
How Deterministic are Good-For-Games Automata?

Udi Boker1, Orna Kupferman2, and Micha l Skrzypczak3

1Interdisciplinary Center, Herzliya, Israel∗
2The Hebrew University, Israel†
3University of Warsaw, Poland‡

Abstract

In good for games (GFG) automata, it is possible to resolve nondetermin-
ism in a way that only depends on the past and still accepts all the words in
the language. The motivation for GFG automata comes from their adequacy
for games and synthesis, wherein general nondeterminism is inappropriate.
We continue the ongoing effort of studying the power of nondeterminism in
GFG automata. Initial indications have hinted that every GFG automaton
embodies a deterministic one. Today we know that this is not the case, and
in fact GFG automata may be exponentially more succinct than determi-
nistic ones.

We focus on the typeness question, namely the question of whether a GFG
automaton with a certain acceptance condition has an equivalent GFG au-
tomaton with a weaker acceptance condition on the same structure. Beyond
the theoretical interest in studying typeness, its existence implies efficient
translations among different acceptance conditions. This practical issue is of
special interest in the context of games, where the Büchi and co-Büchi con-
ditions admit memoryless strategies for both players. Typeness is known to
hold for deterministic automata and not to hold for general nondeterministic
automata.

We show that GFG automata enjoy the benefits of typeness, similarly
to the case of deterministic automata. In particular, when Rabin or Streett
GFG automata have equivalent Büchi or co-Büchi GFG automata, respec-
tively, then such equivalent automata can be defined on a substructure of the
original automata. Using our typeness results, we further study the place of
GFG automata in between deterministic and nondeterministic ones. Specifi-
cally, considering automata complementation, we show that GFG automata
lean toward nondeterministic ones, admitting an exponential state blow-up
in the complementation of a Streett automaton into a Rabin automaton, as
opposed to the constant blow-up in the deterministic case.

∗This research was supported by the Israel Science Foundation, grant no. 1373/16.
†This research has received funding from the European Research Council under the EU’s

7-th Framework Programme (FP7/2007-2013) / ERC grant agreement no 278410.
‡Supported by the Polish National Science Centre (decision UMO-2016/21/D/ST6/00491).

1

1 Introduction

Nondeterminism is a prime notion in theoretical computer science. It allows a
computing machine to examine, in a concurrent manner, all its possible runs on
a certain input. For automata on finite words, nondeterminism does not increase
the expressive power, yet it leads to an exponential succinctness [15]. For au-
tomata on infinite words, nondeterminism may increase the expressive power and
also leads to an exponential succinctness. For example, nondeterministic Büchi
automata are strictly more expressive than their deterministic counterpart [11].
In the automata-theoretic approach to formal verification, we use automata on
infinite words in order to model systems and their specifications. In particular,
temporal logic formulas are translated to nondeterministic word automata [19].
In some applications, such as model checking, algorithms can proceed on the
nondeterministic automaton, whereas in other applications, such as synthesis
and control, they cannot. There, the advantages of nondeterminism are lost,
and the algorithms involve a complicated determinization construction [16] or
acrobatics for circumventing determinization [10]. Essentially, the inherent diffi-
culty of using nondeterminism in synthesis lies in the fact that each guess of the
nondeterministic automaton should accommodate all possible futures.

Some nondeterministic automata are, however, good for games: in these au-
tomata it is possible to resolve the nondeterminism in a way that only depends
on the past while still accepting all the words in the language. This notion, of
good for games (GFG) automata was first introduced in [4].1 Formally, a non-
deterministic automaton A over an alphabet Σ is GFG if there is a strategy g
that maps each finite word u ∈ Σ+ to the transition to be taken after u is read;
and following g results in accepting all the words in the language of A. Note
that a state q of A may be reachable via different words, and g may suggest
different transitions from q after different words are read. Still, g depends only
on the past, namely on the word read so far. Obviously, there exist GFG au-
tomata: deterministic ones, or nondeterministic ones that are determinizable by
pruning (DetByP); that is, ones that just add transitions on top of a deterministic
automaton. In fact, the GFG automata constructed in [4] are DetByP.2

Our work continues a series of works that have studied GFG automata: their
expressive power, succinctness, and constructions for them, where the key chal-
lenge is to understand the power of nondeterminism in GFG automata. Let us
first survey the results known so far. In terms of expressive power, it is shown
in [8, 14] that GFG automata with an acceptance condition of type γ (e.g., Büchi)
are as expressive as deterministic γ automata.3 Thus, as far as expressiveness is

1GFGness is also used in [3] in the framework of cost functions under the name “history-
determinism”.

2As explained in [4], the fact that the GFG automata constructed there are DetByP does not
contradict their usefulness in practice, as their transition relation is simpler than the one of the
embodied deterministic automaton and it can be defined symbolically.

3The results in [8, 14] are given by means of tree automata for derived languages, yet, by [2],
the results hold also for GFG automata.

2

concerned, GFG automata behave like deterministic ones. The picture in terms
of succinctness is diverse. For automata on finite words, GFG automata are al-
ways DetByP [8, 12]. For automata on infinite words, in particular Büchi and
co-Büchi automata4, GFG automata need not be DetByP [2]. Moreover, the
best known determinization construction of GFG Büchi automata is quadratic,
whereas determinization of GFG co-Büchi automata has an exponential blow-up
lower bound [6]. Thus, in terms of succinctness, GFG automata on infinite words
are more succinct (possibly even exponentially) than deterministic ones.

For deterministic automata, where Büchi and co-Büchi automata are less ex-
pressive than Rabin and Streett ones, researchers have come up with the notion
of an automaton being type [5]. Consider a deterministic automaton A with ac-
ceptance condition of type γ and assume that A recognizes a language that can
be recognized by some deterministic automaton with an acceptance condition of
type β that is weaker than γ. When deterministic γ automata are β-type, it is
guaranteed that a deterministic β-automaton for the language of A can be defined
on top of the structure of A. For example, deterministic Rabin automata being
Büchi-type [5] means that if a deterministic Rabin automaton A recognizes a lan-
guage that can be recognized by a deterministic Büchi automaton, then A has an
equivalent deterministic Büchi automaton on the same structure. Thus, the basic
motivation of typeness is to allow simplifications of the acceptance conditions of
the considered automata without complicating their structure. Applications of
this notion are much wider [5]. In particular, in the context of games, the Büchi
and co-Büchi conditions admit memoryless strategies for both players, which is
not the case for the Rabin and Streett conditions [18]. Thus, the study of typeness
in the context of GFG automata addresses also the question of simplifying the
memory requirements of the players. In addition, as we elaborate in Section 7, it
leads to new and non-trivial bounds on the blow-up of transformations between
GFG automata and their complementation.

Recall that deterministic Rabin automata are Büchi-type. Dually, determi-
nistic Streett automata are co-Büchi-type. Typeness can be defined also with re-
spect to nondeterministic automata, yet it crucially depends on the fact that the
automaton is deterministic. Indeed, nondeterministic Rabin are not Büchi-type.
Even with the co-Büchi acceptance condition, where nondeterministic co-Büchi
automata recognize only a subset of the ω-regular languages, nondeterministic
Streett automata are not co-Büchi-type [7].

We first show that typeness is strongly related with determinism even when
slightly relaxing the typeness notion to require the existence of an equivalent
automaton on a substructure of the original automaton, instead of on the ex-
act original structure, and even when we restrict attention to an unambiguous
automaton, namely one that has a single accepting run on each word in its lan-
guage. We describe an unambiguous parity automaton A, such that its language
is recognized by a deterministic Büchi automaton, yet it is impossible to define
a Büchi acceptance condition on top of a substructure of A. We also point to

4See Section 2.1 for the full definition of the various acceptance conditions.

3

a dual result in [7], with respect to the co-Büchi condition, and observe that it
applies also to the relaxed typeness notion.

We then show that for GFG automata, typeness, in its relaxed form, does hold.
Notice that once considering GFG automata with no redundant transitions, which
we call tight , the two typeness notions coincide. Obviously, all GFG automata
can be tightened by removal of redundant transitions (Lemma 2.4). In particular,
we show that the typeness picture in GFG automata coincides with the one in
deterministic automata: Rabin GFG automata are Büchi type, Streett GFG
automata are co-Büchi type, and all GFG automata are type with respect to the
weak acceptance condition. Unlike the deterministic case, however, the Rabin
case is not a simple dualization of the Streett case; it is much harder to prove
and it requires a stronger notion of tightness.

We continue with using our typeness results for further studying the place
of GFG automata in between deterministic and nondeterministic ones. We start
with showing that all GFG automata that recognize languages that can be de-
fined by deterministic weak automata are DetByP. This generalizes similar results
about safe and co-safe languages [7]. We then show that all unambiguous GFG
automata are also DetByP. Considering complementation, GFG automata lie in
between the deterministic and nondeterministic settings—the complementation
of a Büchi automaton into a co-Büchi automaton is polynomial, as is the case with
deterministic automata, while the complementation of a co-Büchi automaton into
a Büchi automaton as well as the complementation of a Streett automaton into
a Rabin automaton is exponential, as opposed to the constant blow-up in the
deterministic case. We conclude with proving a doubly-exponential lower bound
for the translation of LTL into GFG automata, as is the case with deterministic
automata.

The paper is structured as follows. In Section 2 we provide the relevant no-
tions about languages and GFG automata. Section 3 contains examples showing
that typeness does not hold for the case of unambiguous automata. The next
three sections, Sections 4, 5, and 6, provide the main positive results of this work:
co-Büchi typeness for GFG-Streett; Büchi typeness for GFG-Rabin; and weak
typeness for GFG-Büchi and GFG-co-Büchi, respectively. Finally, in Section 7
we continue to study the power of nondeterminism in GFG automata, looking into
automata complementation and translations of LTL formulas to GFG automata.

2 Preliminaries

2.1 Automata

An automaton on infinite words is a tuple A = 〈Σ, Q,Q0, δ, α〉, where Σ is an
input alphabet, Q is a finite set of states, Q0 ⊆ Q is a set of initial states,
δ : Q × Σ → 2Q is a transition function that maps a state and a letter to a set
of possible successors, and α is an acceptance condition. The first four elements,
namely 〈Σ, Q, δ,Q0〉, are the automaton’s structure. We consider here the Büchi ,

4

co-Büchi, parity, Rabin, and Streett acceptance conditions. (The weak condition
is defined in Section 6.) In Büchi, and co-Büchi conditions, α ⊆ Q is a set of
states. In a parity condition, α : Q→ {0, . . . , k} is a function mapping each state

to its priority. In a Rabin and Streett conditions, α ⊆ 22Q×2Q is a set of pairs of
sets of states. The index of a Rabin or Streett condition is the number of pairs
in it. For a state q of A, we denote by Aq the automaton that is derived from A
by changing the set of initial states to {q}. A transition of A is a triple 〈q, a, q′〉
such that q′ ∈ δ(q, a). We extend δ to sets of states and to finite words in the
expected way. Thus, for a set S ⊆ Q, a letter a ∈ Σ, and a finite word u ∈ Σ∗,
we have that δ(S, ε) = S, δ(S, a) =

⋃
q∈S δ(q, a), and δ(S, u · a) = δ(δ(S, u), a).

Then, we denote by A(u) the set of states that A may reach when reading u.
Thus, A(u) = δ(Q0, u).

Since the set of initial states need not be a singleton and the transition func-
tion may specify several successors for each state and letter, the automaton A
may be nondeterministic. If |Q0| = 1 and |δ(q, a)| ≤ 1 for every q ∈ Q and a ∈ Σ,
then A is deterministic.

Given an input word w = a1 · a2 · · · in Σω, a run of A on w is an infinite
sequence r = r0, r1, r2, . . . ∈ Qω such that r0 ∈ Q0 and for every i ≥ 0, we have
ri+1 ∈ δ(ri, ai+1); i.e., the run starts in the initial state and obeys the transition
function. For a run r, let inf(r) denote the set of states that r visits infinitely
often. That is, inf(r) = {q ∈ Q | for infinitely many i ≥ 0, we have ri = q}.

A set of states S satisfies an acceptance condition α (or is accepting) iff

• S ∩ α 6= ∅, for a Büchi condition.

• S ∩ α = ∅, for a co-Büchi condition.

• minq∈inf(r){α(q)} is even, for a parity condition.

• There exists 〈E,F 〉 ∈ α, such that S ∩ E = ∅ and S ∩ F 6= ∅ for a Rabin
condition.

• For all 〈E,F 〉 ∈ α, we have S ∩E = ∅ or S ∩F 6= ∅ for a Streett condition.

Notice that Büchi and co-Büchi are dual, and so are Rabin and Streett. Also
note that the Büchi and co-Büchi conditions are special cases of parity, which is
a special case of Rabin and Streett. In the latter conditions, we refer to the sets
E and F as the “bad” and “good” sets, respectively. Finally, note that a Rabin
pair may have an empty E component, while an empty F component makes the
pair redundant (and dually for Streett).

A run r is accepting if inf(r) satisfies α. An automaton A accepts an input
word w iff there exists an accepting run of A on w. The language of A, denoted by
L(A), is the set of all words in Σω that A accepts. A nondeterministic automaton
A is unambiguous if for every word w ∈ L(A), there is a single accepting run of
A on w. Thus, while A is nondeterministic and may have many runs on each
input word, it has only a single accepting run on words in its language.

5

We denote the different automata types by three-letter acronyms in the set
{D,N}×{B,C,P,R, S}×{W}. The first letter stands for the branching mode of
the automaton (deterministic or nondeterministic); the second for the acceptance-
condition type (Büchi, co-Büchi, parity, Rabin, or Streett); and the third indi-
cates that we consider automata on words. For Rabin and Streett automata, we
sometimes also indicate the index of the automaton. In this way, for example,
NBW are nondeterministic Büchi word automata, and DRW[1] are deterministic
Rabin automata with index 1.

For two automata A and A′, we say that A and A′ are equivalent if L(A) =
L(A′). For an automaton type β (e.g., DBW) and an automaton A, we say that
A is β-realizable if there is a β-automaton equivalent to A.

Let A = 〈A, Q,Q0, δ, α〉 be an automaton. For an acceptance-condition class
γ (e.g., Büchi), we say that A is γ-type if A has an equivalent γ automaton with
the same structure as A [5]. That is, there is an automaton A′ = 〈Σ, Q,Q0, δ, α

′〉
such that α′ is an acceptance condition of the class γ and L(A′) = L(A).

2.2 Good-For-Games Automata

An automaton A = 〈Σ, Q,Q0, δ, α〉 is good for games (GFG, for short) if there is
a strategy g : Σ∗ → Q, such that for every word w = a1 ·a2 · · · ∈ Σω, the sequence
g(w) = g(ε), g(a1), g(a1 ·a2),. . . is a run of A on w, and whenever w ∈ L(A), then
g(w) is accepting. We then say that g witnesses A’s GFGness.

It is known [2] that if A is GFG, then its GFGness can be witnessed by a
finite-state strategy, thus one in which for every state q ∈ Q, the set of words
g−1(q) is regular. Finite-state strategies can be modeled by transducers. Given
sets I and O of input and output letters, an (I/O)-transducer is a tuple T =
〈I,O,M,m0, ρ, τ〉, where M is a finite set of states, to which we refer as memories,
m0 ∈ M is an initial memory, ρ : M × I → M is a deterministic transition
function, to which we refer as the memory update function, and τ : M → O is an
output function that assigns a letter in O to each memory. The transducer T
generates a strategy gT : I∗ → O, obtained by following ρ and τ in the expected
way: we first extend ρ to words in I∗ by setting ρ(ε) = m0 and ρ(u·a) = ρ(ρ(u), a),
and then define gT (u) = τ(ρ(u)).

Consider a GFG automaton A = 〈Σ, Q,Q0, δ, α〉, and let g = 〈Σ, Q, M , m0,
ρ, τ〉 be a finite-state (Σ/Q)-transducer that generates a strategy g : Σ∗ → Q that
witnesses A’s GFGness (we abuse notations and use g to denote both the trans-
ducer and the strategy it generates). Consider a state q ∈ Q. When τ(m) = q,
we say that m is a memory of q. We denote by Ag the (deterministic) automaton
that models the operation of A when it follows g. Thus, Ag = 〈Σ,M,m0, ρ, αg〉,
where the acceptance condition αg is obtained from α by replacing each set F ⊆ Q
that appears in α (e.g. accepting states, rejecting states, set in a Rabin or Streett
pair, etc) by the set Fg = {m | τ(m) ∈ F}. Thus, Fg ⊆M contains the memories
of F ’s states. For a state q of A, a path π of Ag is q-exclusive accepting if π is
accepting, and inf(π) \ {m | m is a memory of q} is not accepting.

6

q2 q1 q0

2 1 0

b a b

a

a

b

a

Figure 1: A weakly tight GFG-NPW A0. The numbers below the states describe
their priorities.

q2

q1

q0

m0

m′1

m1

m2

0

1

2

b

a

b

a

b

b

a

a

Figure 2: A strategy witnessing the
GFGness of the automaton A0, de-
picted in Figure 1.

q2

q1

q0

m0

m′1

m1

m2

0

1

2

b

a

b

a

b

a

Figure 3: A strategy witnessing the
tightness of a sub-automaton of A0.

Example 2.1. Consider the NPW A0 appearing in Figure 1. We claim that A0

is a GFG-NPW that recognizes the language

L0 = {w ∈ {a, b}ω | there are infinitely many b’s in w}.

Indeed, if a word w contains only finitely many b’s then A0 rejects w, as in all
the runs of A0 on w, the lowest priority appearing infinitely often is 1. Therefore,
L(A0) ⊆ L0.

We turn to describe a strategy g : {a, b}∗ → Q with which A0 accepts all words
in L0. The only nondeterminism in A0 is when reading the letter a in the state q1.
Thus, we have to describe g only for words that reach q1 and continue with an a.
In that case, the strategy g moves to the state q2, if the previous state is q0, and
to the state q1, otherwise. Figure 2 describes a (Σ/Q)-transducer that generates
g. The rectangles denote the states of A0, while the dots are their g-memories.
The numbers below the rectangles describe the priorities of the respective states
of A0.

As L(A0g) ⊆ L(A0), it remains to formally prove that L0 ⊆ L(A0g). Consider
a word w ∈ L0. Let r = r0, r1, . . . be the sequence of states of A0 visited by A0g

on w. Assume by way of contradiction that r is not accepting. Thus, r visits
q1 infinitely many times but visits q0 only finitely many times. Let N be such
that rm 6= q0 for all m ≥ N . Consider a position k > N such that rk = q1.

7

Since w contains infinitely many b’s, there is some minimal k′ ≥ k such that the
k′-th letter in w is b. Then, rk = rk+1 = . . . = rk′ = q1 and rk′+1 = q0, which
contradicts the choice of N .

The following lemma generalizes known residual properties of GFG automata
(c.f., [6]).

Lemma 2.2. Consider a GFG automaton A = 〈Σ, Q,Q0, δ, α〉 and let g =
〈Σ, Q,M,m0, ρ, τ〉 be a strategy witnessing its GFGness.

(1) For every state q ∈ Q and memory m ∈ M of q that is reachable in Ag, we
have that L(Amg) = L(Aq).

(2) For every memories m,m′ ∈M that are reachable in Ag with τ(m) = τ(m′),
we have that L(Amg) = L(Am′g).

Proof. We start with the first claim. Obviously, L(Amg) ⊆ L(Aq). For the other
direction, consider toward contradiction that there is a word w ∈ L(Aq)\L(Amg).
Let u be a finite word such that Ag(u) = m. Then, u ·w 6∈ L(Ag). However, there
is an accepting run of A on u · w: it follows the run of Ag on u, and continues
with the accepting run of Aq on w. Hence, g does not witness A’s GFGness, and
we have reached a contradiction. The second claim is a direct corollary of the
first, as L(Amg) = L(Aτ(m)) = L(Aτ(m′)) = L(Am′g).

A finite path π = q0, . . . , qk in A is a sequence of states such that for i =
0, . . . , k−1 we have qi+1 ∈ δ(qi, ai) for some ai ∈ Σ. A path is a cycle if q0 = qk.
Each path π induces a set states(π) = {q0, . . . , qk} of states in Q. A set S of
finite paths then induces the set states(S) =

⋃
π∈S states(π). For a set P of finite

paths, a combination of paths from P is a set states(S) for some nonempty S ⊆ P .
Consider a strategy g = 〈Σ, Q,M,m0, ρ, τ〉. We say that a transition 〈q, a, q′〉

of A is used by g if there is a word u ∈ Σ∗ and a letter a ∈ Σ such that q = g(u)
and q′ = g(u · a). Consider two memories m 6= m′ ∈ M with τ(m) = τ(m′). Let
Pm′→m be the set of paths of Ag from m′ to m. We say that m is replaceable by
m′ if Pm′→m is empty or all combinations of paths from Pm′→m are accepting.

We say that A is tight with respect to g if all the transitions of A are used
in g, and for all memories m 6= m′ ∈ M with τ(m) = τ(m′), we have that m is
not replaceable by m′. Intuitively, the latter condition implies that both m and
m′ are required in g, as an attempt to merge them strictly reduces the language
of Ag. When only the first condition holds, namely when all the transitions
of A are used in g, we say that A is weakly tight with respect to g. When a
Rabin automaton A is tight with respect to g, and in addition for every state q
that appears in some good set of A’s acceptance condition, there is a q-exclusive
accepting cycle in Ag, we say that A is strongly tight with respect to g. Then,
A is (weakly, strongly) tight if it is (weakly, strongly) tight with respect to some
strategy.

Example 2.3. The GFG-NPW A0 from Example 2.1 is weakly tight and is not
tight with respect to the strategy g. Indeed, while all the transitions in A0 are

8

used in g, the memory m1 is replaceable by m′1, as all combinations of paths from
m′1 to m1 are accepting.

The following lemma formalizes the intuition that every GFG automaton
can indeed be restricted to its tight part, by removing redundant transitions and
memories. Further, every tight Rabin GFG automaton has an equivalent strongly
tight automaton over the same structure.

Lemma 2.4. For every GFG automaton A there exists an equivalent tight GFG
automaton A′. Moreover, A′ is defined on a substructure of A.

Proof. Consider a GFG automaton A = 〈Σ, Q,Q0, δ, α〉, and let g = 〈Σ, Q, M ,
m0, ρ, τ〉 be a strategy that witnesses A’s GFGness. We show how to make A
tight with respect to a strategy obtained by merging memories in g.

As long as A is not tight with respect to g, we proceed as follows. First, we
remove from A all the transitions that are not used by g. Then, if there are two
memories m,m′ ∈ M with τ(m) = τ(m′) such that m is replaceable by m′, we
remove m from g and redirect transitions to m into m′. Note that the removal
of m may cause the obtained strategy not to use some transitions in A. We thus
keep repeating both steps as long as the obtained automaton is not tight with
respect to the obtained strategy.

We prove that both steps do not change the language of A and its GFGness.
First, clearly, removal of transitions that are not used does not change the lan-
guage of A. Now, consider memories m 6= m′ ∈M with τ(m) = τ(m′) such that
m is replaceable by m′. Thus, Pm′→m is empty or all subsets S ⊆ Pm′→m are
such that states(S) is accepting. Let g′ be the strategy obtained by removing m
from g and redirecting transitions to m into m′.

Since L(Ag′) ⊆ L(A) = L(Ag) it is enough to prove that L(Ag) ⊆ L(Ag′).
We start with the case Pm′→m is empty, thus there is no path from m′ to m.

Consider the accepting run r of Ag on some word w. If r does not include m,
then the run of Ag′ on w is identical to r, and is thus accepting. Otherwise, let p
be the first position of m in r, and let wp+1 be the suffix of w from the position
p + 1 onwards. Since r is accepting, wp+1 ∈ L(Amg). Thus, by Lemma 2.2, we

have wp+1 ∈ L(Am′g). Now, since Pm′→m is empty, the runs of Am′g and Am′g′ are

identical on wp+1, and are thus accepting. Hence, Ag′ accepts w.
We continue with the case that all subsets S ⊆ Pm′→m are such that states(S)

is accepting. Consider a word w ∈ Ag, and let r′ be the run of Ag′ on w. The
run r′ may use the memory m′ instead of m finitely or infinitely many times.
Consider first the case that r′ uses the memory m′ instead of m for k times. It is
easy to prove, by an induction on k, that r′ is accepting. Indeed, the base case is
similar to the case Pm′→m is empty, and the induction step changes only a finite
prefix of the run. Consider now the case that the change is done infinitely many
times, in positions p1, p2, . . . of r′. Every path from pi to pi+1 is a path from
m′ to m in Ag. Hence, the set of states inf(r′) is states(S) for some nonempty
S ⊆ Pm′→m, and is thus accepting.

9

Lemma 2.5. For every tight Rabin GFG automaton, there exists an equivalent
strongly tight Rabin GFG automaton over the same structure.

Proof. Consider a tight GFG Rabin automaton A and let g be a strategy that
witnesses A’s GFGness and with respect to which A is tight. We show that the
removal of redundant states from the good sets of A’s accepting condition results
in an automaton that is equivalent to A and strongly tight with respect to g.

Consider a state q of A that appears in some good set G of A’s acceptance
condition, and for which there is no q-exclusive accepting cycle in Ag. We claim
that the automaton A′ that is identical to A, except for removing q from G, is a
GFG Rabin automaton equivalent to A that is tight w.r.t. g. Indeed:

• Regarding the language equivalence, obviously, L(A′) ⊆ L(A). As for the
other direction, let r be the accepting run of Ag on some word w. Observe
that r is also an accepting run of A′g on w: If q does not appear infinitely
often in r then clearly r is also accepting w.r.t. A′. Now, if q does appear
infinitely often in r, then since there is no q-exclusive accepting cycle in Ag,
every cycle from q back to q is accepting w.r.t. A′ and thus r is accepting
w.r.t. A′.

• Regarding the GFGness of A′, since L(A) = L(Ag) = L(A′g) ⊆ L(A′) ⊆
L(A), we get that g witnesses the GFGness of A′.

• Regarding the tightness of A′ w.r.t. g, observe that A and A′ have the
same transitions, and since Ag has no redundant memories, neither does
A′g have ones: Recall that a memory m is redundant if exists a memory m′

of the same state, such that the set of paths of Ag from m′ to m, which we
denote by Pm′→m, is empty or all combinations of paths from Pm′→m are
accepting. The set of paths of Ag and of A′g from m′ to m are the same,
and a path of A′g cannot be accepting if it is not accepting in Ag.

As there are finitely many states in A, an iterative removal of states q as
described above results in an automaton that is strongly tight w.r.t. g.

Example 2.6. In Figure 3 we describe a strategy g′ that witnesses the tightness
of a GFG-NPW on a substructure of the GFG-NPW A from Example 2.1. The
strategy g′ is obtained from g by following the procedure described in the proof
of Lemma 2.4: all the transitions to m1 are redirected to m′1. This causes the
transition (q1, a, q2) that was used by the memory m1 not to be used, and it is
removed.

A special case of GFG automata are those who are determinizable by pruning
(or shortly DetByP) — there exists a state q0 ∈ Q0 and a function δ′ : Q×Σ→ Q
that for every state q and letter a satisfies δ′(q, a) ∈ δ(q, a) such that A′ =
〈Σ, Q, q0, δ

′, α〉 is a deterministic automaton recognizing the language L(A).

10

q00 q01

q10 q11

p0 p1 p2

2 1

1 1

1 1 0

b
b

a a

b
b

b

a

a

b

a, b

Figure 4: A1: An unambiguous NPW that is DBW-realizable yet is not Büchi-
type.

3 Typeness Does Not Hold for Unambiguous Automata

As noted in [7], it is easy to see that typeness does not hold for nondeterministic
automata: there exists an NRW that recognizes an NBW-realizable language, yet
does not have an equivalent NBW on the same structure. Indeed, since all ω-
regular languages are NBW-realizable, typeness in the nondeterministic setting
would imply a translation of all NRWs to NBWs on the same structure, and
we know that such a translation may involve a blow-up linear in the index of
the NRW [17]. Even for Streett and co-Büchi automata, where the restriction to
NCW-realizable languages amounts to a restriction to DCW-realizable languages,
typeness does not hold.

In this section we strengthen the relation between typeness and determinism
and show that typeness does not hold for nondeterministic automata even when
they recognize a DBW-realizable language and, moreover, when they are unam-
biguous. Also, we prove the non-typeness results for NPWs, thus they apply to
both Rabin and Streett automata.

Proposition 3.1. Unambiguous NPWs are not Büchi-type with respect to DBW-
realizable languages.

Proof. Consider the automaton A1 depicted in Figure 4. We will show that A1

is unambiguous and recognizes a DBW-realizable language, yet A1 is not Büchi-
type. Moreover, we cannot prune transitions from A1 and obtain an equivalent
Büchi-type NPW.

The NPW A1 has two components: the left component, consisting of the
states qij ; and the right component, consisting of the states p0, p1, and p2. The
right part is deterministic, and it recognizes the language

L1,a,b = {w ∈ {a, b}ω | there are infinitely many a’s and b’s in w}.

We first prove that the left component is unambiguous and that its language
is:

L1,]a,b = {w ∈ {a, b}ω | there is a finite and even number of a’s in w }.

11

q00 q01

q10 q11 q12

b
b

b b
b

a a
a a

a

Figure 5: A DBW recognizing L1.

To see this, observe that after reading a finite word, the left component of A1

can reach a state of the form qij iff i ≡]a(w) (mod 2) (i.e. i is the parity of the
number of letters a in w). The only accepting runs of the left component are
those that get stuck in the state q00. This implies that if w is accepted by the left
component, then w ∈ L1,]a,b. For the other direction, consider a word w ∈ L1,]a,b.
We show that A1 has an (in fact, unique) accepting run on w. We can construct
an accepting run of the left component of A1 on w by guessing whether the next
block of a (i.e., a sub-word of the form a+) has an even or odd length. If the
guess is incorrect, the run is stuck reading b in a state of the form qi1. If the
guess is correct, the run reads the first b after the block in a state of the form
qi0. Thus, after reading the last block of a’s, the constructed run reaches the
state q00, stays there forever, and A1 accepts w in its left component. Further,
all other runs that attempt to accept w in the left component are doomed to get
stuck. Thus, the left component is unambiguous.

Since L1,a,b ∩ L1,]a,b = ∅, the NPW A1 is unambiguous and its language is

L1 = {w ∈ {a, b}ω | w has an infinite number of b’s

and an infinite or even number of a’s}.

It is not hard to see that L1 is DBW-realizable. An example of a DBW that
recognizes L1 is depicted in Figure 5.

We prove that A1 is not Büchi-type. Assume by way of contradiction that
there exists a subset α of A1’s states such that the automaton obtained form
A1 by viewing it as an NBW with the acceptance condition α recognizes L1. If
{q00, q11} ∩ α 6= ∅, then the NBW accepts the word aω, which is not in L1. If
{q01, q10} ∩ α 6= ∅, then the NBW accepts the word baω, which is also not in L1.
Therefore, α ⊆ {p0, p1, p2}. Clearly, p1 /∈ α, as otherwise the NBW accepts aω.
Similarly, if p0 ∈ α, then the NBW accepts abω, which is also not in L1. Thus,
α = {p2} and the NBW rejects bω, which is in L1.

Finally, as A1 is unambiguous and all its transitions are used in the accepting
run of some word, it cannot be pruned to an equivalent NPW.

The dual case of unambiguous NPWs that are not co-Büchi-type with respect
to DCW-realizable languages follows from the results of [7], and we give it here for
completeness, adding the observation that the automaton described there cannot
be pruned to an equivalent co-Büchi-type NPW.

12

q0 q1 q2 q3

b

a a
a

b

b aa

Figure 6: A2: An unambiguous NBW that is DCW-realizable yet is not co-Büchi-
type.

Proposition 3.2. [7] Unambiguous NPWs (and even NBWs) are not co-Büchi-
type with respect to DCW-realizable languages.

Proof. Consider the NBW A2 depicted in Figure 6. We will show that A2 is
unambiguous, and recognizes a DCW-realizable language, yet A2 is not co-Büchi-
type. Moreover, we cannot prune transitions from A2 for obtaining an equivalent
co-Büchi-type NPW.

Notice that L(A2) = {w ∈ {a, b}ω | w contains a letter b}, which is DCW-
realizable.

Yet, there is no way to define a co-Büchi acceptance condition on top of
A2 and obtain an equivalent NCW. Moreover, as A2 is unambiguous and all its
transitions are used in an accepting run of some word, it cannot be pruned to an
equivalent one.

We conclude this section with the following rather simple proposition, show-
ing that automata that are both unambiguous and GFG are essentially determi-
nistic. Essentially, it follows from the fact that by restricting an unambiguous
GFG automaton A to reachable and nonempty states, we obtain, by pruning, a
deterministic automaton, which is clearly equivalent to A.

Proposition 3.3. Unambiguous GFG automata are DetByP.

Proof. Let A be an unambiguous GFG automaton, witnessed by a strategy g that
starts in a state q0. Without loss of generality, we can assume that L(A) 6= ∅. Let
A′ be the restriction of A to reachable and nonempty states (namely to reachable
states q, such that L(Aq) 6= ∅). It is clear that A′ is obtained from A by pruning
and that L(A′) = L(A).

We prove that A′ is deterministic. Note first that there is a single nonempty
initial state. Indeed, assume toward contradiction that there is an initial state
q′0 6= q0, from which A has a run accepting some word w. Since A has an
accepting run on w starting from q0, as witnessed by g, we get a contradiction to
its unambiguity.

Next, we prove that A′ is deterministic by showing that for every finite word
u over which A can reach a nonempty state, we have |A′(u)| = 1. Let q be
the state that Ag reaches when reading u and assume toward contradiction the

13

existence of a state q′ 6= q, such that q′ ∈ A′(u). As q′ is nonempty, Aq′ accepts
some word w. However, since uw ∈ L(A), we have by the GFGness of A that Aq
also accepts w. Hence, A has two different accepting runs on uw, contradicting
its unambiguity.

4 Co-Büchi Typeness for GFG-NSWs

In this section we study typeness for GFG-NSWs and show that, as is the case
with deterministic automata, tight GFG-NSWs are co-Büchi-type. On a more
technical level, the proof of Theorem 4.1 only requires the GFG automata to be
weakly tight (rather than fully tight), implying that Theorem 4.1 can be strength-
ened in accordance. This fact is considered in Section 5, where the typeness of
GFG-NRWs is shown to require full tightness.

Theorem 4.1. Tight GFG-NSWs are co-Büchi-type: Every tight GFG-NSW that
recognizes a GFG-NCW-realizable language has an equivalent GFG-NCW on the
same structure.

Proof. Consider a GFG-NSW A = 〈Σ, Q,Q0, δ, α〉, with α = {〈E1, F1〉, . . .,
〈Ek, Fk〉}. For 1 ≤ i ≤ k, we refer to the sets Ei and Fi as the bad and good sets
of α, respectively. Let g = 〈Σ, Q,M,m0, ρ, τ〉 be a strategy that witnesses A’s
GFGness and such that A is tight with respect to g. Formally, the automaton
A′ is defined as A with the co-Büchi acceptance condition

α′
def
= {q | all the cycles in Ag that go through a g-memory of q are rejecting}.

We prove that L(A) = L(A′) and that A′ is a GFG-NCW.
Let Q = {q1, . . . , qn}. We define a sequence of NSWs A0,A1, . . . ,An and

prove that: L(A) = L(A0) = L(A1) = · · · = L(An); g witnesses the GFGness
of Al for all 0 ≤ l ≤ n; and An is essentially the NCW A′. For all 0 ≤ l ≤ n,
the NSW Al has the same structure as A. The acceptance condition of Al is
αl ∪ {〈α′l, ∅〉}, where αl and α′l are defined as follows.

First, α0 = α and α′0 = ∅. Thus, going form A to A0 we only add to α a
redundant pair 〈∅, ∅〉. Clearly, L(A) = L(A0) and A0 is GFG witnessed by g.

For 1 ≤ l ≤ n, we obtain αl and α′l from αl−1 and α′l−1 in the following way.
First, we remove ql from all the bad sets in αl−1. Then, if ql ∈ α′, we add it to
α′l.

We now prove that L(Al) = L(Al−1) and that Al is GFG witnessed by g.
We distinguish between two cases. If ql ∈ α′, the proof is not hard: adding

ql to α′l forces it to be visited only finitely often regardless of visits in the good
sets. Thus, L(Al) ⊆ L(Al−1). In addition, L(Al−1) ⊆ L(Al), and g witnesses
also the GFGness of Al. Indeed, an accepting run in L(Al−1) remains accepting
in L(Al). To see this, assume by way of contradiction that there is a run r that
satisfies αl−1 ∪ {〈α′l−1, ∅〉} yet does not satisfy αl ∪ {〈α′l, ∅〉}. Since αl is easier
to satisfy than αl−1, it must be that r violates the pair 〈α′l, ∅〉. Since r satisfies

14

the pair 〈α′l−1, ∅〉, it must visit ql infinitely often. Since, however, ql ∈ α′, the
latter indicates that r eventually traverses only rejecting cycles in Ag and is thus
rejecting also in Al.

If ql 6∈ α′, we proceed as follows. Consider a state q that has a memory with
an accepting cycle, and let A′ be the NSW that is derived from A by taking
q out of the bad sets. The change can obviously only enlarge the automaton’s
language. Assume toward contradiction that there is a word w ∈ L(A′) \ L(A).
Since L(A′) \ L(A) is an ω-regular language, we may assume that w is a lasso
word, namely of the form w = uvω.

As the only difference between A and A′ is the removal of q from bad sets, it
follows that an accepting run r of A′ on w visits q infinitely often. Hence, there
are positions i and j of w, such that: I) r visits q in both i and j, II) the inner
position within v is the same in positions i and j, and III) the cycle Cr that r
goes through between positions i and j is accepting.

Let x be the prefix of w up to position i and y the infix of w between positions
i and j. Notice that xyω = uvω = w. Consider the run r′ of A′ on w that follows
r up to position j, and from there on forever repeats the cycle Cr. By the above
definition of i and j, the run r′ is also accepting.

Notice that since w 6∈ L(A), it follows that Cr is rejecting for A. As the only
difference between A and A′ is the removal of q from the bad sets, it follows that
combining Cr with any cycle Ca that contains q and is accepting for A, yields
a cycle that is accepting for A. Recall that q has such an accepting cycle Ca,
having that Cr ∪ Ca is accepting.

Since NCW=DCW, there is a DCW D equivalent to A. Let n be the number
of states in D. Let z be a finite word over which Ag makes the cycle Ca, and
consider the word e = x(ynzn)ω. We claim that e ∈ L(A) \ L(D), leading to a
contradiction.

As for the positive part, e ∈ L(A) by the run of A that reaches q and then
follows the Cr and Ca cycles.

Next, we show that e 6∈ L(D). For every i ∈ N, let ei = x(ynzn)iyn be a
subword of e, and let mi = Ag(ei). Notice that mi belongs to some state qi of A
and not necessarily to q. By [6], the fact there exists a finite word u such that
q, qi ∈ A(u), implies that L(Aq) = L(Aqi). Thus, since q ∈ A(ei), we have, by
Lemma 2.2, that L(Ami

g) = L(Aqi) = L(Aq).
Since yω 6∈ L(Aq) and L(Ami

g) = L(Aq), it follows that Ag does not accept
x(ynzn)iyω. Hence, the run of D on e must visit a rejecting state on every period
between ei and ei+1, implying that it is rejecting.

Finally, in αn all the bad sets are empty. Also, α′n = α′. Thus, An is really
an NCW with acceptance condition α′, i.e. A′.

The following example shows that the weak tightness requirement cannot be
omitted, even when the GFG-NSW is actually a GFG-NBW.

Example 4.2. The automaton A3 depicted in Figure 8 is GFG-NBW and rec-
ognizes a GFG-NCW-realizable language, yet A3 has no equivalent NCW on the

15

same structure.

First, it is not hard to see that L(A3) = (aa)ω+(aa)∗b+aa(b+aa)ω ⊆ {a, b}ω.
Notice that if we remove the transition (q0, b, q0) then A3 becomes a deter-

ministic automaton for the same language. In particular, A3 is GFG. Clearly
the language of A3 is GFG-NCW-realizable—once the transition (q0, b, q0) is re-
moved, we can make p0 the only rejecting state, and obtain an equivalent DCW.

Now assume toward contradiction that there exists an NCW A′3 equivalent to
A3 over the whole structure of A3. Let α′ be its acceptance condition. Observe
that q0 /∈ α′ as otherwise A′3 rejects the word aω. In that case A′3 accepts the
word bω, leading to a contradiction.

5 Büchi Typeness for GFG-NRWs

Studying typeness for deterministic automata, one can use the dualities between
the Büchi and co-Büchi, as well as the Rabin and Streett conditions, in order to
relate the Büchi-typeness of DRWs with the co-Büchi typeness of DSWs. In the
nondeterministic setting, we cannot apply duality considerations, as by dualizing
a nondeterministic automaton, we obtain a universal one. As we shall see in this
section, our inability to use dualization considerations is not only technical. There
is an inherent difference between the co-Büchi typeness of GFG-NSWs studied in
Section 4, and the Büchi typeness of GFG-NRWs, which we study here. We first
show that while the proof of Theorem 4.1 only requires weak tightness, Büchi
typeness requires full tightness.

The following example shows that tightness is necessary already for GFG-
NCW that are GFG-NBW-realizable.

Example 5.1. The automaton A4 depicted in Figure 7 is a weakly tight GFG-
NCW that recognizes a GFG-NBW-realizable language, yet A4 has no equivalent
GFG-NBW on the same structure.

First notice that the language of A4 is L4 = aω + a∗b+a(a + b)ω ⊆ {a, b}ω.
Moreover, if we remove the transitions (q0, b, q1) and (q1, b, q0), then A4 becomes
a deterministic automaton for the same language. In particular, A4 is GFG.
Clearly, L4 is both DBW- and DCW-realizable.

Now assume toward contradiction that there exists an NBW A′4 equivalent to
A4 over the (whole) structure of A4. Let α be its acceptance condition. Observe
that the state q1 must belong to α, as otherwise A′4 rejects the word aω. But in
that case, A′4 accepts the word bω, leading to a contradiction.

We now proceed to our main positive result, obtaining the typeness of GFG-
NRWs.

Theorem 5.2. Tight GFG-NRWs are Büchi-type: Every tight GFG-NRW that
recognizes a GFG-NBW-realizable language has an equivalent GFG-NBW on the
same structure.

16

q0 q1

p0 p1

a, b
a

b

b
b

b

a

a, b

Figure 7: A4: A weakly tight GFG-
NCW that is GFG-NBW-realizable
yet is not Büchi-type.

q0q1 p0

p1p2

b

a

a
b

b

a

a

a

b

Figure 8: A3: A GFG-NBW that
is GFG-NCW-realizable yet is not co-
Büchi-type.

Consider a tight GFG-NRW A that recognizes a GFG-NBW-realizable lan-
guage. Let g be a strategy that witnesses A’s GFGness and with respect to which
A is tight. By Lemma 2.5, we have a GFG Rabin automaton A′ over the struc-
ture of A that is strongly tight with respect to g. We define an NBW B on top
of A’s structure, setting its accepting states to be all the states that appear in
“good” sets of A′ (namely in the right components of the Rabin accepting pairs).

Clearly, L(A′) ⊆ L(B), as B’s condition only requires the “good” part of A′’s
condition, without requiring to visit finitely often in a corresponding “bad” set.
We should thus prove that L(B) ⊆ L(A′) and that B is GFG. Once proving the
language equivalence, B’s GFGness is straight forward, as the strategy g witnesses
it. The language equivalence, however, is not at all straightforward.

In order to prove that L(B) ⊆ L(A′), we analyze the cycles of A′ and of A′g,
as expressed by the following lemmas.

Lemma 5.3. Consider a GFG-NRW A that is GFG-NBW-realizable and a strat-
egy g that witnesses its GFGness.

1. A g-memory m of a state q of A cannot belong to both a q-exclusive accept-
ing cycle and a rejecting cycle.

2. Consider g-memories m and m′ of a state q of A, such that m belongs
to a q-exclusive accepting cycle and m′ belongs to a rejecting cycle. Let
Pm→m′ and Pm′→m be the sets of paths from m to m′ and from m′ to
m, respectively. Then Pm→m′ or Pm′→m satisfies the following property:
It is empty or every combination of its paths is accepting. Formally, for
P = Pm→m′ or P = Pm′→m, we have that states(P) = ∅ or states(S) is
accepting for all S ⊆ P .

Proof. We start with the first claim. First, by [8], there is a DBW D equivalent
to A. Assume, by way of contradiction, that there are finite words p, u and
v, such that Ag(p) = m, Amg (u) = m along a q-exclusive accepting cycle, and
Amg (v) = m along a rejecting cycle.

17

Let n be the number of states in D, and consider the word w = p(unvn)ω.
For every i ≥ 1, the NBW D accepts p(unvn)iuω. Hence, it is not hard to prove
that D also accepts w.

On the other hand, we claim that A does not accept w. Indeed, since v is a
rejecting cycle that includes q, it must visit states in a bad set Bi for every i such
that q belongs to a good set Gi. As the cycle u is q-exclusive accepting, we get
that the cycle unvn is rejecting.

For the second claim, assume, by way of contradiction, that there are paths
π1, . . . , πn ∈ Pm→m′ and paths π′1, . . . , π

′
n′ ∈ Pm′→m, such that both sets of

states:
⋃n
i=1 states(πi) and

⋃n′

i=1 states(π′i) are rejecting. Consider the path π =
π1π

′
1π2π

′
2 . . . πnπ

′
n′ , where w.l.o.g. πn is repeated until reaching the larger index

n′. Then, since the union of Rabin rejecting cycles is rejecting, π is a rejecting
cycle of m, contradicting the previous observation.

Lemma 5.4. Consider a strongly tight GFG-NRW A that is GFG-NBW-realizable.
Then, every state q of A that appears in some good set has a single g-memory,
and all the q-cycles in Ag are accepting, and at least one of them is q-exclusive.

Proof. Since A is strongly tight and q appears in a good set, the “strong tight-
ening” of A, as per the proofs of Lemmas 2.4 and 2.5, guarantees that q has a
g-memory m that belongs to a q-exclusive accepting cycle. Assume, by way of
contradiction, that q has another memory m′ 6= m. Then, due to the removal
of redundant memories in Lemma 2.4, there is a rejecting combination of paths
from m to m′, as well as from m′ to m. Hence, m belongs to a rejecting cycle, in
contradiction to Lemma 5.3.

In addition, since there is a single memory m in q, and q belongs to a good
set, we have, by Lemma 2.4, that m belongs to a q-exclusive accepting cycle.
Hence, by Lemma 5.3, the memory m cannot also belong to a rejecting cycle.

Lemma 5.5. Consider a strongly tight GFG-NRW A that is GFG-NBW-realizable.
Then, every state q of A that appears in some good set does not belong to a re-
jecting cycle.

Proof. Assume, by way of contradiction, that q belongs to a rejecting cycle π = q0,
q1, q2, . . . , qn, qn+1 with q0 = qn+1 = q. Let S be the set of indices of bad sets
that π visits. That is, an index j belongs to S if there is a state p in π that
belongs to Bj . Notice that S cannot be empty, since q appears in a good set.

Let h be the maximal index of a state qi in π up to which the strategy may
exhaust the cycle states, while not adding a “fresh unrejected good state”. That
is:

• There is a path ρ of Ag from q to a memory m of qh that visits qi for every
1 ≤ i ≤ h, and if a state p appears in ρ and in Gi \Bi for some acceptance
set i, then i ∈ S. (Notice that the path may also visit states not in the
cycle and may visit the cycle states in a different order.)

• There is no such path of Ag from q to qh+1.

18

Notice that h ≥ 1, since there is a transition q → q1 that the strategy uses, and
h ≤ n, since otherwise q belongs to a rejecting path of Ag, while such a path does
not exist due to Lemma 5.4.

Let m′ be a memory of qh that takes the transition qh → qh+1. Notice that
m′ 6= m, since by the maximality of h, m does not take the transition qh → qh+1.

Furthermore, there cannot be rejecting path combinations from both m to m′

and from m′ to m, as merging them would provide a rejecting path ρ′ from m
to m′, which is impossible due to the maximality of h. (Concatenating ρ′ to ρ
provides a continuation of ρ to qh+1.)

Hence, all path combinations from either m to m′ or from m′ to m are ac-
cepting. However, this leads to a contradiction due to the removal of redundant
memories in Lemma 2.4.

We are now in position to finish the proof of Theorem 5.2 by showing that
L(B) ⊆ L(A′) and that B is GFG.

Consider a word w ∈ L(B), and an accepting run r of B on it. Let q be an
accepting state that appears infinitely often in r. By Lemma 5.5, all cycles of A′
that include q are accepting. Hence, r is also an accepting run of A′ on w.

As for the GFGness of B, we claim that the strategy g also witnesses B’s
GFGness. Consider a word w ∈ L(B). Since L(B) = L(A′) = L(A′g), there is an
accepting run r of A′g on w. Therefore, there must be some state q in a good set
of A′ that is visited infinitely often along r. Thus, r is also an accepting run of
Bg on w. This concludes the proof of Theorem 5.2.

The following result follows directly from Lemma 2.4, Theorem 5.2, and the
determinization procedure for Büchi GFG automata from [6].

Corollary 5.6. Every GFG-NRW with n states that recognizes a DBW-realizable
language has an equivalent DBW with at most O(n2) states.

Proof. Consider a GFG-NRW A with n states that recognizes a DBW-realizable
language. By Lemma 2.4, A has an equivalent tight GFG-NRW on a substructure
of it, thus with at most n states. By Theorem 5.2, A has an equivalent GFG-
NBW on the same structure, thus with at most n states. By [6], GFG-NBWs
can be determinized with a quadratic blow-up, and we are done.

6 Weak Typeness for GFG Automata

A Büchi automaton A is weak [13] if for each strongly connected component C
of A, either C ⊆ α (in which case we say that C is an accepting component) or
C ∩ α = ∅ (in which case we say that C is a rejecting component). Note that a
weak automaton can be viewed as both a Büchi and a co-Büchi automaton, as a
run of A visits α infinitely often iff it gets trapped in an accepting component iff
it visits states in Q \ α only finitely often. We use NWW and DWW to denote
nondeterministic and deterministic weak word automata, respectively.

We show in this section that all GFG automata are type with respect to the
weak acceptance condition. We provide the theorem with respect to GFG-NCWs,

19

from which we can easily deduce it, by our previous typeness results, also for the
other types.

Theorem 6.1. Tight GFG-NCWs are weak-type: every tight GFG-NCW that
recognizes a GFG-NWW-realizable language has an equivalent GFG-NWW on
the same structure.

Proof. Consider a tight GFG-NCW A that recognizes a language that is GFG-
NWW-realizable. Let S be the set of rejecting states of A and let g be a strategy
witnessing A’s tight GFGness. Let S′ be the union of S and all the states q of A
for which no g-memory m has an accepting cycle in Ag. Let A′ be the automaton
A with the co-Büchi condition given by S′. Notice that the strategy g witnesses
that for every state q of A′ we have L(Aq) ⊆ L

(
(A′)q

)
. The opposite inclusion

follows from the fact that S ⊆ S′. Thus, A′ is an NCW equivalent to A and g
witnesses its GFGness.

We now prove that A′ is weak. Assume contrarily that there exists a cycle C
in A′ that contains both a state q /∈ S′ and a state q′ ∈ S′.

Since q /∈ S′, there is a cycle C+ in Ag that is accepting in Ag and contains a
g-memory m of q. This cycle witnesses that none of the states on C+ can belong
to S′ \ S, therefore the cycle C+ is accepting in A′g as well.

We construct a cycle C− of A′g that visits some g-memory m′ of q′ and the
g-memory m of q. This cycle is obtained by extending the cycle C of A′ in the
following way. Assume that (q0, a0, q1) and (q1, a1, q2) are two consecutive transi-
tions of C. Since A′ contains only transitions of g, these are actually transitions
of A′g of the form (m0, a0,m

′
0) and (m1, a1,m

′
1) with g-memories: m0 of q0; m′0

and m1 of q1; and m′1 of q2. Notice that m′0 may possibly be different from m1.
However, by the assumption that A is tight, there is a path in A′g leading from
m′0 to m1. Thus, for each pair of such consecutive transitions we can add an
appropriate path to C in such a way to obtain a cycle C− of A′g that extends
(as a set of states) C. Additionally, we can add to C− two paths in such a way
to visit q exactly in the g-memory m (C visits q, so it is possible as above). As
q′ ∈ S′ and q′ ∈ C ⊆ C−, we know that C− is rejecting in A′g.

Let u+ and u− be the finite words over which (A′)mg traverses the cycles C+

and C−, respectively. An infinite repetition of u+ and u− belongs to L
(
(A′)mg

)
=

L
(
(A′)q

)
= L

(
Aq
)

if and only if it contains only finitely many copies of u−. But
this contradicts the fact that L(Aq) can be recognized by a DWW.

Consider now a GFG-NSW A that is GFG-NWW-realizable. Notice that it
is obviously also GFG-NBW-realizable. Hence, by Theorem 4.1, there is a GFG-
NCW on A’s structure, and by Theorem 6.1 also a GFG-NWW. The cases of
a GFG-NPW and a GFG-NBW obviously follow, since they are special cases of
GFG-NSWs. As for a GFG-NRW A that is GFG-NWW-realizable, notice that
it is obviously also GFG-NBW-realizable. Hence, by Theorem 5.2, there is a
GFG-NBW on A’s structure, and by Theorem 6.1 also a GFG-NWW.

20

Corollary 6.2. Tight GFG-NSWs and GFG-NRWs are weak-type: every tight
GFG-NSW and GFG-NRW that recognizes a GFG-NWW-realizable language has
an equivalent GFG-NWW on the same structure.

Next, we show that GFG-NWWs are DetByP, generalizing a folklore result
about safe and co-safe GFG automata.

Theorem 6.3. GFG-NWWs are DetByP.

Proof. Consider a GFG-NWW A with accepting set α. By Lemmas 2.4 and 2.5,
we may assume that A is strongly tight w.r.t. a strategy g. First notice that
by Lemma 5.4, a state q ∈ α has only one g-memory, and is therefore already
deterministic.

Now we consider the case of a state q /∈ α such that there are at least two
g-memories m and m′ of q. Let g′ be the strategy obtained by removing m′ from
g and redirecting transitions to m′ into m.

We now show that L(Ag) = L(Ag′). From that, by induction it follows that
the number of memories of each state of A can be reduced to 1.

Consider a word w ∈ Ag, and let r′ be the run of Ag′ on w. The run r′ may
use the memory m instead of m′ finitely or infinitely many times. If r′ uses it only
finitely many times, then by an argument similar to the one given in the proof
of Lemma 2.4, r′ is also accepting. (The argument inductively uses Lemma 2.2,
according to which L(Amg) = L(Am′g).)

We continue with the case that the change is done infinitely many times, in
positions p1, p2, . . . of r′, and assume toward contradiction that r′ is rejecting.
Every path from pi to pi+1 is a path from m to m′ in Ag. Notice that the suffix
of w from position p1 onwards is in L(Aq) \ L(Amg′). Since we consider ω-regular
languages, we can assume without loss of generality that this suffix is periodic, in
the form of uω, whereAmg (u) = m′. Let u′ be a finite word such thatAm′g (u′) = m.

Consider now a word w′ ∈ (u + u′)ω. First assume that w′ contains only
finitely many instances of u′. In that case, we have that Aq accepts w′, because
Aq has a run that loops back to q until reading the last occurrence of u′ and then
follows the run witnessing that uω ∈ L(Aq). We refer to such words as of the first
kind.

Now assume that a suffix of w′ from some point on is equal to (uu′)ω. Since
(uu′)ω 6∈ L(Amg), we get by Lemma 2.2 that w′ /∈ L(Aq). We refer to such words
as of the second kind.

Now consider the minimal, namely last, strongly-connected component of Ag
that can be reached from m by reading words in the language (u + u′)∗. If this
component is accepting, then Amg accepts a word of the second kind. Similarly,
if the component is rejecting then Amg rejects a word of the first kind. In both
cases we get a contradiction.

By combining the above results, we obtain the following corollary.

Corollary 6.4. Every GFG-NSW and GFG-NRW that recognizes a GFG-NWW-
realizable language is DetByP.

21

7 Consequences

GFG automata provide an interesting formalism in between deterministic and
nondeterministic automata. Their translation to deterministic automata is im-
mediate for the weak condition (Theorem 6.3), polynomial for the Büchi con-
dition [6], and exponential for the co-Büchi, parity, Rabin, and Streett condi-
tions [6]. They have the same typeness behavior as deterministic automata, sum-
marized in Table 1. The positive results of Table 1 follow from our theorems in
Sections 4, 5, and 6. The negative results follow from corresponding counterex-
amples with deterministic automata [5, 7]. Considering the complementation
of GFG automata, they lie in between the deterministic and nondeterministic
settings, as shown in Table 2. As for the translation of LTL formulas to GFG
automata, it is doubly exponential, like the translation to deterministic automata
(Corollary 7.3 below).

Complementation In the deterministic setting, Rabin and Streett automata
are dual: complementing a DRW into a DSW, and vice versa, is simply done by
switching between the two acceptance conditions on top of the same structure.
This is not the case with GFG automata. We show below that complementing
a GFG-NSW, and even a GFG-NCW, into a GFG-NRW involves an exponential
state blow-up. Essentially, it follows from the Büchi-typeness of GFG-NRWs
(Theorem 5.2) and the fact that while determinization of GFG-NBWs involves
only a quadratic blow-up, determinization of GFG-NCWs involves an exponential
one [6].

Corollary 7.1. The complementation of a GFG-NCW into a GFG-NRW in-
volves a 2Ω(n) state blow-up.

Proof. By [6], there is a GFG-NCW C with n states whose equivalent DCWs
must have at least 2Ω(n) states. Consider a GFG-NRW A with x states for the
complement of C.

Since the language of A is DBW-recognizable, then, by Corollary 5.6, there
is a DBW D equivalent to A whose state space is quadratic in the number of
states of A, namely with up to x2 states. As the dual of D is a DCW equivalent
to C, it follows that D has at least 2Ω(n) states. Hence, x2 ≥ 2Ω(n), implying that
x ≥ 2Ω(n/2) = 2Ω(n).

Using our typeness results, we get an almost complete picture on complemen-
tation of GFG automata.

Theorem 7.2. The state blow-up involved in the complementation of GFG au-
tomata is as summarized in Table 2.

Proof.

• From weak and Büchi. A GFG-NBW A with n states has an equivalent
DBW D with up to n2 states [6], on which structure there is a DCW D for

22

Type To W B C P R S
From

Weak

Büchi

Co-Büchi Yes

Parity

Rabin No Y N

Streett N Y No Y

Table 1: Typeness in translations
between GFG automata. (Y=Yes;
N=No.)

Comp. To W C B P R S
From

Weak

Büchi Poly

Co-Büchi

?Parity

Rabin

Streett

Exp

Table 2: The state blow-up involved
in the complementation of GFG au-
tomata.

the complement language. Notice that D is also a GFG-NCW, GFG-NPW,
GFG-NRW, and GFG-NSW. Now, if there is a GFG-NBW equivalent to D,
then D is DWW-recognizable, and, by Theorem 6.1, there is a GFG-NWW
on a substructure of D.

• From co-Büchi. By Corollary 7.1, we have the exponential state blow-up in
the complementation to GFG-NPW and GFG-NRW automata. Since the
complement of a co-Büchi-recognizable language is DBW-recognizable, we
get an exponential state blow-up also to GFG-NBW.

• To weak and co-Büchi. Consider a GFG-NCW, GFG-NPW, or GFG-NRW
A with n states that can be complemented into a GFG-NCW C. Then the
language of A is GFG-NBW recognizable. Thus, by Theorem 5.2, there is
a GFG-NBW equivalent to A with up to n states. Hence, by case (1), there
is a GFG-NCW for the complement of A with up to n2 states.

• From Streett to weak. Consider a GFG-NSW A that can be complemented
to a GFG-NWW. Then the language of A is DWW-recognizable. Thus, by
Theorems 4.1 and 6.1, there is a GFG-NWW on a substructure of A, and
we are back in case (1).

• From Streett to co-Büchi. Given a DRW A that is NCW realizable, one can
translate it to an equivalent NCW by first dualizing A into a DSW A for
the complement language, and then complementing A into a GFG-NCW C.
Since dualizing a DRW into a DSW is done with no state blowup and the
translation of DRWs to NCWs might involve an exponential state blowup
[1], so does the complementation of GFG-NSW to GFG-NCWs.

• From Streett to Streett. Analogous to the above case of Streett to co-Büchi,
due to the exponential state blowup in the translation of DRWs to NSWs
[1].

23

Translating LTL formulas to GFG Automata Recall that GFG-NCWs
are exponentially more succinct than DCWs [6], suggesting they do have some
power of nondeterministic automata. A natural question is whether one can
come up with an exponential translation of LTL formulas to GFG automata, in
particular when attention is restricted to LTL formulas that are DCW-realizable.
We complete this section with a negative answer, providing another evidence for
the deterministic nature of GFG automata. This result is based on the fact that
the language with which the doubly-exponential lower bound of the translation
of LTL to DBW in [9] is proven is bounded (that is, it is both safe and co-
safe). It means that by Corollary 6.4, any GFG-NSW for it would be DetByP,
contradicting the doubly-exponential lower bound.

Corollary 7.3. The translation of DCW-realizable LTL formulas into GFG-
NSW is doubly exponential.

References

[1] U. Boker. Rabin vs. Streett automata. In Proc. 37th Conf. on Foundations
of Software Technology and Theoretical Computer Science, pages 17:1–17:15,
2017.

[2] U. Boker, D. Kuperberg, O. Kupferman, and M. Skrzypczak. Nondetermin-
ism in the presence of a diverse or unknown future. In Proc. 40th Int. Colloq.
on Automata, Languages, and Programming, volume 7966 of Lecture Notes
in Computer Science, pages 89–100, 2013.

[3] T. Colcombet and C. Löding. Regular cost functions over finite trees. In
Proc. 25th IEEE Symp. on Logic in Computer Science, pages 70–79, 2010.

[4] T.A. Henzinger and N. Piterman. Solving games without determinization. In
Proc. 15th Annual Conf. of the European Association for Computer Science
Logic, volume 4207 of Lecture Notes in Computer Science, pages 394–410.
Springer, 2006.

[5] S.C. Krishnan, A. Puri, and R.K. Brayton. Deterministic ω-automata vis-a-
vis deterministic Büchi automata. In Algorithms and Computations, volume
834 of Lecture Notes in Computer Science, pages 378–386. Springer, 1994.

[6] D. Kuperberg and M. Skrzypczak. On determinisation of Good-For-Games
automata. In Proc. 42nd Int. Colloq. on Automata, Languages, and Pro-
gramming, pages 299–310, 2015.

[7] O. Kupferman, G. Morgenstern, and A. Murano. Typeness for ω-regular
automata. International Journal on the Foundations of Computer Science,
17(4):869–884, 2006.

[8] O. Kupferman, S. Safra, and M.Y. Vardi. Relating word and tree automata.
Ann. Pure Appl. Logic, 138(1-3):126–146, 2006.

24

[9] O. Kupferman and M.Y. Vardi. From linear time to branching time. ACM
Transactions on Computational Logic, 6(2):273–294, 2005.

[10] O. Kupferman and M.Y. Vardi. Safraless decision procedures. In Proc. 46th
IEEE Symp. on Foundations of Computer Science, pages 531–540, 2005.

[11] L.H. Landweber. Decision problems for ω–automata. Mathematical Systems
Theory, 3:376–384, 1969.

[12] G. Morgenstern. Expressiveness results at the bottom of the ω-regular hier-
archy. M.Sc. Thesis, The Hebrew University, 2003.

[13] D.E. Muller, A. Saoudi, and P.E. Schupp. Weak alternating automata give a
simple explanation of why most temporal and dynamic logics are decidable
in exponential time. In Proc. 3rd IEEE Symp. on Logic in Computer Science,
pages 422–427, 1988.

[14] D. Niwiński and I. Walukiewicz. Relating hierarchies of word and tree au-
tomata. In Proc. 15th Symp. on Theoretical Aspects of Computer Science,
volume 1373 of Lecture Notes in Computer Science. Springer, 1998.

[15] M.O. Rabin and D. Scott. Finite automata and their decision problems.
IBM Journal of Research and Development, 3:115–125, 1959.

[16] S. Safra. On the complexity of ω-automata. In Proc. 29th IEEE Symp. on
Foundations of Computer Science, pages 319–327, 1988.

[17] H. Seidl and D. Niwiński. On distributive fixed-point expressions. Theoretical
Informatics and Applications, 33(4–5):427–446, 1999.

[18] W. Thomas. On the synthesis of strategies in infinite games. In E.W.
Mayr and C. Puech, editors, Proc. 12th Symp. on Theoretical Aspects of
Computer Science, volume 900 of Lecture Notes in Computer Science, pages
1–13. Springer, 1995.

[19] M.Y. Vardi and P. Wolper. Reasoning about infinite computations. Infor-
mation and Computation, 115(1):1–37, 1994.

25

