
The Quest for a Tight Translation

of Büchi to co-Büchi Automata

Udi Boker⋆ and Orna Kupferman

School of Computer Science and Engineering, Hebrew University, Israel

Abstract. The Büchi acceptance condition specifies a set α of states,
and a run is accepting if it visits α infinitely often. The co-Büchi accep-
tance condition is dual, thus a run is accepting if it visits α only finitely
often. Nondeterministic Büchi automata over words (NBWs) are strictly
more expressive than nondeterministic co-Büchi automata over words
(NCWs). The problem of the blow-up involved in the translation (when
possible) of an NBW to an NCW has been open for several decades.
Until recently, the best known upper bound was 2O(n log n) and the best
lower bound was n. We describe the quest to the tight 2Θ(n) bound.

Key words: Büchi automata, co-Büchi automata, non-
determinism, automata translation

1 Introduction

Finite automata on infinite objects were first introduced in the 60’s, and were
the key to the solution of several fundamental decision problems in mathematics
and logic [5, 15, 20]. Today, automata on infinite objects are used for specification
verification, and synthesis of nonterminating systems. The automata-theoretic
approach to verification views questions about systems and their specifications
as questions about languages, and reduces them to automata-theoretic problems
like containment and emptiness [13, 26]. Recent industrial-strength property-
specification languages such as Sugar, ForSpec, and the recent standard PSL 1.01
include regular expressions and/or automata, making specification and verifica-
tion tools that are based on automata even more essential and popular [1].

Early automata-based algorithms aimed at showing decidability. The ap-
plication of automata theory in practice has led to extensive research on the
complexity of problems and constructions involving automata [6, 19, 22, 24, 25,
27]. For many problems and constructions, our community was able to come up
with satisfactory solutions, in the sense that the upper bound (the complexity
of the best algorithm or the blow-up in the best known construction) coincides
with the lower bound (the complexity class in which the problem is hard, or the
blow-up that is known to be unavoidable). For some problems and constructions,
however, the gap between the upper bound and the lower bound is significant.
This situation is especially frustrating, as it implies that not only something is

⋆ Supported in part by a Lady Davis postdoctoral fellowship.



missing in our understanding of automata on infinite objects, but also that we
may be using algorithms that can be significantly improved.

One such fundamental and longstanding open problem is the translation,
when possible, of a nondeterministic Büchi word automaton (NBW) to an equiv-
alent nondeterministic co-Büchi word automaton (NCW).1 NCWs are less ex-
pressive than NBWs. For example, the language {w : w has infinitely many
a’s} over the alphabet {a, b} cannot be recognized by an NCW. In fact, NCWs
are not more expressive than deterministic co-Büchi automata (DCWs).2 Hence,
since deterministic Büchi automata (DBWs) are dual to DCWs, a language can
be recognized by an NCW iff its complement can be recognized by a DBW.

The best translation of an NBW to an NCW (when possible) that was known
until recently goes as follows. Consider an NBW A that has an equivalent NCW.
First, co-determinize A and obtain a deterministic Rabin automaton (DRW) Ã
for the complement language. By [8], DRWs are Büchi type. That is, if a DRW
has an equivalent DBW, then the DRW has an equivalent DBW on the same
structure. Since A can be recognized by an NCW, its complement Ã has an
equivalent DBW, so there is a DBW B̃ that complements A and has the same
structure as Ã. By viewing B̃ as a DCW, one gets a deterministic co-Büchi
automaton (DCW) equivalent to A. The co-determinization step involves a su-
per exponential blow-up in the number of states [22]: starting with an NBW
with n states, we end up with a DCW with 2O(n logn) states. Beyond the super
exponential blow-up, the state space that results from Safra’s determinization
and co-determinization constructions is awfully complex and is not amenable
to optimizations and a symbolic implementation. Also, going through a deter-
ministic automaton requires the introduction of acceptance conditions that are
more complex than the Büchi and co-Büchi acceptance conditions. Piterman’s
construction [18] simplifies the situation only slightly; while the Rabin condi-
tion can be replaced by parity, the complication and the 2O(n logn) complexity
of Safra’s construction are still there. Note that eventhough the problem is of
translating an NBW to an NCW, and thus it does not require us to end up in
a deterministic automaton, the above procedure actually does result in a DCW.
Thus, it is not known how to take advantage of the allowed nondeterminism,
and how to keep the translation within the convenient scope of the Büchi and
the co-Büchi acceptance conditions.

The 2O(n logn) upper bound is particularly annoying, as no non-trivial lower
bound was known. In fact, there was even no counterexample to the conjecture
that NBWs are co-Büchi type. That is, to a conjecture that if an NBW has an
equivalent NCW, then the NBW has an equivalent NCW on the same structure.

1 In Büchi automata, some of the states are designated as accepting states, and a run
is accepting iff it visits states from the accepting set infinitely often [5]. Dually, in
co-Büchi automata, a run is accepting iff it visits the set of accepting states only
finitely often.

2 When applied to universal Büchi automata, the translation in [16], of alternating
Büchi automata into NBW, results in DBW. By dualizing it, one gets a translation
of NCW to DCW.

2



The main challenge in proving a non-trivial lower bound for the translation of
NBW to NCW is the expressiveness superiority of NBW with respect to NCW.
Indeed, a family of languages that is a candidate for proving a lower bound for
this translation has to strike a delicate balance: the languages have to somehow
take advantage of the Büchi acceptance condition, and still be recognizable by a
co-Büchi automaton.3 In particular, it is not clear how to use the main feature of
the Büchi condition, namely its ability to easily track infinitely many occurrences
of an event, as a co-Büchi automaton cannot recognize languages that are based
on such a tracking.

Beyond the theoretical challenge in tightening the gaps, and the fact they are
related to other gaps in our knowledge [9], the translation of NBW to NCW has
immediate important applications in formal methods. The premier example in
this class is of symbolic LTL model checking. Evaluating specifications in AFMC
can be done with linearly many symbolic steps. In contrast, direct LTL model
checking reduces to a search for bad-cycles, whose symbolic implementation in-
volves nested fixed-points, and is typically 4 quadratic [21]. It is shown in [12]
that given an LTL formula ψ, there is an alternation-free µ-calculus (AFMC)
formula equivalent to ∀ψ iff ψ can be recognized by a DBW. Alternatively, an
NCW for ¬ψ can be linearly translated to an AFMC formula equivalent to ∃¬ψ,
which can be negated to a formula equivalent to ∀ψ. Thus, an improvement of
the translation of NBW to NCW would immediately imply an improvement of
the translation of LTL to AFMC.

We describe the quest to a 2Θ(n) tight bound for the translation. In the upper-
bound front, we describe the construction in [3], which translates an NBW B
to an NCW C whose underlying structure is the product of B with its subset
construction. Thus, given an NBW B with n states, the translation yields an
equivalent NCW with n2n states, and it has a simple symbolic implementation
[17]. In the lower-bound front, we first describe the counterexample given in [11]
to the NCW-typeness of NBW. We then describe the “circumventing counting”
idea, according to which the ability of NBWs to easily track infinitely many
occurrences of an event makes them more succinct than NCWs. The idea is to
consider a family of languages L1, L2, L3, . . . in which an NCW for Lk has to
count to some bound that depends on k, whereas an NBW can count instead
to infinity. In the first application of the idea, the NBW for the language Lk

checks that an event P occurs infinitely often. The language Lk is still NCW-
recognizable as other components of Lk make it possible to check instead that
P has at least k occurrences. An NCW for Lk can then count occurrences of
P , but it needs O(k) more states for this [2]. In order to achieve a super-linear

3 A general technique for proving lower bounds on the size of automata on infinite
words is suggested in [28]. The technique is based on full automata, in which a word
accepted by the automaton induces a language. The fact NCWs are less expressive
than NBWs is a killer for the technique, as full automata cannot be translated to
NCWs.

4 Better algorithms have been suggested [7, 21], but it turns out that algorithms based
on nested fixed-points perform better in practice.

3



succinctness, we enhance the idea as follows. The NBW for the language Lk

still checks that an event P occurs infinitely often. Now, however, in order for
Lk to be NCW-recognizable, other components of Lk make it possible to check
instead that P repeats at least once in every interval of some bounded length
f(k). Thus, while the NBW can detect infinitely many occurrences of P with
2 states, the NCW has to devote O(f(k)) states for the counting. We first use
ideas from number theory in order to make f(k) quadratic in k, and then use
binary encoding in order to make f(k) exponential in k [3].

2 Preliminaries

Given an alphabet Σ, a word over Σ is a (possibly infinite) sequence w =
w1 ·w2 · · · of letters in Σ. For two words, x and y, we use x � y to indicate that
x is a prefix of y and x ≺ y to indicate that x is a strict prefix of y. An automaton

is a tuple A = 〈Σ,Q, δ,Q0, α〉, where Σ is the input alphabet, Q is a finite set of
states, δ : Q×Σ → 2Q is a transition function, Q0 ⊆ Q is a set of initial states,
and α ⊆ Q is an acceptance condition. We define several acceptance conditions
below. Intuitively, δ(q, σ) is the set of states that A may move into when it is in
the state q and it reads the letter σ. The automaton A may have several initial
states and the transition function may specify many possible transitions for each
state and letter, and hence we say that A is nondeterministic. In the case where
|Q0| = 1 and for every q ∈ Q and σ ∈ Σ, we have that |δ(q, σ)| ≤ 1, we say that
A is deterministic. The transition function extends to sets of states and to finite
words in the expected way, thus δ(S, x) is the set of states that A may move into
when it is in a state in S and it reads the finite word x. Formally, δ(S, ǫ) = S

and δ(S,w · σ) =
⋃

q∈δ(S,w) δ(q, σ). We abbreviate δ(Q0, x) by δ(x), thus δ(x) is
the set of states that A may visit after reading x. For an automaton A and a
state a of A, we denote by Aa the automaton that is identical to A, except for
having {a} as its set of initial states.

A run r = r0, r1, · · · of A on w = w1 · w2 · · · ∈ Σω is an infinite sequence of
states such that r0 ∈ Q0, and for every i ≥ 0, we have that ri+1 ∈ δ(ri, wi+1).
Note that while a deterministic automaton has at most a single run on an input
word, a nondeterministic automaton may have several runs on an input word.
We sometimes refer to r as a word in Qω or as a function from the set of prefixes
of w to the states of A. Accordingly, we use r(x) to denote the state that r visits
after reading the prefix x.

Acceptance is defined with respect to the set inf (r) of states that the run
r visits infinitely often. Formally, inf (r) = {q ∈ Q | for infinitely many i ∈
IN, we have ri = q}. As Q is finite, it is guaranteed that inf (r) 6= ∅. The run r
is accepting iff the set inf (r) satisfies the acceptance condition α. We consider
here the Büchi and the co-Büchi acceptance conditions. A set S ⊆ Q satisfies a
Büchi acceptance condition α ⊆ Q iff S ∩ α 6= ∅; whereas S satisfies a co-Büchi

acceptance condition α ⊆ Q iff S ⊆ α. Note that the definition of co-Büchi we
use is less standard than the S∩α = ∅ definition; clearly, S ⊆ α iff S∩(Q\α) = ∅,
thus the definition is equivalent. We chose to go with the S ⊆ α variant as it

4



better conveys the intuition that, as with the Büchi condition, a visit in α is
a “good event”. An automaton accepts a word iff it has an accepting run on
it. The language of an automaton A, denoted L(A), is the set of words that A
accepts. We also say that A recognizes the language L(A). For two automata A
and A′, we say that A and A′ are equivalent if L(A) = L(A′).

We denote the different classes of automata by three letter acronyms in
{D,N} × {B, C} × {W}. The first letter stands for the branching mode of the
automaton (deterministic or nondeterministic); the second letter stands for the
acceptance-condition type (Büchi, or co-Büchi); the third letter indicates that
the automaton runs on words. We say that a language L is in a class γ if L is
γ-recognizable, that is, L can be recognized by an automaton in the class γ.

Different classes of automata have different expressive power. In particular,
while NBWs recognize all ω-regular language [15], DBWs are strictly less ex-
pressive than NBWs, and so are DCWs [14]. In fact, a language L is in DBW
iff its complement is in DCW. Indeed, by viewing a DBW as a DCW, we get an
automaton for the complementing language, and vice versa. The expressiveness
superiority of the nondeterministic model over the deterministic one does not ap-
ply to the co-Büchi acceptance condition. There, every NCW has an equivalent
DCW [16].

3 Upper Bound

In this section we present the upper-bound proof from [3] for the translation of
NBW to NCW (when possible).5 The proof is constructive: given an NBW B
with k states whose language is NCW-recognizable, we construct an equivalent
NCW C with at most k2k states. The underlying structure of C is very simple: it
runs B in parallel to its subset construction. We refer to the construction as the
augmented subset construction, and we describe the rationale behind it below.

Consider an NBW B with set αB of accepting states. The subset construction
of B maintains, in each state, all the possible states that B can be at. Thus, the
subset construction gives us full information about B’s potential to visit αB in
the future. However, the subset construction loses information about the past.
In particular, we cannot know whether fulfilling B’s potential requires us to give
up past visits in αB. For that reason, the subset construction is adequate for
determinizing automata on finite words, but not good enough for determinizing
ω-automata. A naive try to determinize B could be to build its subset construc-
tion and define the acceptance set as all the states for which B has the potential
to be in αB. The problem is that a word might infinitely often gain this potential
via different runs. Were we only able to guarantee that the run of the subset
construction follows a single run of the original automaton, we would have en-
sured a correct construction. Well, this is exactly what the augmented subset
construction does!

5 For readers who skipped the preliminaries, let us mention that we work here with a
less standard definition of the co-Büchi condition, where a run r satisfies a co-Büchi
condition α iff inf(r) ⊆ α.

5



Once the above intuition is understood, there is still a question of how to
define the acceptance condition on top of the augmented subset construction.
Since we target for an NCW, we cannot check for infiniteness. However, the
premise that the NBW is in DCW guarantees that a word is accepted iff there
is a run of the augmented subset construction on it that remains in “potentially
good states” from some position. We explain and formalize this property below.

We start with a property relating states of a DCW (in fact, any deterministic
automaton) that are reachable via words that lead to the same state in the subset
construction of an equivalent NBW.

Lemma 1. Consider an NBW B with a transition function δB and a DCW D
with a transition function δD such that L(B) = L(D). Let d0 and d1 be states

of D such that there are two finite words x0 and x1 such that δD(x0) = d0,

δD(x1) = d1, and δB(x0) = δB(x1). Then, L(Dd0) = L(Dd1).

For automata on finite words, if two states of the automaton have the same
language, they can be merged without changing the language of the automaton.
While this is not the case for automata on infinite words, the lemma below
enables us to do take advantage of such states.

Lemma 2. Consider a DCW D = 〈Σ,D, δ,D0, α〉. Let d0 and d1 be states in

D such that L(Dd0) = L(Dd1). For all finite words u and v, if δ(d0, u) = d0 and

δ(d1, v) = d1 then for all words w ∈ (u+ v)∗ and states d′ ∈ δ(d0, w) ∪ δ(d1, w),
we have L(Dd′

) = L(Dd0).

Our next observation is the key to the definition of the acceptance condition
in the augmented subset construction. Intuitively, it shows that if an NCW
language L is indifferent to a prefix in (u + v)∗, and L contains the language
(v∗ · u+)ω , then L must also contain the word vω .

Lemma 3. Consider a co-Büchi recognizable language L. For all finite words u

and v, if for every finite word x ∈ (u + v)∗ and infinite word w we have that

w ∈ L iff x · w ∈ L, and (v∗ · u+)ω ⊆ L, then vω ∈ L.

By considering the language of a specific state of the DCW, Lemma 3 implies
the following.

Corollary 1. Let D = 〈Σ,D, δ,D0, α〉 be a DCW. Consider a state d ∈ D.

For all nonempty finite words v and u, if for all words w ∈ (v + u)∗ and states

d′ ∈ δ(d, w), we have L(Dd′

) = L(Dd), and (v∗ ·u+)ω ⊆ L(Dd), then vω ∈ L(Dd).

We can now present the construction together with its acceptance condition.

Theorem 1 ([3]). For every NBW B with k states that is co-Büchi recognizable

there is an equivalent NCW C with at most k2k states.

Proof. Let B = 〈Σ,B, δB, B0, αB〉. We define the NCW C = 〈Σ,C, δC , C0, αC〉
on top of the product of B with its subset construction. Formally, we have the
following.

6



– C = B× 2B. That is, the states of C are all the pairs 〈b, E〉 where b ∈ B and
E ⊆ B.

– For all 〈b, E〉 ∈ C and σ ∈ Σ, we have δC(〈b, E〉, σ) = δB(b, σ)× {δB(E, σ)}.
That is, C nondeterministically follows B on its B-components and deter-
ministically follows the subset construction of B on its 2B-component.

– C0 = B0 × {B0}.
– A state is a member of αC if it is reachable from itself along a path whose

projection on B visits αB. Formally, 〈b, E〉 ∈ αC if there is a state 〈b′, E′〉 ∈
αB × 2B and finite words y1 and y2 such that 〈b′, E′〉 ∈ δC(〈b, E〉, y1) and
〈b, E〉 ∈ δC(〈b′, E′〉, y2). We refer to y1 · y2 as the witness for 〈b, E〉. Note
that all the states in αB × 2B are members of αC with an empty witness.
We prove the equivalence of B and C. Note that the 2B-component of C

proceeds in a deterministic manner. Therefore, each run r of B induces a single
run of C (the run in which the B-component follows r). Likewise, each run r′ of
C induces a single run of B, obtained by projecting r′ on its B-component.

We first prove that L(B) ⊆ L(C). Consider a word w ∈ L(B). Let r be an
accepting run of B on w. We prove that the run r′ induced by r is accepting.
Consider a state 〈b, E〉 ∈ inf (r ′). We prove that 〈b, E〉 ∈ αC . Since 〈b, E〉 ∈
inf (r ′), then b ∈ inf (r). Thus, there are three prefixes x, x · y1, and x · y1 · y2 of
w such that r′(x) = r′(x · y1 · y2) = 〈b, E〉 and r′(x · y1) ∈ αB × 2B. Therefore,
y1 · y2 witnesses that 〈b, E〉 is in αC . Hence, inf (r) ⊆ αC , and we are done.

We now prove that L(C) ⊆ L(B). Consider a word w ∈ L(C). Let r′ be an
accepting run of C on w, let 〈b, E〉 be a state in inf (r ′), and let x be a prefix of
w such that r′(x) = 〈b, E〉. Since r′ is accepting, inf (r ′) ⊆ αC , so 〈b, E〉 ∈ αC .
Let z be a witness for the membership of 〈b, E〉 in αC . By the definition of a
witness, δB(E, z) = E and there is a run of Bb on z that visits αB and goes back
to b. If z = ǫ, then b ∈ αB, the run of B induced by r′ is accepting, and we are
done. Otherwise, x · zω ∈ L(B), and we proceed as follows.

Recall that the language of B is NCW-recognizable. LetD = 〈Σ,D, δD, D0, αD〉
be a DCW equivalent to B. Since L(B) = L(D) and x ·zω ∈ L(B), it follows that
the run ρ of D on x · zω is accepting. Since D is finite, there are two indices i1
and i2 such that i1 < i2, ρ(x · zi1) = ρ(x · zi2), and for all prefixes y of x · zω

such that x · zi1 � y, we have ρ(y) ∈ αD. Let d1 = ρ(x · zi1).
Consider the run η of D on w. Since r′ visits 〈b, E〉 infinitely often and D is

finite, there must be a state d0 ∈ D and infinitely many prefixes p1, p2, . . . of w
such that for all i ≥ 1, we have r′(pi) = 〈b, E〉 and η(pi) = d0.

We claim that the states d0 and d1 satisfy the conditions of Lemma 1 with
x0 being p1 and x1 being x · zi1 . Indeed, δD(p1) = d0, δD(x · zi1) = d1, and
δB(p1) = δB(x · zi1) = E. For the latter equivalence, recall that δB(x) = E and
δB(E, z) = E. Hence, by Lemma 1, we have L(Dd0) = L(Dd1).

Recall the sequence of prefixes p1, p2, . . .. For all i ≥ 1, let pi+1 = pi · ti. We
now claim that for all i ≥ 1, the state d0 satisfies the conditions of Corollary 1
with u being zi2−i1 and v being ti. The first condition is satisfied by Lemma 2. For
the second condition, consider a word w′ ∈ (v∗·u+)ω . We prove that w′ ∈ L(Dd0).
Recall that there is a run of Bb on v that goes back to b and there is a run of Bb

on u that visits αB and goes back to b. Recall also that for the word p1, we have

7



that r′(p1) = 〈b, E〉 and η(p1) = d0. Hence, p1 · w′ ∈ L(B). Since L(B) = L(D),
we have that p1 · w′ ∈ L(B). Therefore, w′ ∈ L(Dd0).

Thus, by Corollary 1, for all i ≥ 1 we have that tωi ∈ L(Dd0). Since δD(d0, ti) =
d0, it follows that all the states that D visits when it reads ti from d0 are in αD.
Note that w = p1 · t1 · t2 · · · . Hence, since δD(p1) = d0, the run of D on w is
accepting, thus w ∈ L(D). Since L(D) = L(B), it follows that w ∈ L(B), and we
are done. ⊓⊔

4 Lower Bound

In this section we describe the “circumventing counting” idea and how it has
led to a matching lower bound. In the deterministic setting, DBWs are co-Büchi
type. Thus, if a DBW A is DCW-recognizable, then there is a DCW equivalent
to A that agrees with A on its structure (that is, one only has to modify the
acceptance condition). The conjecture that NBW are also co-Büchi type was
refuted only in [11]:

Theorem 2 ([11]). NBWs are not co-Büchi type.

Proof. Consider the NBW A described in Fig. 1. The NBW recognizes the lan-
guage a∗ · b · (a+ b)∗ (at least one b). This language is in NCW, yet it is easy to
see that there is no NCW recognizing L on the same structure. ⊓⊔

q0 q1

q2

q3
b a

aba

b a

a

Fig. 1. NBWs for a∗ · b · (a+ b)∗.

The result in [11] shows that there are NBWs that are NCW-recognizable
and yet an NCW for them requires a structure that is different from the one of
the given NBW. It does not show, however, that the NCW needs to have more
states. In particular, the language of the NBW in Fig. 1 can be recognized by
an NCW with two states.

8



4.1 A Linear Lower Bound

The first non-trivial lower bound for the NBW to NCW translation was described
in [2]. It is based on an idea to which we refer as the “circumventing counting”
idea. We describe the idea along with the family of languages used in [2].

Let Σ = {a, b}. For every k ≥ 1, we define a language Lk as follows:

Lk = {w ∈ Σω | both a and b appear at least k times in w}.

Since an automaton recognizing Lk must accept every word in which there
are at least k a’s and k b’s, regardless of how the letters are ordered, it may
appear as if the automaton must have two k-counters operating in parallel,
which requires O(k2) states. This would indeed be the case if a and b had not
been the only letters in Σ, of if the automaton had been deterministic or on finite
words. However, since we are interested in nondeterministic automata on infinite
words, and a and b are the only letters in Σ, we can do much better. Since Σ
contains only the letters a and b, one of these letters must appear infinitely often
in every word in Σω. Hence, w ∈ Lk iff w has at least k b’s and infinitely many
a’s, or at least k a’s and infinitely many b’s. An NBW can guess which of the
two cases above holds, and proceed to validate its guess (if w has infinitely many
a’s as well as b’s, both guesses would succeed). The validation of each of these
guesses requires only one k-counter, and a gadget with two states for verifying
that there are infinitely many occurrences of the guessed letter. Implementing
this idea results in the NBW with 2k + 1 states appearing in Fig. 2.

a, b

a a a a

t0

t′2 t′kt′k−1t′k−2t′1

a

b

t2 tktk−1tk−2t1

b b b ba, b

a

b b b

a a a

b

a

b

a, b

· · ·

· · ·

Fig. 2. An NBW for Lk with 2k + 1 states.

The reason we were able to come up with a small NBW for Lk is that NBWs
can abstract precise counting by “counting to infinity” with two states. The fact
that NCWs do not share this ability [14] is what ultimately allows us to prove
that NBW are more succinct than NCW. As it turns out, however, even an NCW
for Lk can do much better than maintaining two k-counters with O(k2) states.
To see how, note that a word w is in Lk iff w has at least k b’s after the first k a’s

9



(this characterizes words in Lk with infinitely many b’s), or a finite number of
b’s that is not smaller than k (this characterizes words in Lk with finitely many
b’s). Obviously the roles of a and b can also be reversed. Implementing this idea
results in the NCW with 3k+1 states described in Fig. 3. As detailed in [2], up
to one state this is indeed the best one can do. Thus, the family of languages
L1, L2, . . . implies that translating an NBW with 2k+ 1 states may result in an
NCW with at least 3k states, hence the non-trivial, but still linear, lower bound.

a a a

t0

t
′

2t
′

1

b

a

b

t1

b

a

b

a

t
′

k
t
′

k−1t
′

k−2

b

aa

b

t2

b

· · · tk−1
a

b

tk

a

b
tk+1

a

b

· · ·

· · ·a, b

a

t2k−1
b

t2k

a, b

Fig. 3. An NCW for Lk with 3k + 1 states.

4.2 A Quadratic Lower Bound

In this section we enhance the circumventing-counting idea, by letting the NCW
count distances between occurrences rather than number of occurrences. We
demonstrate how the enhancement can lead to a quadratic lower bound. We first
need some results from number theory. For k ∈ IN, let Sk ⊆ IN be the set of all
positive integers that can be written as ik+j(k+1), for i, j ∈ IN. Thus, Sk = {ik+
j(k+1) : i, j ∈ IN, i+ j > 0}. For example, S4 = {4, 5, 8, 9, 10, 12, 13, 14, 15, . . .}.
The following is a well-known property of Sk, which we prove below for the sake
of completeness. (The set Sk is sometimes defined in the literature without the
i+ j > 0 requirement, adding the number 0 to the set.)

Theorem 3. For every k ∈ IN, the number k2 − k − 1 is the maximal number

not in Sk. That is, k2 − k − 1 6∈ Sk, while for every t ≥ k2 − k, we have that

t ∈ Sk.

Proof. By definition, Sk = {ik + j(k + 1) : i, j ∈ IN, i + j > 0}. Equivalently,
Sk = {(i + j)k + j : i, j ∈ IN, i + j > 0}. Thus, t ∈ Sk iff t > 0 and there are
i′, j′ ∈ IN such that i′ ≥ j′ and t = i′k+ j′. We first claim that k2 − k − 1 6∈ Sk.
Let i′ and j′ be such that i′k + j′ = k2 − k − 1. We claim that i′ < j′, implying
that k2 − k− 1 6∈ Sk. To see this, note that (k− 2)k+ (k− 1) = k2 − k− 1, and
that it is impossible to increase i′ = (k − 2) and decrease j′ = (k − 1), keeping

10



the same total number. On the other hand, (k− 1)k+0 = k2− k, thus for every
t ≥ k2 − k, there are i′ ≥ k− 1 and j′ ≤ k− 1 such that t = i′k+ j′. Such i′ and
j′ witness that t ∈ Sk. ⊓⊔

For k ∈ IN, we refer to k2−k−1 as the threshold of k and denote it by th(k).
That is, th(k) = k2 − k − 1.6

We can now define the family of languages L1, L2, . . . with which we are going
to prove the lower bound. Let Σ = {a, b}. For k ≥ 1, let L′

k = {(ǫ+Σ∗ · a) · bi ·
a ·Σω : i ∈ Sk}. Then, Lk = L′

k ∪ (b∗ · a)ω. Thus, w ∈ Lk iff w starts with bi · a
or has a subword of the form a · bi · a, for i ∈ Sk, or w has infinitely many a’s.

Our alert readers are probably bothered by the fact the (b∗ ·a)ω component of
Lk is not NCW-recognizable. To see why Lk is still NCW-recognizable, consider a
word w with infinitely many a’s. Thus, the word is of the form bi1 ·a·bi2 ·a·bi3 ·a · · · ,
for non-negative integers i1, i2, i3, . . .. If for some j ≥ 1, we have ij ∈ Sk, then
w is in L′

k. Otherwise, for all j ≥ 1, we have ij 6∈ Sk. Hence, by Theorem 3,
for all j ≥ 1, we have ik ≤ th(k). Accordingly, Lk = L′

k ∪ (b≤th(k) · a)ω. Thus,
the “infinitely many a’s” disjunct can be replaced by one on which the distance
between two successive a’s is bounded. As we are going to prove formally, while
this implies that Lk can be recognized by an NCW, it forces the NCW to count
to th(k), and is the key to the quadratic lower bound.

Theorem 4. For every k ≥ 1, the language Lk can be recognized by an NBW

with k + 3 states.

Proof. We prove that the NBW Bk, appearing in Fig. 4, recognizes Lk.

a

sk+1

b

a

b b
s1s2

aa b

b
sk−2

a

b
sk−1sk

aa

sk+2

s0

bb

· · ·

a, b

Bk:

Fig. 4. The NBW Bk recognizing Lk.

Assume first that w ∈ Lk. Then, w either have infinitely many a’s, or starts
with br · a or has a subword of the form a · br · a, for r ∈ Sk. In the first case, w

6 In general, for a finite set of positive integers {n1, n2, . . . , nl}, we have that all
integers above max2{n1, n2, . . . , nl} can be written as linear combinations of the
ni’s iff the greater common divisor of the ni’s is 1. For our purpose, it is sufficient
to restrict attention to linear combinations of two subsequent integers.

11



is accepted by Bk, since the automaton’s transition function is total and an a-
transition always goes to an accepting state. Now, assume that w has a subword
of the form a · br · a, starting at a position t, for r ∈ Sk. Then, as argued above,
a run of Bk on w will either visit s0 or sk+2 at position t+ 1. If it visits sk+2 it
is obviously an accepting run. If it visits s0, then at position t+1+ r it can visit
sk+1 if there are natural numbers i and j such that i+j > 0 and r = ik+j(k+1),
which is the case by the assumption that r ∈ Sk. Thus, the run can visit sk+2

at position t + r + 2, making it an accepting run. Hence, w ∈ Lk. The case in
which w starts with br · a, for r ∈ Sk, is handled analogously.

As for the other direction, assume that there is an accepting run of Bk on
w. Then, the run either visits infinitely often s0 or sk+2. Since s0 has only a-
in-transitions, it follows that in the first case w has infinitely many a’s, thus
belonging to Lk. For the second case, note that a run visits the state sk+1, only
if there are natural numbers i and j such that i + j > 0 and Bk has read the
subword bik+j(k+1) since its last visit to the state s0. Since a run visits s0 only
at initialization or after an a is read, it follows that a word visits sk+2 only if it
starts with bi ·a or has a subword of the form a · bi ·a, for i ∈ Sk. Hence, w ∈ Lk.

⊓⊔

Next, we show that while Lk can be recognized by an NCW, every NCW rec-
ognizing Lk cannot take advantage of its non-determinism. Formally, we present
a DCW (Fig. 5) for Lk that has k2 − k + 2 states, and prove that an NCW
recognizing Lk needs at least that many states. For simplicity, we show that the
NCW must count up to th(k), resulting with at least k2 − k states, and do not
consider the two additional states of the DCW.

Theorem 5. For every k ≥ 1, the language Lk can be recognized by a DCW

with k2 − k + 2 states, and cannot be recognized by an NCW with fewer than

k2 − k states.

Proof. Consider the DCW Dk, appearing in Fig. 5. In the figure, a state si has
an a-transition to the state sth(k)+2 if and only if i ∈ Sk. We leave to the reader
the easy task of verifying that that L(Dk) = Lk.

We now turn to prove the lower bound. Assume by way of contradiction that
there is an NCW Ck with at most k2 − k − 1 states that recognizes Lk. The
word w = (b(k

2−k−1) · a)ω belongs to Lk since it has infinitely many a’s. Thus,
there is an accepting run r of Ck on w. Let t be a position such that rt′ ∈ α

for all t′ ≥ t. Let t′ ≥ t be the first position in which a occurs in w after t.
Then, between positions t′ + 1 and t′ + k2 − k, the run r is in α, making only
b-transitions. Since Ck has at most k2 − k − 1 states, it follows that there are
positions t1 and t2, with t

′ < t1 < t2 ≤ t′ + k2 − k such that rt1 = rt2 . Consider
now the word w′ = w1 · w2 · · ·wt1 · bω. On the one hand, w′ is accepted by Ck
via the run r′ = r0, r1, . . . , rt1 , (rt1+1, rt1+2, . . . , rt2)

ω. On the other hand, w′ has
only finitely many a’s, and by Theorem 3, it has no i consequent b’s followed by
an a, such that i ∈ Sk. Indeed, all the subwords of the form a · bi · a in w′ have
i = k2 − k − 1. Hence, w′ 6∈ Lk, which leads to a contradiction. ⊓⊔

12



Dk:

s1s2sth(k) si∈Sk
sth(k)+1

s0

sth(k)+2

· · ·· · · b

aa

b

a

a a

bb

b

a

a, b

b

Fig. 5. The DCW Dk recognizing Lk.

4.3 An Exponential Lower Bound

We now push the circumventing-counting idea to its limit, and use it in order
to describe a family of languages L2, L3, . . . such that for all k ≥ 2, an NBW
for Lk has O(k) states whereas an NCW for Lk requires at least k2k states.
As in the quadratic lower bound, the NCW has to bound the distance between
occurrences of an event. Now, however, the distance is exponential in k.

Let Σ = {0, 1, $,#}. The language Lk is going to be the union of a language
L′
k with the language (Σ∗ ·#)ω. Before we define L′

k formally, we describe the
intuition behind it. Note that the (Σ∗ · #)ω component of Lk is not NCW-
recognizable. Thus, one task of L′

k is to neutralize the non NCW-recognizability
of this component. We do this by letting L′

k contain all the words in (Σ∗ ·#)ω

that have a subword (0+1+$)h, for h > th(k), for some threshold th(k). As with
the quadratic lower bound, this would make it possible to replace the (Σ∗ ·#)ω

component by (Σ≤th(k) ·#)ω , which is NCW-realizable. The second task of L′
k

would be to accomplish the first task with an exponential threshold.
The language L′

k is going to fulfill its second task as follows. Consider a
word in Σω and a subword u ∈ (0 + 1 + $)∗ of it. The subword u is of the form
v0$v1$v2$v3 · · · , for vi ∈ (0+1)∗. Thus, u can be viewed as an attempt to encode
a binary k-bit cyclic counter in which two adjacent values are separated by $. For
example, when k = 3, a successful attempt might be 100$101$110$111$000. Each
subword in (0+1+$)∗ of length (k+1)2k must reach the value 1k or contain an
error (in its attempt to encode a counter). There are two types of errors. One type
is a “syntax error”, namely a value vi of length different from k. The second type
is an “improper-increase error”, namely a subword vi ·$·vi+1 ∈ (0+1)k ·$·(0+1)k

such that vi+1 is not the successor of vi in a correct binary encoding of a cyclic
k-bit counter. The language L′

k consists of all words that contain the value 1k

or an error, eventually followed by #.
We now define L′

k formally. For v, v′ ∈ (0 + 1)∗, we use not succk(v, v
′) to

indicate that v and v′ are in (0 + 1)k but v′ is not the successor of v in the
binary encoding of a k-bit counter. For example, not succ3(101, 111) holds, but
not succ3(101, 110) does not hold. We define the following languages over Σ.

13



– Sk = {$ · (0 + 1)m · $ : m < k} ∪ {(0 + 1)m : m > k},
– Ik = {v · $ · v′ : not succk(v, v

′)}, and
– L′

k = Σ∗ · (Sk ∪ Ik ∪ {1k}) ·Σ∗ ·# ·Σω.
Finally, we define Lk = L′

k ∪ (Σ∗ · #)ω. For example, taking k = 3, we have
that 010$011#110$111# · · · is in L3 since it is in L′

3 with a 111 subword, the
word 010$$011# · · · is in L3 since it is in L′

3 by a syntax error, the word
$010$010$# · · · is in L3 since it is in L′

3 by an improper-increase error, the
word (010$011#)ω is in L3 since it has infinitely many #’s, and the word
010$011#000$001$010#1ω is not in L3, as it has only finitely many #’s, it
does not contain an error, and while it does contain the subword 111, it does
not contain a subword 111 that is eventually followed by #.

Lemma 4. For every k ≥ 1, the language L′
k can be recognized by an NBW with

O(k) states and by an NCW with O(k) states.

Proof. We show that there is an NFW with O(k) states recognizing Sk∪Ik∪{1k}.
Completing the NFW to an NBW or an NCW for L′

k is straightforward. It is
easy to construct NFWs with O(k) states for Sk and for {1k}. An NFW with
O(k) states for Ik is fairly standard too (see, for example, [10]). The idea is that
if v′ is the successor of v in a binary k-bit cyclic counter, then v′ can be obtained
from v by flipping the bits of the 0 · 1∗ suffix of v, and leaving all other bits
unchanged (the only case in which v does not have a suffix in 0 · 1∗ is when
v ∈ 1∗, in which case all bits are flipped). For example, the successor of 1001 is
obtained by flipping the bits of the suffix 01, which results in 1010. Accordingly,
there is an improper-increase error in v · $ · v′ if there is at least one bit of v that
does not respect the above rule. An NFW can guess the location of this bit and
reveals the error by checking the bit located k + 1 bits after it, along with the
bits read in the suffix of v that starts in this bit. ⊓⊔

An immediate corollary of Lemma 4 is that Lk can be recognized by an NBW
with O(k) states. Next, we show that while Lk is NCW-recognizable, an NCW
for it must be exponentially larger.

Lemma 5. For every k ≥ 2, the language Lk is NCW-recognizable, and every

NCW recognizing Lk must have at least k2k states.

Proof. We first prove that Lk is NCW-recognizable. Let th(k) = (k + 1)2k.
Consider the language Bk = (Σ≤th(k) · #)ω. It is easy to see that Bk is NCW-
recognizable. We prove that Lk = L′

k ∪ Bk. Since, by Lemma 4, the language
L′
k is NCW-recognizable, it would follow that Lk is NCW-recognizable. Clearly,

Bk ⊆ (Σ∗ ·#)ω . Thus, L′
k ∪Bk ⊆ Lk, and we have to prove that Lk ⊆ L′

k ∪Bk.
For that, we prove that (Σ∗ ·#)ω ⊆ L′

k ∪Bk. Consider a word w ∈ (Σ∗ ·#)ω . If
w ∈ Bk, then we are done. Otherwise, w contains a subword u ∈ (0+1+$)h, for
h > th(k). Thus, either u does not properly encode a k-bit cyclic counter (that
is, it contains a syntactic or an improper-increase error) or u has the subword
1k. Hence, u ∈ Σ∗ · (Sk ∪ Ik ∪ {1k}) ·Σ∗. Since w ∈ (Σ∗ ·#)ω, it has infinitely
many occurrences of #’s. In particular, there is an occurrence of # after the
subword u. Thus, w ∈ L′

k, and we are done.

14



We now turn to prove the lower bound. Assume by way of contradiction that
there is an NCW Ck with acceptance set α and at most k2k − 1 states that
recognizes Lk. Consider the word w = (00 · · · 0$00 · · ·01$ · · ·$11 · · · 10#)ω, in
which the distance between two consequent #’s is d = (k+1)(2k− 1). Note that
for all k ≥ 2, we have that d > k2k. The word w has infinitely many #’s and it
therefore belongs to Lk. Thus, there is an accepting run r of Ck on w. Let t be
a position such that rt′ ∈ α for all t′ ≥ t. Let t0 ≥ t be the first position after t
such that wt0 = #. Since Ck has at most k2k − 1 states, there are two positions
t1 and t2, with t0 < t1 < t2 ≤ t0 + k2k, such that rt1 = rt2 .

Consider the word w′ = w1 ·w2 · · ·wt1 ·(wt1+1 · · ·wt2)
ω. The NCW Ck accepts

w′ with a run r′ that pumps r between the positions t1 and t2. Formally, r′ =
r0, r1, . . . , rt1 , (rt1+1, . . . , rt2)

ω. Note that since rt′ ∈ α for all t′ ≥ t, the run r′

is indeed accepting. We would get to a contradiction by proving that w′ 6∈ Lk.
Since t2 ≤ t0+k2

k and k2k < d, we have that wt1+1 · · ·wt2 has no occurrence
of #, thus w′ has no occurrences of # after position t0. Recall that Lk = L′

k ∪
(Σ∗ · #)ω. By the above, w′ 6∈ (Σ∗ · #)ω. Furthermore, since L′

k = Σ∗ · (Sk ∪
Ik ∪ {1k}) · Σ∗ · # · Σω, the fact w′ has no occurrences of # after position t0
implies that the only chance of w′ to be in Lk is to have a prefix of w1 · · ·wt0 in
Σ∗ · (Sk ∪ Ik ∪ {1k}) ·Σ∗ ·#. Such a prefix, however, does not exist. Indeed, all
the subwords in (0+ 1+$)∗ of w1 · · ·wt0 do not contain errors in their encoding
of a k-bit counter, nor they reach the value 1k. It follows that w 6∈ Lk, and we
are done. ⊓⊔

Lemmas 4 and 5 imply the desired exponential lower bound:

Theorem 6 ([3]). There is a family of languages L2, L3, . . ., over an alphabet

of size 4, such that for every k ≥ 2, the language Lk is NCW-recognizable, it

can be recognized by an NBW with O(k) states, and every NCW that recognizes

it has at least k2k states.

Combining the above lower bound with the upper bound in Theorem 1, we
can conclude with the following.7

Theorem 7 ([3]). The asymptotically tight bound for the state blow up in the

translation, when possible, of an NBW to an equivalent NCW is 2Θ(n).

5 Discussion

It is well known that nondeterministic automata are exponentially more succinct
than deterministic ones. The succinctness is robust and it applies to all known
classes of automata on finite or infinite objects. Restricting attention to nonde-
terministic automata makes the issue of succinctness more challenging, as now

7 Note that the lower and upper bounds are only asymptotically tight, leaving a gap
in the constants. This is because the NBW that recognizes Lk requires O(k) states
and not strictly k states.

15



all classes of automata may guess the future, and the question is whether cer-
tain acceptance conditions can use this feature better than others. For example,
translating a nondeterministic Rabin word automaton with n states and index
k to an NBW, results in an automaton with O(nk) states, whereas translating
a nondeterministic Streett automaton with n states and index k, results in an
NBW with O(n2k) states. The difference between the blow-ups in the case of
Rabin and Streett can be explained by viewing the acceptance condition as im-
posing additional nondeterminism. Indeed, simulating a Rabin automaton, an
NBW has to guess not only the accepting run, but also the pair 〈G,B〉 that
is going to be satisfied and the position after which no states in B are visited
(hence the O(k) factor in the blow up), whereas in a Streett automaton, the
simulating NBW has to guess, for each pair, the way in which it is going to be
satisfied (hence the O(2k) factor). This intuition is supported by matching lower
bounds [23]. Starting with a Büchi automaton, no such additional nondetermin-
ism hides in the acceptance condition, so one would not expect Büchi automata
to be more succinct than other nondeterministic automata. The challenge grows
with an acceptance condition like co-Büchi, whose expressive power is strictly
weaker, and thus not all languages are candidates for proving succinctness. The
exponential lower-bound described in Sect. 4 shows that the Büchi condition is
still exponentially more succinct than its dual co-Büchi condition. The explana-
tion to this succinctness is the ability of the Büchi condition to easily specify the
fact that some event P should repeat infinitely often. Languages that involve
such a specification may still be NCW-recognizable, as other components of the
language force the distance between successive occurrences of P to be bounded
by some fixed threshold 2k. While an NBW for the language does not have to
count to the threshold and can be of size O(k), an NCW for the language has
to count, which requires it to have at least 2k states.

Co-Büchi automata can be determinized with a 2O(n) blow up [16]. A 2O(n logn)

translation of NBW to DCW was known, but a matching lower bound was known
only for the translation of NBW to deterministic Rabin or Streett automata. As
detailed in [3], the improved 2O(n) translation of NBW to NCW described in
Sect. 3, also suggests an improved 2O(n) translation of NBW to DCW. Indeed,
since the exponential component of the constructed NCW is deterministic, then
applying the break-point subset construction of [16] on it does not involve an ad-
ditional exponential blow-up. In particular, this implies a Safraless and symbolic
translation of LTL formulas to DBW, when possible. Furthermore, by [4], one
cannot expect to do better than the breakpoint construction, making the trans-
lation of NBW to DCW [3] optimal. In addition, as detailed in [3], the translation
described in Sect. 3 has a one-sided error. Thus, when applied to an NBW that
is not NCW-recognizable, the constructed NCW contains the language of the
NBW. Accordingly, translating LTL formulas that are not DBW-recognizable to
a DBW, one gets a DBW that under-approximates the specification. For many
applications, and in particular synthesis, one can work with such an under-
approximating automaton, and need not worry about the specification being
DBW-recognizable.

16



References

1. Accellera: Accellera organization inc. http://www.accellera.org (2006)

2. Aminof, B., Kupferman, O., Lev, O.: On the relative succinctness of nondeter-
ministic Büchi and co-Büchi word automata. In: Proc. 15th Int. Conf. on Logic
for Programming Artificial Intelligence and Reasoning. Lecture Notes in Computer
Science, Vol. 5330. Springer (2008) 183–197

3. Boker, U., Kupferman, O.: Co-ing Büchi made tight and useful. In: Proc. 24th
IEEE Symp. on Logic in Computer Science. (2009)

4. Boker, U., Kupferman, O., Rosenberg, A.: Alternation removal in Büchi automata.
In: Proc. 37th Int. Colloq. on Automata, Languages, and Programming. (2010)

5. Büchi, J.: On a decision method in restricted second order arithmetic. In: Proc. Int.
Congress on Logic, Method, and Philosophy of Science. 1960. Stanford University
Press (1962) 1–12

6. Emerson, E., Jutla, C.: The complexity of tree automata and logics of programs.
In: Proc. 29th IEEE Symp. on Foundations of Computer Science. (1988) 328–337

7. Gentilini, R., Piazza, C., Policriti, A.: Computing strongly connected components
in a linear number of symbolic steps. In: 14th ACM-SIAM Symp. on Discrete
Algorithms. (2003) 573–582

8. Krishnan, S., Puri, A., Brayton, R.: Deterministic ω-automata vis-a-vis deter-
ministic Büchi automata. In: Algorithms and Computations. Lecture Notes in
Computer Science, Vol. 834. Springer (1994) 378–386

9. Kupferman, O.: Tightening the exchange rate beteen automata. In: Proc. 16th
Annual Conf. of the European Association for Computer Science Logic. Lecture
Notes in Computer Science, Vol. 4646. Springer (2007) 7–22

10. Kupferman, O., Lustig, Y., Vardi, M.: On locally checkable properties. In: Proc.
13th Int. Conf. on Logic for Programming Artificial Intelligence and Reasoning.
Lecture Notes in Computer Science, Vol. 4246. Springer (2006) 302–316

11. Kupferman, O., Morgenstern, G., Murano, A.: Typeness for ω-regular automata.
International Journal on the Foundations of Computer Science 17 (2006) 869–884

12. Kupferman, O., Vardi, M.: From linear time to branching time. ACM Transactions
on Computational Logic 6 (2005) 273–294

13. Kurshan, R.: Computer Aided Verification of Coordinating Processes. Princeton
Univ. Press (1994)

14. Landweber, L.: Decision problems for ω–automata. Mathematical Systems Theory
3 (1969) 376–384

15. McNaughton, R.: Testing and generating infinite sequences by a finite automaton.
Information and Control 9 (1966) 521–530

16. Miyano, S., Hayashi, T.: Alternating finite automata on ω-words. Theoretical
Computer Science 32 (1984) 321–330

17. Morgenstern, A., Schneider, K.: From LTL to symbolically represented determin-
istic automata. In: Proc. 9th Int. Conf. on Verification, Model Checking, and
Abstract Interpretation. Lecture Notes in Computer Science, Vol. 4905. (2008)
279–293

18. Piterman, N.: From nondeterministic Büchi and Streett automata to deterministic
parity automata. In: Proc. 21st IEEE Symp. on Logic in Computer Science. IEEE
press (2006) 255–264

19. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: Proc. 16th ACM
Symp. on Principles of Programming Languages. (1989) 179–190

17



20. Rabin, M.: Decidability of second order theories and automata on infinite trees.
Transaction of the AMS 141 (1969) 1–35

21. Ravi, K., Bloem, R., Somenzi, F.: A comparative study of symbolic algorithms
for the computation of fair cycles. In: Proc. 3rd Int. Conf. on Formal Methods in
Computer-Aided Design. Lecture Notes in Computer Science, Vol. 1954. Springer
(2000) 143–160

22. Safra, S.: On the complexity of ω-automata. In: Proc. 29th IEEE Symp. on
Foundations of Computer Science. (1988) 319–327

23. Safra, S., Vardi, M.: On ω-automata and temporal logic. In: Proc. 21st ACM
Symp. on Theory of Computing. (1989) 127–137

24. Street, R., Emerson, E.: An elementary decision procedure for the µ-calculus.
In: Proc. 11th Int. Colloq. on Automata, Languages, and Programming. Vol. 172.
Springer (1984) 465–472

25. Vardi, M., Wolper, P.: Automata-theoretic techniques for modal logics of programs.
Journal of Computer and Systems Science 32 (1986) 182–221

26. Vardi, M., Wolper, P.: Reasoning about infinite computations. Information and
Computation 115 (1994) 1–37

27. Wolper, P., Vardi, M., Sistla, A.: Reasoning about infinite computation paths. In:
Proc. 24th IEEE Symp. on Foundations of Computer Science. (1983) 185–194

28. Yan, Q.: Lower bounds for complementation of ω-automata via the full automata
technique. In: Proc. 33rd Int. Colloq. on Automata, Languages, and Programming.
Lecture Notes in Computer Science, Vol. 4052. Springer (2006) 589–600

18


