Chapter 6
Honest Computability and Complexity
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Goldstein: And what causes you to say that?
Davis: Honesty.

—Martin Davis: An Interview Conducted by Andrew Goldstein
(IEEE History Center, July 18, 1991)

For Martin—scientist, scholar, and thinker.

Abstract We raise some issues posed by the use of representations for data struc-
tures. A nefarious representation can turn the incomputable into computable, the
non-recursively-enumerable into regular, and the intractable into trivial. To over-
come such problems, we propose criteria for “honesty” of implementation. In par-
ticular, we demand that inputs to functions and queries to decision procedures be
specified as constructor terms.
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6.1 Honesty is Needed

Computations have no choice but to manipulate representations of objects rather
than the objects themselves. Most often, strings of symbols taken from some finite
alphabet are used for the purpose. Numbers, for example, are usually denoted by
sequences of decimal symbols, or binary bits, or unary strokes (like the tally num-
bers of paleolithic times). In logic, one therefore distinguishes between numbers 7,
which reside in an ideal Platonic world, and numerals n, their symbolic represen-
tation as (first-order) terms. Similarly, graphs, which are set-theoretic objects, are
typically either represented as lists of edges (pairs of nodes) or as binary adjacency
matrices.

Given that representation is an inescapable necessity, some natural questions
arise immediately:

* How much of a difference can the choice of representation make to computability
or complexity measurements?

Answer: It can make all the difference between computable and incom-
putable, or between tractable and intractable.

* Who gets to choose the representation: Abe who formulates the queries, or Cay
who designs the program to answer them?

Our answer: Cay may reinterpret Abe’s formulation any way she sees fit,
but the reinterpretation is part and parcel of the process of answering.

¢ What is wrong with a representation of graphs that lists nodes in the order of
a Hamiltonian path, if there is such—in which case deciding the question takes
linear time?

Answer: Cay will only be able to quickly answer the specific question
whether there is a Hamiltonian path, whereas she would have a much
harder time performing basic graph operations, such as adding an edge.

* Is it legitimate to say that the parity of an integer (that is, whether it is even or
odd) can be determined in constant time, when that is the case only for very
specific representations of numbers (namely, least-significant-first binary, as op-
posed to ternary, say)?

Short answer: No.

Garey and Johnson [15, pp. 9-10] address the questions of representation and
computational models as they impact the measurement of computational complex-
ity. They assert upfront that it matters little, as long as one sticks to what is consid-
ered “reasonable”:

The intractability of a problem turns out to be essentially independent of the
particular encoding scheme and computer model used for determining time
complexity.
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They go on to explain why at length:

Let us first consider encoding schemes. Suppose for example that we are deal-
ing with a problem in which each instance is a graph.... Such an instance
might be described by simply listing all the vertices and edges, or by listing
the rows of the adjacency matrix for the graph, or by listing for each vertex
all the other vertices sharing a common edge with it (a “neighbor” list). Each
of these encodings can give a different input length for the same graph. How-
ever, it is easy to verify that the input lengths they determine differ at most
polynomially from one another, so that any algorithm having polynomial time
complexity under one of these encoding schemes also will have polynomial
time complexity under all the others. In fact, the standard encoding schemes
used in practice for any particular problem always seem to differ at most poly-
nomially from one another. It would be difficult to imagine a “reasonable”
encoding scheme for a problem that differs more than polynomially from the
standard ones.

This discussion is followed by a caveat:

Although what we mean here by “reasonable” cannot be formalized, the fol-
lowing two conditions capture much of the notion:

(1) the encoding of an instance / should be concise and not “padded” with
unnecessary information or symbols, and

(2) numbers occurring in / should be represented in binary (or decimal, or
octal, or in any fixed base other than 1).

If we restrict ourselves to encoding schemes satisfying these conditions, then
the particular encoding scheme used should not affect the determination of
whether a given problem is intractable.

The main concern expressed in the above is that the input size should faithfully
reflect the complexity of the input object. The choice of size can make a big differ-
ence, of course [[0]]:

The computational complexity of a problem should not be obscured by a par-
ticular representation scheme. ... Many problems are “fast” under the unary
representation, as many computationally (probably) intractable problems in
number theory are also “fast” under unary representation, such as factoring,
discrete logarithm. But that is not honest complexity theory. The time is really
exponential, compared to a more “reasonable” representation scheme of the
information, such as in binary. [Italics ours.]

There are other ways in which a choice of representation may be unreasonable,
besides being unnecessarily large. It could give away the answer, or it may harbor
hints that make the task easier than it really is. That is the problem with a repre-
sentation of graphs that lists nodes in Hamiltonian order, for example; it puts the
solution—when there is one—right in front of one’s nose. Our proposal for measur-
ing complexity honestly will solve this problem by taking into consideration both
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the cost of computing a given function as well as the cost of generating the func-
tion’s inputs (the nodes and edges of a graph in the Hamiltonian case).

This chapter looks at questions of “honesty” of representation in various con-
texts. We begin with what we feel is the underlying problem posed by representa-
tions, namely, the camouflaging of extra information (Section [6.2). After propos-
ing a solution (Sections and , we consider how it resolves the problem of
honest computability (Sections [6.5] and [6.6) and relate honesty to Martin Davis’s
definition of universality (Section [6.7). Then we turn to see how this proposal also
solves the problem of honest complexity (Section [6.8)). With a solution in place,
we analyze why considering formal languages, rather than functions, does not work

(Section[6.9).

6.2 Dishonest Representations

The complexity attributed to the computation of a function f over some abstract
domain A, say graphs, is normally measured in terms of resources required by its
best implementation on some particular model of computation, most commonly the
random access machine (RAM). This implementation, however, computes a func-
tion f over some concrete domain C, say binary strings, rather than A. So, prior
to considering the cost of running f one should first establish that f does actually
implement f. R

However, there is little meaning to a claim that a single function f over some do-
main C implements the intended function f over domain A without also specifying
how the two domains are related. The following definition is common

Deﬁnitiog 1 (Simulation [single-valued representation]). A concrete (partial)
function f : C — C simulates an abstract (partial) function f': A — A with respect to a
particular injective representation p : A = Cif p(f(x)) = f(p(x)) forall x € A. [In
the case of partial functions, we also demand that f(p(x)) be undefined whenever

fx)is.]

One clearly needs to require, as we have, that a representation be injective. Other-
wise, any and all functions could be simulated by the identity function with respect
to a representation that maps the whole abstract domain to a single constant.

The above definition will be extended to functions with arity wider than 1 and
multivalued representations in Definitions [3] and [5] below. Figure depicts the
multivalued case.

2 Allowing different representations for input and output, as in “A more general notion of simula-
tion is obtained if we let drop the requirement that R(" and SR® have the same input and output
sets.... R can be weakly simulated on R if there exist such & and 2 with the property that for
each program 7; for S there exists a program 7, on R such that ZR7 & = Ry [14l p. 211,
can lead—if one is not careful—to the same kinds of problems we will encounter in Section@}
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Fig. 6.1 The function fsimulates the function f via a representation p between their domains.

The choice of representation can make all the difference in the world. If one is
not honest, then a computable function can end up implementing an incomputable
one by getting the representation itself to do the bulk of the work.

Example 2. Consider any standard enumeration TM,,, m = 0,1,..., of Turing ma-
chines, and define the following incomputable functions over the natural numbers
N:

¢ h:N— N enumerates (the numerical “codes” of) those machines that halt on the
c_‘,mpty tape;

* h:N — N enumerates those that do not.

So A(N) W h(N) = N, where h(N) is the image {A(n) | n € N} of i and h(N) is the

image of h. Then the incomputable function

H(m) :=

min/i(N) if TM,, halts
minA(N)  if TM,, does not

is implemented by the computable parity function (n mod 2) under the following
bijective representation:

2h~ Y (m)+1 if TM,, halts
p(m) =9 - .
2h~ ' (m) if TM,, does not .

We have
1 if TM,, halts

2=p(H =
p(m) mod p(H(m)) {0 if TM,, does not ,

as required. O

The problem with the above “implementation” of the halting function obviously
lies in the representation, which clearly gives the impression of itself doing the
(computationally) impossible.
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6.3 Honest Representations

The cause of the problem we just saw with the “dishonest” representation is not the
(mathematically well-defined) mapping itself but rather the lack of suitable context
for it. In particular, the integer successor function, for instance, cannot be imple-
mented by any computable function under the nefarious representation p of the
previous section, though it is part and parcel of our normal view of the naturals.
As we will see, we can allow an honest representation to be any arbitrary injective
(multivalued) function as long as we also pay attention to the internal structure of
the abstract domain.

Imagine that Abe, the person posing instances of a problem, thinks in terms of an
abstract domain A, such as integers, graphs, or pictures. Abe must have some means
of describing for himself each of the elements of A, most commonly by means of a
finite set G of “generators” of A (cf. [22,23]!4,(9]). These generators give structure to
A and meaning to its elements as described by ground terms H over G. For generators
to do their job, every element of A must be equal to the value of at least one term in
H; so at least one generator must be a scalar constant (of arity O)E]

Examples of generators for the natural numbers include:

0 (nullary zero)
m’ (postfix successor An.n+ 1),

(in unary “caveperson” style), as well as

0 (nullary zero, A.0, usually suppressed)
m0 (postfix doubling, An.2n)
m1 (postfix doubling plus one, An.2n+ 1)

for the commonplace binary representation, and

0 (nullary zero, A.0, usually suppressed)
m0 (postfix tripling, An.3n)

m1 (postfix tripling plus one, An.3n+ 1)
m2 (postfix tripling plus two, An.3n+2)

for ternary. With the latter two, there are infinitely many representations of the num-
ber zero.

For undirected, unlabeled graphs, G, with vertices V (G denotes the set of graphs
whose vertices are taken from a set V of vertices), an example of a set of generators
is

O : V (nullary first-vertex)

m’ :V — V (postfix next-vertex)

& : G (nullary empty-graph)

o;m : G XV — G (binary add-vertex to graph)

(e)+m ™ m:GxV xV — G (ternary add-edge to graph) .

3 Unlike the development in [4], where effectiveness of an algorithm was at issue, here we are not
insisting that the generators form a free term algebra (a Herbrand universe): more than one term
may designate the same abstract element.
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Fig. 6.2 An abstract undirected, unlabeled graph.

Over these generators, the graph depicted in Figure is the value of the ground
term
(o;0;0;0)+0" OO0,

wherein there is an edge between the “first” and “second” vertices. It is also the
value of the term
(@,D”,D/,D)—‘FDNADI ’

wherein there is an edge between the “third” and “second” vertices. [In general,
generators can be partial.]

Accordingly, we formalize the notion of (honest) representation as any injective
multivalued function from an abstract domain that is structured by generators. Recall
that a multivalued function p : A = C (or set-valued function p : A — Z(C)) is
injective if p(x) Np(y) = @ for all distinct x,y € A.

Definition 3 (Representation).

e An abstract domain is a set A of elements, including (always) Boolean values
TRUE and FALSE, equipped with a finite set G of generators for the whole domain,
which also includes the binary equality relation =. Every element of A must be
equal to at least one ground term over G.

* A representation of A in a “concrete” domain C is an injective multivalued func-
tionp : A = C. We will insist that P(TRUE) and p(FALSE) are both finite.

* The representation p({ai,...,a,)) of a tuple of abstract elements a; is the set
plar) xp(az) x ... x p(ay), the set of all tuples (cy,...,cy), such that ¢; € p(a;).

The equality relation and Boolean constants are required for interpreting the output,
as we will see. Having only finitely many representations of TRUE and FALSE will
allow Abe to understand and compare results of Cay’s computations.

Having representations as multi-valued, rather than single-valued, functions
gives the freedom to have many representations for the same abstract element, as
is very commonly done in practice. For example, one may represent the rational
number one-half by 1/2,7/14, etc., and the unordered set {7,2,3} by the sequences
(2,3,7),(7,3,2), etc.

The choice of what is “abstract” and what is “concrete” is in “the eyes of the
beholder™; it is in the final analysis an arbitrary formal choice. One may view a
number as an abstract entity, represented by a concrete string over the symbols 0
and 1, while another still views the symbol 1 as an abstract entity represented by
some ink dots or electric pulse, etc. Likewise, the equality relation = depends on the
choice of what an abstract entity is. For example, if the abstract domain is graphs,
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then the graph of Figure is a single entity and all of its different generating
terms yield equal entities, while in the case that the abstract domain consists of
graphs with numbered vertices, the different generating terms yield isomorphic, but
unequal, entities.

An alternative to the proposed generator-based approach for describing abstract
elements would be to define them by means of a set of relations. For graphs, this
might be the relation telling whether an edge is present between two given vertices.
It is well known that using such relations, rather than generating functions, increases
the complexity of many procedures. (For example, exhaustively checking all vertex
combinations for getting an adjacent vertex.) Furthermore, we argue in Section [6.9]
that this alternative does not at all fit the bill. Intuitively, a set of functions allows
one to also generate the representations, while a set of relations does not.

6.4 Honest Implementation

A function fover some concrete domain C honestly implements a function f over
an abstract domain A if it preserves the functionality of f under the representation,
while also preserving the meaning of the domain elements as given by the domain
generators.

We formally consider a (computational) family F over a domain A to be an al-
gebra (in the universal-algebra sense), consisting of the domain (universe) A and
operations F over A (of any arity), along with a matching vocabulary. Our defini-
tion of honest implementation will require the simulation of the desired function
together with a set of generators. The implementation notion is then really about an
algebra as a whole.

When we have cause to care about the intensionality (internal workings) of a
computational mechanism, we will talk about a (computational) model comprising
a set of algorithms, each of which involves a set of states, a subset of which are
initial states, and a (partial and/or multivalued) transition function over states [18]].

Definition 4 (Simulation [multivalued representation]).

* A function fover a domain C simulates a function f of arity £ over a domain A
via representation p : A = C if, for every x € A, we have f(p(%)) C p(f(X)).
¢ Likewise, a family of functions F over C simulates a family F" over A (via repre-

sentation p) if each f € F is simulated via the same p by some f € F.

As usual, functions are extended to operate over sets by letting f(S) := {f(%) | ¥ €

s}.

Definition 5 (Honest Implementation). Consider an abstract domain A with gen-
erators G.

* A family of functions F over C provides an implementation of a family F over A
if F' is simulated by F.
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*  We will refer to the implementation as close if the simulation is via a bijection.

* An implementation F over C is honest as long as F includes the generators G as
well as equality. R

* We will say that a function f over C honestly implements a single function f
over A if the implementation also supplies simulations g of each generator g € G
including equality over A. In other words, we require that {f} UG implement
{f}UG, for some set G of concrete generators and implementation = of abstract
equality.

See the illustration in Figure [6.1]

The point is that f implements a function f with respect to a specific set of
generators. If Abe considers an abstract domain with generators that are natural,
computable, and trackable for him, but completely useless for his sister, Sal, then f
is an honest implementation of f for Abe but not for Sal.

We give next an example of an honest implementation of an abstract function
over the rationals Q by means of a concrete function over strings.

Example 6. The task is to implement rational multiplication, m : Q x Q — Q, by
means of a string-based model of computation.

¢ The abstract domain (A in the definition) is the set of rational numbers Q (with
the subset of integers Z and its subsets the positive integers Z* and negative
integers Z~, plus the truth values), along with the following generators:

0 : Z (nullary zero)
1: Z" (nullary one)
s:Z% — Z™ (unary successor)
n:Z" — Z~ (unary negation)
q:7Z x Z" — Q (quotient of an integer by a positive integer)
¢ The concrete domain (C) is the set X* of finite strings over the symbols
{0,1,2,3,4,5,6,7,8,9,—,#}, plus TRUE and FALSE.
¢ Letx € X* denote the number x € 7 in decimal notation.
 The representation p : Q = X* is defined by p(r) ;== {x#y|r=x/y,x€Z, y €
VARS
* The implementations of the generators and equality are as follows:

o returns the string 0

Treturns the string 1

S(w): If w is the decimal representation x of x € Z™, then S(w) returns
the decimal representation x + 1 of x4 1. Otherwise it is undefined.

n(w) returns the string -w
q(u,v) returns the string u # v

=(u,v) returns TRUE iff u = x; #x,, v=1y, #y,, and x1 /xa = y1 /2, for
some x1,y; € Z and xp,y» € Z T,
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Fig. 6.3 Representing abstract rational numbers by concrete strings, and implementing the multi-
plication function.

* The implementation m(u,v) of multiplication is the following: If u = x; #x, and
v=y, # Yy where x1,y; € Z and x,y, € Z™, then the implementation returns
the string x; - y1 # x, - y2. Otherwise, multiplication is not defined.

See Figure[6.3]
An implementation of multiplication that reduces the resulting fraction is as hon-

est an implementation as the above one. O

6.5 Honest Computability

We first demonstrate the reasonableness of our demands on implementations by
taking a careful look at honest “effective” computations.

Since we believe the Church-Turing Thesis in light of the arguments and proofs
in [4}[12], we shall use the term effective computation to stand for the functionality
of a Turing machine over strings or of a recursive function over the natural numbers.
Let TM denote the family of Turing-machine computable string functions and REC,
the family of recursive numerical functions.

Armed with our definition of honest implementation, we are prompted to define
honest computability over arbitrary abstract domains as follows:

Definition 7 (Honest Computability). A function over an abstract domain is hon-
estly computable if it, and generators of its domain, can be honestly implemented by
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the recursive functions REC over the natural numbers (or by the Turing-computable
functions TM over strings).

This definition guarantees that concrete representations for all the elements of
the abstract domain can also be effectively generatedE] It follows that, if the Turing
family TM implements a family consisting of an arbitrary function f over a domain
A and a finite set of generators for A, then f is—by definition—honestly computable.

Lemma 8. If the recursive functions simulate a set of generators via some repre-
sentation, then that representation—restricted to be univalued—can be effectively
defined by structural induction.

For example, consider these generators G for the naturals N: zero, o, and suc-
cessor, s. Suppose they are mapped to the constant 0 and the recursive function s,
respectively, under a (multivalued) representation 1 : N = N. Define p, a single-
valued restriction of 1, by (structural) induction (over H, the ground terms of G) as
follows:

p(o):=0
p(s(n)) :=3(p(n))

We have by induction that p(n) € n(n) for all n.
_ We get also that every function f : N — N that is implemented by a recursive
f N — Nunder n must also be recursive, since

f) = p ' (flp(m) =n""(f(n(n)))

is the composition of computable functions. (The inverse p~
computable representation is computable by search.)

A similar argument applies to other sets of generators for other abstract domains.

Specifically, under the above (lax) assumptions, if a concrete function f is com-
putable, then the implemented function f can in fact be programmed effectively as
an abstract state machine (ASM) [16] 8]. ASMs are a framework providing a most
general programming paradigm in which one can precisely express (ineffective as
well as effective) algorithms over arbitrary domains. In our case, f may be effec-
tively computed over the combined domain A WN by programming:

I of a single-valued

~

flg(xr,....x0) = p~ (f(&(p(x1),-..,p(x¢))))

for each g € G. For this to work, we presume the availability of an effective equality
test for A.

To summarize the development so far, we would say that a function f over Abe’s
abstract domain A is honestly computed by Cay’s implementation iff Cay can eval-
uate terms of the form f(z1,...,#;)—or more generally terms over f and generators
G of A—where the 1; € H are terms over G, and Abe, the querier, can check the

4 The developments in [4}[12][5]] do not directly address the issue of honesty.
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results (using the equality predicate). Furthermore, f is deemed effective if Cay’s
implementation uses effective means (such as those provided by a Turing machine).

6.6 Honest Comparisons

The fact that honest implementations effectively generate representations for all ab-
stract domain elements guarantees the “completeness” of the recursive functions and
of Turing machines in the sense that no representation can enlarge its computational
power.

Definition 9 (Completeness [3]). A family F is complete if it cannot simulate any
strict superset of itself.

Theorem 10. Consider a computational family F over the natural numbers N, and
suppose that the recursive functions REC simulate F and, furthermore, that REC C
F. Then F = REC.

Proof. We show that every function & € F is also in REC. Since REC C F, we
know the successor function s over N in also in F. Because RAEC implements F,
there must be functions 4,5 € REC, such that for every 7 € N*, h(p(77)) C p(h(n)),
and for every n € N, 5(p(n)) C p(s(n)). (The notation S* is used here and later for
all finite tuples of elements of S.)

Given a vector 71 := (nj,...,ns) € N*, we can compute A(7i) by the following
recursive procedure:

¢ Construct the vector
n=(n,...,ng) = (5" (xp),...,8™(x0)),

which represents 7, by choosing any xo € p(0) and applying 5 to that value n;
times for the jth component.
e Compute R
k:=h(n).

[If & is partial and diverges on 7, then the simulating function 1 will likewise
diverge on 7.] R
* Search for the number k that is represented by k, by computing

min[s/(xo) = ].
ieEN
This search is guaranteed to terminate after an iteration k, such that k € p(k),

since there is a fixed finite set of truth values TRUE and FALSE to test for.
* At this moment, k represents k = h(7i). O

It follows that the recursive functions REC are complete in the defined sense. By
the same token, Turing machines are complete (see [3]), whereas two-counter ma-
chines and the lambda calculus are not. Two-counter machines can neither square



6 Honest Computability and Complexity 13

nor exponentiate [21]], but famously implement all recursive functions via the (ex-
pansive) representation p : n — 2" (as shown by the late Marvin Minsky [19]).
We now know what it means for families to have the same computational power:

Definition 11 (Equipotence). Families F and F are equipotent if they simulate
each other.

The representations by means of which F implements F and vice-versa need not be
the same, even they both operate over the same domain.

For example, REC and TM are equipotent via representations like Godel num-
bers and tally numbers.

By this definition, 2-counter machines are equipotent with 3-counter machines
(though the former model includes strictly fewer functions), but not with 1-counter
ones

If follows that the honest (and self-consistent) way to compare computational
power (when representations are allowed), is to say that a family F” is strictly more
powerful than another family F if F’ simulates F but not vice-versa. This is in fact
true for F’, the recursive functions and F, the primitive recursive ones, but this pop-
ular claim requires showing that there is no (injective) representation whatsoever via
which the primitive recursive functions can simulate all the recursive ones. See [3l].

If an abstract function is computable whenever it has an honest recursive imple-
mentation, how can one show that an abstract function 4 is incomputable, short of
trying all possible representations? The answer is that & is incomputable whenever
there is at least one bijective representation that provides recursive implementations
of the generators but a non-recursive implementation of /.

Theorem 12. Every function h over an abstract domain with generators G that is
honestly computable is also recursively implemented by each and every close nu-
merical implementation of h (that is, an implementation in N via a bijective repre-
sentation) that implements the operations in G by means of recursive functions.

The reason we need a bijective counterexample to establish incomputability is
that one can always have the part of the implementation that works with numbers
outside the image p(A) of a non-surjective representation p (like p(n) = 2n) do
something outlandish (to odd numbers).

Proof. Let m: A<+ Nbea bijectAion from the abstract domain A of A, and let h:
N — N implement 4 under 7. If A, the function that simulates 4 under some p, is
recursive, then 2 must also be recursive. This is because

h(n) = m(h(z~" (n))) = 2(p~" (h(p(n~"(n)))))

and, by Lemma 8] both p and 7 are computable from any standard numerical en-
coding of generator terms H over G. Hence, i(n) is recursive. O

5 “Combining these simulations, we see that two-counter machines are as powerful as arbitrary
Turing machines (one-counter machines are strictly less powerful)” [[17, p. 33]. But who says that
one-counter machines cannot also simulate more than they can compute? They cannot [2} Thm. 40].



14 Udi Boker and Nachum Dershowitz

6.7 Honest Universality

A (partial) function @ is said to be “universal” for a whole family F of (partial)
functions (such as all the recursive functions, for instance) by being supplied with
the code "f ™ of the desired f € F' as an extra argument. If @ works with a concrete
domain C, whereas the functions in F operate on an abstract domain A, then repre-
sentations p : A — C are in order once again. Then we would say that varyadic o is
universal for F (with respect to encoding "-': F — C and representation p : A =2 C)
if

o("f7,px) C p(f(X))

for all f € F and X € A* of the right length for the arity of f.

Another potential problem with the notion of universal function is that some
models of computation—like Turing machines—do not take their inputs separately,
but, rather, all functions are unary (string-to-string for Turing machines). In such
cases, one needs to be able to represent pairs (and tuples) as single elements. One
standard pairing function for the naturals is the injection (i, j) := 23/ For strings,
one usually uses an injection like (1, w) := u;w, where “;” is some symbol not in
the original string alphabet.

There are several ways to go. The pairing function could reside in the abstract do-
main A, or in the concrete domain C, or in the representation of A as C. Regardless,
this need raises a critical issue. Unless we demand that pairing be effective, there
could be an implementation of the universal function that does too much, comput-
ing even non-effective functions. For example, a naive definition might simply ask
that pairing be injective and say that @ is universal for some set F' of functions if
F(x)=o(("f,x)) forall f € F and x € C, for some arbitrary encoding ": F — C
of functions. The problem is that an injective pairing could cheat and include the
answer in the “pair”. For Turing machines, say, the pair {(u, w) might be represented
as u;w when machine u halts on input w and as u: w when it doesn’t. Better yet, one
could map ("f7,y) = [f(y),"f,¥], where the square brackets are some ordinary tu-
pling function for the domain. Then a putative universal machine could effortlessly
“compute” virtually anything, computable or otherwise, just by reading the encoded
input pair.

Davis [7] and, later, Rogers [20] proposed general definitions of universality for
Turing machines and for partial-recursive functions, respectively. Both insist that
pairing be effectively computable. But we are talking about models in which no
function takes two arguments, so we might not have an appropriate notion of com-
putable binary function at our disposal. To capture effectiveness of pairing in such
circumstances, we demand the existence of component-wise successor functions.
Given a “successor” function s for domain C (that is, C = {s" (x¢)} for some xo € C)
and a pairing function (-,-) : C x C — C, the component-wise successor functions
operate as follows: sy : (a,b) — (s(a),b) and s3 : {a,b) — (a,s(b)). If s, 51, and s2
are all computable, then we will say that pairing is effective. This is because one
can program pairing so that (z,y) := s} (s} (x0,Xo) ), where z = 5'(xo) and y = s/ (xo).
And if pairing is effective, then its two projections (inverses), 1ST : (a,b) — a and
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2ND : {(a,b) — b, are likewise effective. (Generate all representations of pairs in a
dovetailed, zig-zag fashion, until the desired one is located. What the projections do
with non-pairs is left up in the air.)

Another concern is that requiring that pairing be computable is too liberal for the
purpose. One does not really want the pairing function to do all the hard real work
itself. For example, the mapping could include f(x) in the pair, even if it only can
do that for f that are known to be total (like, for the primitive recursive functions,
of which there are infinitely many), or all functions that halt within some recursive
bound. That would make it a trivial matter to be universal for those functions—just
transcribe the answer from the input.

Definition 13 (Honest Pairing). A pairing function is honest if it is effective and
bijective.

This way, there is no room for hiding information.

For bijective pairing with computable projections, there is an effective means of
forming a pair (a,b) by enumerating all of C until the two projections give a and
b, respectively. With bijectivity alone, sans computability, one could still hide a fair
amount of incomputable information in a bijective mapping. For instance, imagine
that O is the code of the totality predicate and that the rest of the naturals code the
partial-recursive functions in a standard order. Map pairs (i + 1,z) to 3(i,z), where
(+,-) is a standard pairing; map (0,z) to 37+ 1 when z is the (code of the) jth total
(recursive) function; and map (0,z) to 3k + 2 when z is the kth non-total (partial
recursive) function. Now, let U be some standard computable universal function.
Then, for y divisible by 3, w(y) := U(y/3) would compute all the partial-recursive
functions, whereas @(y) :=y=1 (mod 3) would compute the incomputable totality
predicate when y = (0, z) is not divisible by 3.

Definition 14 (Honest Universality). Let F be some family of unary functions over
an abstract domain A. Unary function @ over concrete domain C is universal for
F, via pairing function (-,-) over C, if {1y.@(a,y) | a € C} implements F. If, in
addition, pairing is bijective, then we call the universal function honest.

That is, @ is universal if, for fixed representation p : A — C and encoding " ': F — C,
we have @("f7,p(x)) = p(f(x)), for f € F and x € A. Of course, we are interested
in the case where both pairing and the universal function are effectively computable.

Theorem 15 ([10]). Let F be some family of unary functions over a domain A, in-
cluding generators and equality. Then, if there is a computable unary universal
function (over any domain C) for F, via an effective pairing, then all the imple-
mented functions in F are also computable.

Suppose F = {f.}; is some standard enumeration of (the definitions of) the
partial-recursive functions. Based on Davis’s (second) definition of a universal Tur-
ing machine, which relies on a notion of effective mappings between strings and
numbers, namely, recursive in Godel numberings, Rogers defines (in his third defi-
nition) what we may refer to as the universal property of a unary numerical function
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o, namely, that f,(x) = m(w(z,x)) for some recursive bijection 7 and effective (but
perhaps dishonest) pairing (-, -).
The following follows from the definitions:

Theorem 16 ([10]). If a function has the universal property, then it is honestly uni-
versal. Furthermore, there must exist an honest computable universal function.

6.8 Honest Complexity

We turn now to the question of complexity of problems over abstract domains. But
before one can measure complexity, one needs a measure of input size and a measure
of the cost of a computation as a function of that size.

A size measure is associated with each (ground) term over the generators. This
provides the flexibility of considering each of the various views of the same abstract
element differently. Since problems often involve more than one input value, we
need to measure the size of tuples of terms.

Definition 17 (Size). A size measure for an abstract domain is a function |- | : H* —
N, where H* is the set of tuples of (ground) terms over the generators of the domain.

Complexity is measured with respect to this size, whatever it may be.

Examples of size measures for terms denoting graphs are tree height of the term,
as well as the number of vertices or number of edges in a graph. Note that the two
latter measures assign the same size to all terms of the same graph. Usually the size
of a tuple is the sum of the sizes of its individual components.

One might argue that a size measure should not be this arbitrary, but should
enforce a compact representation of the abstract elements, as Garey and Johnson
demanded of the representation of numbers in the paragraphs quoted at the outset,
namely, that the size of a natural number n should be order logn. In many cases,
however, this is too demanding. For instance, a set of n elements taken from some
unordered set may have n! reasonable representations. Checking equality between
two such representations, in order to choose a single canonical representation for
each set, might require a quadratic number of element comparisons. Even more in-
volved is the case of graphs. If we are asked to decide the existence of a Hamiltonian
path in an unlabeled graph, we should not demand that there be a unique or almost-
unique way of constructing each graph, considering that graph isomorphism is a
difficult problem. But there are exponentially many isomorphic graphs, so the stan-
dard representations of graphs are as wasteful as is the unary encoding of numbers.
It is also standard practice to store data in compressed form, and it can easily take
exponential time and space to reconstruct before manipulating.

The cost assigned to a computation over the concrete domain C depends on the
relevant aspects of the computational model in question. For example, the cost can
be the number of steps of a RAM model or the number of tape cells used by a
Turing machine. (RAMs are in fact nearly optimal for time and space [11]].) As with
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the size measure, cost is also in “the eyes of the beholder”. Given a cost measure for
computation in the model, we define the cost of terms, as follows:

Definition 18 (Cost). The cost k(h(t1,...,t;)) of a concrete term A(ty, ..., 1) is the
cost of a computation that constructs the concrete values ¢; € C arguments #; and
then computes A(c1,...,cr), the value of A for the concrete values thus obtained.

In some cases the cost of a computation might be the sum of the costs of its steps,
as is natural for time complexity, while in other cases a different aggregation, such as
maximum, is appropriate, as is done for space complexity. Often, the declared size
of the input is approximately the cost of constructing it, so the impact on complexity
of including the cost of construction is negligible.

Equipped with size and cost measures, we are ready to formalize our intuition of
when a complexity measure is honest. The complexity of an implementation must
take the specific means of representation into account. We have demanded that an
honest implementation of an abstract function also provide implementations of the
abstract domain’s equality and generators (Definition [5). We may assume that ev-
ery generator has a unique implementation. (Different implementations should have
different names, thus refer to different, but possibly equivalent, generators.)

Our definition of the complexity of a function resembles the standard one; it is
just that our notion of the cost of computing a function includes the cost of generat-
ing the representation of the input.

Definition 19 (Honest Complexity). Consider an abstract domain A with ground
generator terms H and an honest implementation / : C* — C over concrete domain
C, implementing a function 4 : A' — A over A. Let m : N — N be a complexity
measure. Then we say that & has honest (worst-case) complexity of at most m if

K(ﬁ(f)) < m(|f]), for all tuples 7 € H’ of terms.

Average and probabilistic complexities can be defined analogously.

While the complexity of implementing generators influences the complexity of
implementing f, the complexity of implementing the equality relation need not af-
fect it. For example with abstract graphs, equality checks are very involved, yet
many graph operations need not check for graph equality (isomorphism). We do
insist, however, that every implementation also implements the equality check in
order to enforce a correct interpretation of the abstract domain—having the ability
to use the equality implementation, Abe, the person posing instances of the func-
tion f, can verify whether the result of f’s implementation is indeed proper. (Cf.
Section[6.5]and the proof of Theorem [I0])

To sum up, to preclude dishonest measures of complexity, we require that the
implementor Cay charge not only for calculating the answer to Abe’s query, but also
for building its native representation of the query from Abe’s language of generators.
That way, any new information hidden in the representation is put there by Cay and
the costs incurred are charged for.
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6.9 Dishonest Decisions

It is standard to classify the difficulty of a problem according to its membership
in a set of functions or relations, for example, whether it is Turing-computable, in
polynomial time, or in polynomial space. Computational models, such as Turing
machines with arbitrary outputs, compute sets of (partial) functions, whereas deci-
sion models, such as finite automata or Turing machines with only “yes” or “no”
outputs, compute sets of relations.

We argue that computational families, which implement functions, capture the
essence of computational power more accurately than do decision families, which
implement relations. For that reason, we based the notion of honest implementation
and complexity, even for decision problems, on functions rather than on decision
procedures. The underlying reason for the better adequacy of functions than rela-
tions is that the former can also comprise the means to generate the representations
of objects.

As defined in Section [6.5] a computational family over a domain A is a set of
functions F C {f : A* — A}; likewise a decision family over A is a set of relations
R C {r CA" | n € N}. Specific computational or decision families are defined via
some internal mechanism, a model of computation, a point that will play a rdle in
our arguments later.

Decision families are inherently incomplete, in that one can readily “increase”
their power via a representation that adds some information on top of the represented
element [3]]. For example, let 4 be an incomputable decision problem over ¥£*, and
consider the representation p : ¥* — £*, where p(w) = h(w)w. (The representation
just adds the incomputable bit ~(w) before the word w.) Then, Turing machines can
“decide”, via the representation p, both / and all of the ordinary Turing-decidable
problems.

Surprisingly, the weak computational model of finite automata (FSAs) is already
powerful enough to decide, via a suitable representation, any countable set of (de-
cidable or undecidable) relations [13]]. The representation hides with each domain
element a finite amount of data of relevance to finitely-many relations, such that
each decision procedure gets all the data it needs from the represented inputs.

Let X be the binary alphabet {0, 1} throughout the remainder of this section.

Lemma 20 ([13])). For every countable set R of relations over the natural numbers
N, there is an injection p : N — X*, such that the set FSA of finite automata simu-
lates R via p, viewing a relation r C N as a Boolean function r : N — ¥.

Accordingly, a FSA a computes the function a : 2* — {p(0),p (1)}, returning p(0)
when the input word is rejected and p (1) when accepted.

Proof. Let ry,rp,... be any enumeration of the relations in R. Define the represen-
tation p : n+— ri(n) r2(n) -+ - ry(n). For every n, the length of p(n) is n, and it gives
explicit answers to the first z relational questions r;. Now, for every relation r; € R,
consider the FSA q; depicted in Figure One can easily verify that for each
m € N, the automaton a; accepts p(m) iff m € r;. For an input word w of length
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a;.

0ﬂ6>

A state gy, for 0 <m<i,is deﬁned

to be accepting, or not, according to
whether or not m € r;.

Fig. 6.4 The finite automaton g;, which implements an arbitrary relation r; via the representation
p of the proof of Proposition 20}

m > i, a; finds the answer whether m € r; at the ith digit of w. For the finitely-many
inputs of length m < i, representing numbers up to (but not including) i, the first
i states of g; are fixed to accept (and “return” p(1)) or reject (returning p(0)) the
input word p(m) according as to whether m € r;. O

One might have presumed that this disturbing sensitivity to representations would
be resolved by limiting representations to bijections, but this is unfortunately not the
case, as shown in [13]].

Theorem 21 ([13]]). For every countable set R of relations over N there is a bijection
7 : N+ X¥, such that the set FSA of finite automata closely implements R via T.

The above-decribed inherent incompleteness of decision families, that they can
easily be enlarged by representing input differently, stems from their inability to
generate the representation of the input. On the other hand, as shown in Theorem[I0]
the set of recursive functions is complete, in the sense that it cannot honestly imple-
ment an incomputable function, regardless of the choice of representation.

A question naturally arises considering the completeness of recursive functions
(Theorem|[T0) and the inherent incompleteness of decision families (Propositions
and 2T)): Where does the proof of Proposition [20] break down if we try to modify it
to demonstrate that every set of functions can be computed, via a suitable represen-
tation, by finite-state transducers (input-output automata)?

The answer is that, with the aim of computing a countable set of functions
{f1,/2,-..}, the representation that is used in the proof of Proposition may
be generalized to something like p(n) = fi(n) $ fa(n) $---$ f,(n). Then, for ev-
ery function f;, there is indeed a transducer a;, such that, for every n, we have
a;i(p(n)) = fi(n). This, however, doesn’t fit the bill. To properly represent f;, we
need for a; to return p(fi(n)), not fi(n). One might be tempted to suggest in-
stead a representation 1) that already provides the represented values, as in 1(n) =
N(fi(n)$n(f2(n))$---$N(fu(n)). This is, however, a circular definition: Let f;
be the successor function s. Representing 1, we have n(1) = n(s(1)) = n(2) =
n(s(1))$1(s(2)) =

Finally, it may be worthwhile noting that Turing’s halting problem is immune to
the particular representation of programs [1]], as are similar problems, though—as
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we have seen—decision procedures are quite sensitive to the representation of input
data. Here the problem is to decide whether machine TM,, halts on input string w.
Problem instances are pairs ("m,w) consisting of an encoding "m" of the machine
along with the input w or an encoding "w? thereof. However, the pairing function
itself must be honest, as explained in Section @ In that situation, the encoding of
any given machine (or computer program) can only hide a finite amount of informa-
tion, not enough to answer the halting problem for all inputs to the machine, though
the representation of those inputs themselves could hide the answers.

6.10 Discussion

We have proposed to regard an abstract function as honestly and effectively imple-
mented if it can be effectively computed given its arguments as constructor terms.
Analogously, we suggest that the cost of generating concrete representations of
queries be included in the honestly considered cost of deciding problems regard-
ing abstract objects.

Demanding of an implementation that it also generate its internal representations
of the input from an abstract term description of that input precludes the hiding of
incomputability in the representation used for concrete implementations and, like-
wise, obviates cheating on complexity problems by giving away the answer in the
representation. It also means that checking parity of a binary string should be con-
sidered linear-time (in input length), not constant-time. Put another way, presenting
a number with least-significant digit first is just as dishonest as ordering the nodes of
a graph by its Hamiltonian path. (In general, the sublinearity of various determinis-
tic algorithms, ignoring the cost of constructing the input, strongly depends on how
the input is presented.)

Often, one analyzes alternative representations with respect to the complexity of
a set of basic functions. Considering graphs, for example, it is common to compare
the adjacency-list representation with adjacency matrices. While the former pro-
vides greater efficiency for adding a vertex, it has a steeper edge removal cost. In
these cases, the complexity of generating the input representation might be consid-
ered another aspect of the complexity tradeoffs.

Many persons who are not conversant with mathematical studies, imagine that because the
business of the [Analytical] engine is to give its results in numerical notation, the nature of
its processes must consequently be arithmetical and numerical, rather than algebraical and
analytical. This is an error. The engine can arrange and combine its numerical quantities
exactly as if they were letters or any other general symbols; and in fact it might bring out
its results in algebraical notation, were provisions made accordingly. It might develope
three sets of results simultaneously, viz. symbolic results; numerical results (its chief and
primary object); and algebraical results in literal notation. This latter however has not
been deemed a necessary or desirable addition to its powers, partly because the necessary
arrangements for effecting it would increase the complexity and extent of the mechanism
to a degree that would not be commensurate with the advantages, where the main object of
the invention is to translate into numerical language general formulae of analysis already
known to us, or whose laws of formation are known to us. But it would be a mistake to
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suppose that because its results are given in the notation of a more restricted science, its
processes are therefore restricted to those of that science. The object of the engine is in fact
to give the utmost practical efficiency to the resources of numerical interpretations of the
higher science of analysis, while it uses the processes and combinations of this latter.

—Augusta Ada Lovelace, Notes to “On Babbage’s Analytical Engine” (1843)
[emphasis in the original]
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