
Automaton-Based Criteria for
Membership in CTL

Udi Boker
Interdisciplinary Center (IDC) Herzliya, Israel

Yariv Shaulian
Interdisciplinary Center (IDC) Herzliya, Israel

Abstract
Computation Tree Logic (CTL) is widely used in formal verifica-
tion, however, unlike linear temporal logic (LTL), its connection to
automata over words and trees is not yet fully understood. More-
over, the long sought connection between LTL and CTL is still
missing; It is not known whether their common fragment is decid-
able, and there are very limited necessary conditions and sufficient
conditions for checking whether an LTL formula is definable in
CTL.

We provide sufficient conditions and necessary conditions for
LTL formulas andω-regular languages to be expressible in CTL. The
conditions are automaton-based; We first tighten the automaton
characterization of CTL to the class of Hesitant Alternating Linear
Tree Automata (HLT), and then conduct the conditions by relating
between the cycles of a word automaton for a given ω-regular
language and the cycles of a potentially equivalent HLT.

The new conditions allow to simplify proofs of known results
on languages that are definable, or not, in CTL, as well as to prove
new results. Among which, they allow us to refute a conjecture
by Clarke and Draghicescu from 1988, regarding a condition for a
CTL∗ formula to be expressible in CTL.

Keywords LTL, CTL, automaton characterization

1 Introduction
Temporal logic plays a key role in formal verification of reactive
systems, serving as the main formalism for defining the specifi-
cations to be verified. There are various types of temporal logics,
classified into two main families—linear time and branching time.
The most commonly used logic in the former is Linear Temporal
Logic (LTL) [26] and in the latter is Computation Tree Logic (CTL)
[5]. Roughly (and arguably) speaking, LTL is a more natural specifi-
cation language, whereas CTL allows for more efficient verification
algorithms.

LTL and CTL are known to be incomparable [17], and the quest
for deciding their common fragment goes back to the 1980s. (An
LTL formula φ, defining a word language L, is equivalent to a CTL
formulaψ , defining a tree language L′, if L′ is the derived language
of L, namely consisting of trees all of whose paths are in L.)

In 1988, Clarke and Draghicescu (now, Browne) presented an
algorithm to determine, given a CTL formula, whether it has an

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
LICS ’18, July 9–12, 2018, Oxford, United Kingdom
© 2018 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-5583-4/18/07. . . $15.00
https://doi.org/10.1145/3209108.3209143

equivalent LTL formula, while leaving the other direction open
[4]. They did provide a necessary condition for an LTL formula to
have an equivalent CTL formula, however using a non-standard
equivalence relation; Instead of considering equivalence with re-
spect to standard Kripke structures, as is usually done, they defined
the equivalence with respect to Kripke structures with fairness
constraints. They conjectured that this necessary condition is also
sufficient, leaving it as another open question. (We refute the con-
jecture in Section 6.)

A major progress was made by Maidl in 2000, when she provided
a necessary and sufficient condition for an LTL formula to have
an equivalent ACTL formula, namely a formula in the universal
fragment of CTL: An LTL formula is ACTL-definable iff its nega-
tion has an equivalent nondeterministic linear word automaton
[19]. Yet, there was no algorithm to decide whether a given LTL
formula satisfies the condition. Moreover, it was not clear whether
LTL∩ACTL is equivalent to LTL∩CTL.

In 2008, Bojańczyk provided an algorithm to decide Maidl’s
condition, namely to decide whether a given ω-regular language
has an equivalent nondeterministic linear word automaton. How-
ever, he also showed that Maidl’s characterization does not cap-
ture LTL∩CTL, meaning that LTL∩ACTL is a strict fragment of
LTL∩CTL [2]. This result is somewhat surprising, as LTL formulas
apply to all paths, while a formula in CTL\ACTL must also quantify
existentially over paths. In contrast, for the case of LTL∩AFMC,
universality does not limit the expressive power [15].

Since 2008, there was no significant progress toward deciding
the LTL∩CTL fragment. Moreover, there are currently very limited
sufficient conditions and necessary conditions for deciding whether
an LTL formula is expressible in CTL, even if considering conditions
that do not add up to a complete decision procedure.

Beyond the theoretical interest in better understanding the con-
nection between linear-time and branching-time temporal logics,
there is also a potential for a practical benefit. An algorithm for
translating an LTL formula into an equivalent CTL formula, when
possible, may allow to use the more efficient verification algorithms
of CTL. Although an exponential lower bound is known for such a
translation [33], it might be useful in practice. Moreover, as claimed
by Eisner and Fisman [8]: “the vast majority of properties used in
practice belong to the overlap between CTL and LTL”. Another
area in which a characterization of their common fragment can be
useful is synthesis, generalyzing the approach taken by Ehlers in
[7], who improved synthesis procedures by using the automaton
characterization of LTL∩ACTL.

We use an automaton characterization of CTL for providing
sufficient conditions and necessary conditions for LTL formulas
and ω-regular languages to be expressible in CTL. Our conditions
are decidable. Note, however, that there is still a gap between our
necessary conditions and sufficient conditions.

This work was supported by the Israel Science Foundation grant 1373/16.

1

https://doi.org/10.1145/3209108.3209143

LICS ’18, July 9–12, 2018, Oxford, United Kingdom Udi Boker and Yariv Shaulian

Automaton characterization of CTL As opposed to LTL, which
enjoys various automaton characterizations, such as deterministic
counter-free Muller automata [21], nondeterministic counter-free
Büchi automata [6], and alternating linear (also called “very-weak”
or “1-weak”) automata [6], the automaton characterization of CTL
is not completely clear. It is stated in [31, Theorem 5.11] that CTL
is equivalent to alternating linear tree automata. Yet, a close look
on the definition of alternating tree automata in [31] reveals that it
is different from the standard definition, as originally given in [24].

In [31], alternating automata may use ϵ-transitions; That is, the
automaton may move between states without progressing on the
input tree. Moreover, while classic alternating automata have a
uniform definition in the literature [15, 16, 18, 23, 24, 28–30], alter-
nating automata with ϵ-transitions have a few, slightly different,
definitions; Sometimes the domain of the transition function is the
set of states [31, 34] and sometimes the set of states together with
the alphabet [33]; In addition, sometimes the Boolean connectives
and the path quantifiers (or path directions) can be combined freely
in the transition condition [11, 33] and sometimes only in a limited
way [11, 31, 34].

In general, classic alternating tree automata and the various ver-
sions of alternating tree automata with ϵ-transitions are considered
to be equivalent ([33, Proposition 1] and [11, Remark 9.4]). Yet, it
turns out that for linear alternating tree automata, these subtle
variations in the definitions have a significant influence.

We show that alternating linear tree automata as defined in [31]
are strictly less expressive than standard alternating linear tree
automata (ALT)—We prove that the class of hesitant-ALT (HLT)
is equivalent to CTL, and thus also to the automata of [31], while
being strictly less expressive than ALT.

The translation of CTL to HLT is given in [16], and we provide
the other direction. Our translation of an HLTA to a CTL formulaφ
generalizes the technique used in [18] for translating an alternating
linear word automaton to an LTL formula, by handling the subtle
branching possibilities of tree automata. For showing that HLT is
strictly less expressive than ALT, we present an ALTA that allows
for unboundedly many alternations between A- and E-transitions.
Assuming toward contradiction an HLT H equivalent to A, we
construct a tree that is accepted by A and “exhausts”H , showing
thatH can also accept trees not in the language of A.

Our conditions for LTL∩CTL We turn to elaborate on the suf-
ficient conditions and necessary conditions that we provide for
checking whether an LTL formula is definable in CTL. As LTL∩CTL
is expressible by deterministic Büchi automata (DBW) [13], one can
concentrate on LTL formulas that are recognized by DBWs. Notice
that this preliminary check is indeed decidable; One can translate
the LTL formula to an equivalent deterministic Rabin automaton
[27, 32], which has an equivalent DBW iff it has one on its own
structure [12].

Our approach for correlating the linear-time and branching-time
formulations is to relate the cycles of a given DBW to those of a
potentially equivalent HLT. If the DBW is linear, namely has only
cycles of size one, then by Maidl’s condition [19], it obviously has
an equivalent CTL, and even ACTL, formula. Intuitively, the core
limitation of CTL in expressing a tree language derived of a DBW
D, stems from trees in which one path stays in some cycle of D
while another path leaves it. The CTL formula must “decide” at the

splitting node how to proceed, either with only one path or with
all paths, and cannot properly handle the different paths.

Our basic necessary condition states that in order for a DBW to
be CTL-recognizable, it cannot have a cycle C , such that there is
a finite word u on which D can stay in C from some state, while
also being able to proceed with u, from some other state of C , to
a forever-accepting state qдood . Notice that the cycle C need not
be simple, and the states from which D stays in C and proceeds
fromC need not, and obviously cannot, be the same. The condition
can be decided by checking for each maximal strongly connected
componentX ofD, whether the intersection between the following
two nondeterministic finite automata is empty: Both automata are
defined over the structure of D and have all states of X as initial
states; In the first automaton, all states of X are accepting, while in
the second automaton, the forever-accepting states are accepting.

We strengthen the necessary condition, by showing that the
state qдood need not accept every word but can rather accept some
CTL-recognizable language, and satisfy some additional constraints.
The strengthened condition, combined with sufficient conditions
for a DBW to be CTL-recognizable, allows to inductively construct
DBWs that can and DBWs that cannot be expressed in CTL.

We prove the necessary condition by assuming toward contra-
diction that a DBWD that does not satisfy the necessary condition
has an equivalent HLTH . Metaphorically, every state s ofH can
be thought of as a “guard” that rejects subtrees not in the language.
A run r ofH can nondeterministically proceed from a state s to a
set of states S . SinceH is linear, the set S can only contain s and
states that appear after s in the ordering of states. Now, we define
a tree T that belongs to the derived language of D, and in which
there are sufficiently many “splitting” nodes. In a splitting node,
the run of D on the tree (when D is viewed as a deterministic tree
automaton) stays in the relevant cycle for some paths and leaves it
for other paths. We then show that there is an accepting run r of
H onT that “abandons” the so-far minimal state on every splitting
node. Thus, there is eventually some splitting node n′ that is not
assigned any state. As a result, we are able to change the treeT into
a tree T ′ that is not in the language, hanging on n′ a “bad” subtree,
such that a variant of the run r will nevertheless accept it—there
are no longer “guards” in the node n′ to reject the bad subtree.

We continue with the sufficient condition for a DBW D to be
expressible in CTL. It also considers the cycles of D, narrowing
down the necessary condition. It roughly requires the uniqueness
of each finite word u on which D can complete and leave a cycle.
Moreover, There should be a special “delimiting” letter that is even-
tually read in every accepting run, and after which D reaches a
state whose residual language is CTL-recognizable.

Observe that given a DBW D, the condition, except for the sec-
ond requirement, can be decided by examining all of D’s simple
cycles. The second requirement is obviously not known to be de-
cidable. However, it allows the inductive construction of involved
CTL-expressible DBWs—Starting with obvious languages that are
known to be in CTL, such as true, one can inductively apply the
condition, as well as other sufficient conditions, for getting a CTL-
expressible DBW.

The proof of the sufficient condition is constructive, defining a
CTL formula that is equivalent to the given DBW D, and whose
length is up to exponentially the number of states in D. The con-
structed formula may be syntactically, as well as semantically, in

2

LICS ’18, July 9–12, 2018, Oxford, United Kingdom

CTL\ACTL; A simple DBW for Bojańczyk’s language (see Figure 7),
which is in LTL∩CTL\ACTL, satisfies the sufficient condition.

Returning to the necessary condition, we demonstrate that it
easily captures some LTL formulas that are known not to be ex-
pressible in CTL, such as F (p∧Xp). Moreover, it allows us to refute
a conjecture by Clarke and Draghicescu from 1988, regarding a
sufficient condition for a CTL∗ formula to be expressible in CTL.
The conjecture roughly states that a CTL∗ formula is expressible in
CTL (with respect to Kripke structures with fairness constraints) if
it cannot distinguish between any two Kripke structures with fair-
ness constraints that satisfy some specific properties. We refute the
conjuncture by showing that the CTL∗ formula E (p ∨Xp)Uq is not
expressible in CTL (already with respect to standard Kripke struc-
tures, and thus also with respect to Kripke structures with fairness
constrains), while it cannot distinguish between any two Kripke
structures with fairness constraints that satisfy the conjecture’s
conditions.

Due to lack of space, some of the proofs appear in the appendix.

2 Preliminaries
2.1 Words and Trees
Given a finite alphabet Σ, a word over Σ is a (possibly infinite)
sequencew = w0 ·w1 · · · of letters in Σ.

We consider a tree to be a directed unordered infinite rooted tree
in the graph-theoretic sense, that is, a triple T = ⟨N ,E, ϵ⟩ where N
is a set of nodes, E ⊆ N ×N is a set of node transitions and ϵ is the
root node. Given a tree T , we denote its set of nodes by N (T), and
for a node n, we write Succ (n) to describe the set of nodes that are
transitioned to from n.

A path π inT is a finite or infinite sequence of nodes from N (T)
with transitions from each node to its successor in the sequence. If
not said otherwise, a path starts at the root of the tree. The notation
π i , for an integer i , stands for the suffix of π starting at index i .

Given an alphabet Σ, a Σ-labeled tree is a pair ⟨T ,V ⟩, where T is
a tree and V : N (T) → Σ maps each node of T to a letter in Σ.

2.2 Temporal Logic
LetAP be a set of atomic propositions. The language of well-formed
CTL∗ formulas is generated by the following context-free grammar:
ψ = true | p | (¬ψ) | (ψ ∧ ψ) | Eφ, and φ = ψ | (¬φ) | (φ ∧
φ) | Xφ | (φUφ) where p ∈ AP . We use the following syntactic
sugar: Fφ = trueUφ ′, Gφ = ¬F¬φ, φRφ ′ = ¬(¬φU¬φ ′), φWφ ′ =
φUφ ′ ∨Gφ and Aψ = ¬E¬ψ . Proper CTL∗-formulas are built using
the nonterminalψ . These formulas are called state formulas, while
those created by the symbol φ are called path formulas.

For defining the semantics of CTL∗, let ⟨T ,V ⟩ be a 2AP -labeled
tree and π a path of it. We say that π satisfies φ (π ⊨ φ) when the
following hold, where p ∈ AP and φ, φ1, and φ2 are path formulas.

• π ⊨ true. • π ⊨ p iff p ∈ V (π0). • π ⊨ ¬φ iff π ⊭ φ.
• π ⊨ φ1 ∧ φ2 iff π ⊨ φ1 and π ⊨ φ2. • π ⊨ Xφ iff π 1 ⊨ φ.
• π ⊨ φ1Uφ2 iff ∃i ∈ N s.t. π i ⊨ φ2 and ∀j ∈ [0..i−1], π j ⊨ φ1.

Similar definitions are for state formulas and trees with the addition
of: ⟨T ,V ⟩ ⊨ Eφ iff there is a path π of T s.t. π ⊨ φ.

The semantics of CTL∗ with respect to Kripke structures relates
to their computation trees. That is, a state s of a Kripke structure
M satisfies a CTL∗ formula φ, denoted by ⟨M, s⟩ ⊨ φ, if their com-
putation tree satisfies φ.

An LTL formula φ is a CTL∗ path-formula that does not contain
A or E, e.g. F (p ∧ Xp). In the context of CTL∗, we treat φ as the
state formula Aφ. A CTL formula is a CTL∗ state-formula s.t. each
path-quantifier is followed immediately by one of the temporal
operators {X ,U ,R,G, F ,W }, e.g. EFAGp. The formula EXp ∧AFGp
is neither an LTL nor a CTL formula.

2.3 Automata
2.3.1 Word Automata
A nondeterministic Büchi word automaton (NBW) is a tuple A =
⟨Σ,Q,δ ,Q0,α⟩. where Σ is the input alphabet, Q is a finite set of
states, δ : Q × Σ → 2Q is a transition function, Q0 ⊆ Q is a set of
initial states, and α ⊆ Q is the set of accepting states. We assume
that all of Q’s states are reachable from some initial state. When
|Q0 | = 1 and It is deterministic if Q0 is a singleton and for every
q ∈ Q and σ ∈ Σ, |δ (q,σ) | ≤ 1. Then we refer to δ (q,σ) as a state
and not as a set.

A run of A on a word w = w0 · w1 · · · ∈ Σω is an infinite se-
quence of states r = r0, r1, · · · such that r0 ∈ Q0, and for every
i ≥ 0, we have ri+1 ∈ δ (ri ,wi). A run r is accepting if it vis-
its the accepting states infinitely often. Formally, inf (r) = {q ∈
Q | for infinitely many i ∈ N, we have ri = q}, and r is accepting
iff inf (r) ∩ α , ∅.

The language that A recognizes (accepts), denoted by L(A), is
the set of words on which A has an accepting run. Two automata,
A and A ′, are equivalent iff L(A) = L(A ′).

For a state q of A, we denote by Aq the automaton that is
derived from A by changing the set of initial states to {q}. For a
subset Q ′ ⊆ Q , where Q ′ ∩ Q0 , ∅, the restriction of A to Q ′,
denoted by A|Q ′ , is the NBW ⟨Σ,Q ′,δ |Q ′ ,Q0 ∩Q ′,α ∩Q ′⟩ where
δ |Q ′ is the restriction of δ to the domain Q ′ × Σ.

We often think of DBWs as graphs. A DBWD can be considered
as a directed graph whose vertices are the states of D, and every
two vertices (states) are connected by an edge if there is a transition
from one to another over some letter. Note that this graph may
contain self loops, but no multiple edges. A cycle in a graph is,
as usual, a finite list of vertices, each connected by an edge to its
successor, where the first vertex in the list is also the last one.

For two states p,q ∈ Q of an automaton A, let Lp,q be the set
of labels of finite paths from p to q. An automaton A is called
counter-free, ifwm ∈ Lp,p impliesw ∈ Lp,p for every state p of A,
wordw ∈ Lp,p , andm ≥ 1.

2.3.2 Alternating Tree Automata
We consider automata that in each step of the run can either ensure
that all children move to the same state or can ensure the existence
of such a child.

Formally, an alternating Büchi tree automaton (ABT) is a tuple
⟨Σ,Q,q0,δ ,α⟩ where Σ is a finite alphabet,Q is a finite set of states,
q0 ∈ Q is the initial state, δ is the transition function that we define
below, and α ⊆ Q is a set of accepting states.

The transition function is δ : Q × Σ → B+ ({E,A} × Q); Given
a state q ∈ Q and a letter σ ∈ Σ, the transition function returns a
positive boolean formula that defines to which states the automaton
should send a copy of itself to, and whether it is enough to choose
only one child of the processed tree and send it there (E transition),
or all of the children are required (A transition). The output of δ ,

3

LICS ’18, July 9–12, 2018, Oxford, United Kingdom Udi Boker and Yariv Shaulian

as every other positive boolean formula over {E,A} ×Q , is called a
transition condition.

A run of an ABTA over a Σ-labeled tree ⟨T ,V ⟩ is a (N (T) ×Q)-
labeled tree R = ⟨Tr , r ⟩. Each node of Tr stands for a node of T and
a state of A. The linkage is done by the labeling function r : a node
of Tr , labeled by (n,q), describes a new computation of A staring
from its state q and operating onT rooted at n. A run should satisfy
conditions described further below.

To explain these conditions we need some more definitions. For
simplicity in notations, for (n′,q′) in (N (T) × Q), we will write
(n′,q′)n for the node component (n′), and (n′,q′)q for the state
component (q′). For every nodem in R, we define what it means for
a transition condition θ overQ to hold inm, denoted bym ⊨ θ . This
definition is by induction on the structure of θ , where the boolean
connectives, true, and false are dealt in the usual way. Further:
• m ⊨ (E,q) if the corresponding node r (m)n ofm in T has a
successor n′ and there exists some successorm′ ofm, such
that r (m′) = (n′,q).
• m ⊨ (A,q) if for every successor n′ of r (m)n , there is some
successorm′ ofm, such that r (m′) = (n′,q).

We can now define the conditions that a run ⟨Tr , r ⟩ with root ϵr
over a tree ⟨T ,V ⟩ with root ϵ should satisfy:

1. Initial condition. r (ϵr) = (ϵ,q0)
2. Local consistency. Letm be a node in Tr with r (m) = (n,q).

Thenm ⊨ δ (q,V (n)).
Note that by definition, a run cannot encounter a false transition-
condition since there are no such trees that satisfy the local consis-
tency condition. Furthermore if δ (q,V (n)) = true for some state q
and a node n, then the local consistency condition allows the run
to move to any state. We will think of reaching a true transition
condition in some path π of the run as making the path accepting,
which can be formally considered as reaching an accepting state
qtrue with a self loop over all alphabet letters.

A run is accepting if all its infinite paths satisfy the Büchi condi-
tion w.r.t. α , namely, each run-path has infinitely many nodes that
are labeled by a state from α . An automaton accepts a tree if it has
an accepting run on it. The language of an automaton A, denoted
by L(A), is the set of trees that A accepts.

For a run ⟨Tr , r ⟩ of an ABT A over a labeled-tree ⟨T ,V ⟩, we say
that a state q of A is assigned to a node n of T by an E statement if
there is a nodem in Tr that is labeled by (n,q), and it is assigned
also by an A statement if in addition the parent ofm satisfies the
(A,q) transition condition, that is, if there are nodesm andm′ of
Tr such thatm ∈ Succ (m′), r (m) = (n,q), andm′ ⊨ (A,q).

2.3.3 Hesitant Alternating Linear Tree Automata
Hesitant alternating linear tree automata are restricted alternating
linear tree automata, which are in turn restricted alternating weak
automata. We define them below in their expressiveness order.

An alternating weak tree automaton (AWT) is an ABT, in which
every strongly connected component in the transition graph con-
sists of either only accepting states or only rejecting states. AWTs
are known to have the same expressiveness as alternation-free
µ-calculus (AFMC) [25].

An alternating linear tree automaton (ALT) is an ABT all of whose
cycles in the transition graph are of size one. Notice that in a run of
an ALT, every path eventually gets stuck in some state. Therefore,
the set of recurrent states of a path boils down to a singleton,

implying that all acceptance conditions (Büchi, parity, Muller, etc.)
provide the same expressiveness. Linear automata are also called
in the literature “very weak” and “1-weak”.

We further consider a restricted version of ALTs, in which the
states are of three specific types, along the lines of hesitant alter-
nating automata1, presented in [16]. An ALT is hesitant, denoted
by HLT, if every state q is either
• transient, where for every σ ∈ Σ,q does not appear in δ (q,σ);
Or
• existential, where for every σ ∈ Σ, every appearance of q in
δ (q,σ) is in the form of (E,q); Or
• universal, where for every σ ∈ Σ, every appearance of q in
δ (q,σ) is in the form of (A,q).

2.4 Connecting Automata and Temporal Logic
In temporal logic, formulas are interpreted over a set AP of atomic
propositions. On the other hand, ABTs operate on Σ-labeled trees.
When correlating between them, we take the alphabet Σ to be the
power set of the atomic propositions, namely Σ = 2AP .

We say that a tree automatonA and a CTL formula φ are equiv-
alent if the set of trees accepted by A is equal to the set of trees
that satisfy φ. In other words, if for every Σ-labeled tree ⟨T ,V ⟩, it
holds that ⟨T ,V ⟩ ∈ L(A) iff ⟨T ,V ⟩ ⊨ φ.

For an ω-regular language L, the derived language of L, denoted
by L∆, is the set of trees all of whose paths belong to L [14].

2.4.1 ω-regular∩CTL = LTL∩CTL ⊆ DBW
It was shown in [10] that the language of a CTL∗ formula is the
derived language of some ω-regular language iff it is expressible
in LTL. Therefore, if an ω-regular language is expressible in CTL
(hence in CTL∗) it is also expressible in LTL. That is,ω-regular∩CTL
= LTL∩CTL.

Kupferman and Vardi showed in [15] that an ω-regular language
L can be characterized by a DBW iff L∆ can be characterized by an
AFMC formula. As CTL is subsumed by AFMC [20], we have:

Corollary 2.1 ([15]). Let φ be an LTL formula of a language L,
equivalent to some CTL formula. Then, there is a DBW recognizing L.

In other words, we know that LTL∩CTL ⊆ DBW. Notice that the
sets are not equal. Moreover, we have LTL∩CTL ⊊ LTL∩DBW. For
example, the LTL formula F (p ∧ Xp) is not expressible in CTL [9],
while expressible by a DBW.

3 CTL is Equivalent to HLT
It is stated in [31, p. 710, Theorem 5.11] that CTL is equivalent to
alternating linear tree automata. Yet, as elaborated on in the intro-
duction, a close look on the definition of alternating tree automata
in [31] reveals that it is different from the standard definition, as
originally given in [24]. We show that alternating linear tree au-
tomata as defined in [31], are strictly less expressive than standard
alternating linear tree automata (ALT)—We prove that HLT is equiv-
alent to CTL, and thus also to the corresponding automata of [31],
and that they are strictly less expressive than ALT.

We start by presenting the equivalence and later, in Section 3.1,
show that HLT indeed tightly characterizes CTL; Relaxing either

1A hesitant alternating automaton (HAA) [16] need not be linear, and its acceptance
condition combines the Büchi and co-Büchi conditions. Yet, restricting attention to
symmetric linear HAAs, one gets our definition of an HLT.

4

LICS ’18, July 9–12, 2018, Oxford, United Kingdom

the linearity or the hesitant obligations of the automata results in
strictly more expressive automata.

Theorem 3.1. CTL formulas and HLTs have the same expressiveness.

The proofs of both directions of Theorem 3.1 are constructive,
and generate CTL formulas and HLTs whose size is linear in each
other.

For the translation of CTL to HLT, a construction was presented
[16]. It considers automata on ordered trees, but it is also suitable,
almost as is, for HLTs, which run on unordered trees.

For the other direction, we show that every HLT can be trans-
lated to an equivalent CTL formula, adapting the technique used in
[18] for translating a linear alternating word automaton into an LTL
formula. The challenge in the adaptation is how to properly gener-
alize the technique from words to trees. Indeed, as explained in the
Introduction and will be demonstrated in Section 3.1, small varia-
tions in the definition of alternating linear tree automata determine
whether or not they are equivalent to CTL.

Construction. Consider an HLT A = ⟨Σ,Q = {q0,q1, . . . ,qn },
q0,δ ,α⟩. Since A is linear, we can assume w.l.o.g. that the transi-
tions are ascending, namely that for every σ ∈ Σ and i ∈ [0..n],
δ (qi ,σ) includes qj only if i ≤ j, and that qn = qtrue. For every
σ ∈ Σ, we define the CTL formula ψσ = (

∧
p∈σ p) ∧ (

∧
p<σ ¬p),

intuitively meaning that a σ -labeled node is read.
Consider a state qi and a letter σ , and let θ = δ (qi ,σ) be the

transition condition of qi on σ . Notice that since A is hesitant, qi
is either transient, existential, or universal. It is thus possible to
present θ as follows, where θi,σ and θ ′i,σ are transition conditions
that contain states only from {qi+1,qi+2, . . . ,qn }.

θ =




θ ′i,σ qi is transient
((E,qi) ∧ θi,σ) ∨ θ

′
i,σ qi is existential

((A,qi) ∧ θi,σ) ∨ θ
′
i,σ qi is universal

For every state qi , we define below the two CTL formulasφi,stay
and φi,leave , intuitively meaning that the run stays in qi or leaves
it, respectively. They are based on the above formulas θi,σ and
θ ′i,σ , respectively, after their recursive translation from transition
conditions into CTL formulas (ToCTL). The latter is formally defined
afterwards.

φi,stay =
∨
σ ∈Σ

ψσ ∧ ToCTL(θi,σ) φi,leave =
∨
σ ∈Σ

ψσ ∧ ToCTL(θ ′i,σ).

The ToCTL function, translating states and transition conditions
of A into CTL formulas, is defined in the expected way by induc-
tion on the structure of the transition condition. The non-trivial
translation is of the atomic subformula qi , for i ∈ [0..n]. Recall that
the Weak-until temporal operator, defined by φWψ B φUψ ∨Gφ,
and Let ρ1 and ρ2 be subformulas of θ .
• ToCTL(true) = true; ToCTL(false) = false
• ToCTL(ρ1 ∨ ρ2) = ToCTL(ρ1) ∨ ToCTL(ρ2)
• ToCTL(ρ1 ∧ ρ2) = ToCTL(ρ1) ∧ ToCTL(ρ2)
• ToCTL((E,qi)) = EX ToCTL(qi)
• ToCTL((A,qi)) = AX ToCTL(qi)

• ToCTL(qi) =




true i = n
φi,leave qi is transient
Eφi,stayUφi,leave qi is existential, qi < α
Eφi,stayWφi,leave qi is existential, qi ∈ α
Aφi,stayUφi,leave qi is universal, qi < α
Aφi,stayWφi,leave qi is universal, qi ∈ α

start

x ,Ay,E

z,A

Σ,A

Figure 1. An ALT that has no equivalent HLT.

Notice that the above definitions are circular, defining the ToCTL
function on top of the φi,stay and φi,leave formulas, and vice versa.
Yet, this is exactly the recursion in the definition, presenting no
problem—The translation of a state qi is defined via φi,stay and
φi,leave on top of states qj , for j > i . The recursion ends with qn ,
which is translated to true.

Lemma 3.2. For every i ∈ [0..n], the CTL formula ToCTL(qi) is
equivalent to Aqi .

3.1 Tightness
We show that both the linearity and the hesitant properties of an
HLT are indeed essential for the equivalence with CTL. That is, we
prove that non-linear hesitant AWT (HWT) and non-hesitant ALT
are more expressive than CTL. (In Section 2.3.3, we only defined
the hesitant property w.r.t. an ALT. Its definition w.r.t an AWT is
analogous.)

The inequalityHLT<HWT is straightforward. It is easy to present
an HWT that recognizes the language of AF (p ∧ XP), but no CTL
formula captures that language [9]. Thus by Theorem 3.1, the de-
scribed HWT has no equivalent HLT.

For showing that HLT<ALT, we provide an ALT A, as depicted
in Figure 1, and prove that it does not have an equivalent HLT. Intu-
itively, an HLT cannot follow the unboundedly many alternations
between A- and E-transitions thatA allows. The technique used in
the proof shares ideas with the proof of Theorem 4.1, and is detailed
in the appendix.

Theorem 3.3. Hesitant alternating linear tree automata (HLT) are
strictly less expressive than alternating linear tree automata (ALT).

4 Necessary Conditions for LTL∩CTL
There are currently very limited techniques for showing that an
LTL formula cannot be expressed in CTL. Emerson and Halpern
showed in [9] that the LTL formula F (p ∧ Xp) is not expressible in
CTL. They used, as stated in [3], a long and complicated inductive
argument that required about 2 journal pages to present, while not
allowing for easy generalizations to other examples.

Later on in [4], Clarke and Draghicescu presented some neces-
sary condition for an LTL formula to be expressible in CTL, yet
not with respect to standard Kripke structures, but with respect to
Kripke structure with fairness constraints. (We cite their condition
as Theorem 6.1). They conjectured that their necessary condition
is also sufficient, however we refute it in Section 6.

We provide in this section general techniques for showing that
an LTL formula is not expressible in CTL, using the HLT character-
ization of CTL. The techniques can be used for easily showing that
F (p∧Xp) is not expressible in CTL, as well as many other formulas,
among which is (p ∧ Xp)Rq, which will serve us in refuting the
aforementioned conjecture of Clarke and Draghicescu.

5

LICS ’18, July 9–12, 2018, Oxford, United Kingdom Udi Boker and Yariv Shaulian

start q q′
v

x

y

z

y

Σ

Figure 2. A schematic DBW that cannot be expressed in CTL.

We start with a basic necessary condition, whichwewill strengthen
in Section 4.2. Recall that LTL∩CTL ⊆ DBW [14]. Hence, it is
enough to check the CTL-expressibility of a given DBW.

4.1 The Basic Condition
Our basic necessary condition states that in order for a DBW D to
be CTL-recognizable, it cannot have a cycle C , such that there is
a finite word u on which D can stay in C from a state q1 and also
proceed to a forever-accepting state from some other state q2 ofC .

Theorem 4.1. Let L be the derived language of a DBWD. If there is
a state q of D s.t. the following hold, then L is not expressible in CTL.

• There is a finite word y ∈ Σ+ that is an infix of the labels on
the path from q back to itself (see Figure 2).
• Dq accepts every word that starts with y.
• L(Dq) ⊊ Σω .

Proof. Assume toward contradiction that L is expressible in CTL.
Then by Theorem 3.1, there is an HLT A that recognizes L.

We shall describe a tree T that belongs to L, as depicted in Fig-
ure 3, and via which we will show that A also accepts some tree
T ′ not in L, reaching a contradiction. We will do that by analyzing
an accepting run of A on T , and show how it can be altered to be
an accepting run of A on T ′. Intuitively speaking, an HLT has a
hard time following simultaneously two paths where one stays in
a cycle while the other leaves it, especially when the paths share a
word y, which “confuses” the HLT.

Let v ∈ Σ∗ be a finite word on which D reaches q. Let x and z
be two finite words such that when reading xyz, D completes a
cycle from q back to itself , and letw ∈ Σω be a word rejected by
Dq (See Figure 2 for a sketch of D).

The treeT (see Figure 3): We define Y to be the set of trees whose
|y | first labels along all paths form the word y. Let Q be the set
of states of A and letm = |Q |. Let B ⊆ Q be the states of A that
reject some tree in Y . That is, B = {s ∈ Q | there exists a tree
Ts ∈ Y \ L(A

s)} . Note that B is not empty, as otherwise A would
have accepted the singled-path tree vxyzw , which is not in L. (An
accepting run, in this case, ofA on vxyzw can be accomplished by
changing an accepting run of A on a singled-path tree that starts
with vx ; the prefix of such a run can be continued since every state
should accept trees that start with y along all of their paths.)

T starts with a path labeled vxyz. We denote by n0 the last node
of that path. For every state s in B, there is under n0 a subtree Ts
that starts with y along all of its paths and is rejected byAs . There
are also two additional identical subtrees of n0, denoted by nl0 and
nr0 . Since they are identical, it is sufficient to describe the former.

nl0 starts with a path labeled xyz that ends in a node denoted by n1.
The subtrees of n1 are similar to those of n0—for every state s in B,
there is under n1 a subtree Ts that starts with y and is rejected by
As , and two identical subtrees, denoted by nl1 and n

r
1 . n

l
1 starts with

a path labeled xyz that ends at n2 etc... there arem such similar
levels of T , until having the node nm . Then, under nm there is a
member of Y as a subtree, for example the single path that begins
with y. Notice that T is indeed in L.

The treeT ′: T ′ is identical toT , except for having in nm the single
path w as a subtree. Notice that T ′ is not in L, since it has a path
labeled v (xyz)m+1w , which is not accepted by D.

Analyzing accepting runs ofA onT : Consider a run r ofA that
accepts T , and let S ′ be the set of states that r assigns to nl0. For
every state s in S ′, we check whether it is assigned to nl0 by an E

or by an A statement. If s is assigned to nl0 only by an E statement,
there is another accepting run r ′ of A on T that is identical to r ,
except for not assigning s to nl0, while assigning s to nr0 . This is
indeed the case, since nl0 and nr0 start identical subtrees. Thus, we
may assume that in r , all states that are assigned to nl0 are assigned
by an A statement.

Consider a state s that is assigned to nl0 by an A statement. Then
by definition, s is assigned to all other siblings of nl0. Hence, s < B,
as otherwise, there would have been a sibling of nl0 that is the root
of a tree Ts that is rejected by As , which would have implied that
the run r is rejecting. Thus, As accepts every tree in Y . Therefore
we can assume that after reading y, As can accept every tree. (If it
is not the case, we change A to an HLT A ′ that extends A with
|y | − 1 new states, namely {s ′1, . . . , s

′
|y |−1}, having the transitions

s
y1
−−→
A

s ′1
y2
−−→
A
. . .

y |y |−1
−−−−−→

A
s ′
|y |−1

y |y |
−−−→
A

true. Notice that A and A ′

recognize the same language).

Deducing an accepting run of A on T ′: We now describe how
to change the accepting run r of A on T to an accepting run of A
on T ′. Let s0 be the minimal state assigned by r to n0. We claim
that there is an accepting run r ′ of A on T that is identical to r ,
except for not assigning s0 to nl0. Indeed, if r does not assign s0 to
nl0 then r

′ is simply r . If r assigns s0 to nl0 only by an E statement, r ′
assigns s0 to nr0 instead. Otherwise, by the above argument, s0 does
not belong to B and has a transition to true after reading the word
y. Hence, the run r ′ can lead s0 to true when reading y, before
reaching n0, implying that no state that is assigned to n0 can assign
s0 to nl0. (Recall that the automaton is linear and s0 is the minimal
state.)

Applying the above argument by induction on i , we get an ac-
cepting run r ofA onT , such that for every i ∈ [1..m−1], the node
nli is not assigned any of the states in {s0, s1, . . . , si }. In particular,
the node nlm−1, and therefore also the node nm , is not assigned any
state! Thus, we can have an accepting run of A on T ′, which does
not belong to L. □

Notice that the condition provided in Theorem 4.1 can be decided
by checking for each maximal strongly connected component X of
the given DBWD, whether the intersection between the following
two nondeterministic finite automata is empty: Both automata are
defined over the structure of D and have all states of X as initial

6

LICS ’18, July 9–12, 2018, Oxford, United Kingdom

Ts1 Tsk

Ts1 Tsk

...

...

n0

nl0
...

n1
...

nm−1

nlm−1 ...

nm

...

nrm−1
...

nr0
...

} v

} xyz

} xyz

} xyz

} y

. . .

. . .{y

In T ′, the labeling of these
nodes is changed to w , and
the tree is accepted by A,
though not in L.

Figure 3. The tree T used in the proof of Theorem 4.1

states; In the first automaton, all states of X are accepting, while in
the second automaton, the forever-accepting states are accepting.

4.2 A Stronger Condition
We narrow down the necessary condition, by extending the families
of DBWs that are shown not to be expressible in CTL. Recall that
the basic condition, as defined in Theorem 4.1, considered a state
q′, s.t Dq′ accepts every word.

We shall allow Dq′ to recognize a richer variety of languages,
in particular, CTL-recognizable languages that satisfy some con-
straints, as defined in the following theorem.

The motivation for considering states whose residual language
is CTL-expressible is to allow the combination of the necessary
condition and sufficient conditions, such as the ones described in
Section 5. Then, one can inductively construct DBWs that cannot
be expressed in CTL. See, for example, Corollary 4.4.

Theorem 4.2. [Theorem 4.1 Extended] Let L be the derived language
of a DBW D. If there is a state q of D s.t. the following hold, then L
is not expressible in CTL.

q0start q1

{¬p,q}

{p,q}

{¬p,q}

q2
{p, ·}

Σ

Figure 4. A DBW for (p ∧ Xp)Rq, not expressible in CTL.

• There is a cycle from q back to itself labeled xyz, for finite words
x , z ∈ Σ∗ and y ∈ Σ+.
• The run ofDq on y reaches a state q′, s.t.Dq′ has an equivalent
CTL formula.
• There exists a wordw < L(Dq), s.t. ∀i ∈ N, z (xyz)iw ∈ L(Dq′).
• For every word y′ ∈ L(Dq′) and ∀i ∈ N, z (xyz)iyy′ ∈ L(Dq′).

Notice that Theorem 4.1 is a special case of Theorem 4.2, taking
q′ to accept every word in Σω . Then, Dq′ is equivalent to the CTL
formula true, the third condition falls back to be L(Dq) ⊊ Σω ,
and the fourth condition obviously holds.

proof sketch. We extent the proof of Theorem 4.1 by updating the
setY to be the set of trees inwhich all paths satisfy the following two
conditions: i) the first |y | labels form the word y, and ii) the labels
of the suffix from the (|y |+1)’s position form a word in L(Dq′).

Since the tree we build depends on Y , we get an updated version
ofT . The treeT ′ is obtained fromT by replacing the subtree hanged
under nm with the singled-path tree labeledw . We have, as before,
that T is in L and T ′ is not.

As Dq′ is expressible in CTL, there exists, by Theorem 3.1, an
HLT Aq′ equivalent to Dq′ . We may thus assume that A, or an
HLT equivalent to A, has a nondeterministic path from its initial
state to the initial state of Aq′ upon reading y.

We then continue along the lines of the proof of Theorem 4.1,
and show that the only guards (states) on the end of the path that
we examine, namely the states that are assigned to the node nm , are
states ofAq′ and not of the original automatonA. Hence, the states
assigned to nm cannot “catch” the bad path we hanged, implying
that A accepts T ′, which leads to a contradiction. □

4.3 Examples of Using the Necessary Conditions
The first example concerns the LTL formula (p∧Xp)Rq, recognized
by the DBW in Figure 4. Note that in Theorem 4.1, it does not
matter whether the states in the cycle are accepting or not, and in
this example all of the states are accepting. This formula will also
serve us in Section 6 to refute a conjuncture presented in [4].

Corollary 4.3. The LTL formula (p ∧ Xp)Rq is not expressible in
CTL.

Similarly, we are able to easily show that the LTL formula F (p ∧
Xp) is not expressible in CTL. This was already proved in [9], but
with much effort.

The added value of the stronger condition (Theorem 4.2) is
demonstrated by the DBW D of Figure 5, not covered by the ba-
sic condition. It also demonstrates how one can inductively use
a necessary condition together with a sufficient condition—The
language of Dq′ is in CTL by the sufficient condition presented in
Section 5.2, and therefore, due to Theorem 4.2, the language of D
is not in CTL.

7

LICS ’18, July 9–12, 2018, Oxford, United Kingdom Udi Boker and Yariv Shaulian

q

start

q′

ab, c

ab

c

b a

b, c

Figure 5. A DBW for (abc)∗b ((b + c)∗a)ω , not expressible in CTL.

Corollary 4.4. The language L = “all paths belong to (abc)∗b ((b +
c)∗a)ω ” is not definable in CTL.

Analogously, F (p ∧ Xp) ∧GFp is not expressible in CTL.

5 Sufficient Conditions for LTL∩CTL
The main sufficient condition narrows down the necessary con-
dition by requiring, among other things, that the DBW D leaves
cycles with unique words. (More precisely, the requirement is that
ifD leaves a cycle with some wordw then the valid runs ofD onw
from all states coincide in their last two states.) Its correctness proof
is constructive, defining an equivalent CTL formula. The resulting
formula contains both universal and existential path quantification,
and indeed, the sufficient condition is shown to capture languages
in LTL∩(CTL\ACTL).

In Section 5.2, we provide another, simpler, sufficient condition
that can be combined with the main condition for allowing the
inductive construction of more involved CTL-expressible DBWs.
See, for example, Corollary 5.5. Moreover, by combining the suffi-
cient conditions and the necessary conditions, one can define more
involved DBWs that cannot be expressed in CTL. See, for example,
Corollary 4.4.

5.1 The Main Condition
DBWs that satisfy the condition are required to have some special
segment, which we dub the “decisive part”, containing the initial
state and no accepting states. A run of the DBW can leave the
decisive part only upon reading a special delimiting letter e , going
to a state that has an equivalent CTL formula. In addition, in the
decisive part, the way out of every cycle should be unique.

We start by defining formally what we mean by a “way out of a
cycle”. Notice that we distinguish between two variants of going
out of a cycle; Before and after completing a full cycle.

Definition 5.1 (Escaping Words). Consider a DBW D = ⟨Σ,Q,δ ,
q0,α⟩, a simple cycle C = ⟨q=q1,q2, . . . ,qm ,qm+1=q⟩ of D, and a
finite wordw = w1 . . .wl , where l ∈ [2..m+1].

We say that D leaves C from q via the wordw if the following
hold:

• The outdegree of q is greater than one;
• The run of Dq onw follows C up to the last letter (exclud-
ing), namely δ (qj ,w j) = qj+1 for every j ∈ [1..l−1] and

δ (ql ,wl) ,

{
q2 ql = q1
ql+1 otherwise

.

When the run of Dq on the word w1 . . .wl−1 completes C ,
namely when l−1 = m, we say that D leaves C cyclically from
q and otherwise we say that D leaves C early from q.

We call the wordw a cyclic (resp. early) escaping word.

We continue with the definition of the sufficient condition. We
define the constraints that a DBW should satisfy in order to be
“decisive”, and show that decisive DBWs can be translated to CTL.

Definition 5.2. A DBW D = ⟨Σ,Q,δ ,q0,α⟩ is decisive if there is
a subsetQ ′ ⊆ Q that contains the initial state ofD, such thatD|Q ′
satisfies the following:

1. It is counter-free.
2. There is a letter e ∈ Σ s.t. for every state q ∈ Q ′, the automa-

ton Dδ (q,e) has an equivalent CTL formula.
3. For every letter σ , e and a state q ∈ Q ′ it holds that
δ (q,σ) ∈ Q ′.

4. Q ′ contains no accepting states.
5. If D leaves a simple cycle C ⊆ Q ′ from a state q via a

finite word wσ (the last letter of the escaping word is σ)
then for every state q′ ∈ Q ′, we have δ (q′,wσ) = ∅ or
δ (q′,w) = δ (q,w). That is, all paths overwσ in Q ′ coincide
in their last two states.

The subset Q ′ is dubbed the decisive part of D.

Observe that except for the second constraint, it is decidable to
check whether a given DBW satisfies the constraints. Regarding the
second constraint, we obviously do not know to decide it, as such
a decision procedure will solve the question of whether a DBW
is CTL-expressible. The idea behind it is to allow the inductive
construction of involved CTL-expressible DBWs—Starting with
obvious languages that are known to be in CTL, such as true,
one can inductively apply the above condition, as well as other
sufficient conditions, such as the one of Section 5.2, for getting a
CTL-expressible DBW. (See, for example, Corollary 5.5.)

We briefly explain the intuitive reason for requiring each of the
other constraints. The counter-free constraint follows the known
equivalence of LTL and counter-free NBWs [6] and non-counting
languages [22]. The uniqueness of the escaping words allows the
equivalent CTL formula to “synchronize” whenever some path of
the input tree leaves a simple cycle. The delimiting letter e allows
the formula to constantly wait for an escapingwordw until e occurs;
Without it, the escaping word would have been awaited even after
going out of the decisive part. Regarding the limitation of not
having accepting states in the decisive part, we believe that it can
be relaxed, and we partially address it in the additional condition,
provided in Section 5.2.

Theorem 5.3. Every decisive DBW has an equivalent CTL formula.

proof sketch. We first define the CTL formula that corresponds
to a given decisive DBW, and afterwards prove that it is indeed
equivalent to the DBW.

Consider a decisive DBW D = ⟨Σ,Q,δ ,q0,α⟩ over an alphabet
Σ with a decisive part Q ′ ⊆ Q . For every state p in Q ′, we have
a formula State(p) that “describes” it, based on the simple cycles
to which p belongs. We also define such formulas for the states in
δ (Q ′, e).

We have in addition the formula Orientation that occasionally
“synchronizes” a node of the input tree with the corresponding
state of Q ′. Due to the uniqueness of the escaping words, it can
trigger the synchronization whenever an escaping word occurs
at some path of the read tree. Once detecting an escaping word,
Orientation triggers the formula of the state on which the paths
diverge. It is done as long as the letter e is not read, meaning that

8

LICS ’18, July 9–12, 2018, Oxford, United Kingdom

the run of the DBW on the tree is still in a state in Q ′. Note that
we use here the existential power of CTL.

The overall CTL formula corresponding to D is

ψ = State(q0) ∧ Orientation

The correctness proof details the intuitive explenation above,
using “local” and “global” claims. The local claim states that a tree
satisfies the formula State(p), for some state p, iff the first fixed
amount of levels of the tree are legal prefixes from the state p. The
global claim states that Orientation holds until the letter e appears.
By combining the two, we are able to prove the equivalence of our
formula and the DBW. □

5.2 An Additional Sufficient Condition
A future direction of extending the main condition is to handle
DBWs in which the decisive part can contain accepting states. A
simple condition toward such an extension is the following. We
say that a DBW D = ⟨Σ,Q,δ ,q0,α⟩ is almost linear if I) There is
a letter e that after reading it, D always moves to a specific state.
That is, there is a letter e ∈ Σ and a state qe ∈ Q , s.t. for every state
q′ ∈ Q , either δ (q′, e) = qe or δ (q′, e) = ∅; II) qe is an accepting
state (qe ∈ α); and III) If removing all the transitions on the letter
e , the automaton becomes linear. See, for example, Figure 6.

We show that an almost linear DBW D has an equivalent CTL
formula by translating it to an equivalent HLT H = ⟨Σ,QH =
Q ∪ {h0,q′e },δH ,h0,α ∪ {q′e }⟩. The translation transforms D into
H through the following steps:
• All the transitions of D become A-transitions ofH . That is,
for every σ ∈ Σ and q ∈ Q , we have δH (q,σ) = (A,δ (q,σ)).
• Changing all the transitions that enter qe to lead to true.
That is, for every q′ ∈ Q such that δ (q′, e) = qe , we have
δH (q′, e) = true.
• Adding a new universal state q′e that is also an accepting
state. It goes to itself on every letter, and on e it also goes
to qe . That is, δH (q′e , e) = (A,qe) ∧ (A,q′e), and for every
σ , e , δH (q′e ,σ) = (A,q′e).
• Adding a new transient state h0 that is also the new ini-
tial state. It imitates q0 on the first read letter and univer-
sally also goes to q′e . That is, for every σ ∈ Σ, δH (h0,σ) =
(A,δ (q0,σ)) ∧ (A,q′e).

Notice that the second change makesH linear, and the other two
changes keep it linear, having h0 and q′e the first and second states
of H , respectively. Observe also that H only uses universality,
having no nondeterminism.

GFp is a simple example of a language the has an almost linear
DBW. Another, more involved example, is given in Figure 6. As
described, the HLT in the figure simulates the DBW, by initializing
a new copy of the “linearized” DBW on every occurrence of e .

5.3 Examples
In [2], Bojańczyk proved that there is a language L expressible in
both LTL and CTL but not in ACTL. The following corollary of
Theorem 5.3 is an alternative proof to the expressibility of L in CTL,
based on the DBW of Figure 7, in which the early (and in this case
also cyclic) escaping words are bac (from q1) and abc (from q3).

Corollary 5.4 ([2]). The language L = “all paths belong to
(ab)∗a(ab)∗cω ” is definable in CTL.

q0start q1

qe q−1e
a

a,b

c d

a

e

b

a

e
DBW

h0start

q−1qeqe ′ q0 q1

truetrue
e

a

a,b

c

d

a

e

b

ae

b

Σ

a

e

e

Σ

HLT

Figure 6. An almost-linear DBW and its equivalent HLT. In the
HLT, all transitions are universal A-transitions.

q0

start

q1 q2 q3 q4

c

a

b

c

a b

a

c

Figure 7. A DBW for (ab)∗a(ab)∗cω , expressible in CTL.

q0

start

q1 q2 q3

a

b

b

a

c
a

b c

c

Figure 8. A DBW for (ab + ba)∗c (ac + bc)ω , expressible in CTL.

The next corollary demonstrates how both the main sufficient
condition, concerning decisive DBWs, and the additional sufficient
condition, concerning almost-linear DBWs, can be combined. Con-
sider the DBW D, presented in Figure 8. First, note that Dq3 is
an almost linear DBW and therefore it has an equivalent CTL. In
addition, note that D is decisive (c servers as a delimiting letter).
Therefore, by Theorem 5.3, we get the expressibility in CTL.

Corollary 5.5. The languageL = “all paths belong to (ab+ba)∗c (ac+
bc)ω ” is definable in CTL.

6 On CTL∗ Formulas Expressible in CTL
Clarke and Draghicescu give in [4] a necessary condition for a
CTL∗ formula to be expressible in CTL over Kripke structures with
fairness constraints. We first formally define the latter, as used for
example in [1, 4].

A Kripke structure with fairness constraints over an alphabet Σ is
a tuple ⟨S,R,L,F ⟩ where
• ⟨S,R,L⟩ is a Kripke structure over Σ.

9

LICS ’18, July 9–12, 2018, Oxford, United Kingdom Udi Boker and Yariv Shaulian

• F ⊆ 2S is a set of fairness constraints. (Onemay also assume
that each set of F defines a strongly connected component.)

LetM = ⟨S,R,L,F ⟩ be a Kripke structure with fairness constraints
and π = s0s1 . . . a path in M . Let in f (π) denote the set of states
occurring infinitely often in π . Then π is fair iff in f (π) ∈ F .

For two sets F and F ′ of fairness constraints, we say that F ′
extends F if F ′ = F ∪F ′, where F ′ is a superset of some set F ∈ F .

The semantics of CTL∗ with respect to a Kripke structure with
fairness constraints is defined using only the fair paths of the struc-
ture. That is, one should take the following change in the satisfia-
bility definition: ⟨M, s⟩ ⊨ Eφ iff there is a fair path π ′ starting from
s s.t. π ′ ⊨ φ.

We provide next the necessary condition of [4].

Theorem 6.1 ([4]). LetM = ⟨S,R,L,F ⟩ andM ′ = ⟨S,R,L,F ′⟩ be
Kripke Structure with Fairness Constraints, where the set of constraints
F ′ extends F . Then for all CTL formulas φ and all states s ∈ S ,
⟨M, s⟩ ⊨ φ if and only if ⟨M ′, s⟩ ⊨ φ

They were unable to prove that this condition is also sufficient,
leaving it as a conjuncture.

Conjecture 6.2 ([4]). Letφ be a CTL∗ formula. Ifφ is not expressible
in CTL, then it is possible to find two Kripke structures with fairness
constraints M = ⟨S,R,L,F ⟩ and M ′ = ⟨S,R,L,F ′⟩ with F ′ an
extension of F , such that for some state s ∈ S , ⟨M, s⟩ ⊨ φ and
⟨M ′, s⟩ ⊭ φ or ⟨M, s⟩ ⊭ φ and ⟨M ′, s⟩ ⊨ φ.

We refute Conjuncture 6.2 by showing that the CTL∗ formula
E (p ∨ Xp)Uq is not expressible in CTL (already w.r.t. Kripke struc-
tures without fairness constrains), while no two Kripke structures
with fairness constraints satisfy the conjecture’s requirements.

Corollary 6.3. The formula E (p ∨Xp)Uq is not expressible in CTL.

Proof. As a negation of the formula A(¬p ∧X¬p)R¬q, which is not
expressible in CTL by Corollary 4.3. □

For showing that the condition of Conjecture 6.2 does not hold
for the formula E (p∨Xp)Uq, we will use the following lemma from
[4], regarding the prefixes of computations in Kripke structureswith
fairness constraints. Given a Kripke structureM = ⟨S,R,L,F ⟩with
fairness constraints and a state s ∈ S , we denote by Pre f ix (M, s)
the set of finite prefixes of fair computations ofM that start at s .

Lemma 6.4 ([4]). Let M = ⟨S,R,L,F ⟩ be a Kripke structure with
fairness constraints, and letM ′ = ⟨S,R,L,F ′⟩ where the set of con-
straints F ′ extends F . Let s be a state of M . Then, Pre f ix (M, s) =
Pre f ix (M ′, s).

We are now in place to refute Conjecture 6.2.

Theorem 6.5. Conjecture 6.2 of [4] is false.

Proof. We claim that the formula φ = E (p ∨ Xp)Uq is a counter
example for Conjecture 6.2. By Corollary 6.3, φ is not expressible
in CTL. We will show that the condition of Conjecture 6.2 does
not hold for φ; That is, for every Kripke structure with fairness
constraints M , an extension of it M ′, and a state s of M , we will
show that ⟨M, s⟩ ⊨ φ iff ⟨M ′, s⟩ ⊨ φ.

Letφd stand for the LTL formula (p∨Xp)Uq. Note thatφd defines
a co-safety language: a word satisfies φd iff it has a finite prefix
that “approves” the word. Thus, ⟨M, s⟩ ⊨ φ iff there is a finite prefix
of a fair computation that satisfies φd . Hence, we get the following

by Lemma 6.4: ⟨M, s⟩ ⊨ φ iff there is a prefix π ∈ Pre f ix (M, s)

s.t. π ⊨ φd iff there is a prefix π ′ ∈ Pre f ix (M ′, s) s.t. π ′ ⊨ φd iff
⟨M ′, s⟩ ⊨ φ. □

7 Conclusions
We tightened the automaton characterization of CTL to the class
of hesitant alternating linear tree automata (HLT), and used it to
provide some necessary conditions and some sufficient conditions
for an LTL formula to be expressible in CTL. The new conditions
allow to simplify proofs of known results on languages that are
definable, or not, in CTL, as well as to prove many new results.

There is still a big gap between our necessary conditions and suf-
ficient conditions. We believe that the automaton approach we have
taken can be further pursued toward generalizing the conditions,
and maybe even toward resolving the longstanding open problem
of deciding the common fragment of LTL and CTL. In particular,
one can look into generalizing the sufficient condition, by allowing
the decisive part of the considered DBW to have accepting states.

The HLT characterization of CTL is useful also for conditions on
the membership of tree languages in CTL. We used it for showing
that CTL < ALT, and for refuting a conjecture in [4] regarding a
sufficient condition for a CTL∗ formula to be in CTL.

Lastly, the constructive technique that we used in the sufficient
condition, for translating a certain kind of DBWs into CTL formulas,
might be useful also for translating certain kinds of counter-free
NBWs into LTL formulas. Counter-free NBWs are known to be
equivalent to LTL, yet the current equivalence proofs are compli-
cated and indirect.

References
[1] A. Aziz, V. Singhal, F. Balarin, R. Brayton, and A.L. Sangiovanni-Vincentelli. 1994.

Equivalences for fair Kripke Structures. In Proc. ICALP. 364–375.
[2] M. Bojańczyk. 2008. The common fragment of ACTL and LTL. In Proc. of FoSSaCS.

Springer, 172–185.
[3] E.M. Clarke. 2008. The birth of model checking. In 25 Years of Model Checking.

Springer, 1–26.
[4] E.M. Clarke and I.A. Draghicescu. 1988. Expressibility results for linear-time and

branching-time logics. In Proc. Workshop on Linear Time, Branching Time, and
Partial Order in Logics and Models for Concurrency (LNCS), Vol. 354. 428–437.

[5] E.M. Clarke and E.A. Emerson. 1981. Design and synthesis of synchronization
skeletons using branching time temporal logic. In Proc. Workshop on Logic of
Programs (LNCS), Vol. 131. Springer, 52–71.

[6] V. Diekert and P. Gastin. 2008. First-order definable languages. Logic and automata
2 (2008), 261–306.

[7] Rüdiger Ehlers. 2012. ACTL ∩ LTL Synthesis. In Proc. of CAV. 39–54.
[8] C. Eisner. 2007. PSL for runtime verification: Theory and practice. LNCS 4839

(2007), 1–8.
[9] E.A. Emerson and J.Y. Halpern. 1986. Sometimes and Not Never Revisited: On

Branching Versus Linear Time. J. ACM 33, 1 (1986), 151–178.
[10] O. Grumberg and R.P. Kurshan. 1994. How linear can branching-time be. In Proc.

1st Int. Conf. on Temporal Logic, Vol. 827. Springer, 180–194.
[11] D. Kirsten. 2002. Alternating Tree Automata and Parity Games. 153–167.
[12] S.C. Krishnan, A. Puri, and R.K. Brayton. 1994. Deterministic ω-automata vis-

a-vis deterministic Büchi automata. In Algorithms and Computations (LNCS),
Vol. 834. Springer, 378–386.

[13] O. Kupferman, S. Safra, and M.Y. Vardi. 1996. Relating word and tree automata.
In Proc. 11th IEEE Symp. on Logic in Computer Science. 322–333.

[14] O. Kupferman, S. Safra, and M.Y. Vardi. 2006. Relating word and tree automata.
Ann. Pure Appl. Logic 138, 1-3 (2006), 126–146.

[15] O. Kupferman and M.Y. Vardi. 2005. From linear time to branching time. ACM
Transactions on Computational Logic 6, 2 (2005), 273–294.

[16] O. Kupferman, M.Y. Vardi, and P. Wolper. 2000. An Automata-Theoretic Approach
to Branching-Time Model Checking. J. ACM 47, 2 (2000), 312–360.

[17] L. Lamport. 1980. “Sometimes” is sometimes “Not never” - on the temporal logic
of programs. In Proc. of PoPL. 174–185.

[18] C. Löding and W. Thomas. 2000. Alternating automata and logics over infinite
words. In Theoretical Computer Science (LNCS), Vol. 1872. Springer, 521–535.

[19] M. Maidl. 2000. The common fragment of CTL and LTL. In Proc. FoCS. 643–652.
[20] K.L. McMillan. 1993. Symbolic Model Checking. Kluwer Academic Publishers.

10

LICS ’18, July 9–12, 2018, Oxford, United Kingdom

[21] R. McNaughton. 1966. Testing and Generating Infinite Sequences by a Finite
Automaton. Information and Control 9 (1966), 521–530.

[22] R. McNaughton and S. Papert. 1971. Counter-Free Automata. MIT Pres.
[23] D.E. Muller, A. Saoudi, and P.E. Schupp. 1992. Alternating automata, the weak

monadic theory of trees and its complexity. Theoretical Computer Science 97, 2
(1992), 233–244.

[24] D.E. Muller and P.E. Schupp. 1987. Alternating automata on infinite trees. Theo-
retical Computer Science 54 (1987), 267–276.

[25] D.E. Muller and P.E. Schupp. 1995. Simulating Alternating tree automata by
nondeterministic automata: New results and new proofs of theorems of Rabin,
McNaughton and Safra. Theoretical Computer Science 141 (1995), 69–107.

[26] A. Pnueli. 1977. The temporal logic of programs. In Proc. FoCS. 46–57.
[27] S. Safra. 1988. On the Complexity of ω-Automata. In Proc. FoCS. 319–327.
[28] M.Y. Vardi. 1995. Alternating automata and program verification. In Computer

Science Today –Recent Trends and Developments (LNCS), Vol. 1000. 471–485.
[29] M.Y. Vardi. 1997. Alternating automata – unifying truth and validity checking

for temporal logics. In Proc. of the 14th Int. Conf. on Automated Deduction (Lecture
Notes in Artificial Intelligence), W. McCune (Ed.), Vol. 1249. Springer, 191–206.

[30] M.Y. Vardi. 1998. Sometimes and Not Never Re-revisited: On Branching Versus
Linear Time. In International Conference on Concurrency Theory. Springer, 1–17.

[31] M.Y. Vardi and T. Wilke. 2008. Automata: from logics to algorithms. Logic and
automata 2 (2008), 629–736.

[32] M.Y. Vardi and P. Wolper. 1986. An Automata-Theoretic Approach to Automatic
Program Verification. In Proc. on Logic in Computer Science. 332–344.

[33] T. Wilke. 1999. CTL+ is exponentially more succinct than CTL. In Proc. of FoSSaCS
(LNCS), Vol. 1738. Springer, 110–121.

[34] T. Wilke. 2001. Alternating Tree Automata, Parity Games, and Modal µ-Calculus.
Bulletin of the Belgian Mathematical Society Simon Stevin 8, 2 (2001), 359.

A Appendix
A.1 Additional Preliminaries
Given a (labeled) tree T and a node n ∈ N (T), we denote by T |n
the (labeled) subtree of T rooted at n.

For an ABTA and a transition condition ρ, we denote byAρ the
ABT that is obtained fromA by changing the transition condition of
the initial state q0 to ρ, namely setting for every σ ∈ Σ,δ (q0,σ) = ρ.

A.2 Proofs of Section 3
Theorem 3.1. CTL formulas and HLTs have the same expressiveness.

We show that the described construction indeed produces for
every HLT A an equivalent CTL formula. For i ∈ [0..n], let Qi =

{qi ,qi+1, . . . ,qn } and let Ai denote the ALT that is derived from
A by changing the initial state to qi . We will show by induction
on i , starting with i = n and proceeding toward i = 0, that Ai
is equivalent to ToCTL(qi). The induction step, going from i to
i − 1, will be shown by induction on the structure of the transition
condition θ of the state qi . We start with a lemma on the correctness
of this structural induction.

Lemma A.1. Let i ∈ [0..n−1], and assume that for every k > i ,
the HLT Ak is equivalent to ToCTL(qk). Then, for every transition
condition ρ ∈ B+ ({A,E} ×Qi+1) and labeled treeT , we have that A

ρ
i

accepts T iff T ⊨ ToCTL(ρ).

Proof. By induction on the structure of ρ.
Base cases:
• ρ = true: By definition, T satisfies true, and Atrue

i accepts
every tree.
• ρ = false: By definition, T does not satisfy false, and
Afalse
i does not accept any tree.

• ρ = (A,qk), for k > i: Then ToCTL(ρ) = AXToCTL(qk).
Assume T ⊨ AXToCTL(qk). We will build an accepting run
R = ⟨Tr , r ⟩ of A

ρ
i on T . Let ϵ be the root of T and ϵr the

root of R. We define the labeling of ϵr to be the root of T
and the initial state of Ai , namely r (ϵr) = (ϵ,qi), and the

successors of ϵr to be a copy of the successors of ϵ , namely
Succ (ϵr) = {ml |l ∈ Succ (ϵ)}.
We label every successor of ϵr with its corresponding node
in T and the state qk , namely r (ml) = (l ,qk). Trivially,
the ρ-local consistency is achieved, namely ϵr ⊨ (A,qk).
By the assumption that T ⊨ AXToCTL(qk) and the seman-
tics of CTL, we conclude that every successor of ϵ satisfies
ToCTL(qk). Hence, by the assumption that Ak is equivalent
to ToCTL(qk), for every successor l of ϵ , Ak accepts T |l .
Therefore, there is an accepting run Rl of Ak on T |l . Recall
that for each such node l , there is a corresponding nodeml
in the run.We concatenate Rl underml , and get an accepting
run of Aρ

i on T , as required.
For the other direction, suppose the existence of an accepting
run R of Aρ

i on T . Let ϵ be the root of T , l a successor of
ϵ , and ϵr the root of R. By the local consistency of ϵr , we
have ϵr ⊨ (A,qk), implying that there is a successorml of
ϵr such that r (ml) = (l ,qk). As before, we denote by Rl the
run induced by ml . Notice that Rl is an accepting run of
Ak on T |l . Hence, by the assumption that Ak is equivalent
to ToCTL(qk), we have T |l ⊨ ToCTL(qk). Therefore, T ⊨
AXToCTL(qk), as required.
• ρ = (E,qk): Analogous to the previous case.

Induction step:
• ρ = ρ1 ∨ ρ2:
T ⊨ ToCTL(ρ1 ∨ ρ2) iff
T ⊨ ToCTL(ρ1) ∨ ToCTL(ρ2) iff
T ⊨ ToCTL(ρ1) or T ⊨ ToCTL(ρ2) iff, by the induction as-
sumption,
A
ρ1
i accepts T or Aρ2

i accepts T iff
A
ρ1∨ρ2
i accepts T .

• ρ = ρ1 ∧ ρ2:
It is analogous to the previous case, yet the last implication,
namely the claim that (Aρ1

i accepts T and Aρ2
i accepts T) iff

(A
ρ1∧ρ2
i accepts T), deserves an explanation.

The right-to-left implication is straightforward, as the ac-
cepting run R of Aρ1∧ρ2

i is also an accepting run of Aρ1
i and

of Aρ2
i .

As for the left-to-right implication, letR1 andR2 be accepting
runs ofAρ1

i andAρ2
i , respectively. We assume that R1 and R2

do not contain common nodes, as otherwise we can duplicate
them. We define an accepting run R of Aρ1∧ρ2

i by merging
R1 and R2: the root of R has as successors all the successors
of R1’s root and of R2’s root.

□

We continue with the main correctness lemma.

Lemma A.2. For every i ∈ [0..n], the CTL formula ToCTL(qi) is
equivalent to Ai .

Proof. We prove the lemma by induction on i , starting with i = n,
and proceeding toward i = 0.

The base case is trivial: L(ToCTL(qn)) = L(true) = L(An).
In the induction step, we assume the claimed equivalence for

every j ∈ [i+1..n], and prove it for i . There are five cases to consider:
• qi is universal and qi ∈ α .
• qi is universal and qi < α .

11

LICS ’18, July 9–12, 2018, Oxford, United Kingdom Udi Boker and Yariv Shaulian

• qi is existential and qi ∈ α .
• qi is existential and qi < α .
• qi is transient.

We show only the first case, where qi is a universal accepting state.
The other cases are proven analogously.

Recall that ToCTL(qi) = Aφi,stayWφi,leave .
I. L(Ai) ⊆ L(ToCTL(qi)): Let T be a Σ-labeled tree s.t. Ai
accepts T via a run R = ⟨Tr , r ⟩ with root ϵr , and let π be
an infinite path in T . We need to show that either i) there
is k ∈ N such that T |πk ⊨ φi,leave and for every j < k ,
T |πj ⊨ φi,stay , or ii) for every k ∈ N, T |πk ⊨ φi,stay .
Letσ be the labeling ofT ’s root, namely of π0. Notice thatT ⊨
ψσ , while for every σ ′ , σ ,T ⊭ ψσ ′ . By the local consistency
of R in its root, we have ϵr ⊨ δ (qi ,σ) = ((A,qi)∧θi,σ)∨θ

′
i,σ .

In the case that ϵr ⊨ θ ′i,σ , R is also an accepting run ofA
θ ′i,σ
i

on T . Then, by Lemma A.1, T ⊨ ToCTL(θ ′i,σ), implying that
T ⊨ φi,leave , and we are done.
Otherwise, ϵr ⊨ (A,qi) ∧ θi,σ . Similarly, since ϵr ⊨ θi,σ , it
holds thatT ⊨ φi,stay . Moreover, since ϵr ⊨ (A,qi), we learn
that there is somem in Succ (ϵr) such that r (m) = (π1,qi).
Note that R |m is an accepting run of Ai on T |π1 , so we
can repeat using the above argument and learn that φi,stay
always holds along π , unless “interrupted” by φi,leave , as
required.

II. L(ToCTL(qi)) ⊆ L(Ai): Let T be a Σ-labeled tree s.t. T ⊨
ToCTL(qi). We will present an accepting run of Ai on T . As
T ⊨ ToCTL(qi), in particular T ⊨ φi,stay ∨ φi,leave . That is,
there is σ ∈ Σ s.t. T ⊨ ψσ , and either T ⊨ ToCTL(θi,σ) or
T ⊨ ToCTL(θ ′i,σ).

If T ⊨ ToCTL(θ ′i,σ) then by Lemma A.1, A
θ ′i,σ
i accepts T by

some run R. By the definition of δ (qi ,σ), which is ((A,qi) ∧
θi,σ) ∨ θ

′
i,σ , we have that R is also an accepting run of Ai

on T , and we are done.
Otherwise, T ⊨ ToCTL(θi,σ), and by Lemma A.1, Aθi,σ

i ac-
cepts T via some run Rϵ . We will extend Rϵ to an accepting
run R of Ai on T . To do so, we hang additional successors
under the root of Rϵ for satisfying (A,qi).
Let l be a successor of the root of T . Recall that T satisfies
the weak until condition for all paths, and φi,leave has not
been fulfilled yet. Therefore,T |l ⊨ φi,stay ∨ φi,leave . Using
again the above argument, we have Aθi,σ

i accepts T |l via
some run Rl . We hang Rl as a successor of the root of Rϵ .
We proceed in this way, handling every successor l of T ’s
root, then handling the successors of each such node l , etc..
For every path of T , the procedure continues indefinitely or
until a node satisfies the ToCTL(θ ′i,σ) condition.
We claim that R is an accepting run of Ai on T . Let πr be a
path of R. Then πr either eventually becomes a path of an
accepting run, in the case that the above procedure reached
a node of T that satisfies ToCTL(θ ′i,σ), or it remains for ever
in qi . As qi is an accepting state, in both cases πr satisfies
the Büchi condition, and therefore R is accepting.

□

As a special case of Lemma A.2, considering the initial state q0,
we get the correction of our construction, concluding the proof of
Theorem 3.1.

Theorem 3.3. Hesitant alternating linear tree automata (HLT) are
strictly less expressive than alternating linear tree automata (ALT).

Proof. Consider the ALT A described in Figure 1, and let L =
L(A). Assume toward contradiction that there exists an HLT H
that recognizes L. Let Q = {s0, s1, . . . , sm } be the set ofH ’s states.
We build a tree T that is accepted by A, and then show how an
accepting run ofH on T can be changed into an accepting run of
H on some tree T ′ that is not accepted by A.

We assume w.l.o.g. that the last state with respect to the linear
order ofH , namely sm , accepts every tree, and that it is the only
state that accepts every tree. Thus, for a state s ∈ Q \ {sm }, it holds
that L(H s) , ∅. There are two options, either L(H s) ∩ L = ∅ or
L(H s) ∩ L , ∅. We define the set X (respectively, Y) to contain
all the states in Q that satisfy the first option (respectively, the
second option). Then, for every state s ∈ X , there exists a tree
T x
s ∈ L(H s) ∩ L, and for every state s ∈ Y , there exists a tree

T
y
s ∈ L(H

s) ∩ L.

The tree T (see Figure 9): T starts with a node denoted by n0 that
is labeled x . For every state s in X , there is under n0 the subtreeT x

s .
There are also two additional identical subtrees of n0, denoted by
nl0 and nr0 . Since they are identical, it is sufficient to describe the
former. nl0 is labeled y and has for every s ∈ Y , the subtree Tys . In
addition, it has another subtree, starting with a node denoted by n1
that is labeled x . The subtrees of n1 are similar to those of n0—for
every state s in X , there is under n1 a subtreeT x

s , and two identical
subtrees, denoted by nl1 and nr1 . n

l
1 is labeled y etc... there are m

such similar levels of T , until having the node nm , which is labeled
x . Then, under nm there is a singled-path tree labeled x in all its
nodes.

Notice thatT is indeed in L—It can be shown thatT |ni ∈ L using
induction on i , staring from m towards 0. Obviously, T |nm is in
L. For the induction step, suppose T |ni+1 is in L. Therefore T |nli is
also in L, since it is labeled y and has a subtree in L. Recall that by
definition, T |nri is identical to T |nli , therefore also in L. It is left to
show that the rest of the children of ni are in L. Namely, that T x

s
is in L for every s ∈ X , which indeed holds by the definition of T x

s .
Therefore, T ∈ L.

The treeT ′: T ′ is identical toT , except for having in nm the single
path zω as a subtree. Notice that T ′ is not in L—We use induction
again, showing that T |ni < L for i staring fromm towards 0. Obvi-
ously, T |nm < L. Assume that T |ni+1 is not in L. Note that all of its
siblings areTys for s ∈ Y , which by definition are not in L. Therefore
nli has no child in L, and thus T |nli < L. Then, ni is labeled x but
has a child that is not in L, implying that T |ni < L. Hence, T ′ < L.

From an accepting run ofH onT to an accepting run ofH on
T ′: Consider a run r of H that accepts T , and let S ′ be the set of
states that r assigns to nl0. For each state s in S ′, we check whether
it is assigned to nl0 by an E or by an A statement. If s is assigned
to nl0 only by an E statement, there is another accepting run r ′

of H on T that is identical to r , except for not assigning s to nl0,
while assigning s to nr0 . This is indeed the case, since nl0 and nr0
start identical subtrees. Thus, we may assume that in r , all states
that are assigned to nl0 are assigned by an A statement.

12

LICS ’18, July 9–12, 2018, Oxford, United Kingdom

Consider a state s that is assigned to nl0 by an A statement. Then
by definition, s is assigned to all other siblings of nl0. Hence, s < X ,
as otherwise, there would have been a sibling of nl0 that is the root
of a tree T x

s that is rejected byH s , which would have implied that
the run r is rejecting.

By the same argument, we get that if a state s is assigned to n1
by an A statement, it implies that s < Y .

Let s be the minimal state assigned by r ton0. SinceH is hesitant,
s is either transient, existential or universal. As we assumed that s is
assigned to nl0 by an A statement it implies, by the above argument,
that s < X . Further, it also implies that s is universal, since only s has
a transition to s (H is linear and s is the minimal state assigned to
n0). Therefore, if s is assigned to n1, it is assigned by anA statement
(by a transition from s , which is the minimal state assigned to nl0),
implying that s < Y . Hence, since Q = X ∪Y ∪ {sm } and s < X ∪Y ,
it follows that s = sm . In other words, the minimal state of n0 is not
assigned to n1.

Applying the above argument by induction on i , we get an ac-
cepting run r ofH onT , such that for every i ∈ [0..m−1], the node
ni+1 is not assigned any of the states in {s0, s1, . . . , si }. In particular,
the node nm is not assigned any of Q \ {sm }.

Thus, sinceH sm accepts every tree, we arrived to an accepting
run ofH on T ′, which does not belong to L. □

A.3 Proofs of Section 4
Theorem 4.2. [Theorem 4.1 Extended] Let L be the derived language
of a DBW D. If there is a state q of D s.t. the following hold, then L
is not expressible in CTL.

• There is a cycle from q back to itself labeled xyz, for finite words
x , z ∈ Σ∗ and y ∈ Σ+.
• The run ofDq on y reaches a state q′, s.t.Dq′ has an equivalent
CTL formula.
• There exists a wordw < L(Dq), s.t. ∀i ∈ N, z (xyz)iw ∈ L(Dq′).
• For every word y′ ∈ L(Dq′) and ∀i ∈ N, z (xyz)iyy′ ∈ L(Dq′).

Proof. We explain below how we change the proof of Theorem 4.1
in order to suit Theorem 4.2.

Similarly to the proof of Theorem 4.1, we assume toward con-
tradiction that L is expressible in CTL, and therefore there is an
HLT A recognizing it. We describe a tree T that belongs to L, and
via which we will show that A also accepts some tree T ′ not in L,
reaching a contradiction.

Recall the construction of the tree T in the original proof. It
used a set B of A’s states and a set Y of trees. We denoted bym
the number of states in A. Further, we hanged under the nodes ni
(i ∈ [0..m − 1]) trees denoted by Ts , where s is a state in the set B,
andTs ∈ Y \L(As). Under the node nm we hanged a tree in Y . The
treeT ′ resulted by replacing the subtree hanged under nm with the
singled-path tree labeledw .

We keep this construction, but redefine Y to be the set of trees
in which all paths satisfy the following two conditions: i) the first
|y | labels form the word y, and ii) the labels of the suffix from the
(|y |+1)’s position form a word in L(Dq′).

Note thatT is in L. Indeed, each path has the form of v (xyz)iyy′

for some y′ ∈ L(Dq′) and i ∈ N, which is in L (see Figure 2, and
recall that though L(Dq′) is no longer Σω , y′ ∈ L(Dq′)). Moreover,
note that T ′ is not in L.

T x
q1 T x

qk

T
y
q′1

T
y
q′l

T x
q1 T x

qk

T
y
q′1

T
y
q′l

x n0

y nl0

x n1
...

x nm−1

y nlm−1

x nm

x

...

nrm−1
...

nr0
...

. . .

. . .

. . .

. . .

In T ′, the labeling of these nodes
is changed to z, and the tree is ac-
cepted by H , though not in L.

Figure 9. The tree T used in the proof of Theorem 3.3

Analyzing accepting runs ofA onT : Consider a run r ofA that
accepts T . As mentioned in the original proof, we can assume that
in r , all states that are assigned to nl0 are assigned by anA statement.

By the same argument that was used in the original proof, we
get that a state s that is assigned to nl0 by an A statement must not
be in B. Thus, As accepts every tree in Y . Therefore, conceptually,
As can accept every tree in L(Dq′)∆ after reading y. If, technically,
it is not the case, we can change A to an equivalent HLT A ′, as
described below, such that the above conceptual claim holds also
technically.

Recall that Dq′ has an equivalent CTL formula, therefore by
Theorem 3.1 there is an HLT Aq′ equivalent to Dq′ . We denote its
initial state by s ′. We changeA to an HLTA ′ that extendsA with
|y | − 1 new states, namely {s ′1, . . . , s

′
|y |−1}, having the transitions

s
y1
−−→
A

s ′1
y2
−−→
A
. . .

y |y |−1
−−−−−→

A
s ′
|y |−1

y |y |
−−−→
A

s ′. Notice that A and A ′

recognize the same language.
13

LICS ’18, July 9–12, 2018, Oxford, United Kingdom Udi Boker and Yariv Shaulian

Deducing an accepting run of A ′ on T ′: Analogously to the
arguments in the original proof, the node nlm−1 and therefore also
the node nm , is not assigned any state of A. Note that for i ∈
[0..m − 1] we prove that the node nli is not assigned to any of
the states {s0, s1, . . . , si } by changing the run of A on T in a way
that it goes to the state s ′ when reading y, before reaching nli . We
should explain how the run continues from there and why it is still
accepting. To this end, note that in each iteration s ′ is assigned to
a subtree all of whose paths are of the form z (xyz) jyy′ for some
y′ ∈ L(Dq′) or of the form z (xyz) jw , for j ∈ N. Either way, we
assumed it to be in L(Dq′) = L(As ′). In particular, there is an
accepting run of As ′ on that subtree. Therefore, we can have an
accepting run of A on T ′, which does not belong to L. □

Corollary 4.4. The language L = “all paths belong to (abc)∗b ((b +
c)∗a)ω ” is not definable in CTL.

Proof. Consider the DBW D in Figure 5 and the states q and q′ of
D. Denote x = a, y = b and z = c . Then y appears on a cycle from
q back to itself and also is the path from q to q′.

Note that by the sufficient condition of Section 5.2,Dq′ is almost
linear and thus has an equivalent CTL formula. The rest of the
stronger conditions hold as well, therefore by Theorem 4.2, there is
no equivalent CTL formula for D. □

A.4 Proofs of Section 5
We start with two definitions that we will use in the course of
analyzing the cycles of DBWs. Let q be a state in a DBW D =
⟨Σ,Q,δ ,q0,α⟩, and consider a letter σ ∈ Σ. The state thatD reaches
upon reading σ from q may have a path back to q through none,
one, or several simple cycles. We define Cycles (q) to be the set of
simple cycles that include q, andCycles (q,σ) to be the set of simple
cycles that include both the state q and δ (q,σ), such that the two
states are adjacent along the cycle.

Given a DBW D, a cycle C of D, and a state q of C , we define
the following sets of escaping words.

EarlyEscape (C,q) = {w ∈ Σ∗ | D leaves C early from q viaw },

EarlyEscape (C) =
⋃
q∈C

EarlyEscape (C,q),

EarlyEscape (q) =
⋃

{C | C ∈Cycles (q) }

EarlyEscape (C,q),

Similarly, we define the sets CyclicEscape (C,q), CyclicEscape (C),
and CyclicEscape (q). Finally, we define

Escape (q) = EarlyEscape (q) ∪CyclicEscape (q)

We continue with the theorem proof.

Theorem 5.3. Every decisive DBW has an equivalent CTL formula.

A.4.1 The Equivalent CTL Formula
Consider a decisive DBW D = ⟨Σ,Q,δ ,q0,α⟩ over an alphabet Σ
with a decisive partQ ′ ⊆ Q . We define below a corresponding CTL
formulaψ , which we will show to be equivalent to D.

For every state p in Q ′, we will have a formula State(p) that
“describes” it, based on the simple cycles to whichp belongs.Wewill
also define such formulas for the states in δ (Q ′, e). In addition, we
will have the formula Orientation that occasionally “synchronizes”
a node of the input tree with the corresponding state of Q ′.

A formula for each state in Q ′ ∪ δ (Q ′, e): We define below the
formula of a state p, using some subformulas that will be defined
afterwards.

We begin with the states in δ (Q ′, e). Let p be a state in Q ′. We
know that every state transitioned by e from p has an equivalent
CTL formula. In other words, Dδ (p,e) is equivalent to some CTL
formula φp . We simply define State(δ (p, e)) B φp .

We continue with a state p ∈ Q ′. Consider first the case that p
has outdegree 1. Since there is only one possible next-state to p, we
may demand that all paths that continue from p in the tree satisfy
the next-state’s formula. Namely,

State(p) =
∨
σ ∈Σ

φσ ∧AXState(δ (p,σ))

Where
φσ = (

∧
a∈σ

a) ∧ (
∧
a<σ
¬a)

Upfront, it might seem that the above definition of State(p) is
improper, as it might cause a cyclic definition of the overall CTL
formula, defining the formula of each state according to the formula
of the next state along a cycle. Yet, observe that we only allow this
definition in the case that the outdegree of p is 1. Recall that all
states in the decisive part of the automaton are rejecting. Thus, a
cyclic definition might only occur in case that there is a cycle in
the automaton of rejecting states, all of which having outdegree
1. Every state in this cycle is thus equivalent to false. Hence, we
can remove such cycles in a pre-processing phase, and assume at
this phase that there are no such cycles.

We continue with the case where p has outdegree of 2 or above.
The matched formula consists of three different parts explained
below. In general, the first part ensures local validity, the second
deals with letters that do not appear on cycles of p, and the last
handles cycles.

State(p) B LookAhead(p) ∧∨
{σ | Cycles (p,σ)=∅}

φσ ∧AX State(δ (p,σ)) ∧

∨
{σ | Cycles (p,σ),∅}

φσ ∧ (
∧

C ∈Cycles (p,σ)

EarlyLeave(C,p) ∨ Cycle(C))
)

LookAhead(p): This formula guarantees that the labels of the next
nodes of each path in the input tree matchD, by “looking ahead” a
fixed number of steps. This fixed number is defined to be the length
of the longest cycle in Q ′ plus one, and is denoted by l .

For example, consider a state p that has the following direct

paths: p
a
→ ·

a,c
→ ·

b
→ ·; p

a
→ ·

b
→ ·

a
→ ·; and p

b
→ ·

a
→ ·

a,b
→ ·. Then

LookAhead(p) = (φa ∨φb)∧ (φa → AX ((φa ∨φb ∨φc)∧AX ((φa ∨
φc) → AX (φb)∧φb → AX (φa))∧(φb → AX (φa → AX (φa∨φb))).

EarlyLeave(p,C): Consider a state p that belongs to a cycle C ⊆
Q ′. We define a formula that checks if there is a path of the tree on
which D leaves C early from p. For ease of notations, for a word
w ∈ Σ∗, we define

PathExists(w) = φw1 ∧ EX (φw2 ∧ EX (φw3 · · · ∧ EX φw |w |)),

and use it to define
14

LICS ’18, July 9–12, 2018, Oxford, United Kingdom

EarlyLeave(C,p) =
∨

w ∈EarlyEscape (C,p)

PathExists(w).

Before defining Cycle(C), we define the formula IfThen that it
will use. The formula takes two arguments: a finite sequence of
states q1, . . . ,qm for somem ∈ N and a CTL formula ξ . Intuitively,
the formula ensures that if a path has a prefix u of lengthm, such
that the run of the automaton from q1 overu is exactly the sequence
of states [q1..qm], then this path, after the prefix u, satisfies ξ .
Formally, for every i ∈ [1..m − 1], let Σi be the set of letters that
are legit as a transition from qi to qi+1. We define

IfThen([q1..qm], ξ) = φΣ1 → AX (φΣ2 → · · ·AX (φΣm−1 → AXξ)).

where
φΣi =

∨
σ ∈Σi

φσ

Cycle(C): This formula deals with trees all of whose paths start
with a complete cycle of C . Basically, the formula validates that ev-
ery path stays in the cycle, until encountering some cyclic-escaping
path. Consider a cycleC = ⟨q1, . . . ,qk ,q1⟩. For defining the formula
Cycle(C), we first define the following formulas.
• We use the IfThen formula for defining a formula stating
that if a path of the tree completes a cycle along C , starting
from the x-th position of C , then it also takes one more step
on C .

Stay(C)x = IfThen(⟨qx , ..,qk ,q1, ..,qx−1⟩, Σx),

• Next, we gather the instances of the above formula for all
positions of the cycle C , such that the resulting formula is
indifferent to the starting position.

Stay(C) =
k−1∧
x=0

Stay(C)x ,

• A formula stating that some path takes its way out ofC after
completing a cycle.

CyclicLeave(C) =
∨

w ∈CyclicEscape (C)

PathExists(w),

Then,
Cycle(C) = A Stay(C) U CyclicLeave(C).

Orientation: The formula allows to synchronize the current node
of the read treewith the corresponding state ofD. Due to the unique
way in which words escape, it can trigger the synchronization
whenever an escaping word occurs at some path of the read tree.

Once detecting an escaping word, Orientation triggers the
formula of the state on which the paths diverge. It is done as long
as the letter e is not read, meaning that the run of the DBW on the
tree is still in a state in Q ′.

If an escaping word wσ is detected, we can ensure that paths
in the tree that are related to w share the same future, reaching
together the same state. Therefore, we trigger the formula of that
state.

Orientation = A GoodEscapesUe,

where GoodEscapes =∧
q∈Q ′

∧
wσ ∈Escape (q)

PathExists (wσ)→IfThen(sequenceq,w , State(δ (q,w))).

and sequenceq,w is the list of states that the automaton visits while
running onw from q. It starts with q and ends with δ (q,w).

The overall formula: for a decisive DBW D with an initial state
q0, the corresponding CTL formula is

ψ = State(q0) ∧ Orientation

A.4.2 Correctness
We start with some propositions on the structure of decisive DBWs.

We first observe that due to the counter-free property, cyclic
words along the same cycle are unique.

Proposition A.3. For every cycle C of a counter-free DBW D and
states q and q′ in C , let u and u ′ be finite words on which D goes
from q and q′ back to themselves along C , respectively. Then u , u ′.

Next, we use the second constraint in the definition of decisive
automata, for assuming without loss of generality that the delim-
iting letter e does not appear along a cycle of the decisive part.

Proposition A.4. For every decisive DBWD, there is an equivalent
decisive DBW with a decisive part Q ′′, such that e does not appear
on any cycle of Q ′′.

Proof. Let Q ′ be a decisive part of D. If e does not appear in any
cycle of Q ′ we are done; If it does, we may change D to achieve
such a form without altering its language. First, we create a copy
D̄ of D, which will not be in the decisive part. If D moves from
a state q ∈ Q ′ to a state s ∈ Q ′ when reading e , we refer q instead
to its corresponding state in D̄. Note that we haven’t changed the
language of D by doing so. Moreover, there is still an equivalent
CTL formula to the state transitioned by e , as a copy of a state that
already has an equivalent CTL. We do so for each transition that
includes e , getting the requested form. □

We now turn to show the equivalence of the given decisive DBW
and the corresponding CTL formula.

Proof of Theorem 5.3. Consider a decisive DBW D, and let ψ be
the corresponding CTL formula, as per Section A.4.1. We need to
show that L(ψ) = L(D)∆. Namely, we should prove that for every
Σ-labeled tree ⟨T ,V ⟩, it holds that ⟨T ,V ⟩ ⊨ ψ iff for every path π
of T , the word V (π) is accepted by D.

Left To Right (L(ψ) ⊆ L(D)∆). We show that D accepts all paths
of a tree T that satisfiesψ , by proving the following “local” lemma,
which roughly states that onceψ holds in a node of the treeT , then
D has a corresponding run prefix on every path prefix of some
length k , and that all nodes that are k-levels ahead also satisfyψ .

The “local” lemma guarantees also the “global” requirement,
since its iterative repetition is finite—Due to the satisfaction ofψ , e
must eventually occur in every path, and therefore D accepts the
path.

Lemma A.5. Let q ∈ Q ′ be a state ofD and ⟨T ,V ⟩ a Σ-labeled tree,
such that ⟨T ,V ⟩ ⊨ State(q) ∧ Orientation. Then:

15

LICS ’18, July 9–12, 2018, Oxford, United Kingdom Udi Boker and Yariv Shaulian

1. Either T ’s root is labeled with e (satisfying Orientation),
and every subtree in depth 1 satisfies State(δ (q, e)) (due to
State(q)); Or

2. For every path π ofT , there exists an integer k ≥ 1 and a state
q′ ∈ Q ′ s.t. the run ofD on the firstk positions of π is legal and
leads to a state q′, namely δ (q,V (π0 . . . πk−1)) = q

′ and the
subtree ⟨T |πk ,V ⟩ satisfies both State(q′) and Orientation,
namely ⟨T |πk ,V ⟩ ⊨ State(q′) ∧ Orientation.

Proof. Suppose ⟨T ,V ⟩ ⊨ State(q) ∧ Orientation. By definition of
the formula State, the transition from q upon reading the label of
the root of T , denoted by σ , is either on some cycles containing q
or leads q to a state q′ that has no way back to q. If the latter holds
then the required containment is easily shown: by the definition of
the formula State, we have ⟨T ,V ⟩ ⊨ φσ ∧AX State(q′). For every
path π it holds that ⟨T |π1 ,V ⟩ ⊨ State(q′). If σ = e then case (1) is
satisfied. Otherwise, ⟨T |π1 ,V ⟩ ⊨ Orientation holds since ⟨T ,V ⟩
satisfies Orientation and the Until condition of Orientation has
not been satisfied by the root of T .

We turn to the interesting case, where the transition from q upon
reading σ is on some cycles containing q. Recall that we assumed
e does not appear in cycles of Q ′, therefore σ , e . In addition, the
definition of State dictates that for every cycle C ∈ Cycles (q,σ),
one of the following holds:

1. ⟨T ,V ⟩ ⊨ EarlyLeave(C,q), or
2. ⟨T ,V ⟩ ⊨ Cycle(C)

We split into two cases:

I. ∃C ∈ Cycles (q,σ) s.t. ⟨T ,V ⟩ ⊨ EarlyLeave(C,q), or
II. ∀C ∈ Cycles (q,σ) it holds that ⟨T ,V ⟩ ⊭ EarlyLeave(C,q)

Notice first that since LookAhead(q) holds in the root of T , the
first l levels of the input tree indeed correspond to a legal run ofD.
(Recall that l stands for the length of the longest cycle in Q ′ plus
one.)

Case I: Letwa be an early escaping word of minimal length that
can be found from the root of T and let C be the cycle on which
D leaves C early from q viawa. By definition ofwa we know that
each (legal) path in T follows C for the next k B |w | levels of the
tree, as otherwise there would have been a shorter escaping word.

Note that wa has no more than l letters, since as every other
word in EarlyEscape (q), it follows some cycle, up to its last letter,
and cannot use the same edge twice. Since the following l levels
are legal, we conclude that all of the k ≤ l first levels of the tree
follow the same path in D.

Furthermore, since ⟨T ,V ⟩ ⊨ Orientation, the fact that there is a
path labeledwa that is an early escapingword “triggers” Orientation
to guarantee that IfThen(sequenceq,w , State(δ (q,w)) holds. Hence,
since every path follows C for the next k steps, we have by the
definition of the IfThen formula that every subtree in the k-th level
of T satisfies State(δ (q,w)).

Note that e does not appear in these k levels, since these levels
correspond to a cycle of Q ′. Therefore, Orientation’s Until con-
dition has not been fulfilled yet so Orientation still holds at the
k-th level, and we are done.

Notice that we presented a single integer k with respect to which
the lemma holds for all paths. In the second case below, the situation
will be different, having a possibly different k for each path.

Case II: The assumption in this case implies that for each cy-
cle C ∈ Cycles (q,σ) it holds that ⟨T ,V ⟩ ⊨ Cycle(C). In particu-
lar, there exists such a cycle and we denote it by C . So ⟨T ,V ⟩ ⊨
A Stay(C) U CyclicLeave(C). In addition, we know that ⟨T ,V ⟩ ⊭
EarlyLeave(C,q), therefore no path of T starts with an escaping
word on which D leaves C early from q. Thus, D completes the
cycle C along every path prefix of T .

Recall that when D completes the cycle C along every path
prefix of T , Stay(C) promises (if holds) another step on C . That is,
as long as Stay(C) holds in π , we know that the labels on the next
|C | levels correspond to a proper continuation of D’s run on C .

Eventually, on every path π of T , there is some j ≥ 0, such that
⟨T |πj ,V ⟩ ⊨ CyclicLeave(C). In addition, for every path starting
from πj we know that the next |C | − 1 levels correspond to C ; This
is the case, since either j = 0 and LookAhead(q) guarantees it or
j ≥ 1 and Stay(C) guarantees it.

We claim that the requestedk is j+|C |−1 .We have already shown
that the labels of the nodes of π respect D up to πk (including).
It is left to show that ⟨T |πk ,V ⟩ ⊨ State(q′) ∧ Orientation for
q′ = δ (q,V (π0 . . . πk)).

Since CyclicLeave(C) holds at the subtree of πj , we know that
there is a path starting at πj that starts with a wordwσ ′ forw ∈ Σ∗
and a letter σ ′, on which D leaves C cyclically from some state

q′′. It must follow that q′′ =
{

q j = 0
δ (q,V (π0 . . . πj−1)) j ≥ 1 be-

cause otherwisew is a valid word from two different states on C ,
contradicting Proposition A.3.

The formula Orientation still holds at ⟨T |πk ,V ⟩, for the same
reason presented in the first case.

Therefore, similarly to the first case, we infer that the cyclic
escaping wordwσ ′ “triggers” Orientation to guarantee that the
subtree ⟨T |πk ,V ⟩ satisfies IfThen(sequenceq′′,w , State(δ (q

′′,w))).
Since the path labeled w satisfies the if-clause, we deduce that
⟨T |πk ,V ⟩ ⊨ State(δ (q′′,w))

Now, we claim that δ (q′′,w) = q′, implying that ⟨T |πk ,V ⟩ ⊨
State(q′), as required. Indeed, δ (q′′,w) = δ (q′′,V (πj . . . πk)),
since we saw that all k − j + 1 = |C | steps from πj (including)
properly correspond to D’s run on C , and δ (q′′,V (πj . . . πk)) =
δ (q,V (π0 . . . πk)) = q

′. □

Right to Left (L(ψ) ⊇ L(D)∆). Let ⟨T ,V ⟩ be a Σ-labeled tree all
of whose paths are accepted by D. Without loss of generality, we
assume that for every alphabet letter σ , D remains in the same
strongly connected component upon readingσ inq0; Otherwise, the
proof proceeds by induction on the strongly connected components
ofD. Note that the base case of the induction is covered since states
transitioned by e have an equivalent CTL formula (Definition 5.2.2).

The outline of the proof consists of two main claims. The first
concerns the formula State and is more local, saying that if a
labeled tree belongs to the language of Dq , for some state q of D,
then it also satisfies State(q). The second is more global, claiming
that ⟨T ,V ⟩ satisfies Orientation.

The first claim is captured by the following lemma.

Lemma A.6. Let T ′ be a subtree of T . If ⟨T ′,V ⟩ ∈ L(Dq) for some
state q ∈ Q ′ of D, then ⟨T ′,V ⟩ ⊨ State(q).

Proof. LetT ′ be a subtree ofT such that ⟨T ′,V ⟩ ∈ L(Dq), for some
state q ∈ Q ′ ofD, and let σ be the label ofT ′’s root. We will further

16

LICS ’18, July 9–12, 2018, Oxford, United Kingdom

assume that q’s outdegree is greater than 1 and handle the other
case later.

First, by the construction of LookAhead, it is easy to see that
⟨T ′,V ⟩ ⊨ LookAhead(q).

We assumed w.l.o.g. thatCycles (q,σ) , ∅, thus we should prove
that for each cycleC ∈ Cycles (q,σ) the labeled tree ⟨T ′,V ⟩ satisfies
either EarlyLeave(C,q) or Cycle(C).

Indeed, let C be a cycle in Cycles (C,q). If there is a path of T ′
labeled with an early-escaping word from EarlyEscape (C,q), then
EarlyLeave(C,q) is satisfied. Otherwise, on every path prefix of
T ′, the run ofD remains in the cycleC , meaning all paths complete
C . Consider a path π of T ′. If CyclicLeave(C,p) doesn’t hold on
the subtrees ⟨T |π0 ,V ⟩, we can infer that the run of D remain on C
for one more step along each path, therefore Stay(C) holds. We can
repeat this process concluding that as long as CyclicLeave(C,p)
doesn’t hold on the subtree ⟨T |πi ,V ⟩ it implies that Stay(C) does,
meaning ⟨T ′,V ⟩ ⊨ Cycle(C).

For the case where q’s outdegree is 1, recall that the State(q)
formula is AXState(δ (p,σ)) for the letter σ with which the tree
node is labeled. Since all children of the tree node follow the run
of D from q, which necessarily leads to the single next-state of q
in D, every path of the tree satisfies the formula State until D
reaches a state with outdegree bigger than 1, and from there the
correctness follows from the previous case. □

For showing that ⟨T ,V ⟩ ⊨ Orientation, let π be a path of T .
We should show that every escaping-word “trigger” is handled
correctly until encountering the letter e . Recall that by definition
Q ′ does not contain accepting states and can be leaved only with
the letter e , therefore e occurs at some position j in V (π).

Consider some node πi of T for i < j. Note that ⟨T |πi ,V ⟩ ∈
L(Dq) for q = δ (q0,V (π0 . . . πi−1)). If there is no cyclic- or early-
escapingword that starts atπi , no trigger is raised, and the Orientation
formula is vacuously satisfied. Otherwise, there is a cyclic- or early-
escaping wordwσ that starts at πi . Let q′ be a state and C a cycle,
such that D leaves C from q′ viawσ .

We should show that IfThen(sequenceq′,w , State(δ (q′,w)) holds.
That is, we need to prove that if a prefix of πi forms a word u, such
that Dq′ has the same run onw and on u, then the subtree T ′ that
starts after this prefix of πi satisfies State(δ (q′,w)).

Indeed, observe first that uσ is also an escaping word, since
wσ is an escaping word and w and u share the same route from
q′, hence leave C together. By Definition 5.2.5 escaping words
coincide in their last two states, therefore δ (q′,u) = δ (q,u) and
δ (q′,w) = δ (q,w). Since we also have that δ (q′,u) = δ (q′,w), we
get that δ (q,u) = δ (q,w).

As ⟨T |πi ,V ⟩ ∈ L(Dq), we have that ⟨T ′,V ⟩ ∈ L(Dδ (q,u)). By
LemmaA.6 it follows that ⟨T ′,V ⟩ ⊨ State(δ (q,u))) = State(δ (q,w)),
as required.

□

Observe that the length of the constructed formula might be
exponentially longer than the number of states in the translated
DBW. The reason for the blowup comes from the fact that we
examine each simple cycle of the automaton, and there might be
exponentially many simple cycles even in decisive DBWs.

A.4.3 Almost Linear DBWs
Lemma A.7. An almost linear DBW D is equivalent to its con-
structed HLTH , described in Section 5.2.

Proof. We show that the languages of D andH are equal by prov-
ing mutual containment. For showing that L(D) ⊆ L(H), consider
an accepting run of D on a tree T . We claim that every path in the
run-tree ofH onT is accepting; It is clear for the path labeled with
q′e since it is an accepting state. It is true also for paths with some
e label, as they were “released” byH by sending each one of them
to true. The rest of the paths are contained in the run-tree of D
on T , and therefore are also accepting.

For the other direction, consider a treeT that is rejected byD. It
must contain a path that is not in L(D). Observe that a finite word
is rejected by D iff it is rejected byH . Hence, it is left to consider
the case where the run ofD on that path reaches only finitely many
times an accepting state, and in particular qe . It implies that at some
pointH is forced to imitate D, and therefore to reject T . □

17

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Words and Trees
	2.2 Temporal Logic
	2.3 Automata
	2.4 Connecting Automata and Temporal Logic

	3 CTL is Equivalent to HLT
	3.1 Tightness

	4 Necessary Conditions for LTLCTL
	4.1 The Basic Condition
	4.2 A Stronger Condition
	4.3 Examples of Using the Necessary Conditions

	5 Sufficient Conditions for LTLCTL
	5.1 The Main Condition
	5.2 An Additional Sufficient Condition
	5.3 Examples

	6 On CTL* Formulas Expressible in CTL
	7 Conclusions
	References
	A Appendix
	A.1 Additional Preliminaries
	A.2 Proofs of Section 3
	A.3 Proofs of Section 4
	A.4 Proofs of Section 5

