E), it follows thatwτ ∈ dom(G .hb? ; [Eτ ]). Since
Wτ (fτ (i)) = OW(y), this contradicts the fact thatWτ is 〈G,τ 〉-consistent.

– W ′(k) � e and W ′(j) � e: In this case, we must have 〈W ′(k),W ′(j)〉 ∈ G .hb?. Let w j
π =

W (f (j)) and w j
τ = Wτ (fτ (j)) (the latter is only defined if j > min(P)). Our construction

ensures that one of the following holds:
∗ W ′(j) = w j

π : SinceW ′(k) � e , the definition ofW ′ ensures that 〈wπ ,W
′(k)〉 ∈ G ′.hb|?loc,

and so 〈wπ ,w
j
π 〉 ∈ G .hb?. This contradicts the fact thatW is 〈G,π 〉-consistent.

∗ W ′(j) = w j
τ : In this case, we have j > min(P), and so k > min(P). SinceW ′(k) � e , the

definition of W ′ ensures that 〈wτ ,W
′(k)〉 ∈ G ′.hb|?loc, and so 〈wτ ,w

j
τ 〉 ∈ G .hb?. This

contradicts the fact thatWτ is 〈G,τ 〉-consistent.

Finally, the lower step is handled exactly as for SRA. �

Lemma A.4. For every trace of opWRA there is an equivalent trace of loWRA.

Proof. As described in Section 7, we show that �−1 constitutes a backward simulation from

opWRA to loWRA. We detail here the simulation step. Suppose that G
τ ,l
−−→opWRA G ′ and B′ � G ′.

Let tidRMW : W → Tid be a function satisfying the conditions of Definition 7.4, and for every π ∈ Tid

and L′ ∈ B′(π ), we letW ′
〈π ,L′ 〉

be a 〈G ′,π 〉-consistent 〈G ′,L′, tidRMW〉-write-list. We construct a state

B such that B
τ ,l
−−→loWRA B′ and B � G. Consider the possible cases:

• l = W(x ,vW):

Let w = NextEvent(G .E,τ , l). Since G
τ ,l
−−→opWRA G ′, we have G ′.E = G .E ∪ {w} and G ′.rf =

G .rf.12 Let P be the index choice for B′ that assigns the set of “new” positions in B′:

P � λπ ∈ Tid,L′ ∈ B′(π ). {1 ≤ k ≤ |L′ | |W ′
〈π ,L′ 〉(k) = w}.

Then, we define

B � λπ ∈ Tid.

{
OW(x) · src(B′,τ ,P)(τ ) π = τ

src(B′,τ ,P)(π ) π � τ .

By Proposition 8.4, to show that B
τ ,l
−−→loWRA B′, it suffices to prove that P |=WRA

〈τ , W(x ,vW)〉. Let πRMW = tidRMW(w). Thus, we show that the following hold for every π ∈ Tid

and L′ ∈ B′(π ), where P = P(π ,L′) andW ′ =W ′
〈τ ,L′ 〉

:

– Let k ∈ P . Then, we haveW ′(k) = w , and thus L′(k) = OR(τ ,x ,vW,πRMW).
– Let k ∈ {1, ...,|L′ |} \ P such that p1 < k < p2 for some p1,p2 ∈ P . We show that L′(k) �
OW(x). Since p1,p2 ∈ P , we have W ′(p1) =W ′(p2) = w , and so 〈W ′(p1),W

′(p2)〉 ∈ G ′.hb?.
Since W ′ is 〈G ′,τ 〉-consistent (by C3), we cannot have W ′(k) = OW(loc(W

′(p2))), and so
L′(k) � OW(x).

– Suppose that π = τ and let k ∈ {1, ...,|L′ |} \ P such that k < p for some p ∈ P . We show
that L′(k) � OW(x). Since p ∈ P , we have W ′(p) = w , and so W ′(p) ∈ dom(G ′.hb? ; [Eτ ]).
Since W ′ is 〈G ′,τ 〉-consistent (by C2), we cannot have W ′(k) = OW(loc(W

′(p))), and so
L′(k) � OW(x).

12As before, since the mo-component is immaterial in WRA, we ignore mo in this proof.
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Next, we prove that B � G, by showing that for every π ∈ Tid and L ∈ B(π ), there exists
a 〈G,π 〉-consistent 〈G,L, tidRMW〉-write-list. (Since G .rf ⊆ G ′.rf, the second condition of �
for WRA (Definition 7.4), namely, that for every 〈w, e〉 ∈ G .rf ; [RMW], we have tid(e) =
tidRMW(w), trivially holds.) Let π ∈ Tid and L ∈ B(π ). Following the construction of B, one
of the following holds:
– π � τ and L = L′ \ P(π ,L′) for some L′ ∈ B′(π ). Let P = P(π ,L′), W ′ = W ′

〈π ,L′ 〉
and

f = Map−1
〈L′,P 〉

. We define W � λk ∈ {1, ...,|L|}. W ′(f (k)). Using the fact that W ′ is a

〈G ′,L′, tidRMW〉-write-list, it is easy to see thatW is a 〈G,L, tidRMW〉-write-list.
It remains to show thatW is 〈G,π 〉-consistent, namely, to prove that for every k , such

that W (k) ∈ E, the conditions of Definition 7.3 hold. Indeed, the construction of W and
the fact that G .hb ⊆ G ′.hb directly ensure that these conditions follows from the 〈G ′,π 〉-
consistency ofW ′.

– π = τ and L = OW(x) · (L
′ \ P(τ ,L′)) for some L′ ∈ B′(τ ). Let P = P(τ ,L′),W ′ =W ′

〈τ ,L′ 〉

and f = λk ∈ {2, ...,|L|}. Map−1
〈L′,P 〉

(k − 1). We define

W � λk ∈ {1, ...,|L|}.

{
OW(x) k = 1

W ′(f (k)) k > 1.

By the fact that W ′ is a 〈G ′,L′, tidRMW〉-write-list, we get that W is a 〈G,L, tidRMW〉-write-
list. It remains to show that it is 〈G,τ 〉-consistent. Conditions C1 and C3 in Definition 7.3
follow directly from the 〈G ′,τ 〉-consistency ofW ′. Condition C2, however, deserves more
attention, as we added OW(x) at the start of the list. Assume toward contradiction some k ,
such thatW (k) ∈ E, loc(W (k)) = x andW (k) ∈ dom(G .hb? ; [Eτ ]). Then, sinceW ′(f (k)) =
W (k), w = maxG′.poG

′.Eτ and loc(W (k)) = loc(w), we have 〈W ′(f (k)),w〉 ∈ G ′.hb|loc ;
[W] ; G ′.hb?, contradicting (C1 in) the 〈G ′,τ 〉-consistency ofW ′.

– π = τ and L = OW(x) · (L
′ \\ P(η,L′)) for some η ∈ Tid and L′ ∈ B′(η).

Let P = P(η,L′), m = min(P),W ′ =W ′
〈η,L′ 〉

and f = λk ∈ {2, ...,|L|}. MMap−1
〈L′,P 〉

(k − 1).

We define:

W � λk ∈ {1, ...,|L|}.

{
OW(x) k = 1

W ′(f (k)) k > 1.

By the fact that W ′ is a 〈G ′,L′, tidRMW〉-write-list, we get that W is a 〈G,L, tidRMW〉-write-
list. It remains to show that it is 〈G,τ 〉-consistent. Condition C3 follows directly from the
〈G ′,η〉-consistency ofW ′. We prove the other two conditions:

(C1) The existence of some k , such thatW (k) ∈ dom(G .hb|loc ; [W] ; G .hb? ; [{W (j) | 1 ≤ j <
k)]} directly contradicts the same condition in the 〈G ′,η〉-consistency of W ′. Now, as-
sume toward contradiction some k , such thatW (k) ∈ dom(G .hb|loc ; [W] ; G .hb? ; [Eτ ]).
Then, sinceW ′(f (k)) =W (k), f (k) > m,W ′(m) = w and w = maxG′ .poG

′.Eτ , we have
W ′(f (k)) ∈ dom(G ′.hb|loc ; [W] ; G ′.hb? ; [{W ′(j) | 1 ≤ j < f (k)}]), contradicting (C1
in) the 〈G ′,η〉-consistency ofW ′.

(C2) Assume toward contradiction the existence of some i < k , such that W (i) =
OW(loc(W (k))) and W (k) ∈ dom(G .hb? ; [Eτ ]). First if i = 1, then loc(W (k)) = x , and
as above, since W ′(f (k)) = W (k), f (k) > m, W ′(m) = w and w = maxG′ .poG

′.Eτ , we
haveW ′(f (k)) ∈ dom(G ′.hb|loc ; [W] ; G ′.hb? ; [{W ′(j) | 1 ≤ j < f (k)}]), contradicting
(C1 in) the 〈G ′,η〉-consistency of W ′. Now, suppose that i > 1. Then, again, since
W ′(f (k)) = W (k), f (k) > f (i) > m, W ′(m) = w and w = maxG′ .poG

′.Eτ , we have
〈W ′(f (k)),W ′(m)〉 ∈ G ′.hb?, contradicting (C3 in) the 〈G ′,η〉-consistency ofW ′.
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• l = R(x ,vR):

Let r = NextEvent(G .E,τ , l). SinceG
τ ,l
−−→opWRA G ′, we have thatG ′.E = G .E∪{r } andG ′.rf =

G .rf ∪ {〈w, r〉} for some write event w ∈ G .Wx \ dom(G .hb|loc ; [W] ; G .hb? ; [Eτ ]) with
valW(w) = vR.
Let o = 〈tid(w),x ,vR, tidRMW(w)〉. We define B by:

B � λπ ∈ Tid.

{
o · B′(τ ) π = τ

B′(π ) π � τ .

By definition, we have B
τ ,l
−−→loWRA B′. We show that B �G. Note that the second condition

of � for WRA (Definition 7.4) trivially holds, and we need to show that for every π ∈ Tid

and L ∈ B(π ), there exists a 〈G,π 〉-consistent 〈G,L, tidRMW〉-write-list.
For π � τ and L ∈ B(π ), observe that L ∈ B′(π ), and since G .hb ⊆ G ′.hb, we have that

W ′
〈π ,L′ 〉

is also a 〈G,π 〉-consistent 〈G,L, tidRMW〉-write-list.

Consider an option list L ∈ B(τ ). Let L′ ∈ B′(τ ) such that L = o · L′. Let W ′ = W ′
〈τ ,L′ 〉

.

We define W � w ·W ′. By the fact that W ′ is a 〈G ′,L′, tidRMW〉-write-list, we get that W
is a 〈G,L, tidRMW〉-write-list. It remains to show that it is 〈G,τ 〉-consistent. Given the 〈G ′,τ 〉-
consistency ofW ′, for C1, we only need to show thatw � dom(G .hb|loc ; [W] ; G .hb? ; [Eτ ]),
which is guaranteed by the properties ofw as stated above (it follows from the preconditions
of the read step in opWRA). Condition C2 directly follows from theW is 〈G ′,τ 〉-consistency
of W ′. For C3, given the 〈G ′,τ 〉-consistency of W ′, it suffices to handle the case that j = 1.
Thus, assume toward contradiction some 1 < k ≤ |L| and 1 < i < k , such that W (i) =
OW(loc(W (k))) and 〈W (k),w〉 ∈ G .hb?. Then, since r ∈ G ′.Eτ and 〈w, r〉 ∈ G ′.rf, we get that
W ′(k − 1) ∈ dom(G ′.hb? ; [Eτ ]), whileW ′(i − 1) = OW(loc(W

′(k − 1))), contradicting (C2 in)
the 〈G ′,τ 〉-consistency ofW ′.

• l = RMW(x ,vR,vW):

Let e = NextEvent(G .E,τ , l). Since G
τ ,l
−−→opWRA G ′, we have G ′.E = G .E ∪ {e},

G ′.rf = G .rf ∪ {〈w, e〉} and valW(w) = vR, for some w ∈ Wx , such that w �
dom(G .hb|loc ; [W] ; G .hb? ; [Eτ ]) and w � dom(G .rf ; [RMW]).

Let P be the index choice for B′ that assigns the set of “new” positions in B′:

P � λπ ∈ Tid,L′ ∈ B′(π ). {1 ≤ k ≤ |L′ | |W ′
〈π ,L′ 〉(k) = e}.

Then, we define:

B � λπ ∈ Tid.

{
o · OW(x) · src(B′,τ ,P)(τ ) π = τ

src(B′,τ ,P)(π ) π � τ ,

where o is the read option given by o � OR(tid(w),x ,vR,τ ).

Using Proposition 8.4, to show that B
τ ,l
−−→loWRA B′, it suffices to prove that P |=WRA

〈τ , W(x ,vW)〉. This is done as in the write case, together with the following observation: Since
e ∈ G ′.Eτ , e ∈ RMW and 〈w, e〉 ∈ G ′.rf, the fact that tidRMW witnesses B′ � G ′, guarantees
that tidRMW(w) = τ .

It remains to show that B � G. We show that for every π ∈ Tid and L ∈ B(π ), there
exists a 〈G,π 〉-consistent 〈G,L, tidRMW〉-write-list. (The second condition of � for WRA (Def-
inition 7.4) trivially holds.) Let π ∈ Tid and L ∈ B(π ). Following the construction of B, one
of the following holds:
– π � τ and L = L′ \ P(π ,L′) for some L′ ∈ B′(π ). This case is exactly the same as the

analogous case in the write step.
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– π = τ and L = o · OW(x) · (L
′ \ P(τ ,L′)) for some L′ ∈ B′(τ ). Let P = P(τ ,L′),W ′ =W ′

〈τ ,L′ 〉

and f = λk ∈ {3, ...,|L|}. Map−1
〈L′,P 〉

(k − 2). We define:

W � λk ∈ {1, ...,|L|}.

⎧⎪⎪⎪⎨⎪⎪⎪⎩
w k = 1

OW(x) k = 2

W ′(f (k)) k > 2.

By the fact thatW ′ is a 〈G ′,L′, tidRMW〉-write-list, we get thatW is a 〈G,L, tidRMW〉-write-list,
and we show that it is 〈G,τ 〉-consistent:

(C1) Observe first that W (1) = w and w � dom(G .hb|loc ; [W] ; G .hb? ; [Eτ ]) is guaranteed
by the properties of w as stated above (it follows from the preconditions of the rmw
step in opWRA). Now, consider some 2 < k ≤ |L|. By the 〈G ′,τ 〉-consistency ofW ′, we
have W (k) � dom(G .hb|loc ; [W] ; G .hb? ; [Eτ ∪ {W (j) | 3 ≤ j < k}]). It is left to show
that 〈W (k),w〉 � G .hb|loc ; [W] ; G .hb?. Indeed, were it not the case, since 〈w, e〉 ∈

G ′.rf and e ∈ Eτ , we would have had W ′(f (k)) ∈ dom(G ′.hb|loc ; [W] ; G .hb? ; [Eτ ]),
contradicting (C1 in) the 〈G ′,τ 〉-consistency ofW ′.

(C2) Due to addingW (2) = OW(x), which is not present inW ′, we should ensure thatW (k) �
dom(G .hb? ; [Eτ ]) for every 2 < k ≤ |L|. Indeed, this is guaranteed by (C1 in) the 〈G ′,τ 〉-
consistency ofW ′, as e = maxG′ .poG

′.Eτ , loc(W (k)) = loc(e), e ∈ W,W ′(f (k)) =W (k),
andW ′(f (k)) � dom(G ′.hb|loc ; [W] ; G ′.hb? ; [Eτ ]).

(C3) Due to addingW (1) = w andW (2) = OW(x), we should ensure that for every 2 < k ≤ |L|,
if loc(W (k)) = x then 〈W (k),w〉 � G .hb?. First observe that W (k) � w , as otherwise,
we would have had W ′(f (k)) ∈ dom(G ′.hb|loc ; [W] ; G ′.hb? ; [Eτ ]), since W ′(f (k)) =
W (k) = w , 〈w, e〉 ∈ G ′.rf and e ∈ W, which contradicts (C1 in) the 〈G ′,τ 〉-consistency
ofW ′. Then, observe that 〈W (k),w〉 � G .hb, as w ∈ W, and we showed while handling
C1 that 〈W (k),w〉 � G .hb|loc ; [W] ; G .hb?.

– π = τ and L = o · OW(x) · (L
′ \\ P(η,L′)) for some η ∈ Tid and L′ ∈ B′(η).

Let P = P(η,L′),W ′ =W ′
〈η,L′ 〉

, m = min(P) and f = λk ∈ {3, ...,|L|}. MMap−1
〈L′,P 〉

(k − 2).

We define:

W � λk ∈ {1, ...,|L|}.

⎧⎪⎪⎪⎨⎪⎪⎪⎩
w k = 1

OW(x) k = 2

W ′(f (k)) k > 2.

By the fact thatW ′ is a 〈G ′,L′, tidRMW〉-write-list, we get thatW is a 〈G,L, tidRMW〉-write-list,
and we show that it is 〈G,τ 〉-consistent:

(C1) The difference from the previous case is that we have the 〈G ′,τ 〉-consistency ofW ′
〈η,L′ 〉

rather than ofW ′
〈τ ,L′ 〉

. Hence, we should show that for every 2 < k ≤ |L|, we still have

W (k) � dom(G .hb|loc ; [W] ; G .hb? ; [Eτ ∪ {w}]). Assume first toward contradiction
some k such that W (k) ∈ dom(G .hb|loc ; [W] ; G .hb? ; [Eτ ]). Since W ′(f (k)) = W (k),
f (k) > m,W ′(m) = e and e = maxG′ .poG

′.Eτ , we haveW ′(f (k)) ∈ dom(G ′.hb|loc ; [W] ;
G ′.hb?; [{W ′(j) | 1 ≤ j < f (k)}]), contradicting (C1 in) the 〈G ′,η〉-consistency of W ′.
Next, assume toward contradiction some k , such that 〈W (k),w〉 ∈ G .hb|loc ; [W] ; G .hb?.
Then, we reach an analogous contradiction, since 〈w, e〉 ∈ G ′.rf.

(C2) Handled exactly as in the analogous case of the write step (referring to e instead of w).
(C3) Due to addingW (1) = w andW (2) = OW(x), we should ensure that for every 2 < k ≤ |L|,

if loc(W (k)) = x then 〈W (k),w〉 � G .hb?. Indeed, assume toward contradiction that
〈W (k),w〉 ∈ G .hb?. Then, since 〈w, e〉 ∈ G ′.rf, W ′(m) = e and e ∈ W, we get that
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〈W ′(f (k)),W ′(m)〉 ∈ G ′.hb|loc ; [W] ; G ′.hb?. Since f (k) > m, this contradicts (C1 in)
the 〈G ′,η〉-consistency ofW ′. �
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