
Logical Methods in Computer Science
Vol. 14(1:15)2018, pp. 1–21
https://lmcs.episciences.org/

Submitted Dec. 29, 2016
Published Feb. 14, 2018

FAMILIES OF DFAS AS ACCEPTORS OF ω-REGULAR LANGUAGES ∗

DANA ANGLUIN, UDI BOKER, AND DANA FISMAN

Yale University, New Haven, CT, USA

Interdisciplinary Center (IDC), Herzliya, Israel

Ben-Gurion University, Beer-Sheva, Israel

Abstract. Families of dfas (fdfas) provide an alternative formalism for recognizing ω-
regular languages. The motivation for introducing them was a desired correlation between
the automaton states and right congruence relations, in a manner similar to the Myhill-
Nerode theorem for regular languages. This correlation is beneficial for learning algorithms,
and indeed it was recently shown that ω-regular languages can be learned from membership
and equivalence queries, using fdfas as the acceptors.

In this paper, we look into the question of how suitable fdfas are for defining ω-regular
languages. Specifically, we look into the complexity of performing Boolean operations,
such as complementation and intersection, on fdfas, the complexity of solving decision
problems, such as emptiness and language containment, and the succinctness of fdfas
compared to standard deterministic and nondeterministic ω-automata.

We show that fdfas enjoy the benefits of deterministic automata with respect to Boolean
operations and decision problems. Namely, they can all be performed in nondeterministic
logarithmic space. We provide polynomial translations of deterministic Büchi and co-Büchi
automata to fdfas and of fdfas to nondeterministic Büchi automata (nbas). We show
that translation of an nba to an fdfa may involve an exponential blowup. Last, we show
that fdfas are more succinct than deterministic parity automata (dpas) in the sense that
translating a dpa to an fdfa can always be done with only a polynomial increase, yet the
other direction involves an inevitable exponential blowup in the worst case.

1. Introduction

The theory of finite-state automata processing infinite words was developed in the early
sixties, starting with Büchi [Büc60] and Muller [Mul63], and motivated by problems in logic
and switching theory. Today, automata for infinite words are extensively used in verification
and synthesis of reactive systems, such as operating systems and communication protocols.

An automaton processing finite words makes its decision according to the last visited
state. On infinite words, Büchi defined that a run is accepting if it visits a designated set of

Key words and phrases: Finite automata, Omega-Regular Languages.
∗ The present article extends [ABF16].

This research was supported by the United States - Israel Binational Science Foundation (BSF) grant
2016239 and the Israel Science Foundation (ISF) grant 1373/16.

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.23638/LMCS-14(1:15)2018
c© D. Angluin, U. Boker, and D. Fisman
CC© Creative Commons

https://lmcs.episciences.org/
http://creativecommons.org/about/licenses

2 D. ANGLUIN, U. BOKER, AND D. FISMAN

states infinitely often. Since then several other accepting conditions were defined, giving rise
to various ω-automata, among which are Muller, Rabin, Streett and parity automata.

The theory of ω-regular languages is more involved than that of finite words. This
was first evidenced by Büchi’s observation that nondeterministic Büchi automata are more
expressive than their deterministic counterpart. While for some types of ω-automata the
nondeterministic and deterministic variants have the same expressive power, none of them
possesses all the nice qualities of acceptors for finite words. In particular, none has a
corresponding Myhill-Nerode theorem [Ner58], i.e. a direct correlation between the states of
the automaton and the equivalence classes corresponding to the canonical right congruence
of the recognized language.

The absence of a Myhill-Nerode like property in ω-automata has been a major drawback
in obtaining learning algorithms for ω-regular languages, a question that has received
much attention lately due to applications in verification and synthesis, such as black-box
checking [PVY02], assume-guarantee reasoning [AvMN05, PGB+08, CCF+10, FKP11], error
localization [WN05, CCK+15], regular model checking [VSVA05, NJ13], finding security
bugs [RMSM09, CPPdR14, FJV14], programming networks [RMSM09, YAL14] and more.
The reason is that learning algorithms typically build on this correspondence between the
automaton and the right congruence.

Recently, several algorithms for learning an unknown ω-regular language were proposed,
all using non-conventional acceptors. One uses a reduction due to [CNP93] named L$-
automata of ω-regular languages to regular languages [FCTW08], and the others use a
representation termed families of dfas [AF14, LCZL16]. Both representations are founded
on the following well known property of ω-regular languages: two ω-regular languages are
equivalent iff they agree on the set of ultimately periodic words. An ultimately periodic word
uvω, where u ∈ Σ∗ and v ∈ Σ+, can be represented as a pair of finite words (u, v). Both
L$-automata and families of dfas process such pairs and interpret them as the corresponding
ultimately periodic words. Families of dfas have been shown to be up to exponentially more
succinct than L$-automata [AF14].

A family of dfas (fdfa) is composed of a leading automaton Q with no accepting
states and for each state q of Q, a progress dfa Pq. Intuitively, the leading automaton is
responsible for processing the non-periodic part u, and depending on the state q reached
when Q terminated processing u, the respective progress dfa Pq processes the periodic part
v, and determines whether the pair (u, v), which corresponds to uvω, is accepted. (The
exact definition is more subtle and is provided in Section 3.) If the leading automaton has n
states and the size of the maximal progress dfa is k, we say that the fdfa is of size (n, k).
An earlier definition of fdfas, given in [Kla94], provided a machine model for the families
of right congruences of [MS97].1 They were redefined in [AF14], where their acceptance
criterion was adjusted, and their size was reduced by up to a quadratic factor. We follow
the definition of [AF14].

In order for an fdfa to properly characterize an ω-regular language, it must satisfy the
saturation property: considering two pairs (u, v) and (u′, v′), if uvω = u′v′ω then either both
(u, v) and (u′, v′) are accepted or both are rejected (cf. [CNP93, Saë90]). Saturated fdfas

1Another related formalism is of Wilke algebras [Wil91, Wil93], which are two-sorted algebras equipped
with several operations. An ω-language over Σω is ω-regular if and only if there exists a two-sorted morphism
from Σ∞ into a finite Wilke structure [Wil91]. A central difference between the FDFA theory and the
algebraic theory of recognition by monoids, semigroups, ω-semigroups, and Wilke structures is that the
former relates to right-congruences, while the latter is based on two-sided congruences.

FAMILIES OF DFAS AS ACCEPTORS OF ω-REGULAR LANGUAGES ∗ 3

are shown to exactly characterize the set of ω-regular languages. Saturation is a semantic
property, and the check of whether a given fdfa is saturated is shown to be in PSPACE.
Luckily, the fdfas that result from the learning algorithm of [AF14] are guaranteed to be
saturated.

Saturated fdfas bring an interesting potential – they have a Myhill-Nerode like property,
and while they are “mostly” deterministic, a nondeterministic aspect is hidden in the
separation of the prefix and period parts of an ultimately periodic infinite word. This gives
rise to the natural questions of how “dominant” are the determinism and nondeterminism
in fdfas, and how “good” are they for representing ω-regular languages. These abstract
questions translate to concrete questions that concern the succinctness of fdfas and the
complexity of solving their decision problems, as these measures play a key role in the
usefulness of applications built on top of them.

Our purpose in this paper is to analyze the fdfa formalism and answer these questions.
Specifically, we ask: What is the complexity of performing the Boolean operations of
complementation, union, and intersection on saturated fdfas? What is the complexity
of solving the decision problems of membership, emptiness, universality, equality, and
language containment for saturated fdfas? How succinct are saturated fdfas, compared to
deterministic and nondeterministic ω-automata?

We show that saturated fdfas enjoy the benefits of deterministic automata with respect
to Boolean operations and decision functions. Namely, the Boolean operations can be
performed in logarithmic space, and the decision problems can be solved in nondeterministic
logarithmic space. The constructions and algorithms that we use extend their counterparts
on standard dfas. In particular, complementation of saturated fdfas can be obtained on the
same structure, and union and intersection is done on a product of the two given structures.
The correctness proof of the latter is a bit subtle.

As for the succinctness, which turns out to be more involved, we show that saturated
fdfas properly lie in between deterministic and nondeterministic ω-automata. We pro-
vide polynomial translations from deterministic ω-automata to fdfas and from fdfas to
nondeterministic ω-automata, and show that an exponential state blowup in the opposite
directions is inevitable in the worst case.

Specifically, a saturated fdfa of size (n, k) can always be transformed into an equivalent
nondeterministic Büchi automaton (nba) with O(n2k3) states. (Recall that an fdfa of size
(n, k) can have up to n+nk states in total, having n states in the leading automaton and up
to k states in each of the n progress automata.) As for the other direction, transforming an

nba with n states to an equivalent fdfa is shown to be in 2Θ(n logn). This is not surprising
since, as shown by Michel [Mic88], complementing an nba involves a 2Ω(n logn) state blowup,
while fdfa complementation requires no state blowup.

Considering deterministic ω-automata, a Büchi or co-Büchi automaton (dba or dca)
with n states can be transformed into an equivalent fdfa of size (n, 2n), and a deterministic
parity automaton (dpa) with n states and k colors can be transformed into an equivalent
fdfa of size (n, kn). As for the other direction, since dba and dca do not recognize all
the ω-regular languages, while saturated fdfas do, a transformation from an fdfa to a
dba or dca need not exist. Comparing fdfas to dpas, which do recognize all ω-regular
languages, we get that fdfas can be exponentially more succinct: We show a family of
languages {Ln}n≥1, such that for every n, there exists an fdfa of size (n+ 1, n2) for Ln, but
any dpa recognizing Ln must have at least 2n−1 states. (A deterministic Rabin or Streett

automaton for Ln is also shown to be exponential in n, requiring at least 2
n
2 states.)

4 D. ANGLUIN, U. BOKER, AND D. FISMAN

2. Preliminaries

An alphabet Σ is a finite set of symbols. The set of finite words over Σ is denoted by Σ∗,
and the set of infinite words, termed ω-words, over Σ is denoted by Σω. As usual, we use x∗,
x+, and xω to denote finite, non-empty finite, and infinite concatenations of x, respectively,
where x can be a symbol or a finite word. We use ε for the empty word. An infinite word w
is ultimately periodic if there are two finite words u ∈ Σ∗ and v ∈ Σ+, such that w = uvω.
A language is a set of finite words, that is, a subset of Σ∗, while an ω-language is a set of
ω-words, that is, a subset of Σω. For natural numbers i and j and a word w, we use [i..j] for
the set {i, i+ 1, . . . , j}, w[i] for the i-th letter of w, and w[i..j] for the subword of w starting
at the i-th letter and ending at the j-th letter, inclusive.

An automaton is a tuple A = 〈Σ, Q, ι, δ〉 consisting of an alphabet Σ, a finite set Q
of states, an initial state ι ∈ Q, and a transition function δ : Q × Σ → 2Q. A run of an
automaton on a finite word v = a1a2 . . . an is a sequence of states q0, q1, . . . , qn such that
q0 = ι, and for each i ≥ 0, qi+1 ∈ δ(qi, ai). A run on an infinite word is defined similarly
and results in an infinite sequence of states. The transition function is naturally extended
to a function δ : Q× Σ∗ → 2Q, by defining δ(q, ε) = {q}, and δ(q, av) = ∪p∈δ(q,a)δ(p, v) for
q ∈ Q, a ∈ Σ, and v ∈ Σ∗. We often use A(v) as a shorthand for δ(ι, v) and |A| for the
number of states in Q. We use Aq to denote the automaton 〈Σ, Q, q, δ〉 obtained from A
by replacing the initial state with q. We say that A is deterministic if |δ(q, a)| ≤ 1 and
complete if |δ(q, a)| ≥ 1, for every q ∈ Q and a ∈ Σ. For simplicity, we consider all automata
to be complete. (As is known, every automaton can be linearly translated to an equivalent
complete automaton, with respect to the relevant equivalence notion, as defined below.)

By augmenting an automaton with an acceptance condition α, thereby obtaining a tuple
〈Σ, Q, ι, δ, α〉, we get an acceptor, a machine that accepts some words and rejects others.
An acceptor accepts a word if at least one of the runs on that word is accepting. For finite
words the acceptance condition is a set F ⊆ Q of accepting states, and a run on a word v
is accepting if it ends in an accepting state, i.e., if δ(ι, v) contains an element of F . For
infinite words, there are various acceptance conditions in the literature; here we mention
three: Büchi, co-Büchi, and parity.2 The Büchi and co-Büchi acceptance conditions are also
a set F ⊆ Q. A run of a Büchi automaton is accepting if it visits F infinitely often. A
run of a co-Büchi automaton is accepting if it visits F only finitely many times. A parity
acceptance condition is a map κ : Q→ [1..k] assigning each state a color (or rank). A run is
accepting if the minimal color visited infinitely often is odd. We use JAK to denote the set
of words accepted by a given acceptor A, and say that A accepts or recognizes JAK. Two
acceptors A and B are equivalent if JAK = JBK.

We use three letter acronyms to describe acceptors, where the first letter is either d or
n depending on whether the automaton is deterministic or nondeterministic, respectively.
The second letter is one of {f,b,c,p}: f if this is an acceptor over finite words, b, c, or p if
it is an acceptor over infinite words with Büchi, co-Büchi, or parity acceptance condition,
respectively. The third letter is always a for an acceptor (or automaton).

For finite words, nfa and dfa have the same expressive power. A language is said to be
regular if it is accepted by an nfa. For infinite words, the theory is more involved. While

2There are other acceptance conditions in the literature, the most known of which are weak, Rabin, Streett,
and Muller. The three conditions that we concentrate on are the most used ones; Büchi and co-Büchi due to
their simplicity, and parity due to being the simplest for which the deterministic variant is strong enough to
express all ω-regular languages.

FAMILIES OF DFAS AS ACCEPTORS OF ω-REGULAR LANGUAGES ∗ 5

npas, dpas, and nbas have the same expressive power, dbas, ncas, and dcas are strictly
weaker than nbas. An ω-language is said to be ω-regular if it is accepted by an nba.

3. Families of DFAs (FDFAs)

It is well known that two ω-regular languages are equivalent if they agree on the set of
ultimately periodic words (this is a consequence of McNaughton’s theorem [McN66]). An
ultimately periodic word uvω, where u ∈ Σ∗ and v ∈ Σ+, is usually represented by the pair
(u, v). A canonical representation of an ω-regular language can thus consider only ultimately
periodic words, namely define a language of pairs (u, v) ∈ Σ∗×Σ+. Such a representation F
should satisfy the saturation property: considering two pairs (u, v) and (u′, v′), if uvω = u′v′ω

then either both (u, v) and (u′, v′) are accepted by F or both are rejected by F .
A family of dfas (fdfa) accepts such pairs (u, v) of finite words. Intuitively, it consists

of a deterministic leading automaton Q with no acceptance condition that runs on the
prefix-word u, and for each state q of Q, a progress automaton Pq, which is a dfa that runs
on the period-word v.

A straightforward definition of acceptance for a pair (u, v), could have been that the run
of the leading automaton Q on u ends at some state q, and the run of the progress automaton
Pq on v is accepting. This goes along the lines of L$-automata [CNP93]. However, such an
acceptance definition does not fit well the saturation requirement, and might enforce very
large automata [AF14]. The intuitive reason is that every progress automaton might need
to handle the period-words of all prefix-words.

To better fit the saturation requirement, the acceptance condition of an fdfa is defined
with respect to a normalization of the input pair (u, v). The normalization is a new
pair (x, y), such that xyω = uvω, and in addition, the run of the leading automaton Q
on xyi ends at the same state for every natural number i. Over the normalized pair
(x, y), the acceptance condition follows the straightforward approach discussed above. This
normalization resembles the implicit flexibility in the acceptance conditions of ω-automata,
such as the Büchi condition, and allows saturated fdfas to be up to exponentially more
succinct than L$-automata [AF14].

Below, we formally define an fdfa, the normalization of an input pair (u, v), and the
acceptance condition. We shall use Σ∗+ as a shorthand for Σ∗ × Σ+, whereby the input to
an fdfa is a pair (u, v) ∈ Σ∗+.

Definition 3.1 (A family of dfas (fdfa)).3

• A family of dfas (fdfa) is a pair (Q,P), where Q = (Σ, Q, ι, δ) is a deterministic leading
automaton, and P is a set of |Q| dfas, including for each state q ∈ Q, a progress dfa
Pq = (Σ, Pq, ιq, δq, Fq).
• Given a pair (u, v) ∈ Σ∗+ and an automaton A, the normalization of (u, v) w.r.t A is

the pair (x, y) ∈ Σ∗+, such that x = uvi, y = vj , and i ≥ 0, j ≥ 1 are the smallest
numbers for which A(uvi) = A(uvi+j). (By “smallest numbers” (i, j), one can consider
lexicographic order, having the smallest i, and for it the smallest j. By Fine and Wilf’s

3The fdfas defined here follow the definition in [AF14], which is a little different from the definition
of fdfas in [Kla94]; the latter provide a machine model for the families of right congruences introduced
in [MS97]. The main differences between the two definitions are: i) In [Kla94], a pair (u, v) is accepted by an
fdfa F = (Q,P) if there is some factorization (x, y) of (u, v), such that Q(x) = q and Pq accepts y; and
ii) in [Kla94], the fdfa F should also satisfy the constraint that for all words u ∈ Σ∗ and v, v′ ∈ Σ+, if
PQ(u)(v) = PQ(u)(v

′) then Q(uv) = Q(uv′).

6 D. ANGLUIN, U. BOKER, AND D. FISMAN

U : l r

b

a

a, b

PUl :

a, b

PUr :

a

b

a, b
S : l r

a

b

b

a

PSl :

a

b

a, b

PSr :

b

a

a, b

Figure 1: Left: an unsaturated fdfa with the leading automaton U and progress dfas PUl
and PUr . Right: a saturated fdfa with the leading automaton S and progress
dfas PSl and PSr .

theorem, however, there is no ambiguity by just requiring “smallest numbers”. Notice
that since we consider complete automata, such a unique pair (x, y) is indeed guaranteed.)
• Let F = (Q,P) be an fdfa, (u, v) ∈ Σ∗+, and (x, y) ∈ Σ∗+ the normalization of (u, v)

w.r.t Q. We say that (u, v) is accepted by F iff Q(x) = q for some state q of Q and Pq(y)
is an accepting state of Pq.
• We use JFK to denote the set of pairs accepted by F .
• We define the size of F , denoted by |F|, as the pair (|Q|,max{|Pq|}q∈Q).
• An fdfa F is saturated if for every two pairs (u, v) and (u′, v′) such that uvω = u′v′ω,

either both (u, v) and (u′, v′) are in JFK or both are not in JFK.

A saturated fdfa can be used to characterize an ω-regular language (see Theorem 5.2),
while an unsaturated fdfa cannot.

An unsaturated fdfa is depicted in Figure 1 on the left. Consider the pairs (b, a) and
(ba, aa). The former is normalized into (b, aa), as the run of the leading automaton U on
“b” reaches the state l, and then when U iterates on “a”, the first state to be revisited is l,
which happens after two iterations. The latter is normalized into (ba, aa), namely it was
already normalized. Now, (b, a) is accepted since in the run on its normalization (b, aa), U
reaches the state l when running on “b”, and the progress automaton PUl accepts “aa”. On
the other hand, (ba, aa) is not accepted since the run of U on “ba” reaches the state r, and
the progress automaton PUr does not accept “aa”. Yet, baω = ba(aa)ω, so the fdfa should
have either accepted or rejected both (b, a) and (ba, aa), were it saturated, which is not the
case.

A saturated fdfa is depicted in Figure 1 on the right. It accepts pairs of the forms
(Σ∗, a+) and (Σ∗, b+), and characterizes the ω-regular language (a+ b)∗(aω + bω) of words
in which there are eventually only a’s or only b’s.

4. Boolean Operations and Decision Procedures

We provide below algorithms for performing the Boolean operations of complementation,
union, and intersection on saturated fdfas, and deciding the basic questions on them, such
as emptiness, universality, and language containment. All of these algorithms can be done
in nondeterministic logarithmic space, taking advantage of the partial deterministic nature

FAMILIES OF DFAS AS ACCEPTORS OF ω-REGULAR LANGUAGES ∗ 7

of fdfas.4 We conclude the section with the decision problem of whether an arbitrary fdfa
is saturated, showing that it can be resolved in polynomial space.

Boolean operations. Saturated fdfas are closed under Boolean operations as a consequence
of Theorem 5.2, which shows that they characterize exactly the set of ω-regular languages.
We provide below explicit algorithms for these operations, showing that they can be done
effectively.

Complementation of an fdfa is simply done by switching between accepting and
non-accepting states in the progress automata, as is done with dfas.

Theorem 4.1. Let F be an fdfa. There is a constant-space algorithm to obtain an fdfa
Fc, such that JFcK = Σ∗+ \ JFK, |Fc| = |F|, and Fc is saturated iff F is.

Proof. Let F = (Q,P), where for each state q of Q, P has the dfa Pq = (Σ, Pq, ιq, δq, Fq).
We define Fc to be the fdfa (Q,Pc), where for each state q of Q, Pc has the dfa Pcq =
(Σ, Pq, ιq, δq, Pq \ Fq). We claim that Fc recognizes the complement language of F . Indeed,
let (u, v) ∈ Σ∗+ and (x, y) its normalization with respect to Q. Then (u, v) ∈ JFK iff
y ∈ JPQ(x)K. Thus (u, v) /∈ JFK iff y /∈ JPQ(x)K iff y ∈ JPcQ(x)K iff (u, v) ∈ JFcK.

Since F is saturated, so is Fc, as for all pairs (u, v) and (u′, v′) such that uvω = u′v′ω,
F either accepts or rejects them both, implying that Fc either rejects or accepts them both,
respectively.

Union and intersection of saturated fdfas also resemble the case of dfas, and are done
by taking the product of the leading automata and each pair of progress automata. Yet,
the correctness proof is a bit subtle, and relies on the following lemma, which shows that
for a normalized pair (x, y), the period-word y can be manipulated in a certain way, while
retaining normalization.

Lemma 4.2. Let Q be an automaton, and let (x, y) be the normalization of some (u, v) ∈ Σ∗+

w.r.t. Q. Then for every i ≥ 0, j ≥ 1 and finite words y′, y′′ such that y = y′y′′, we have
that (xyiy′, (y′′y′)j) is the normalization of itself w.r.t. Q.

Proof. Let x1 = xyiy′ and y1 = (y′′y′)j . Since (x, y) is normalized w.r.t. Q, we know that
the run of Q on xyω is of the form q0, q1, . . . , qk−1, (qk, qk+1, qk+2, . . . , qm)ω, where |x| = k
and |y| = (m − k) + 1. As xyω = x1y

ω
1 , the run of Q on x1y

ω
1 is identical. Since x is a

prefix of x1, the position |x1| lies within the repeated period, implying that |x1| is the first
position, from |x1| onwards, that is repeated along the aforementioned run. Since y1 is a
cyclic repetition of y, and Q loops back over y, it also loops back over y1. Thus (x1, y1) is
the normalization of itself w.r.t. Q.

4Another model that lies in between deterministic and nondeterministic automata are “semi-deterministic
Büchi automata” [VW86], which are Büchi automata that are deterministic in the limit: from every
accepting state onward, their behaviour is deterministic. Yet, as opposed to fdfas, complementation of
semi-deterministic Büchi automata might involve an exponential state blowup [BHS+16].

8 D. ANGLUIN, U. BOKER, AND D. FISMAN

We continue with the union and intersection of saturated fdfas.

Theorem 4.3. Let F1 and F2 be saturated fdfas of size (n1, k1) and (n2, k2), respec-
tively. There exist logarithmic-space algorithms to obtain saturated fdfas H and H′ of size
(n1n2, k1k2), such that JHK = JF1K ∩ JF2K and JH′K = JF1K ∪ JF2K.

Proof. The constructions of the union and intersection of fdfas are similar, only differing
by the accepting states. We shall thus describe them together.

Construction. Given two automataA1 andA2, whereAi = (Σ, Ai, ιi, δi), we denote byA1×A2

the product automaton (Σ, A1×A2, (ι1, ι2), δ×), where for every σ ∈ Σ, δ×((q1, q2), σ) =
(δ(q1, σ), δ(q2, σ)).

Given two dfas D1 = (A1, F1) and D2 = (A2, F2), over the automata A1 and A2, and
with the accepting states F1 and F2, respectively, we define the dfas D1 ⊗D2 and D1 ⊕D2

as follows:

• D1 ⊗D2 = (A1×A2, F1×F2)
• D1 ⊕D2 = (A1×A2, F1×A2 ∪A1×F2)

Given two sets of dfas P1 and P2, we define the sets of dfas P1 ⊗ P2 and P1 ⊕ P2 as
follows:

• P1 ⊗P2 = {D1 ⊗D2 | D1 ∈ P1 and D2 ∈ P2}
• P1 ⊕P2 = {D1 ⊕D2 | D1 ∈ P1 and D2 ∈ P2}
Given saturated fdfas F1 = (Q1,P1) and F2 = (Q2,P2), we claim that H = (Q1×Q2,P1⊗
P2) and H′ = (Q1 ×Q2,P1 ⊕P2) are saturated fdfas that recognize the intersection and
union of JF1K and JF2K, respectively.

Notice that the number of states in H and H′ is quadratic in the number of states in F1

and F2, yet the algorithm can generate the representation of H and H′ in space logarithmic
in the size of F1 and F2: It sequentially traverses the states of Q1, and for each of its states,
it sequentially traverses the states of Q2. Thus, it should only store the currently traversed
states in Q1 and Q2, where each of them requires a storage space of size logarithmic in the
number of states in Q1 and Q2, respectively. The same holds for generating the product of
P1 and P2.

Correctness . Consider a pair (u, v) ∈ Σ∗+. Let (x1, y1) and (x2, y2) be its normalization with
respect to Q1 and Q2, respectively, where x1 = uvi1 , y1 = vj1 , x2 = uvi2 , and y2 = vj2 . Let
i = max(i1, i2) and j be the least common multiple of (j1, j2). Define x = uvi and y = vj .

Observe that the normalization of (u, v) with respect to Q1×Q2 is (x, y): i) The equality
Q1×Q2(x) = Q1×Q2(xy) follows from taking i to be bigger than both i1 and i2, which
guarantees that further concatenations of v will be along a cycle w.r.t. both Q1 and Q2, and
taking j to be multiple of both j1 and j2, which guarantees that both Q1 and Q2 complete
a cycle along y. ii) The minimality of i follows from the fact that it is equal to either i1 or
i2, as a smaller number will contradict the minimality of either i1 or i2, and the minimality
of j follows from the fact that it is the minimal number divided by both j1 and j2, as a
number not divided by one of them will not allow either Q1 or Q2 to complete a cycle.

We have Q1×Q2 (xy) = Q1×Q2 (x) = (Q1(x),Q2(x)). Since xyω = x1y
ω
1 and F1 is

saturated, we get that (x, y) ∈ JF1K iff (x1, y1) ∈ JF1K. Since the pair (x, y) satisfies the
requirements of Lemma 4.2 w.r.t. (x1, y1) and Q1, it follows that (x, y) is a normalization of
itself w.r.t. Q1. Thus, y ∈ PQ1(x) iff y1 ∈ PQ1(x1). Analogously, y ∈ PQ2(x) iff y2 ∈ PQ2(x2).

FAMILIES OF DFAS AS ACCEPTORS OF ω-REGULAR LANGUAGES ∗ 9

Hence, (u, v) ∈ JF1K ∩ JF2K iff (y1 ∈ PQ1(x1) and y2 ∈ PQ2(x2)) iff y ∈ PQ1(x) ⊗ PQ2(x)

iff (u, v) ∈ H. Similarly, (u, v) ∈ JF1K ∪ JF2K iff (y1 ∈ PQ1(x1) or y2 ∈ PQ2(x2)) iff y ∈
PQ1(x) ⊕ PQ2(x) iff (u, v) ∈ H′.

The saturation of H and H′ directly follows from the above proof of the languages
they recognize: consider two pairs (u, v) and (u′, v′), such that uvω = u′v′ω. Then, by the
saturation of F1 and F2, both pairs either belong, or not, to each of JF1K and JF2K. Hence,
both pairs belong, or not, to each of JHK = JF1K ∩ JF2K and JH′K = JF1K ∪ JF2K.

Decision procedures. All of the basic decision problems can be resolved in nondeterministic
logarithmic space, using the Boolean operations above and corresponding decision algorithms
for dfas.

The first decision question to consider is that of membership: given a pair (u, v) and
an fdfa F = (Q,P), does F accept (u, v)? The question is answered by normalizing (u, v)
into a pair (x, y) and evaluating the runs of Q over x and of PQ(x) over y. A normalized
pair is determined by traversing along Q, making up to |Q| repetitions of v. Notice that
memory wise, x and y only require a logarithmic amount of space, as they are of the form
x = uvi and y = vj , where the representation of i and j is bounded by log |Q|. The overall
logarithmic-space solution follows from the complexity of algorithms for deterministically
traversing along an automaton.

Proposition 4.4. Given a pair (u, v) ∈ Σ∗+ and an fdfa F of size (n, k), the membership
question, of whether (u, v) ∈ JFK, can be resolved in deterministic space of O(log n+ log k).

The next questions to consider are those of emptiness and universality, namely given an
fdfa F = (Q,P), whether JFK = ∅, and whether JFK = Σ∗+, respectively. Notice that the
universality problem is equivalent to the emptiness problem over the complement of F . For
nondeterministic automata, the complement automaton might be exponentially larger than
the original one, making the universality problem much harder than the emptiness problem.
Luckily, fdfa complementation is done in constant space, as is the case with deterministic
automata, making the emptiness and universality problems equally easy.

The emptiness problem for an fdfa (Q,P) cannot be resolved by only checking whether
there is a nonempty progress automaton in P, since it might be that the accepted period v
is not part of any normalized pair. Yet, the existence of a prefix-word x and a period-word
y, such that Q(x) = Q(xy) and PQ(x) accepts y is a sufficient and necessary criterion for
the nonemptiness of F . This can be tested in NLOGSPACE. Hardness in NLOGSPACE
follows by a reduction from graph reachability [Jon75].

Theorem 4.5. Emptiness and universality for fdfas are NLOGSPACE-complete.

Proof. An fdfa F = (Q,P) is not empty iff there exists a pair (u, v) ∈ Σ∗+, whose
normalization is some pair (x, y), such that PQ(x) accepts y. By Lemma 4.2, a normalized
pair is a normalization of itself, implying that a sufficient and necessary criterion for the
nonemptiness of F is the existence of a pair (x, y), such that Q(x) = Q(xy) and PQ(x)

accepts y.
We can nondeterministically find such a pair (x, y) in logarithmic space by guessing x

and y (a single letter at each step), and traversing along Q and PQ(x) [GJ79].
Hardness in NLOGSPACE follows by a reduction from graph reachability [Jon75], taking

an fdfa whose leading automaton has a single state.

10 D. ANGLUIN, U. BOKER, AND D. FISMAN

As fdfa complementation is done in constant space (Theorem 4.1), the universality
problem has the same space complexity.

The last decision questions we handle are those of equality and containment, namely
given saturated fdfas F and F ′, whether JFK = JF ′K and whether JFK ⊆ JF ′K, respec-
tively. Equality reduces to containment, as JFK = JF ′K iff JFK ⊆ JF ′K and JF ′K ⊆ JFK.
Containment can be resolved by intersection, complementation, and emptiness check, as
JFK ⊆ JF ′K iff JFK ∩ JF ′Kc = ∅. Hence, by Theorems 4.1, 4.3, and 4.5, these problems are
NLOGSPACE-complete. Note that NLOGSPACE hardness immediately follows by reduction
from the emptiness problem, which asks whether JFK = ∅. The complexity for equality and
containment is easily derived from that of emptiness, intersection and complementation.

Proposition 4.6. Equality and containment for saturated fdfas are NLOGSPACE-complete.

Saturation check. All of the operations and decision problems above assumed that the given
fdfas are saturated. This is indeed the case when learning fdfas via the algorithm of
[AF14], and when translating ω-automata to fdfas (see Section 5). We show below that
the decision problem of whether an arbitrary fdfa is saturated is in PSPACE. We leave the
question of whether it is PSPACE-complete open.

Theorem 4.7. The problem of deciding whether a given fdfa is saturated is in PSPACE.

Proof. Let F = (Q,P) be an fdfa of size (n, k). We first show that if F is unsaturated
then there exist words u, v′, v′′ such that |u| ≤ n and |v′|, |v′′| ≤ nnk2k, and non-negative
integers l, r ≤ k such that (u, (v′v′′)l) ∈ JFK while (uv′, (v′′v′)r) /∈ JFK.

If F is unsaturated then there exists some ultimately periodic word w ∈ Σω that has
two different decompositions to prefix and periodic words on which F provides different
answers. Let P and P ′ be the respective progress automata, corresponding to some states q
and q′ of Q. Let the run of Q on w be q0, q1, q2, Since w is ultimately periodic, there
exist i, j ∈ N such that qh+j = qh for all h > i. That is, eventually the run cycles through a
certain sequence of states. Then q and q′ must be on the cycle where w settles. Let v′ and
v′′ be the subwords of w that are read on the part of the shortest such cycle from q to q′ and
from q′ back to q, respectively. (In case that q = q′, we let v′ = ε and v′′ be the whole cycle.)
Then the different decompositions are of the form (u, (v′v′′)l) and (uv′, (v′′v′)r) where u is a
string that takes Q to q. Let l and r be the shortest such, then since P and P ′ have at most
k states, we can assume l, r ≤ k. We can also assume u is a shortest such string and thus
|u| ≤ n.

For a dfa A = 〈Σ, Q, ι, δ, F 〉 and a word v ∈ Σ∗, we use χAv to denote the function from
Q to Q defined as χAv (q) = δ(q, v). Note that given |Q| = n there are at most nn different

such functions. Let X = {χv | χv = 〈χQv , χPv , χP
′

v 〉, v ∈ Σ∗}. Then X is the set of congruence

classes of the relation v1 ≈X v2 iff χQv1 = χQv2 , χPv1 = χPv2 , and χP
′

v1 = χP
′

v2 . We can build an
automaton such that each state corresponds to a class in X , the initial state is χε, and the
transition relation is δX (χw, σ) = χwσ. The cardinality of X is at most nnk2k. Thus, every
state has a representative word of length at most nnk2k taking the initial state to that state.
Therefore, there exist words y′, y′′ such that y′ ≈X v′ and y′′ ≈X v′′ and |y′|, |y′′| ≤ nnk2k.
Thus u, y′, y′′ and l, r satisfy the promised bounds.

Now, to see that fdfa saturation is in PSPACE note we can construct an algorithm
that guesses integers l, r ≤ k and words u, v′, v′′ such that |u| ≤ n and |v′|, |v′′| ≤ nnk2k.

FAMILIES OF DFAS AS ACCEPTORS OF ω-REGULAR LANGUAGES ∗ 11

It guesses the words letter by letter and constructs on the way χv′v′′ and χv′′v′ . It also
constructs along the way the states q′ and q such that q = δ(u) and q′ = δ(uv′). It then
computes the l and r powers of χv′v′′ and χv′′,v′ , respectively. Finally, it checks whether

one of (χPv′v′′)
l(q) and (χP

′
v′′v′)

r(q′) is accepting and the other is not, and if so returns that
F is unsaturated. The required space is O(nk2 log nk2). This shows that saturation is in
coNPSPACE, and by Savitch’s and Immerman-Szelepcsényi’s theorems, in PSPACE.

5. Translating To and From ω-Automata

As two ω-regular languages are equivalent iff they agree on the set of ultimately periodic
words [McN66], an ω-regular language can be characterized by a language of pairs of finite
words, and in particular by a saturated fdfa. We shall write L ≡ L′ to denote that a
language L ⊆ Σ∗+ characterizes an ω-regular language L′. Formally:

Definition 5.1. A language L ⊆ Σ∗+ characterizes an ω-regular language L′ ⊆ Σω, denoted
by L ≡ L′, if for every pair (u, v) ∈ L, we have uvω ∈ L′, and for every ultimately periodic
word uvω ∈ L′, we have (u, v) ∈ L.

The families of dfas defined in [Kla94], as well as the analogous families of right
congruences of [MS97], are known to characterize exactly the set of ω-regular languages
[Kla94, MS97]. This is also the case with our definition of saturated fdfas.

Theorem 5.2. Every saturated fdfa characterizes an ω-regular language, and for every
ω-regular language, there is a saturated fdfa characterizing it.

Proof. The two directions are proved in Theorems 5.4 and 5.8, below.

In this section, we analyze the state blowup involved in translating deterministic
and nondeterministic ω-automata into equivalent saturated fdfas, and vice versa. For
nondeterministic automata, we consider the Büchi acceptance condition, since it is the
simplest and most commonly used among all acceptance conditions. For deterministic
automata, we consider the parity acceptance condition since it is the simplest among
all acceptance conditions whose deterministic version is equi-expressible to the ω-regular
languages. We also consider deterministic Büchi and co-Büchi, for the simple sub-classes
they recognize.

5.1. From ω-Automata to FDFAs. We show that dba, dca, and dpa have polynomial
translations to saturated fdfas, whereas translation of nbas to fdfas may involve an
inevitable exponential blowup.

From deterministic ω-automata. The constructions of a saturated fdfa that characterizes
a given dba, dca, or dpa D share the same idea: The leading automaton is equivalent to
D, except for ignoring the acceptance condition, and each progress automaton consists of
several copies of D, memorizing the acceptance level of the period-word. For a dba or a
dca, two such copies are enough, memorizing whether or not a Büchi (co-Büchi) accepting
state was visited. For a dpa with k colors, k such copies are required.

We start with the constructions of an fdfa for a given dba or dca, which are almost
the same. (Büchi and co-Büchi automata are special cases of parity automata, and therefore
their translations to an fdfa, as described in Theorem 5.3, are special cases of the translation

12 D. ANGLUIN, U. BOKER, AND D. FISMAN

given in Theorem 5.3. Nevertheless, for clarity reasons, we do give their explicit translations
below.)

Theorem 5.3. Let D be a dba or a dca with n states. There exists a saturated fdfa F
of size (n, 2n), such that JFK ≡ JDK.

Proof.

Construction. Let D = 〈Σ, Q, ι, δ, α〉 be a dba or a dca. We define the fdfa F = (Q,P),
where Q is the same as D (without acceptance), and each progress automaton Pq has two
copies of D, having (q, 0) as its initial state, and moving from the first to the second copy
upon visiting a D-accepting state. Formally: Q = 〈Σ, Q, ι, δ〉, and for each state q ∈ Q, P
has the dfa Pq = 〈Σ, Q×{0, 1}, (q, 0), δ′, F 〉, where for every σ ∈ Σ, δ′((q, 0), σ) = (δ(q, σ), 0)
if δ(q, σ) 6∈ α and (δ(q, σ), 1) otherwise; and δ′((q, 1), σ) = (δ(q, σ), 1). The set F of accepting
states is Q×{1} if D is a dba and Q×{0} if D is a dca.

Correctness. We show the correctness for the case that D is a dba. The case that D is a
dca is analogous.

Consider a word uvω ∈ JDK, and let (x, y) be the normalization of (u, v) w.r.t. Q. Since
xyω = uvω ∈ JDK, it follows that D visits an accepting state when running on y from the
state D(x), implying that PQ(x)(y) is an accepting state. Hence, (u, v) ∈ JFK.

As for the other direction, consider a pair (u, v) ∈ JFK, and let (x, y) be the normalization
of (u, v) w.r.t. Q. Since PQ(x)(y) is an accepting state, D has the same structure as Q, and
Q(x) = Q(xy), it follows that D visits an accepting state when running on y from the state
D(x), implying that xyω = uvω ∈ JDK.

Note that F is saturated as a direct consequence of the proof that it characterizes an
ω-regular language.

We continue with the construction of an fdfa for a given dpa.

Theorem 5.4. Let D be a dpa with n states and k colors. There exists a saturated fdfa
F of size (n, kn), such that JFK ≡ JDK.

Proof.

Construction. Let D = 〈Σ, Q, ι, δ, κ〉 be a dpa, where κ : Q → [1..k]. We define the fdfa
F = (Q,P), where Q is the same as D (without acceptance), and each progress automaton
Pq has k copies of D, having (q, κ(q)) as its initial state, and moving to a j-th copy upon
visiting a state with color j, provided that j is lower than the index of the current copy. The
accepting states are those of the odd copies.

Formally: Q = 〈Σ, Q, ι, δ〉, and for each state q ∈ Q, P has the dfa Pq = 〈Σ, Q × [1..k],
(q, κ(q)), δ′, F 〉, where for every σ ∈ Σ and i ∈ [1..k],

δ′((q, i), σ) = (δ(q, σ),min(i, κ(δ(q, σ)))).

The set F of accepting states is {Q×{i} | i is odd }.

Correctness. Analogous to the arguments in the proof of Theorem 5.3.

FAMILIES OF DFAS AS ACCEPTORS OF ω-REGULAR LANGUAGES ∗ 13

From nondeterministic ω-automata. An nba A can be translated into a saturated fdfa
F , by first determinizing A into an equivalent dpa A′ [Pit06, FL15] (which might involve

a 2O(n logn) state blowup and O(n) colors [Sch09b]), and then polynomially translating A′
into an equivalent fdfa (Theorem 5.4).

Proposition 5.5. Let B be an nba with n states. There is a saturated fdfa that char-
acterizes JBK with a leading automaton and progress automata of at most 2O(n logn) states
each.

A 2O(n logn) state blowup in this case is inevitable, based on the lower bound for
complementing nbas [Mic88, Yan06, Sch09a], the constant complementation of fdfas, and
the polynomial translation of a saturated fdfa to an nba:

Theorem 5.6. There exists a family of nbas B1,B2, . . ., such that for every n ∈ N, Bn is
of size n, while a saturated fdfa that characterizes JBnK must be of size (m, k), such that

max(m, k) ≥ 2Ω(n logn).

Proof. Michel [Mic88] has shown that there exists a family of languages {Ln}n≥1, such that
for every n, there exists an nba of size n for Ln, but an nba for Lcn, the complement of Ln,
must have at least 2n logn states.

Assume, towards a contradiction, that exist n ∈ N and a saturated fdfa F of size (m, k)

that characterizes Ln, such that max(m, k) < 2Ω(n logn). Then, by Theorem 4.1, there is a
saturated fdfa Fc of size (m, k) that characterizes Lcn. Thus, by Theorem 5.8, we have an

nba of size smaller than (2Ω(n logn))5 = 2Ω(n logn) for Lcn. Contradiction.

5.2. From FDFAs to ω-automata. We show that saturated fdfas can be polynomially
translated into nbas, yet translations of saturated fdfas to dpas may involve an inevitable
exponential blowup.

To nondeterministic ω-automata. We show below that every saturated fdfa can be polyno-
mially translated to an equivalent nba. Since an nba can be viewed as a special case of an
npa, a translation of saturated fdfas to npas follows. Translating saturated fdfas to ncas
is not always possible, as the latter are not expressive enough.

The translation goes along the lines of the construction given in [CNP93] for translating
an L$-automaton into an equivalent nba. We prove below that the construction is correct
for saturated fdfas, despite the fact that saturated fdfas can be exponentially smaller than
L$-automata.

We start with a lemma from [CNP93], which will serve us for one direction of the proof.

Lemma 5.7 ([CNP93]). Let M,N ⊆ Σ∗ such that M ·N∗ = M and N+ = N . Then for
every ultimately periodic word w ∈ Σω we have that w ∈M ·Nω iff there exist words u ∈M
and v ∈ N such that uvω = w.

We continue with the translation and its correctness.

Theorem 5.8. For every saturated fdfa F of size (n, k), there exists an nba B with
O(n2k3) states, such that JFK ≡ JBK.

14 D. ANGLUIN, U. BOKER, AND D. FISMAN

Proof.

Construction. Consider a saturated fdfa F = (Q,P), where Q = 〈Σ, Q, ι, δ〉, and for each
state q ∈ Q, P has the progress dfa Pq = 〈Σ, Pq, ιq, δq, Fq〉.

For every q ∈ Q, let Mq be the language of finite words on which Q reaches q, namely
Mq = {u ∈ Σ∗ | Q(u) = q}. For every q ∈ Q and for every accepting state f ∈ Fq, let Nq,f

be the language of finite words on which Q makes a self-loop on q, Pq reaches f , and Pq
makes a self-loop on f , namely Nq,f = {v ∈ Σ∗ | (δ(q, v) = q)∧ (Pq(v) = f)∧ (δq(f, v) = f)}.
We define the ω-regular language

L =
⋃

{(q,f) | (q∈Q)∧(f∈Fq)}

Mq ·Nω
q,f (5.1)

One can construct an nba B that recognizes L and has up to O(n2k3) states: L
is the union of nk sublanguages; B will have nk corresponding subautomata, and will
nondeterministically start in one of them. In each subautomaton, recognizing the language
Mq ·Nω

q,f , a component of size n for Mq is obtained by a small modification to Q, in which

q can nondeterministically continue with an ε-transition5 to a component realizing Nω
q,f .

An nba for the language Nq,f consists of the intersection of three nbas, for the languages
{v ∈ Σ∗ | δ(q, v) = q}, {v ∈ Σ∗ | Pq(v) = f}, and {v ∈ Σ∗ | δq(f, v) = f}, each of which can
be obtained by small modifications to either Q or Pq, resulting in nk2 states. Finally, the
automaton for Nω

q,f is obtained by adding ε-transitions in the automaton of Nq,f from its

accepting states to its initial state. Thus, each subautomaton is of size n+ nk2, and B is of
size nk(n+ nk2) ∈ O(n2k3).

Correctness. Consider an ultimately periodic word uvω ∈ JBK. By the construction of B,
uvω ∈ L, where L is defined by Equation (5.1). Hence, uvω ∈Mq ·Nω

q,f , for some q ∈ Q and
f ∈ Fq. By the definitions of Mq and Nq,f , we get that Mq and Nq,f satisfy the hypothesis

of Lemma 5.7, namely N+
q,f = Nq,f and Mq ·N∗q,f = Mq. Therefore, by Lemma 5.7, there

exist finite words u′ ∈ Mq and v′ ∈ Nq,f such that u′v′ω = uvω. From the definitions of
Mq and Nq,f , it follows that the run of Q on u′ ends in the state q, and Pq accepts v′.
Furthermore, by the definition of Nq,f , we have δ(q, v′) = q, implying that (u′, v′) is the
normalization of itself. Hence, (u′, v′) ∈ JFK. Since F is saturated and u′v′ω = uvω, it
follows that (u, v) ∈ JFK, as required.

As for the other direction, consider a pair (u, v) ∈ JFK, and let (x, y) be the normalization
of (u, v) w.r.t. Q. We will show that xyω ∈ L, where L is defined by Equation (5.1), implying
that uvω ∈ JBK. Let q = Q(x), so we have that Pq(y) reaches some accepting state f of
Pq. Note, however, that it still does not guarantee that y ∈ Nq,f , since it might be that
δq(f, y) 6= f .

To prove that xyω ∈ L, we will show that there is a pair (x, y′) ∈ Σ∗+ and an accepting
state f ′ ∈ Pq, such that y′ = yt for some positive integer t, and y′ ∈ Nq,f ′ ; namely δ(q, y′) = q,
Pq(y′) = f ′, and δq(f

′, y′) = f ′. Note first that since F is saturated, it follows that for every
positive integer i, (x, yi) ∈ JFK, as x(yi)ω = xyω.

Now, for every positive integer i, Pq reaches some accepting state fi when running
on yi. Since Pq has finitely many states, for a large enough i, Pq must reach the same

accepting state f̂ twice when running on yi. Let h be the smallest positive integer such

5The ε-transitions can be removed from an nba with no state blowup.

FAMILIES OF DFAS AS ACCEPTORS OF ω-REGULAR LANGUAGES ∗ 15

that Pq(yh) = f̂ , and r the smallest positive integer such that δq(f̂ , y
r) = f̂ . Now, one can

verify that choosing t to be an integer that is bigger than or equal to h and is divisible by r
guarantees that δ(q, yt) = q and δq(f

′, yt) = f ′, where f ′ = Pq(yt).

To deterministic ω-automata. Deterministic Büchi and co-Büchi automata are not expressive
enough for recognizing every ω-regular language. We thus consider the translation of satu-
rated fdfas to deterministic parity automata. A translation is possible by first polynomially
translating the fdfa into an nba (Theorem 5.8) and then determinizing the latter into a

dpa (which might involve a 2O(n logn) state blowup [Mic88]).

Proposition 5.9. Let F be a saturated fdfa of size (n, k). There exists a dpa D of size

2O(n2k3 logn2k3), such that JFK ≡ JDK.

We show below that an exponential state blowup is inevitable.6 The family of languages
{Ln}n≥1 below demonstrates the inherent gap between fdfas and dpas; an fdfa for Ln
may only “remember” the smallest and biggest read numbers among {1, 2, ..., n}, using n2

states, while a dpa for it must have at least 2n−1 states.
We define the family of languages {Ln}n≥1 as follows. The alphabet of Ln is {1, 2, ..., n},

and a word belongs to it iff the following two conditions are met:

• A letter i is always followed by a letter j, such that j ≤ i+ 1. For example, 533245 . . . is
a bad prefix, since 2 was followed by 4, while 55234122 . . . is a good prefix.
• The number of letters that appear infinitely often is odd. For example, 2331(22343233)ω

is in Ln, while 1(233)ω is not.

We show below how to construct, for every n ≥ 1, a saturated fdfa of size polynomial in n
that characterizes Ln. Intuitively, the leading automaton handles the safety condition of Ln,
having n+ 1 states, and ensuring that a letter i is always followed by a letter j, such that
j ≤ i+ 1. The progress automata, which are identical, maintain the smallest and biggest
number-letters that appeared, denoted by s and b, respectively. Since a number-letter i
cannot be followed by a number-letter j, such that j > i+ 1, it follows that the total number
of letters that appeared is equal to b− s+ 1. Then, a state is accepting iff b− s+ 1 is odd.

Lemma 5.10. Let n ≥ 1. There is a saturated fdfa of size (n+ 1, n2) characterizing Ln.

Proof. We formally define an fdfa F = (Q,P) for Ln over Σ = {1, 2, . . . , n}, as follows.
The leading automaton is Q = (Σ, Q, ι, δ), where Q = {⊥, q1, q2, . . . , qn}; ι = qn; and

for every i, j ∈ [1..n], δ(qi, j) = qj if j ≤ i+ 1, and ⊥ otherwise, and δ(⊥, j) = ⊥.
The progress automaton for the state ⊥ consists of a single non-accepting state with a

self-loop over all letters.
For every i ∈ [1..n], the progress automaton for qi is Pi = (Σ, Pi, ιi, δi, Fi), where:

• Pi = [1..n]× [1..n]
• ιi = (n, 1)
• δi: For every σ ∈ Σ and s, b ∈ [1..n], δi((s, b), σ) = (min(s, σ),max(b, σ)).
• Fi = {(s, b) | b− s is even }
Notice that the progress automaton need not handle the safety requirement, as the leading
automaton ensures it, due to the normalization in the acceptance criterion of an fdfa.

6This is also the case when translating fdfas to deterministic Rabin [Rab69] and Streett [Str82] automata,
as explained in Remark 5.13.

16 D. ANGLUIN, U. BOKER, AND D. FISMAN

A dpa for Ln cannot just remember the smallest and largest letters that were read, as
these letters might not appear infinitely often. Furthermore, we prove below that the dpa
must be of size exponential in n, by showing that its state space must be doubled when
moving from Ln to Ln+1.

Lemma 5.11. Every dpa that recognizes Ln must have at least 2n−1 states.

Proof. The basic idea behind the proof is that the dpa cannot mix between 2 cycles of
n different letters each. This is because a mixed cycle in a parity automaton is accept-
ing/rejecting if its two sub-cycles are, while according to the definition of Ln, a mixed cycle
might reject even though both of its sub-cycles accept, and vice versa. Hence, whenever
adding a letter, the state space must be doubled.

In the formal proof below, we dub a reachable state from which the automaton can accept
some word a live state, and for every n ∈ N \ {0}, define the alphabet Σn = {1, 2, . . . , n}.
Consider a dpa Dn over Σn that recognizes Ln, and let q be some live state of Dn. Observe
that JDqnK, namely the language of the automaton that we get from Dn by changing the
initial state to q, is the same as Ln except for having some restriction on the word prefixes.
More formally, for every n ∈ N and u ∈ Σ∗n, we define the language Ln,u = {w | uw ∈ Ln},
and let Ln denote the set of languages {Ln,u 6= ∅ | u ∈ Σ∗n}. Given some Ln,u, since Ln,u 6= ∅,
there is a live state q that Dn reaches when reading u, and we have Ln,u = JDqnK. Conversely,
given a dpa Dn for Ln and a live state q of Dn, let u be a finite word on which Dn reaches
q, then JDqnK = Ln,u.

We prove by induction on n the following claim, from which the statement of the lemma
immediately follows: Let Dn be a dpa over Σn that recognizes some language in Ln. Then
there are finite words u, v ∈ Σ∗n, such that:

i) v contains all the letters in Σn;
ii) the run of Dn on u reaches some live state p; and
iii) the run of Dn on v from p returns to p, while visiting at least 2n−1 different states.

The base cases, for n ∈ {1, 2}, are simple, as they mean a cycle of size at least 1 over v, for
n = 1, and at least 2 for n = 2. Formally, for n = 1, L1 = {1ω} and L1 = {L1}. A dpa
D1 for L1 must have a live state p that is visited infinitely often when D1 reads 1ω. Thus,
there is a cycle from p back to p along a word v of length at least 1, containing the letter ‘1’.
For n = 2, it is still the case that the restriction on the next letter (to be up to 1-bigger
than the current letter) does not influence. Hence, L2 = {u1ω | u ∈ Σ∗2} ∪ {u2ω | u ∈ Σ∗2}
and L2 = {L2}. Consider a dpa D2 for L2, having k states. The run of D2 over the finite
word (12)k must reach some live state p twice. Thus, there is a cycle from p back to itself
along a word v that contains both ‘1’ and ‘2’. Observe that v must be of length at least 2,
as otherwise there are only self loops from p, implying that Dp2 either accepts or rejects all
words, in contradiction to the definition of D2.

In the induction step, we consider a dpa Dn+1, for n ≥ 2, that recognizes some language
L ∈ Ln+1. We shall define D′ and D′′ to be the dpas that result from Dn+1 by removing
all the transitions over the letter n+1 and by removing all the transitions over the letter 1,
respectively.

Observe that for every state q that is live w.r.t. Dn+1, we have that JD′qK ∈ Ln, namely
the language of the dpa that results from Dn+1 by removing all the transitions over the
letter n+1 and setting the initial state to q is in Ln. This is the case since even if q is
only reachable via the letter n+1, it must have outgoing transitions over letters in [2..n].
Analogously, JD′′qK is isomorphic to a language in Ln via the alphabet mapping of i 7→ (i−1).

FAMILIES OF DFAS AS ACCEPTORS OF ω-REGULAR LANGUAGES ∗ 17

v′ v′′

l′ r′ l′′ r′′

u v

x

y

Figure 2: Subwords of v.

Hence, for every state q that is live w.r.t. Dn+1, the induction hypothesis holds for D′q and
D′′q.

We shall prove the induction claim by describing words u, v ∈ Σ∗n+1, and showing that
they satisfy the requirements above w.r.t. Dn+1. We iteratively construct words u′i, u

′′
i , v
′
i, v
′′
i

until, roughly speaking, the run of Dn+1 on the concatenation of these words closes a
loop. More precisely, upon the first iteration k for which there exists j < k such that
Dn+1(u′1u

′′
1u
′
2u
′′
2 . . . u

′
ju
′′
j) = Dn+1(u′1 u

′′
1 u
′
2 u
′′
2 . . . u

′
k u
′′
k), we stop the iteration and define u to

be the word u′1u
′′
1u
′
2u
′′
2 . . . u

′
ju
′′
j and v to be the word u′j+1 v

′
j+1 u

′′
j+1 v

′′
j+1 . . . u

′
k v
′
k u
′′
k v
′′
k .

For the first iteration, we define:

• u′1 and v′1 are the words that follow from the induction hypothesis on D′q1 , where q1 is
the initial state of Dn+1.
• u′′1 and v′′1 are the words that follow from the induction hypothesis on D′′q′1 , where q′1 is

the state that Dn+1 reaches when reading u′1.

For the next iterations, we define for every i > 1:

• u′i and v′i are the words that follow from the induction hypothesis on D′qi , where qi is the
state that Dn+1 reaches when reading u′1 u

′′
1 . . . u

′
i−1 u

′′
i−1. (The state qi indeed belongs to

D′qi , since it has outgoing transitions on some letters in [1..n].)

• u′′i and v′′i are the words that follow from the induction hypothesis on D′′q′i , where q′i is the
state that Dn+1 reaches when reading u′1 u

′′
1 . . . u

′
i−1 u

′′
i−1 u

′
i. (The state q′i indeed belongs

to D′′qi , since it has outgoing transitions on some letters in [2..n+1].)

Note that, for all i, by the induction hypothesis v′i contains all letters of Σn and v′′i contains
all the letters in Σn+1 \ {1}. Since v is composed of v′i’s and v′′i ’s it follows that v contains
all the letters in Σn+1. By the definition of u and v, we also have that the run of Dn+1 on
u reaches some live state p, and the run of Dn+1 on v from p returns to p. Moreover, for
every prefix v1 of v that reaches a state s, we have that s is a live state, and for v2 such
that v = v1v2, the run of Dn+1 on v2v1 returns to s. Now, we need to prove that the run of
Dn+1 on v from p visits at least 2n states.

Let v′ be some v′i subword of v and likewise let v′′ be some v′′j subword of v. We claim

that the run of Dn+1 on uvω traverses disjoint sets of states while reading the subwords v′

and v′′. This will provide the required result, since when traversing either v′ or v′′ we know
that Dn+1 visits at least 2n−1 different states, by the induction hypothesis.

Assume, by way of contradiction, a state s that is visited by Dn+1 when traversing
both v′ and v′′. Let l′ and r′ be the parts of v′ that Dn+1 reads before and after reaching

18 D. ANGLUIN, U. BOKER, AND D. FISMAN

s, respectively, and l′′ and r′′ the analogous parts of v′′, as shown in Fig. 2. Let x be the
subword of uvω between u and r′ and let y be the subword of uvω between u and r′′. Now,
define the ω-words m′ = ux(r′ l′)ω, m′′ = uy (r′′ l′′)ω, and m = uy (r′′ l′′ r′ l′)ω.

Observe that m′ and m′′ both belong or both do not belong to L, since there is the
same number of letters (n) that appear infinitely often in each of them. The word m, on
the other hand, belongs to L if m′ and m′′ do not belong to L, and vice versa, since n+ 1
letters appear infinitely often in it. However, the set of states that are visited infinitely often
in the run of Dn+1 on m is the union of the sets of states that appear infinitely often in
the runs of Dn+1 on m′ and m′′. Thus, if Dn+1 accepts both m′ and m′′ it also accepts m,
and if it rejects both m′ and m′′ it rejects m. (This follows from the fact that the minimal
number in a union of two sets is even/odd iff the minimum within both sets is even/odd.)
Contradiction.

Theorem 5.12. There is a family of languages {Ln}n≥1 over the alphabet {1, 2, . . . , n},
such that for every n ≥ 1, there is a saturated fdfa of size (n+ 1, n2) that characterizes Ln,
while a dpa for Ln must be of size at least 2n−1.

Proof. By Lemmas 5.10 and 5.11.

Remark 5.13. A small adaptation to the proof of Lemma 5.11 shows an inevitable expo-
nential state blowup also when translating a saturated fdfa to a deterministic ω-automaton
with a stronger acceptance condition of Rabin [Rab69] or Streett [Str82]: A mixed cycle
in a Rabin automaton is rejecting if its two sub-cycles are, and a mixed cycle in a Streett
automaton is accepting if its two sub-cycles are. Hence, the proof of Lemma 5.11 holds for
both Rabin and Streett automata if proceeding in the induction step from an alphabet of
size n to an alphabet of size n+ 2, yielding a Rabin/Streett automaton of size at least 2

n
2 .

As for translating a saturated fdfa to a deterministic Muller automaton [Mul63], it
is known that translating a dpa of size n into a deterministic Muller automaton might
require the latter to have an accepting set of size exponential in n [Saf89, Bok17]. Hence, by
Theorem 5.4, which shows a polynomial translation of dpas to fdfas, we get that translating
an fdfa to a deterministic Muller automaton entails an accepting set of exponential size, in
the worst case.

6. Discussion

The interest in fdfas as a representation for ω-regular languages stems from the fact that
they possess a correlation between the automaton states and the language right congruences,
a property that traditional ω-automata lack. This property is beneficial in the context of
learning, and indeed algorithms for learning ω-regular languages by means of saturated
fdfas were recently provided [AF14, LCZL16]. Analyzing the succinctness of saturated
fdfas and the complexity of their Boolean operations and decision problems, we believe
that they provide an interesting formalism for representing ω-regular languages. Indeed,
Boolean operations and decision problems can be performed in nondeterministic logarithmic
space and their succinctness lies between deterministic and nondeterministic ω-automata.

FAMILIES OF DFAS AS ACCEPTORS OF ω-REGULAR LANGUAGES ∗ 19

References

[ABF16] D. Angluin, U. Boker, and D. Fisman. Families of DFAs as acceptors of ω-regular languages. In
41st International Symposium on Mathematical Foundations of Computer Science, MFCS 2016,
August 22-26, 2016 - Kraków, Poland, pages 11:1–11:14, 2016.

[AF14] D. Angluin and D. Fisman. Learning regular omega languages. In Peter Auer, Alexander Clark,
Thomas Zeugmann, and Sandra Zilles, editors, Algorithmic Learning Theory - 25th International
Conference, ALT 2014, Bled, Slovenia, October 8-10, 2014. Proceedings, volume 8776 of Lecture
Notes in Computer Science, pages 125–139. Springer, 2014.

[AvMN05] Rajeev Alur, Pavol Černý, P. Madhusudan, and Wonhong Nam. Synthesis of interface specifi-
cations for Java classes. In Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’05, pages 98–109, New York, NY, USA, 2005.
ACM.

[BHS+16] F. Blahoudek, M. Heizmann, S. Schewe, J. Strejcek, and M.H. Tsai. Complementing semi-
deterministic Büchi automata. In Proc. of Tools and Algorithms for the Construction and
Analysis of Systems (TACAS), volume 9636 of LNCS, pages 770–787. Springer, 2016.

[Bok17] U. Boker. On the (in)succinctness of Muller automata. In CSL, pages 12:1–12:16, 2017.
[Büc60] J.R. Büchi. Weak second-order arithmetic and finite automata. Zeit. Math. Logik und Grundl.

Math., 6:66–92, 1960.
[CCF+10] Yu-Fang Chen, Edmund M. Clarke, Azadeh Farzan, Ming-Hsien Tsai, Yih-Kuen Tsay, and

Bow-Yaw Wang. Automated assume-guarantee reasoning through implicit learning. In Computer
Aided Verification, 22nd International Conference, CAV 2010, Edinburgh, UK, July 15-19, 2010.
Proceedings, pages 511–526, 2010.

[CCK+15] M. Chapman, H. Chockler, P. Kesseli, D. Kroening, O. Strichman, and M. Tautschnig. Learning
the language of error. In 13th Int. Symp. on Automated Technology for Verification and Analysis,
pages 114–130, 2015.

[CNP93] H. Calbrix, M. Nivat, and A. Podelski. Ultimately periodic words of rational w-languages. In
Proceedings of the 9th International Conference on Mathematical Foundations of Programming
Semantics, pages 554–566, London, UK, 1993. Springer-Verlag.

[CPPdR14] Georg Chalupar, Stefan Peherstorfer, Erik Poll, and Joeri de Ruiter. Automated reverse engi-
neering using lego R©. In 8th USENIX Workshop on Offensive Technologies (WOOT 14), San
Diego, CA, August 2014. USENIX Association.

[FCTW08] A. Farzan, Y. Chenand E.M. Clarke, Y. Tsay, and B. Wang. Extending automated compositional
verification to the full class of omega-regular languages. In C.R. Ramakrishnan and Jakob Rehof,
editors, Tools and Algorithms for the Construction and Analysis of Systems, volume 4963 of
Lecture Notes in Computer Science, pages 2–17. Springer Berlin Heidelberg, 2008.

[FJV14] Paul Fiterau-Brostean, Ramon Janssen, and Frits W. Vaandrager. Learning fragments of the
TCP network protocol. In FMICS, volume 8718 of Lecture Notes in Computer Science, pages
78–93. Springer, 2014.

[FKP11] Lu Feng, Marta Z. Kwiatkowska, and David Parker. Automated learning of probabilistic as-
sumptions for compositional reasoning. In Fundamental Approaches to Software Engineering -
14th International Conference, FASE 2011, Held as Part of the Joint European Conferences on
Theory and Practice of Software, ETAPS 2011, Saarbrücken, Germany, March 26-April 3, 2011.
Proceedings, pages 2–17, 2011.

[FL15] D. Fisman and Y. Lustig. A modular approach for Büchi determinization. In Luca Aceto
and David de Frutos-Escrig, editors, 26th International Conference on Concurrency Theory,
CONCUR 2015, Madrid, Spain, September 1.4, 2015, volume 42 of LIPIcs, pages 368–382.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015.

[GJ79] M. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory of NP-
completeness. MIT Press, 1979.

[Jon75] N.D. Jones. Space-bounded reducibility among combinatorial problems. Journal of Computer
and System Sciences, 1975.

[Kla94] N. Klarlund. A homomorphism concept for omega-regularity. In L. Pacholski and J. Tiuryn,
editors, Computer Science Logic, 8th International Workshop, CSL ’94, Kazimierz, Poland,
September 25-30, 1994, Selected Papers, volume 933 of Lecture Notes in Computer Science, pages
471–485. Springer, 1994.

20 D. ANGLUIN, U. BOKER, AND D. FISMAN

[LCZL16] Yong Li, Yu-Fang Chen, Lijun Zhang, and Depeng Liu. A novel learning algorithm for Büchi
automata based on family of DFAs and classification trees. arXiv preprint arXiv:1610.07380,
2016.

[McN66] R. McNaughton. Testing and generating infinite sequences by a finite automaton. Information
and Control, 9(5):521–530, 1966.

[Mic88] M. Michel. Complementation is much more difficult with automata on infinite words. In Manu-
script, CNET, 1988.

[MS97] O. Maler and L. Staiger. On syntactic congruences for omega-languages. Theor. Comput. Sci.,
183(1):93–112, 1997.

[Mul63] D.E. Muller. Infinite sequences and finite machines. In Proc. 4th IEEE Symp. on Switching
Circuit Theory and Logical design, pages 3–16, 1963.

[Ner58] A. Nerode. Linear automaton transformations. Proc. of the American Mathematical Society,
9(4):541–544, 1858.

[NJ13] D. Neider and N. Jansen. Regular model checking using solver technologies and automata
learning. In NASA Formal Methods, 5th International Symposium, NFM 2013, Moffett Field,
CA, USA, May 14-16, 2013. Proceedings, pages 16–31, 2013.

[PGB+08] Corina S. Pasareanu, Dimitra Giannakopoulou, Mihaela Gheorghiu Bobaru, Jamieson M.
Cobleigh, and Howard Barringer. Learning to divide and conquer: applying the l* algorithm to
automate assume-guarantee reasoning. Formal Methods in System Design, 32(3):175–205, 2008.

[Pit06] N. Piterman. From nondeterministic Büchi and Streett automata to deterministic parity automata.
In 21th IEEE Symposium on Logic in Computer Science (LICS 2006), 12-15 August 2006, Seattle,
WA, USA, Proceedings, pages 255–264. IEEE Computer Society, 2006.

[PVY02] D. Peled, M. Vardi, and M. Yannakakis. Black box checking. Journal of Automata, Languages
and Combinatorics, 7(2):225–246, 2002.

[Rab69] M.O. Rabin. Decidability of second order theories and automata on infinite trees. Transaction of
the AMS, 141:1–35, 1969.

[RMSM09] Harald Raffelt, Maik Merten, Bernhard Steffen, and Tiziana Margaria. Dynamic testing via
automata learning. STTT, 11(4):307–324, 2009.

[Saë90] B. L. Saëc. Saturating right congruences. ITA, 24:545–560, 1990.
[Saf89] S. Safra. Complexity of automata on infinite objects. PhD thesis, Weizmann Institute of Science,

1989.
[Sch09a] S. Schewe. Büchi complementation made tight. In Proc. 26th Symp. on Theoretical Aspects of

Computer Science (STACS), volume 3 of LIPIcs, pages 661–672, 2009.
[Sch09b] S. Schewe. Tighter bounds for the determinization of Büchi automata. In Proc. 12th Int. Conf.

on Foundations of Software Science and Computation Structures (FoSSaCS), pages 167–181,
2009.

[Str82] R.S. Streett. Propositional dynamic logic of looping and converse. Information and Control,
54:121–141, 1982.

[VSVA05] Abhay Vardhan, Koushik Sen, Mahesh Viswanathan, and Gul Agha. Using language inference
to verify omega-regular properties. In Tools and Algorithms for the Construction and Analysis
of Systems, 11th International Conference, TACAS 2005, Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2005, Edinburgh, UK, April 4-8, 2005,
Proceedings, pages 45–60, 2005.

[VW86] M. Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program verification
(preliminary report). In LICS, pages 332–344. IEEE Computer Society, 1986.

[Wil91] T. Wilke. An Eilenberg theorem for ∞-languages, pages 588–599. Springer Berlin Heidelberg,
Berlin, Heidelberg, 1991.

[Wil93] T. Wilke. An algebraic theory for regular languages of finite and infinite words. IJAC, 3(4):447–
490, 1993.

[WN05] Westley Weimer and George C. Necula. Mining temporal specifications for error detection.
In Tools and Algorithms for the Construction and Analysis of Systems, 11th International
Conference, TACAS 2005, Held as Part of the Joint European Conferences on Theory and
Practice of Software, ETAPS 2005, Edinburgh, UK, April 4-8, 2005, Proceedings, pages 461–476,
2005.

FAMILIES OF DFAS AS ACCEPTORS OF ω-REGULAR LANGUAGES ∗ 21

[YAL14] Yifei Yuan, Rajeev Alur, and Boon Thau Loo. Netegg: Programming network policies by
examples. In Proceedings of the 13th ACM Workshop on Hot Topics in Networks, HotNets-XIII,
Los Angeles, CA, USA, October 27-28, 2014, pages 20:1–20:7, 2014.

[Yan06] Q. Yan. Lower bounds for complementation of ω-automata via the full automata technique. In
Proc. 33rd Int. Colloq. on Automata, Languages, and Programming (ICALP), volume 4052 of
LNCS, pages 589–600, 2006.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse
2, 10777 Berlin, Germany

	1. Introduction
	2. Preliminaries
	3. Families of DFAs (FDFAs)
	4. Boolean Operations and Decision Procedures
	5. Translating To and From -Automata
	5.1. From -Automata to FDFAs
	5.2. From FDFAs to -automata

	6. Discussion
	References

